
Probabilistic Event Resolution with the Pairwise Random
Protocol

John L. Miller
University of Cambridge

Computer Laboratory
+44 1223 123456

jlm60@cl.cam.ac.uk

Jon Crowcroft
University of Cambridge

Computer Laboratory
+44 1223 123456

Jac22@cl.cam.ac.uk

ABSTRACT
Peer-to-peer distributed virtual environments (DVE's) distribute

state tracking and state transitions. Many DVE's - such as online

games - require ways to fairly determine the outcome of

probabilistic events. While trivial when a trusted third party is

involved, resolving these actions fairly between adversaries

without a trusted third party is much more difficult. This paper

proposes the Pairwise Random Protocol (PRP), which uses secure

coin flipping to enable adversaries to fairly determine the result of

a probabilistic event without a trusted third party. Three different

variations of PRP are presented, and the time impact and network

overhead are examined. We conclude that PRP enables DVE’s to

distribute the work of determining probabilistic events between

adversaries without loss of security or fairness, and with

acceptable overhead.

Categories and Subject Descriptors

I.6.8 [Simulation and Modeling]: Types of Simulation – gaming.

General Terms

Algorithms, Security.

Keywords

Distributed Virtual Environment, Security, Bit Commitment,

Secure Coin Flipping, Fairness, Cheating, Pairwise Random

Protocol.

1. INRODUCTION

Distributed Virtual Environments (DVE's) are virtual environment

(VE) simulations run on two or more nodes. Nodes are defined as

individual software instances contributing to the DVE, usually

running on separate computers connected by a network. DVE's are

used for a variety of purposes, such as military simulations [1],

immersive educational and therapeutic environments[2],

cyberspace virtual environments[3], and networked computer

games. Blizzard Entertainment's World of Warcraft[4], for

example, is a DVE with more than eleven million paying

subscribers[5], and more than a million active nodes at its busiest

times.

Virtual Environments are implemented as DVE's to allow more

resources to be applied to the simulation, ideally providing better

scalability and higher simulation resolution than possible with a

fully centralized simulation. DVE's usually follow one of two

models: client-server or peer-to-peer. Client-server and DVE's

perform important operations on trusted nodes, and so can

typically trust state representation and state transition calculations.

Peer-to-peer DVE's, however, distribute more of the state-keeping

and transition work to untrusted nodes, requiring additional steps

to secure the DVE.

Several solutions have been proposed to facilitate fair resolution

of competition between participants in peer-to-peer DVE’s.

Solutions which address resolution of conflict between peers

typically either focus on event ordering rather than supporting

probabilistic transactions, or rely upon quorums or disinterested

third parties to take on the role of trusted third parties,

sidestepping the problem. While useful, approaches which proxy

trusted third parties can’t guarantee fairness. Quorums can be

subverted, and arbitrary ‘disinterested’ third parties can be

malicious for the sake of being malicious, whether or not they

know their victim. How, then, can two adversaries interacting in a

DVE – for example engaged in combat in a military DVE -

determine whether a probabilistic event such as an attack succeeds

or fails when both parties are incented to cheat?

This paper outlines a pairwise random protocol (PRP) for

untrusted nodes to fairly generate random bit sequences which can

be used to resolve probabilistic events. PRP allows adversaries to

fairly resolve sequences of actions without requiring intervention

from a third party, trusted or otherwise.

The remainder of this paper presents PRP and analyzes its

benefits. Section 2 provides a brief overview of DVE security

research, and the foundation of bit commitment and secure coin

flipping. Section 3 presents two variations of PRP. Section 4

discusses PRP’s attributes and performance compared to a trusted

third party (TTP). Section 5 presents a final summary.

2. RELATED WORK
Relevant related work falls into two categories: DVE security

research, and secure coin flipping. DVE security research covers a

variety of different aspects of DVE correctness, but doesn’t

generally address fair resolution of probabilistic events without a

trusted third party. Secure coin flipping is a well-known

cryptographic technique for resolving probabilistic events

between adversaries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2.1 DVE Security research
Distributed Virtual Environments distribute simulation work

across two or more nodes. Distributing simulation rule

enforcement opens the DVE to exploitation by participants

wishing to bias the simulation. In online game DVE's, this

exploitation is usually defined as cheating.

Known cheats have been analyzed and categorized in a variety of

ways. Yan and Randell provide a useful cheat taxonomy with

examples in [6]. Webb and Soh present an interesting overview of

cheating and their own taxonomy in [7]. Yee et. al. present a

threat model for MMOG DVE’s in [8]

A variety of approaches have been proposed to combat cheating in

game DVE's. Some - such as Mönch's work on mobile guards[9] -

suggest protecting binaries and network transmissions from

modification as the primary defense. Others[10] argue that relying

on such protections alone is akin to participating in an arms race

with the cheaters, one there is no hope of the DVE authors

winning.

Most proposals target a specific type of cheat. For example, event

reordering and update-suppress cheats can be addressed by

lockstep protocols such as asynchronous synchronization[11],

NEO[12], and trusted timestamp servers[13].

Auditing can be used to detect and deter cheating[14], though it

requires a trusted or semi-trusted auditor with sufficient resources

to validate suspect behavior.

Deferring state tracking and transition to a disinterested third

party or a quorum has been proposed several times[15][16][17].

While sound in general, ensuring quorum members or

disinterested third parties aren’t aligned with the interests of one

of the affected parties – or simply malicious – is problematic.

Finally, Knutsson et al. provide a thorough proposal for a peer-to-

peer DVE in their 2004 SimMud[18] paper. They call out the need

for interacting nodes to have a reliable, verifiable stream of

random numbers for resolving their interactions - for example by

sharing a seed for a random number generator. However, their

paper doesn't specify how this seed should be generated, and

relying on a deterministic sequence based on a random seed

introduces weaknesses, as discussed later in this paper.

Each of these techniques has merit and mitigates real threats.

However, none of them enable fair resolution of probabilistic

events.

2.2 Secure coin flipping
The pairwise random protocol is a variation of secure coin

flipping. Secure coin flipping was first introduced by Blum in

[19]. In essence, Blum proposes using a secure one-way function

𝐹(𝑥) to enable Alice and Bob to verifiably flip a fair coin, even

though they are adversaries. In the simplest case, this is a three

step process, where Bob tries to guess if a bit sequence 𝑅 chosen

by Alice is even or odd. If he’s correct, he wins the coin toss.

Otherwise he loses.

1. Alice chooses a bit vector 𝑥, then tells Bob 𝐹(𝑥).

2. Bob tells Alice his guess as to whether 𝑥 is even or

odd.

3. Alice reveals 𝑥 to Bob.

At the end of the exchange, Bob can calculate 𝐹(𝑥) to ensure

Alice didn’t change 𝑥 after learning Bob’s guess.

We consider the (currently) unbroken hash function SHA-256 a

suitable secure one-way function for our implementation of secure

coin flipping.

3. PAIRWISE RANDOM PROTOCOL

(PRP)
The pairwise random protocol (PRP) provides a way for two

competing nodes in a DVE to fairly resolve probabilistic events.

Consider a DVE with nodes, Alice and Bob. Each node controls

an avatar, and those avatars are interacting. Given a consistent,

verifiable view of the simulation state, we wish to enable Alice

and Bob to fairly resolve a set of probabilistic events. For

example, Alice and Bob are engaged in combat, with a certain

probability of each successfully attacking their opponent, and a

variable amount of damage inflicted per successful attack.

Each node is incented to cheat to resolve actions in their favor.

Alice wants all of her attacks to succeed, and all of Bob's attacks

to fail. Alice wants each of her hits to inflict maximum damage,

and each of Bob's hits - should he manage to get any - to inflict

minimum damage. PRP ensures that - given consistent views of

world state - Alice and Bob can fairly resolve probabilistic

interactions such as determining attack success and selecting the

amount of damage inflicted within the specified range.

As Alice and Bob are participating in the same DVE, we can make

some simplifying assumptions.

1. Alice and Bob each know the correct DVE rules. Even if

Alice is running a modified version of the DVE

software, she has the unmodified code at her disposal

for verifying validity of Bob’s activities.

2. Alice and Bob have access to identical pseudo-random

number generators, and these generators provide

‘suitably random' sequences for the DVE to resolve

probabilistic sequences of activities.

3. Alice and Bob can communicate with each other.

Given these assumptions, we describe any probabilistic activity

which affects either party as an adversarial activity.

Before resolving the success or failure of an adversarial activity,

Alice and Bob must specify the activity to be decided. For

example, Alice and Bob must agree that they are performing PRP

to calculate whether or not Alice succeeds in attacking Bob. This

has two benefits:

1. It ensures that the losing party in a PRP exchange

can’t claim the exchange was intended to determine

outcome of a different activity, e.g. whether Alice gets

crumbs on her jacket from eating a donut, rather than

success in combat.

2. It allows a cryptographic proof of participation in the

activity to be generated. This reduces the utility of the

loser refusing to continue the exchange.
We assume this binding can preface the PRP exchange, or be

performed as part of it. Discussions of methods for doing this are

out of scope of this paper.

Section 3.1 describes the core PRP protocol to resolve a single

probabilistic event. Section 3.2 proposes a refinement for

generating a pseudo-random sequence without either adversary

controlling the sequence.

3.1 Resolving a single action
Probabilistic actions can be resolved by a series of secure coin

flips with a pre-agreed interpretation. For example, Alice and Bob

can agree that Alice has a 5 in 8 chance of successfully attacking

Bob. Alice therefore needs to generate a random number between

1 and 8, and if it is 5 or less, her attack succeeds. Alice and Bob

can generate this number by flipping a fair coin three times to

generate a 3-digit binary number, with heads being a ‘1’ and tails

a ‘0’. As long as we can guarantee sequencing of flip results used

as bits, resolving a single arbitrarily scaled probabilistic event –

such as this one - can be reduced to ensuring a single coin can be

fairly flipped.

The basic protocol for Alice and Bob to determine a random bit

without requiring a trusted third party is described below, and

illustrated in Figure 1. Note this exchange is roughly equivalent to

Blum’s secure coin flip protocol[19].

1. Alice and Bob each privately choose a bit vector of

length 1, 𝐵𝐴 and 𝐵𝐵 respectively.

2. Alice generates a (possibly zero-length) nonce 𝑁𝐴

known only to her, and uses a cryptographic hash 𝐻(𝑥)

to generate a digest 𝐷 = 𝐻(𝑁𝐴 , 𝐵𝐴). She sends 𝐷 to

Bob.

3. Bob makes a note of Alice's digest 𝐷, and sends his bit

vector 𝐵𝐵 to Alice.

4. Upon receipt of Bob's bit vector, Alice transmits her

nonce 𝑁𝐴 and bit vector 𝐵𝐴 to Bob. Bob verifies that the

hash of these values 𝐻(𝑁𝐴 , 𝐵𝐴) matches the previously

received digest 𝐷.

5. Alice and Bob XOR their own bit vector with their

adversary's bit vector to determine the outcome of the

exchange. In the case of a single-bit bit vector, if

𝐵𝐴 = 𝐵𝐵 then the result is 0. Otherwise it is 1.

As long as each message is eventually received, Alice and Bob can

be assured that the binary result is fairly determined. It doesn't

matter whether Alice and Bob randomly or deliberately select their

bit vectors. As long as Alice and Bob are not collaborating, there

is a 50% chance of the bit being 1, and a 50% chance it is 0.

Figure 1 - Single Bit PRP Exchange

Barring retransmissions, a minimum of three messages

comprising one-and-a-half round trips are required to complete a

single PRP exchange, as shown in Figure 1. If low latency is more

important than a low message count, latency can be reduced to a

single round trip by adding a message and making the exchange

symmetric, as shown in Figure 2.

Figure 2 - Symmetric Single Bit PRP Exchange

This protocol can be trivially extended to provide an arbitrarily

long random bit vector by changing the number of bits in 𝐵𝐴 and

𝐵𝐵. For example, rather than performing three sets of exchanges

for Alice to generate her three-bit random number, she can simply

replace 𝐵𝐴 with a 3-bit bit vector, and instruct Bob to do the same

with 𝐵𝐵.

This version of PRP is secure, but requires several network

messages for each random value provided. Depending upon the

security requirements of the DVE, it is possible to obtain

acceptable results with less overhead, as detailed below.

3.2 Resolving an unbounded random

sequence
Interactions in DVE's are often comprised of long sequences of

actions. Requiring a three or four message exchange for each

action by each participant is secure and fair, but slow and

expensive.

An alternative is to resolve more bits than are required for the

current event, and to use the next sequence of unused bits for each

subsequent activity. While efficient from a protocol perspective,

this extension suffers from a look-ahead vulnerability in terms of

consumption. Once Alice and Bob finish the exchange and

determine the bit sequence, neither can change the bits. However,

they can modify their behavior to consume the bits in an

advantageous way.

For example, suppose Alice can execute any of four actions

interchangeably: she can tie her shoes (random chance of failure),

skip a rock (random number of skips), pick a flower (random

length of stem), or build a house (random number of rooms). Each

action has a different cost and benefit for Alice. If Alice knows the

sequence of bits which will be consumed to determine the

outcome of her probabilistic actions, she can 'look ahead' to

determine the most favorable sequence to execute. For example,

she can pick flowers to consume undesirable bits, waiting to build

a house until the next set of bits guarantee she builds a house with

the maximum number of rooms.

Another alternative to provide random values for a series of

activities is to use PRP to determine a random seed for a pseudo-

random generator. Alice and Bob agree on the use for a pseudo-

random stream, then use PRP to create a bit vector of an

appropriate size to seed the generator. Since both Alice and Bob

have copies of the random number generator, they can each

validate the sequence generated using the resolved bits seed, and

the subsequent results. Note that the idea of using a pseudo-

random generator to create a sequence of random numbers which

can be verified by all participants is suggested in [18].

4. RESULTS AND DISCUSSION
PRP as described in Section 3.1 provides a reliable but relatively

expensive source of bits to fairly resolve adversarial probabilistic

events. Section 3.2 describes a less expensive variant of PRP, but

at the cost of enabling look-ahead cheats, and allowing

participants to unfairly optimize the order of events which

consume those bits.

DVE authors should carefully examine impact of look-ahead

exploitation before using the random seed or pre-generation

approaches to generating bit sequences. Real-time interactive

DVE's such as network games may be so dynamic that the look-

ahead vulnerability is of no practical concern, especially if the bit

stream is refreshed every few seconds. For example, Alice may

have only a small number of action choices at any given time, and

attempting to bias her choice according to attributes of the random

bit stream may provide less value – even when done via an

automatic enhancement hack - than selecting the most appropriate

action at the time.

While PRP performance overhead is greater than the overhead of

working directly with a TTP, the cause is not solely the algorithm

itself. Distributing activities normally performed by a TTP to

unreliable, untrusted nodes can introduce significant overheads to

DVE activities, as noted in several of the previously cited DVE

security works. Still, informed choices can minimized this

overhead. We provide performance analysis below to help DVE

authors understand trade-offs in different PRP usage scenarios.

DVE’s often rely upon congruent random generators running on a

TTP to determine the outcome of probabilistic actions. For

example, Quake-3 uses calls to their random generator to

determine variations in projectile direction due to weapon recoil.

The random number generator typically used in deployed network

games is from the ‘C’ standard library, and typically provides a

two byte random number.

In a game with trusted third parties, the TTP can often produce

and consume random numbers locally on behalf of a given client.

Alternatively, it can provide the random number to the client for

the client to consume in its local activities. In peer-to-peer DVE’s,

the system should not rely upon a TTP for common activities. The

client should ideally be able to resolve probabilistic events

without TTP intervention. For the DVE to be fair, this must be

done in a way which doesn’t allow the value to be chosen by the

same client consuming it.

The following two subsections discuss PRP’s security and

performance properties, using this scenario to illustrate those

properties.

4.1 Security
Most deployed DVE’s are implemented as client-server

applications. From the client perspective, the server acts as a

trusted third party (TTP). The server is explicitly trusted to fairly

resolve probabilistic events on behalf of its clients. In other words,

over the course of many trials, the client expects the distribution

of results to roughly match the probability of each outcome.

Even in the TTP case, outcome can be biased by many factors,

such as the source of random numbers for event resolution. We do

not propose to discuss methods for generating suitably random

numbers here. Instead, our goal is to support the proposition that

given two adversaries, neither adversary can predictably bias the

resulting random bit vector. As long as appropriate precautions

are taken, this should provide probabilistic event resolution of a

quality no worse than that available from a TTP.

Let Alice be a node undertaking PRP to create a random bit vector

for her consumption, and Bob an adversary participating in that

PRP exchange. We wish to prove that so long as Alice and Bob

cannot predict the value of their adversary’s bit vector 𝐵, neither

can bias the result of the PRP exchange. To do this, we need to

prove four properties:

P1. Once Alice commits to a choice for 𝐵𝐴 by transmitting a

digest 𝐷 to Bob, she cannot change her choice without

detection.
P2. Bob cannot ascertain Alice’s choice of 𝐵𝐴 from the

digest 𝐷.
P3. If Bob has no knowledge of Alice’s choice for 𝐵𝐴 , then

Bob cannot choose a 𝐵𝐵 which will bias the result.
P4. Given the sequence of messages exchanged in PRP,

neither Alice nor Bob can dispute the value of the

resulting bit vector 𝐵𝐴 ⨁ 𝐵𝐵.
P1: Alice transmits the digest 𝐷, a SHA-256 hash of an input of

length at least 256 bits. In this, case input is a 255-bit nonce 𝑁𝐴

and Alice’s 1-bit bit vector 𝐵𝐴 . In order for Alice to change her

selection of 𝐵𝐴 to 𝐵′𝐴 after transmitting 𝐷 to Bob, she must find a

new nonce 𝑁𝐴
′ such that 𝑆𝐻𝐴256 (𝑁′𝐴 , 𝐵𝐴

′) = 𝑆𝐻𝐴256 (𝑁𝐴 , 𝐵𝐴).

Since 𝑆𝐻𝐴256 isn’t broken, this would require a brute force

attack, on average 2256 / 2 attempts, which means trying every

value for the 255-bit nonce. This is computationally infeasible.

Even if every computer on earth were employed and each was

capable of testing a million candidates per second, more than 1056

years would be required. Alternatively Alice could try to find two

256-bit vectors with a different last bit whose hashes collide, but

even this would require 𝑶(√2256) = 𝑶(2128) attempts.

P2. Since SHA-256 is an unbroken cryptographic one-way

function, and since Alice has given it an input of at least 256 bits,

there is no way for Bob to predict the value of the input solely

based upon its output, or to limit that input to a specific candidate

pool other than brute-force attack, which as shown above is

computationally infeasible.

P3. For each bit in 𝐵𝐵, a 1 will invert Alice’s choice for the same

bit in the result bit vector, while a 0 will leave Alice’s choice

intact. Since Bob cannot determine the bit chosen by Alice for

each position in 𝐵𝐴 at the time he must commit to 𝐵𝐵, he has no

way of choosing a value for 𝐵𝐵 to maximize chances of a specific

outcome.

P4. For a given input, XOR is a deterministic operation, so

𝐵𝐴 ⨁ 𝐵𝐵 is deterministic for given 𝐵𝐴 and 𝐵𝐵. By the time

𝐵𝐴 ⨁ 𝐵𝐵 can be calculated by either Alice or Bob, both are

committed to their bit vector values, and cannot change that

commitment without detection from their adversary.

Like most protocols, PRP in its basic form is vulnerable to abort

attacks, e.g. Bob refusing to acknowledge receipt of Alice’s final

PRP message after he determines the resulting bit vector does not

yield his desired outcome. This can be mitigated by standard

cryptographic techniques such as signing each message in the

protocol, and using anti-replay and sequencing protections to

prove message sequence order and contents.

4.2 Performance
Suppose Alice wishes to generate a single 16-bit random number

for consumption for a pre-agreed purpose. Suppose as well that

Alice has 100 ms RTT to Bob on the network. Table 1 compares

the network latency and traffic required for Alice to obtain this

random bit vector. We assume IPv4 UDP on Ethernet as the

transport medium, inducing transport overhead of 42 bytes per

packet. PRP uses SHA-256 as the one-way hash, and a nonce size

equal to (hash length – target bit vector size) for bit vectors

smaller than the hash value size.

PRP requires one and a half round trips, with each packet

containing 42 bytes of headers. The first packet contains the SHA-

256 hash of Alice’s 240-bit nonce and 16-bit bit vector. The

second packet contains Bob’s 16-bit bit vector. The final packet

contains Alice’s nonce and bit vector, and completes the PRP

protocol transaction.

Table 1 - Random number generation cost

 TTP Adversary

Additional

cost

Latency 50 ms 150 ms 300%

Network

Bytes

44 bytes 192 bytes 436%

The cost in terms of latency and network bytes for the PRP

protocol version described in section 3.1 is significant compared

to obtaining the random bit vector directly from a TTP.

Fortunately there are a few ways we can decrease overhead

without realistically compromising security.

First, we can reduce the number of bytes transmitted in payloads

by reducing the size of the transmitted hash, and of the nonce

itself. PRP uses SHA-256 because SHA-256 is not yet broken,

rather than because 256 bits of protection are required. Secrets in

a PRP exchange are short-lived – less than a second in the

example above – so the hash value only requires enough bits to

prevent an attacker from determining Alice’s bit vector before it is

revealed in Alice’s second message. The most significant threat is

a dictionary attack, because of its short execution time.

In the 16-bit bit vector case, it would be trivial for Bob to create a

dictionary with the SHA-256 hash values for the 216 possible

values for Alice’s bit vector. To prevent this, we include a large

nonce in the hash to make lookup impractical for Bob. We can

establish a size of lookup table we wish to defeat – for example

one petabyte – and choose a hash and nonce size to enable that

level of protection. A petabyte is approximately 258 bits. Each

entry in a sparse lookup table would include the lookup hash

value and the expected 16-bit bit vector. If the hash is truncated

to 64-bits, then each lookup table entry would consume 80 bits,

resulting in a table capacity of about 252 entries. With a nonce

size of 48 bits (and a 16-bit bit vector), this would give Bob a

probability of about 252 / 264 = 0.02% chance of successfully

looking up Alice’s bit vector from the hash in her first PRP packet

with a petabyte index. This optimization reduces the network

bytes required for a 16-bit bit vector PRP exchange from 192

bytes to 144 bytes, dropping the network cost from 436% of TTP

transaction cost to 327%.

Another way to improve both latency and network overhead

associated with PRP – though at the cost of some security - is to

pre-calculate a large bit vector for consumption, and then use

successive parts of that vector for the next 𝑘 random contests. For

example, suppose Alice needs an average of ten 16-bit random

values per second. She can request a bit vector with enough bits

to satisfy five seconds of her requirements, or 50 ∗ 16 = 800

random bits. For a request this large, assuming a sufficiently

random input bit vector on Alice’s side, a nonce is no longer

needed. Precalculating a series of random values amortizes PRP

latency PRP across several seconds of bit consumption, reducing

its effective performance impact. It also reduces the relative

overhead of generating the 800 random bits. Total PRP network

byte cost – assuming 64-bit truncated hash - is 340 bytes, which

compared with a TTP-sent packet size of 44+(800/8) = 144 bytes

is 236% more, less overhead than our previous optimizations.

A slightly weaker choice would be to use PRP to create the 32-bit

seed for Alice’s DVE random number generator, and have Alice

use the resulting pseudo-random sequence for a set interval or

number of operations. This approach would consume 46 bytes to

obtain the seed from a TTP, or 146 bytes using PRP. While the

relative overhead in this case is still more than 300% greater than

obtaining the seed from a TTP, the absolute cost to the DVE for

generating e.g. 800 pseudo-random bits is quite low.

5. CONCLUSIONS
This paper presented the Pairwise Random Protocol (PRP), based

on secure coin flipping. Using PRP, adversaries can fairly

determine and agree upon the outcome of probabilistic actions.

Three different variations of PRP were presented, along with

high-level performance analysis of the algorithms. The variations

range from a perfectly fair approach which requires a three-way

handshake per random event, to creating arbitrarily long pseudo-

random sequences using a fairly determined random seed, up to

the tolerance of the DVE.

PRP makes it possible for adversaries to fairly determine the

results of probabilistic events in a DVE with the same security a

trusted third party – such as a game server – could provide. For

DVE’s which do not frequently need random numbers, or which

are tolerant of the 2 to 4 times overhead required for the most

secure versions of PRP, this can be done without loss of fairness

or security. If the DVE is performance-sensitive, then

compromises can be used such as pre-generating a set of random

bits to use over time, or seeding a random number generator,

which allow reasonable security without significant performance

impact.

For future work we hope to integrate PRP into a peer-to-peer

adaptation of a deployed game, such as Quake III which is

available in open-source form.

6. REFERENCES
1 IEEE standard for distributed interactive simulation -

application protocols. IEEE Std 1278.1-1995 (1996), -.

2 Pagdin, Frances A. and Taylor, Ian C. Virtual Reality - a new

therapeutic medium (2001).

3 Research, Inc. Linden. Second Life: Official site of the 3D

online virtual world.

4 Entertainment, Blizzard. World of Warcraft Community Site.

5 Entertainment, Blizzard. World of Warcraft Surpasses 11

Million Subscribers Worldwide. Press Release (2008).

6 Yan, Jeff and Randell, Brian. A systematic classification of

cheating in online games. (2005), ACM Press, 1-9.

7 Webb, Steven Daniel and Soh, Sieteng. Cheating in networked

computer games: a review. (2007), ACM, 105-112.

8 Yee, George, Korba, Larry, Song, Ronggong, and Chen, Ying-

Chieh. Towards Designing Secure Online Games. (2006),

IEEE Computer Society, 44-48.

9 Mönch, Christian, Grimen, Gisle, and Midtstraum, Roger.

Protecting online games against cheating. (2006), ACM Press,

20.

10 Pritchard, Matt. How to Hurt the Hackers: The Scoop on

Internet Cheating and How You Can Combat It. Gamasutra

(2000).

11 Baughman, Nathaniel E., Liberatore, Mark, and Levine, Brian

Neil. Cheat-proof Playout for Centralized and Peer-to-Peer

Gaming. IEEE/ACM Transactions on Networking, 15 (2006),

1-13.

12 GauthierDickey, Chris, Zappala, Daniel, Lo, Virginia, and

Marr, James. Low latency and cheat-proof event ordering for

peer-to-peer games. (2004), ACM Press, 134-139.

13 Shusuke, Tatsuhiro Yonekura. Time-Stamp Service makes

Real-Time Gaming Cheat-Free. (2007), ACM Press, 135-138.

14 Fung, Yeung Siu. Hack-proof synchronization protocol for

multi-player online games. (2006), ACM Press, 47.

15 Cecin, F. R., Real, R., Oliveira, R. de, Resin, C. F., Martins,

M. G., and Victoria, J. L. A Scalable and Cheat-Resistant

Distribution Model for Internet Games. (2004), IEEE, 83-90.

16 Fan, Lu, Taylor, Hamish, and Trinder, Phil. Mediator: A

Design Framework for P2P MMOGs. (2007), ACM Press.

17 Kabus, Patric, Terpstra, Wesley W., Cilia, Mariano, and

Buchmann, Alejandro P. Addressing cheating in distributed

MMOGs. (2005), ACM Press, 1-6.

18 Knutsson, Björn, Lu, Honghui, Xu, Wei, and Hopkins, Bryan.

Peer-to-Peer Support for Massively Multiplayer Games. (

2004), IEEE.

19 Blum, Manuel. Coin flipping by telephone a protocol for

solving impossible problems. SIGACT News, 15 (1983), 23-27.

