Imperial College "% LSDS
London

0

Maru: SGX-Spark Deep Dive

Florian Kelbert, Peter Pietzuch, Jon Crowcroft

Imperial College London, University of Cambridge

http://Isds.doc.ic.ac.uk
<prp@imperial.ac.uk>

Maru Meeting — Imperial College London — November 2017

Trust Issues: Provider Perspective

Cloud provider does not trust users

Use virtual machines to isolate
users from each other and the host

VMs only provide one way protection

Peter Pietzuch - Imperial College London

Trust Issues: User Perspective

Users trust their applications

Users must implicitly trust
cloud provider

O

" [[[[" [H q)
Existing applications implicitly Firmware @
assume trusted operating system Cloud platform *§

Peter Pietzuch - Imperial College London

Trusted Execution Support with Intel SGX

Peter Pietzuch - Imperial College London

VMM
Firmware

Cloud platform
Staff

i)
O]
e
n
-
-
i
c
>

Users create HW-enforced trusted
environment (enclave)

Supports unprivileged
user code

Protects against strong attacker
model

Remote attestation

Available on
commodity CPUs

Trusted Execution Environments

Trusted execution environment (TEE) User process
In process
— Own code & data
— Controlled entry points
— Provides confidentiality & integrity
— Supports multiple threads
— Full access to application memory

Application

codo (11l
Application

data

Peter Pietzuch - Imperial College London

Overview of Intel SGX

Peter Pietzuch - Imperial College London

Intel Software Guard Extensions (SGX)

Extension of Instruction Set Architecture (ISA) in recent Intel CPUs
— Skylake (2015), Kaby lake (2016)

Protects confidentiality and integrity of code & data in untrusted
environments

— Platform owner considered malicious
— Only CPU chip and isolated region trusted

Peter Pietzuch - Imperial College London

SGX Enclaves

SGX introduces notion of enclave
— Isolated memory region for code & data

— New CPU instructions to manipulate enclaves
and new enclave execution mode

Enclave memory encrypted and integrity- T 0S

protected by hardware Hypervisor

— Memory encryption engine (MEE)
— No plaintext secrets in main memory

Enclave memory can be accessed only by enclave code
— Protection from privileged code (OS, hypervisor)

Application has ability to defend secrets
— Attack surface reduced to just enclaves and CPU
— Compromised software cannot steal application secrets

Peter Pietzuch - Imperial College London

SGX Enclave APl & Operation

Enclave interface functions:
ECalls to provide input data
to enclave

Calls outside enclave:
OCalls to return results from
enclave

Constitute enclave boundary
interface

Peter Pietzuch - Imperial College London

SGX application

Untrustec

component
(application)

e N
Untrusted code TEE (SGX)
'/- “““““““““ \‘
i $ i Call Trusted code .
]]
i E Trusted function n
i Create enclave i Execute s:
: p ' PR
]]
] H]]
i Call trusted function !. |\ Return ,:
| ' I
| R LT LT PN NPT T LTS .
' H ‘ l;
; ; ENERPIE<S
] ann 1] TE=s=s TEmsss=S
N) Enclave
_ y,

Enclave Page Cache (EPC)

Physical memory region protected by MEE
— EPC holds enclave contents

Shared resource between all enclaves running on platform
— Currently only 128 MB
— ~96 MB available to user, rest for metadata

Content encrypted while in DRAM, decrypted when brought to CPU

— Plaintext in CPU caches

Peter Pietzuch - Imperial College London

10

SGX Multithreading Support

SGX allows multiple threads to enter same enclave simultaneously
— One thread control structure (TCS) per thread
— Part of enclave, reflected in measurement

TGS limits number of enclave threads
— Upon thread entry TCS is blocked and cannot be used by another thread

Each TCS contains address of entry point
— Prevents jumps into random locations inside of enclave

Peter Pietzuch - Imperial College London

11

SGX Paging

SGX provides mechanism to evict EPC page to unprotected memory
— EPC limited in size

Paging performed by OS
— Validated by HW to prevent attacks on address translations
— Metadata (MAC, version) kept within EPC

Accessing evicted page results in page fault
— Page is brought back into EPC by OS
— Hardware verifies integrity of page
— Another page might be evicted if EPC is full

Peter Pietzuch - Imperial College London

12

SGX SDK Code Sample

SGX application: untrusted code

Enclave: trusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];
char input_buf[BUFFER_SIZE];

int main() char output_buf[BUFFER_SIZE];
{
o int process_request(char *in, char *out)
while(1) {
{ copy_msg(in, input_buf);
receive(request_buf); if(verify_MAC(input_buf))
ret = EENTER(request_buf, response_buf); {
if (ret < 0) decrypt_msg(input_buf);
fprintf(stderr, "Corrupted message\n"); process_msg(input_buf, output_buf);
else encrypt_msg(output_buf);
send(response_buf); copy_msg(output_buf, out);
} EEXIT(0®);
“ee } else
} EEXIT(C-1);
}
Server:

* Receives encrypted requests
* Processes them in enclave
« Sends encrypted responses

Peter Pietzuch - Imperial College London

SGX Enclave Construction

DRAM

char input_buf[BUFFER_SIZE]; e
char output_buf[BUFFER_SIZE];

N —
T

int process_request(char *in, char *out)

{
copy_msg(in, input_buf);
if(verify_MAC(input_buf))

{
decrypt_msg(input_buf);

3 process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(Q);

} else
EEXITC-1);

Enclave populated using special instruction (EADD)

« Contents initially in untrusted memory

* Copied into EPC in 4KB pages

Both data & code copied before execution commences in enclave

Peter Pietzuch - Imperial College London 14

SGX Enclave Construction

Enclave contents distributed in plaintext
— Must not contain any (plaintext) confidential data

Secrets provisioned after enclave constructed and integrity verified

Problem: what if someone tampers with enclave?
— Contents initially in untrusted memory

int process_request(char *in, char *out) int process_request(char *in, char *out)
{ {
copy_msg(in, input_buf); copy_msg(in, input_buf);
if(verify_MAC(input_buf)) if(verify_MAC(input_buf))
{ {
decrypt_msg(input_buf); decrypt_msg(input_buf);

process_msg(input_buf, output_buf); process_msg(input_buf, output_buf);
encrypt_msg(output_buf); [:::::i:} copy_msg(output_buf, external_buf);
copy_msg(output_buf, out); encrypt_msg(output_buf);

EEXIT(Q); copy_msg(output_buf, out);
} else EEXIT(@);
EEXIT(-1); } else
} EEXIT(C-1);
}

Write unencrypted response to outside memory

Peter Pietzuch - Imperial College London

15

SGX Enclave Measurement

CPU calculates enclave measurement hash during enclave construction
— Each new page extends hash with page content and attributes (read/write/execute)
— Hash computed with SHA-256 DRAM CPU

\

-~

Measurement can be used
to attest enclave to local or
remote entity

- /

CPU calculates enclave measurement hash during
enclave construction
Different measurement if enclave modified

Peter Pietzuch - Imperial College London 16

SGX Enclave Attestation

Is my code running on remote machine intact?
Is code really running inside an SGX enclave?

Local attestation
— Prove enclave’s identity (= measurement) to another enclave on same CPU

Remote attestation
— Prove enclave’s identity to remote party

Once attested, enclave can be trusted with secrets

Peter Pietzuch - Imperial College London

17

Local Attestation

Prove identity of A to local enclave B

Enclave A Enclave B

1. Hi! I'm 5f904ba8910bff! Who are you? (~

A\ 4

4. Here is my report 9

_{)
J
A

2. Please create a report for Measurement (enclave B) 5. Please give me my

5f904ba8910bff

A

o

/ Measurement (enclave A) \
3. Here you gO! _ 6. Here you gO!

Peter Pietzuch - Imperial College London

W=

o b~

. _ report verification key
_ cruef

. Target enclave B measurement required for key generation
. Report contains information about target enclave B, including its measurement
. CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target

enclave B measurement

. Report sent back to target enclave B
. Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key

(available only on same CPU)

. Check MAC received with report and do not trust A upon mismatch

18

Remote Attestation

Transform local report to remotely verifiable “quote”

Based on provisioning enclave (PE) and quoting enclave (QE)
— Architectural enclaves provided by Intel
— Execute locally on user platform

Each SGX-enabled CPU has unique key fused during manufacturing

— Intel maintains database of keys

Peter Pietzuch - Imperial College London

19

Remote Attestation

PE communicates with Intel attestation service
— Proves it has key installed by Intel
— Receives asymmetric attestation key

QE performs local attestation for enclave
— QE verifies report and signs it using attestation key
— Creates quote that can be verified outside platform

Quote and signature sent to remote attester, which communicates with
Intel attestation service to verify quote validity

Peter Pietzuch - Imperial College London

20

SGX Limitations & Research Challenges

Amount of memory enclave can use needs to be known in advance
— Dynamic memory support in SGX v2

Security guarantees not perfect

— Vulnerabilities within enclave can still be exploited Ve DY
— Side- : =7 Secure enclave
Side-channel attacks possible Attack i
surface | Q N
Performance overhead Untrusted s £ Sirz)sc';é"e
— Enclave entry/exit costly component = and data
— Paging very expensive Performance |
overhead |
= >

L P "
Application partitioning? Legacy code? ... TCB size

Peter Pietzuch - Imperial College London

Peter Pietzuch - Imperial College London

SGX-Spark

22

Secure Big Data Processing

Processing of large amounts of sensitive information
Outsourcing of data storage and processing

Cloud provider can access processed data
— Not acceptable for number of industries

’\'« def main(args: Array[String]) {
“\ new SparkContext (new SparkConf ())
.textFile (args(0))

.flatMap (1line => {line.split(" ")})
.map (word => {(word, 1)})

.reduceByKey{case (x, y) => x + y}

.saveAsTextFile (args (1))

Peter Pietzuch - Imperial College London

23

Secure Machine Learning

Secure machine learning (ML) killer application for Maru
— Resource-intensive thus good use case for cloud usage
— Raw training data comes with security impliations

Complex implementations of ML algorithms cannot be adapted for SGX
— Consider Spark MLIlib with 100s of algorithms

Challenges
— Extremely data-intensive domain
— Must support existing frameworks (Spark, TensorFlow, MXNet, CNTK, ...)
— ML requires accelerators support (GPUs, TPUs, ...)
— Prevention of side-channel attacks

Peter Pietzuch - Imperial College London

24

State of the Art

Protect confidentiality and integrity of tasks and input/output data

Opaque [Zheng, NSDI 2017]
— Hide access patterns of distributed data analytics (Spark SQL)
— Introduces new oblivious relational operators
— Does not support arbitrary/existing Scala Spark jobs

VC3 [Schuster, S&P 2015]

— Protects MapReduce Hadoop jobs
— Confidentiality/integrity of code/data; correctness/completeness of results
— No support for existing jobs - Re-implement for VC3

Peter Pietzuch - Imperial College London

25

SGX Support for Spark

SGX-Spark
— Protect data processing from infrastructure provider
— Protect confidentiality & integrity of existing jobs
— No modifications for end users
— Acceptable performance overhead

|dea:
Execute only sensitive parts of Spark inside enclave

— Code that accesses/processes sensitive data

Code outside of enclave only accesses encrypted data
— Partition Spark
— Run two collaborating JVMs, inside enclave and outside of enclave

Peter Pietzuch - Imperial College London

26

Supporting Managed Runtimes in SGX Enclaves

Many applications need runtime support
- JVM
— .NET
— JavaScript/V8/Node.|s

Requires complex system support —
— Dynamic library loading
— Filesystem support
— Signal handling
— Complete networking stack

Peter Pietzuch - Imperial College London

27

SGX-LKL Architecture

Runs unmodified Linux applications in SGX enclaves

Applications and dependencies provided via disk image
Full Linux kernel functionality available

Custom memory allocator

User-level threading

— In-enclave synchronisation
primitives

Peter Pietzuch - Imperial College London

Host

Network/block

LKL

Unmodified application

operations | device operations | Syscall interface

Y

A |

Y A

1 \ 4

Unmodified standard C wrappers not handled Unmodified standard C
by LKL (threading, synchronisation, memory, time)| |wrappers handled by LKL

2 2

dimalloc Ithread
Memory allocator

Userland scheduler

v v

Unmodified system call stubs

A

Enclave

Loader

Y

Unmodified system call server

loads as a shared library

28

Challenges & Current State

1. Partitioning Spark
2. Data movement between JVMs

3. Memory efficiency

Peter Pietzuch - Imperial College London

29

1. Partitioning Spark

Goal: Move minimal amount of Spark code to enclave

Outside Enclave
HadoopRDD
Provide iterator over input data partition (encrypted)
MapPartitionsRDD Lt
Execute user-provided function (f)
(eg flatMap(line => {line.split(" ")})
(i) Serialise user-provided function £ P (iii) Decrypt input data
(i) Send £ and it to enclave JVM ———»| (iv) Compute £(it) = it_result
(iv) Receive result iterator it result it2 = it result‘ (v) Encrypt result
ExternalSorter ¢ g, it2 (iii) Decrypt input data
Execute user-provided reduce function g — " (iv) Compute g(it2) = it2 result
(eg reduceByKey{case (x, y) => x + y}) it2 r:su/lt (V) Encrypt result
ResultTask v

Output results

Peter Pietzuch - Imperial College London

1. Partitioning Spark

Peter Pietzuch - Imperial College London

1. Partitioning Spark

Peter Pietzuch - Imperial College London

] Outside
- Enclave
A,B,C,D Tasks

i,j,k Iterators
<« |terate via shm

32

1. Partitioning Spark

Peter Pietzuch - Imperial College London

k=SgxTask(C,j)

j=SgxTask(B,i)

Communication

Outside
Enclave
A,B,C,D Tasks

i,j,k Iterators

S Iterate via shm

33

2. Data Movement between JVMs

Goal: Shared memory

Use use host OS shared memory between two JVMs
— QOutside access by enclave JVM

Manage shared memory between outside and enclave
Implement high-level read/write primitives

Peter Pietzuch - Imperial College London

34

1. Partitioning Spark
;

Host OS — shmem

Peter Pietzuch - Imperial College London

2. Data Movement between JVMs

shm-enc-to-out

A\

k=SgxTask(C,j)

j=SgxTask(B,i)

A4

shm-out-to-enc

| Outside
- Enclave

A,B,C,D Tasks
I,j,K Iterators

: : ! Iterate via shm
Peter Pietzuch - Imperial College London

3. Memory Efficiency

Only ~80 MB available
Native Spark Worker: ~320 MB ()

Our Spark in-enclave code: 94 MB

— With Java flags (-xX:InitialCodeCacheSize=2m
-XX:ReservedCodeCacheSize=2m -Xms2m -Xmx3m
-XX:CompressedClassSpaceSize=2m
-XX:MaxMetaspaceSize=8m

-XX:+UseCompressedClassPointers) - 50 MB

SGX-LKL:
8 MB Kernel + 18 MB other > 26 MB

— Working on memory efficiency

— Eg thread stack size, kernel size, deactivating
features

Peter Pietzuch - Imperial College London

Java Heap — Reserved Memory

Spark Memory
spark.memory.fraction
0.75 or 75%

Storage Memory

Execution Memory

User Memory
1.0 — spark.memory.fraction
1.0-0.75=0.25 or 25%

Reserved Memory
RESERVED _SYSTEM_MEMORY_BYTES (300MB)

spark.memory.storageFraction

0.5 or 50%

37

Maru Research Directions

1. Security model for shielded data science jobs
— How to harden shielded jobs? How to deal with vulnerabilities, bugs?
— What about external dependencies/libraries?

2. Integration of language runtimes with secure enclaves
— How to integrate SGX support for the JVM?
— What is the right programming model for SGX enclaves?

3. Unikernel support for secure enclaves
— How to support existing legacy binaries?
— How to build type-safe minimal secure enclaves for data science jobs?

4. Prototype platform implementation and evaluation
— Integration with Apache Flink or other dataflow frameworks

5. Dataflow attacks and mitigations strategies
— What attacks are possible by observing encrypted dataflows?
— Can we apply techniques for unobservable communication?

Peter Pietzuch - Imperial College London

38

Imperial College
SGX-Spark: System Goals Ll

s
Primary System Goals:

1. Ensure integrity & confidentiality for tasks, input data &
output results

2. Support arbitrary workloads and tasks

3. Low performance overhead (throughput and latency)

Imperial College

SGX-Spark: Summary of V1 Lonaon

—C e Pe PP
Version 1 (V1):

1. Prototype of Apache Spark using TEEs (Intel SGX)
m Shows the feasibility of the approach

2. Each worker partitioned into trusted and untrusted JVM:
m Minimize the trusted computing base (TCB)
m Provides confidentiality for input data & result

3. Use “pull” model for cross JVM communication:
m T[rusted JVM “asks” for data, objects, context
m Blocking message requests — high overhead

Imperial College

SGX-Spark: Goals of V2 London

—C e Pe PP
Version 2 (V2):

1. Provide integrity as well as confidentiality
m Protect driver with TEE to enforce job integrity

2. Improve performance with a “push” model:
m Push data into trusted JVM to avoid blocking requests
(e.g. use pre-fetching and leverage EPC memory)
m Batch messages (reduce communication costs)
m Use lock free and highly parallelized comm. channels

3. Support generic RDDs / avoid assumptions about data
layout (e.g. avoid DataFrames and DataSets)

Imperial College

SGX-Spark: Design of V2 London

High-level Overview:

sllsiialstilalatalalal ottt kol I r-- - - - - - - - - - - - === === == 1
| R o i (T ——
— ‘J/ Worker :
Spark : Proxy <> : Lock free
Driver | ' . MPMC
. Cntx , | Queue
[[JNI
Driver | : Worker HI ()
- I ' l Proxy I Efficient
Context I | : two way
[| :
messagin
ngal : ' Worker 4—>: Sl
| ! Proxy |
|
l I ———————
Local | |
| |

Enclave Unsecure

Imperial College

SGX-Spark: Worker Execution sl

I Control !
| Messages !
data input I I
| |
|
+ launchTask-~="" Closure]
| Provider Function
ResultTask | I
| |
Hadooplnput 1 Socket
* Batchlt
_____ Consumer
r -
MapPartitions | : <
* : BatchedIt | g
I Provider 1
|
. g I
FilterPartitions : I end il 9 Batchi
BatchedIt | Provider
* / Provider |
i |
|
Result |
I MPMC :
I Queue
Unsecure JVM : UN) Enclace JVM
______ 4

Worker

Imperial College
SGX-Spark: Design of V2 London

s
Spark Worker Execution:

Outside Enclave
HadoopRDD
Provide iterator over input data partition (encrypted)
MapPartitionsRDD it

Execute user-provided function (f)
(g f1atMap(line => {line.split(" ")})

(i) Serialise user-provided function £ _— (!ii) Decrypt input data
(i) Send £ and it to enclave JVM —==p{ (iv) Compute £(it) = it_result
(iv) Receive result iterator it_result T (v) Encrypt result
l ;
ExternalSorter v g,it2 (iii) Decrypt input data
Execute user-provided reduce function g " (iv) Compute g (it2) = it2 result
(eg reduceByKey{case (x, y) => x + y}) | it2_r:;ult (V) Encrypt result
ResultTask

Output results

