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ABSTRACT 
Peer-to-peer distributed virtual environments (DVE's) distribute 

state tracking and state transitions. Many DVE's - such as online 

games - require ways to fairly determine the outcome of 

probabilistic events. While trivial when a trusted third party is 

involved, resolving these actions fairly between adversaries 

without a trusted third party is much more difficult. This paper 

proposes the Pairwise Random Protocol (PRP), which uses secure 

coin flipping to enable adversaries to fairly determine the result of 

a probabilistic event without a trusted third party. Three different 

variations of PRP are presented, and the time impact and network 

overhead are examined. We conclude that PRP enables DVE’s to 

distribute the work of determining probabilistic events between 

adversaries without loss of security or fairness, and with 

acceptable overhead. 

Categories and Subject Descriptors 

I.6.8 [Simulation and Modeling]: Types of Simulation – gaming.  

General Terms 

Algorithms, Security. 

Keywords 

Distributed Virtual Environment, Security, Bit Commitment, 

Secure Coin Flipping, Fairness, Cheating, Pairwise Random 

Protocol.  

1. INRODUCTION 
 

Distributed Virtual Environments (DVE's) are virtual environment 

(VE) simulations run on two or more nodes. Nodes are defined as 

individual software instances contributing to the DVE, usually 

running on separate computers connected by a network. DVE's are 

used for a variety of purposes, such as military simulations [1], 

immersive educational and therapeutic environments[2], 

cyberspace virtual environments[3], and networked computer 

games. Blizzard Entertainment's World of Warcraft[4], for 

example, is a DVE with more than eleven million paying 

subscribers[5], and more than a million active nodes at its busiest 

times. 

Virtual Environments are implemented as DVE's to allow more 

resources to be applied to the simulation, ideally providing better 

scalability and higher simulation resolution than possible with a 

fully centralized simulation. DVE's usually follow one of two 

models: client-server or peer-to-peer. Client-server and DVE's 

perform important operations on trusted nodes, and so can 

typically trust state representation and state transition calculations. 

Peer-to-peer DVE's, however, distribute more of the state-keeping 

and transition work to untrusted nodes, requiring additional steps 

to secure the DVE.  

Several solutions have been proposed to facilitate fair resolution 

of competition between participants in peer-to-peer DVE’s. 

Solutions which address resolution of conflict between peers 

typically either focus on event ordering rather than supporting 

probabilistic transactions, or rely upon quorums or disinterested 

third parties to take on the role of trusted third parties, 

sidestepping the problem. While useful, approaches which proxy 

trusted third parties can’t guarantee fairness. Quorums can be 

subverted, and arbitrary ‘disinterested’ third parties can be 

malicious for the sake of being malicious, whether or not they 

know their victim. How, then, can two adversaries interacting in a 

DVE – for example engaged in combat in a military DVE - 

determine whether a probabilistic event such as an attack succeeds 

or fails when both parties are incented to cheat? 

This paper outlines a pairwise random protocol (PRP) for 

untrusted nodes to fairly generate random bit sequences which can 

be used to resolve probabilistic events. PRP allows adversaries to 

fairly resolve sequences of actions without requiring intervention 

from a third party, trusted or otherwise.   

The remainder of this paper presents PRP and analyzes its 

benefits. Section 2 provides a brief overview of DVE security 

research, and the foundation of bit commitment and secure coin 

flipping. Section 3 presents two variations of PRP. Section 4 

discusses PRP’s attributes and performance compared to a trusted 

third party (TTP). Section 5 presents a final summary. 

2. RELATED WORK 
Relevant related work falls into two categories: DVE security 

research, and secure coin flipping. DVE security research covers a 

variety of different aspects of DVE correctness, but doesn’t 

generally address fair resolution of probabilistic events without a 

trusted third party. Secure coin flipping is a well-known 

cryptographic technique for resolving probabilistic events 

between adversaries.  
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2.1 DVE Security research 
Distributed Virtual Environments distribute simulation work 

across two or more nodes. Distributing simulation rule 

enforcement opens the DVE to exploitation by participants 

wishing to bias the simulation. In online game DVE's, this 

exploitation is usually defined as cheating.  

Known cheats have been analyzed and categorized in a variety of 

ways. Yan and Randell provide a useful cheat taxonomy with 

examples in [6]. Webb and Soh present an interesting overview of 

cheating and their own taxonomy in [7]. Yee et. al. present a 

threat model for MMOG DVE’s in [8] 

A variety of approaches have been proposed to combat cheating in 

game DVE's. Some - such as Mönch's work on mobile guards[9] - 

suggest protecting binaries and network transmissions from 

modification as the primary defense. Others[10] argue that relying 

on such protections alone is akin to participating in an arms race 

with the cheaters, one there is no hope of the DVE authors 

winning.  

Most proposals target a specific type of cheat. For example, event 

reordering and update-suppress cheats can be addressed by 

lockstep protocols such as asynchronous synchronization[11], 

NEO[12], and trusted timestamp servers[13]. 

Auditing can be used to detect and deter cheating[14], though it 

requires a trusted or semi-trusted auditor with sufficient resources 

to validate suspect behavior.  

Deferring state tracking and transition to a disinterested third 

party or a quorum has been proposed several times[15][16][17]. 

While sound in general, ensuring quorum members or 

disinterested third parties aren’t aligned with the interests of one 

of the affected parties – or simply malicious – is problematic.  

Finally, Knutsson et al. provide a thorough proposal for a peer-to-

peer DVE in their 2004 SimMud[18] paper. They call out the need 

for interacting nodes to have a reliable, verifiable stream of 

random numbers for resolving their interactions - for example by 

sharing a seed for a random number generator. However, their 

paper doesn't specify how this seed should be generated, and 

relying on a deterministic sequence based on a random seed 

introduces weaknesses, as discussed later in this paper. 

Each of these techniques has merit and mitigates real threats. 

However, none of them enable fair resolution of probabilistic 

events.  

2.2 Secure coin flipping 
The pairwise random protocol is a variation of secure coin 

flipping. Secure coin flipping was first introduced by Blum in 

[19]. In essence, Blum proposes using a secure one-way function 

𝐹(𝑥) to enable Alice and Bob to verifiably flip a fair coin, even 

though they are adversaries.  In the simplest case, this is a three 

step process, where Bob tries to guess if a bit sequence 𝑅 chosen 

by Alice is even or odd.  If he’s correct, he wins the coin toss. 

Otherwise he loses. 

1. Alice chooses a bit vector 𝑥, then tells Bob 𝐹(𝑥).  

2. Bob tells Alice his guess as to whether 𝑥 is even or 

odd. 

3. Alice reveals 𝑥 to Bob.  

At the end of the exchange, Bob can calculate 𝐹(𝑥) to ensure 

Alice didn’t change 𝑥 after learning Bob’s guess.  

We consider the (currently) unbroken hash function SHA-256 a 

suitable secure one-way function for our implementation of secure 

coin flipping. 

3. PAIRWISE RANDOM PROTOCOL 

(PRP) 
The pairwise random protocol (PRP) provides a way for two 

competing nodes in a DVE to fairly resolve probabilistic events.  

Consider a DVE with nodes, Alice and Bob. Each node controls 

an avatar, and those avatars are interacting. Given a consistent, 

verifiable view of the simulation state, we wish to enable Alice 

and Bob to fairly resolve a set of probabilistic events. For 

example, Alice and Bob are engaged in combat, with a certain 

probability of each successfully attacking their opponent, and a 

variable amount of damage inflicted per successful attack.  

Each node is incented to cheat to resolve actions in their favor. 

Alice wants all of her attacks to succeed, and all of Bob's attacks 

to fail. Alice wants each of her hits to inflict maximum damage, 

and each of Bob's hits - should he manage to get any - to inflict 

minimum damage. PRP ensures that - given consistent views of 

world state - Alice and Bob can fairly resolve probabilistic 

interactions such as determining attack success and selecting the 

amount of damage inflicted within the specified range. 

As Alice and Bob are participating in the same DVE, we can make 

some simplifying assumptions.  

1. Alice and Bob each know the correct DVE rules. Even if 

Alice is running a modified version of the DVE 

software, she has the unmodified code at her disposal 

for verifying validity of Bob’s activities. 

2. Alice and Bob have access to identical pseudo-random 

number generators, and these generators provide 

‘suitably random' sequences for the DVE to resolve 

probabilistic sequences of activities.  

3. Alice and Bob can communicate with each other.  

Given these assumptions, we describe any probabilistic activity 

which affects either party as an adversarial activity.  

Before resolving the success or failure of an adversarial activity, 

Alice and Bob must specify the activity to be decided. For 

example, Alice and Bob must agree that they are performing PRP 

to calculate whether or not Alice succeeds in attacking Bob. This 

has two benefits: 

1. It ensures that the losing party in a PRP exchange 

can’t claim the exchange was intended to determine 

outcome of a different activity, e.g. whether Alice gets 

crumbs on her jacket from eating a donut, rather than 

success in combat.  

2. It allows a cryptographic proof of participation in the 

activity to be generated. This reduces the utility of the 

loser refusing to continue the exchange.  
We assume this binding can preface the PRP exchange, or be 

performed as part of it. Discussions of methods for doing this are 

out of scope of this paper. 

Section 3.1 describes the core PRP protocol to resolve a single 

probabilistic event. Section 3.2 proposes a refinement for 

generating a pseudo-random sequence without either adversary 

controlling the sequence.  



3.1 Resolving a single action 
Probabilistic actions can be resolved by a series of secure coin 

flips with a pre-agreed interpretation. For example, Alice and Bob 

can agree that Alice has a 5 in 8 chance of successfully attacking 

Bob. Alice therefore needs to generate a random number between 

1 and 8, and if it is 5 or less, her attack succeeds. Alice and Bob 

can generate this number by flipping a fair coin three times to 

generate a 3-digit binary number, with heads being a ‘1’ and tails 

a ‘0’. As long as we can guarantee sequencing of flip results used 

as bits, resolving a single arbitrarily scaled probabilistic event – 

such as this one - can be reduced to ensuring a single coin can be 

fairly flipped.  

The basic protocol for Alice and Bob to determine a random bit 

without requiring a trusted third party is described below, and 

illustrated in Figure 1. Note this exchange is roughly equivalent to 

Blum’s secure coin flip protocol[19].  

1. Alice and Bob each privately choose a bit vector of 

length 1, 𝐵𝐴  and 𝐵𝐵 respectively.  

2. Alice generates a (possibly zero-length) nonce 𝑁𝐴  

known only to her, and uses a cryptographic hash 𝐻(𝑥) 

to generate a digest 𝐷 =  𝐻(𝑁𝐴 , 𝐵𝐴). She sends 𝐷 to 

Bob. 

3. Bob makes a note of Alice's digest 𝐷, and sends his bit 

vector 𝐵𝐵  to Alice. 

4. Upon receipt of Bob's bit vector, Alice transmits her 

nonce 𝑁𝐴  and bit vector 𝐵𝐴  to Bob. Bob verifies that the 

hash of these values 𝐻(𝑁𝐴 , 𝐵𝐴) matches the previously 

received digest 𝐷.  

5. Alice and Bob XOR their own bit vector with their 

adversary's bit vector to determine the outcome of the 

exchange. In the case of a single-bit bit vector, if  

𝐵𝐴 = 𝐵𝐵  then the result is 0. Otherwise it is 1. 

As long as each message is eventually received, Alice and Bob can 

be assured that the binary result is fairly determined. It doesn't 

matter whether Alice and Bob randomly or deliberately select their 

bit vectors. As long as Alice and Bob are not collaborating, there 

is a 50% chance of the bit being 1, and a 50% chance it is 0.  

 

Figure 1 - Single Bit PRP Exchange 

Barring retransmissions, a minimum of three messages 

comprising one-and-a-half round trips are required to complete a 

single PRP exchange, as shown in Figure 1. If low latency is more 

important than a low message count, latency can be reduced to a 

single round trip by adding a message and making the exchange 

symmetric, as shown in Figure 2.  

 

Figure 2 - Symmetric Single Bit PRP Exchange 

 

This protocol can be trivially extended to provide an arbitrarily 

long random bit vector by changing the number of bits in 𝐵𝐴  and 

𝐵𝐵. For example, rather than performing three sets of exchanges 

for Alice to generate her three-bit random number,  she can simply 

replace 𝐵𝐴   with a 3-bit bit vector, and instruct Bob to do the same 

with 𝐵𝐵. 

This version of PRP is secure, but requires several network 

messages for each random value provided. Depending upon the 

security requirements of the DVE, it is possible to obtain 

acceptable results with less overhead, as detailed below. 

3.2 Resolving an unbounded random 

sequence 
Interactions in DVE's are often comprised of long sequences of 

actions. Requiring a three or four message exchange for each 

action by each participant is secure and fair, but slow and 

expensive.  

An alternative is to resolve more bits than are required for the 

current event, and to use the next sequence of unused bits for each 

subsequent activity. While efficient from a protocol perspective, 

this extension suffers from a look-ahead vulnerability in terms of 

consumption. Once Alice and Bob finish the exchange and 

determine the bit sequence, neither can change the bits. However, 

they can modify their behavior to consume the bits in an 

advantageous way.  

For example, suppose Alice can execute any of four actions 

interchangeably: she can tie her shoes (random chance of failure), 

skip a rock (random number of skips), pick a flower (random 

length of stem), or build a house (random number of rooms). Each 

action has a different cost and benefit for Alice. If Alice knows the 

sequence of bits which will be consumed to determine the 

outcome of her probabilistic actions, she can 'look ahead' to 

determine the most favorable sequence to execute. For example, 

she can pick flowers to consume undesirable bits, waiting to build 

a house until the next set of bits guarantee she builds a house with 

the maximum number of rooms.  

Another alternative to provide random values for a series of 

activities is to use PRP to determine a random seed for a pseudo-

random generator. Alice and Bob agree on the use for a pseudo-

random stream, then use PRP to create a bit vector of an 

appropriate size to seed the generator. Since both Alice and Bob 

have copies of the random number generator, they can each 

validate the sequence generated using the resolved bits seed, and 

the subsequent results. Note that the idea of using a pseudo-



random generator to create a sequence of random numbers which 

can be verified by all participants is suggested in [18].  

4. RESULTS AND DISCUSSION 
PRP as described in Section 3.1 provides a reliable but relatively 

expensive source of bits to fairly resolve adversarial probabilistic 

events. Section 3.2 describes a less expensive variant of PRP, but 

at the cost of enabling look-ahead cheats, and allowing 

participants to unfairly optimize the order of events which 

consume those bits.  

DVE authors should carefully examine impact of look-ahead 

exploitation before using the random seed or pre-generation 

approaches to generating bit sequences. Real-time interactive 

DVE's such as network games may be so dynamic that the look-

ahead vulnerability is of no practical concern, especially if the bit 

stream is refreshed every few seconds. For example, Alice may 

have only a small number of action choices at any given time, and 

attempting to bias her choice according to attributes of the random 

bit stream may provide less value – even when done via an 

automatic enhancement hack - than selecting the most appropriate 

action at the time. 

While PRP performance overhead is greater than the overhead of 

working directly with a TTP, the cause is not solely the algorithm 

itself. Distributing activities normally performed by a TTP to 

unreliable, untrusted nodes can introduce significant overheads to 

DVE activities, as noted in several of the previously cited DVE 

security works. Still, informed choices can minimized this 

overhead. We provide performance analysis below to help DVE 

authors understand trade-offs in different PRP usage scenarios. 

DVE’s often rely upon congruent random generators running on a 

TTP to determine the outcome of probabilistic actions. For 

example, Quake-3 uses calls to their random generator to 

determine variations in projectile direction due to weapon recoil. 

The random number generator typically used in deployed network 

games is from the ‘C’ standard library, and typically provides a 

two byte random number. 

In a game with trusted third parties, the TTP can often produce 

and consume random numbers locally on behalf of a given client. 

Alternatively, it can provide the random number to the client for 

the client to consume in its local activities. In peer-to-peer DVE’s, 

the system should not rely upon a TTP for common activities. The 

client should ideally be able to resolve probabilistic events 

without TTP intervention. For the DVE to be fair, this must be 

done in a way which doesn’t allow the value to be chosen by the 

same client consuming it.  

The following two subsections discuss PRP’s security and 

performance properties, using this scenario to illustrate those 

properties. 

4.1 Security 
Most deployed DVE’s are implemented as client-server 

applications. From the client perspective, the server acts as a 

trusted third party (TTP). The server is explicitly trusted to fairly 

resolve probabilistic events on behalf of its clients. In other words, 

over the course of many trials, the client expects the distribution 

of results to roughly match the probability of each outcome. 

Even in the TTP case, outcome can be biased by many factors, 

such as the source of random numbers for event resolution. We do 

not propose to discuss methods for generating suitably random 

numbers here. Instead, our goal is to support the proposition that 

given two adversaries, neither adversary can predictably bias the 

resulting random bit vector. As long as appropriate precautions 

are taken, this should provide probabilistic event resolution of a 

quality no worse than that available from a TTP.  

Let Alice be a node undertaking PRP to create a random bit vector 

for her consumption, and Bob an adversary participating in that 

PRP exchange. We wish to prove that so long as Alice and Bob 

cannot predict the value of their adversary’s bit vector 𝐵, neither 

can bias the result of the PRP exchange. To do this, we need to 

prove four properties: 

P1. Once Alice commits to a choice for 𝐵𝐴  by transmitting a 

digest 𝐷 to Bob, she cannot change her choice without 

detection. 
P2. Bob cannot ascertain Alice’s choice of 𝐵𝐴  from the 

digest 𝐷.  
P3. If Bob has no knowledge of Alice’s choice for 𝐵𝐴 , then 

Bob cannot choose a 𝐵𝐵 which will bias the result. 
P4. Given the sequence of messages exchanged in PRP, 

neither Alice nor Bob can dispute the value of the 

resulting bit vector 𝐵𝐴  ⨁  𝐵𝐵.  
P1: Alice transmits the digest 𝐷, a SHA-256 hash of an input of 

length at least 256 bits. In this, case input is a 255-bit nonce 𝑁𝐴  

and Alice’s 1-bit bit vector 𝐵𝐴 . In order for Alice to change her 

selection of 𝐵𝐴  to 𝐵′𝐴  after transmitting 𝐷 to Bob, she must find a 

new nonce 𝑁𝐴
′  such that 𝑆𝐻𝐴256 (𝑁′𝐴 , 𝐵𝐴

′ )  =  𝑆𝐻𝐴256 (𝑁𝐴 , 𝐵𝐴). 

Since 𝑆𝐻𝐴256  isn’t broken, this would require a brute force 

attack, on average 2256 / 2 attempts, which means trying every 

value for the 255-bit nonce. This is computationally infeasible. 

Even if every computer on earth were employed and each was 

capable of testing a million candidates per second, more than 1056  

years would be required. Alternatively Alice could try to find two 

256-bit vectors with a different last bit whose hashes collide, but 

even this would require 𝑶(√2256 )  =  𝑶(2128 ) attempts. 

P2. Since SHA-256 is an unbroken cryptographic one-way 

function, and since Alice has given it an input of at least 256 bits, 

there is no way for Bob to predict the value of the input solely 

based upon its output, or to limit that input to a specific candidate 

pool other than brute-force attack, which as shown above is 

computationally infeasible. 

P3. For each bit in 𝐵𝐵, a 1 will invert Alice’s choice for the same 

bit in the result bit vector, while a 0 will leave Alice’s choice 

intact. Since Bob cannot determine the bit chosen by Alice for 

each position in 𝐵𝐴  at the time he must commit to 𝐵𝐵, he has no 

way of choosing a value for 𝐵𝐵 to maximize chances of a specific 

outcome.  

P4. For a given input, XOR is a deterministic operation, so 

𝐵𝐴  ⨁  𝐵𝐵 is deterministic for given 𝐵𝐴  and 𝐵𝐵. By the time 

𝐵𝐴  ⨁  𝐵𝐵 can be calculated by either Alice or Bob, both are 

committed to their bit vector values, and cannot change that 

commitment without detection from their adversary. 

Like most protocols, PRP in its basic form is vulnerable to abort 

attacks, e.g. Bob refusing to acknowledge receipt of Alice’s final 

PRP message after he determines the resulting bit vector does not 

yield his desired outcome. This can be mitigated by standard 

cryptographic techniques such as signing each message in the 



protocol, and using anti-replay and sequencing protections to 

prove message sequence order and contents. 

4.2 Performance 
Suppose Alice wishes to generate a single 16-bit random number 

for consumption for a pre-agreed purpose. Suppose as well that 

Alice has 100 ms RTT to Bob on the network.  Table 1 compares 

the network latency and traffic required for Alice to obtain this 

random bit vector. We assume IPv4 UDP on Ethernet as the 

transport medium, inducing transport overhead of 42 bytes per 

packet. PRP uses SHA-256 as the one-way hash, and a nonce size 

equal to (hash length – target bit vector size) for bit vectors 

smaller than the hash value size.  

PRP requires one and a half round trips, with each packet 

containing 42 bytes of headers. The first packet contains the SHA-

256 hash of Alice’s 240-bit nonce and 16-bit bit vector. The 

second packet contains Bob’s 16-bit bit vector. The final packet 

contains Alice’s nonce and bit vector, and completes the PRP 

protocol transaction. 

Table 1 - Random number generation cost 

 TTP Adversary 

Additional 

cost 

Latency 50 ms 150 ms 300% 

Network 

Bytes 

44 bytes 192 bytes 436% 

 

The cost in terms of latency and network bytes for the PRP 

protocol version described in section 3.1 is significant compared 

to obtaining the random bit vector directly from a TTP. 

Fortunately there are a few ways we can decrease overhead 

without realistically compromising security.  

First, we can reduce the number of bytes transmitted in payloads 

by reducing the size of the transmitted hash, and of the nonce 

itself. PRP uses SHA-256 because SHA-256 is not yet broken, 

rather than because 256 bits of protection are required. Secrets in 

a PRP exchange are short-lived – less than a second in the 

example above – so the hash value only requires enough bits to 

prevent an attacker from determining Alice’s bit vector before it is 

revealed in Alice’s second message. The most significant threat is 

a dictionary attack, because of its short execution time. 

In the 16-bit bit vector case, it would be trivial for Bob to create a 

dictionary with the SHA-256 hash values for the 216  possible 

values for Alice’s bit vector. To prevent this, we include a large 

nonce in the hash to make lookup impractical for Bob. We can 

establish a size of lookup table we wish to defeat – for example 

one petabyte – and choose a hash and nonce size to enable that 

level of protection.  A petabyte is approximately 258  bits. Each 

entry in a sparse lookup table would include the lookup hash 

value and the expected 16-bit bit vector.  If the hash is truncated 

to 64-bits, then each lookup table entry would consume 80 bits, 

resulting in a table capacity of about 252  entries.  With a nonce 

size of 48 bits (and a 16-bit bit vector), this would give Bob a 

probability of about 252  / 264   = 0.02% chance of successfully 

looking up Alice’s bit vector from the hash in her first PRP packet 

with a petabyte index. This optimization reduces the network 

bytes required for a 16-bit bit vector PRP exchange from 192 

bytes to 144 bytes, dropping the network cost from 436% of TTP 

transaction cost to 327%.  

Another way to improve both latency and network overhead 

associated with PRP – though at the cost of some security - is to 

pre-calculate a large bit vector for consumption, and then use 

successive parts of that vector for the next 𝑘 random contests. For 

example, suppose Alice needs an average of ten 16-bit random 

values per second.  She can request a bit vector with enough bits 

to satisfy five seconds of her requirements, or 50 ∗  16 =  800 

random bits. For a request this large, assuming a sufficiently 

random input bit vector on Alice’s side, a nonce is no longer 

needed. Precalculating a series of random values amortizes PRP 

latency PRP across several seconds of bit consumption, reducing 

its effective performance impact. It also reduces the relative 

overhead of generating the 800 random bits. Total PRP network 

byte cost – assuming 64-bit truncated hash - is 340 bytes, which 

compared with a TTP-sent packet size of 44+(800/8) = 144 bytes 

is 236% more, less overhead than our previous optimizations. 

A slightly weaker choice would be to use PRP to create the 32-bit 

seed for Alice’s DVE random number generator, and have Alice 

use the resulting pseudo-random sequence for a set interval or 

number of operations. This approach would consume 46 bytes to 

obtain the seed from a TTP, or 146 bytes using PRP. While the 

relative overhead in this case is still more than 300% greater than 

obtaining the seed from a TTP, the absolute cost to the DVE for 

generating e.g. 800 pseudo-random bits is quite low. 

5. CONCLUSIONS 
This paper presented the Pairwise Random Protocol (PRP), based 

on secure coin flipping. Using PRP, adversaries can fairly 

determine and agree upon the outcome of probabilistic actions. 

Three different variations of PRP were presented, along with 

high-level performance analysis of the algorithms.  The variations 

range from a perfectly fair approach which requires a three-way 

handshake per random event, to creating arbitrarily long pseudo-

random sequences using a fairly determined random seed, up to 

the tolerance of the DVE. 

PRP makes it possible for adversaries to fairly determine the 

results of probabilistic events in a DVE with the same security a 

trusted third party – such as a game server – could provide. For 

DVE’s which do not frequently need random numbers, or which 

are tolerant of the 2 to 4 times overhead required for the most 

secure versions of PRP, this can be done without loss of fairness 

or security.  If the DVE is performance-sensitive, then 

compromises can be used such as pre-generating a set of random 

bits to use over time, or seeding a random number generator, 

which allow reasonable security without significant performance 

impact. 

For future work we hope to integrate PRP into a peer-to-peer 

adaptation of a deployed game, such as Quake III which is 

available in open-source form.  
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