
Maru: SGX-Spark Deep Dive

Florian Kelbert, Peter Pietzuch, Jon Crowcroft
Imperial College London, University of Cambridge

http://lsds.doc.ic.ac.uk
<prp@imperial.ac.uk>

Maru Meeting – Imperial College London – November 2017

Large-Scale Data & Systems Group

Trust Issues: Provider Perspective

• Cloud provider does not trust users

• Use virtual machines to isolate
users from each other and the host

• VMs only provide one way protection

Redis

OS

VMM

Firmware

Cloud platform

Staff

…

tru
st

ed

Peter Pietzuch - Imperial College London 2

Trust Issues: User Perspective

• Users trust their applications

• Users must implicitly trust
cloud provider

• Existing applications implicitly
assume trusted operating system

Redis

OS

VMM

Firmware

Cloud platform

Staff

…

un
tru

st
ed

Peter Pietzuch - Imperial College London 3

Trusted Execution Support with Intel SGX

• Users create HW-enforced trusted
environment (enclave)

• Supports unprivileged
user code

• Protects against strong attacker
model

• Remote attestation
• Available on

commodity CPUs

OS

VMM

Firmware

Cloud platform

Staff

…
un

tru
st

ed

Enclave

Peter Pietzuch - Imperial College London 4

Trusted Execution Environments

• Trusted execution environment (TEE)
in process
– Own code & data
– Controlled entry points
– Provides confidentiality & integrity
– Supports multiple threads
– Full access to application memory

User process

Application
code

Application
data

Enclave

OS Enclave

Enclave
code

Enclave
data

Threads

…

Peter Pietzuch - Imperial College London 5

Overview of Intel SGX

Peter Pietzuch - Imperial College London 6

Intel Software Guard Extensions (SGX)

• Extension of Instruction Set Architecture (ISA) in recent Intel CPUs
– Skylake (2015), Kaby lake (2016)

• Protects confidentiality and integrity of code & data in untrusted
environments
– Platform owner considered malicious
– Only CPU chip and isolated region trusted

Peter Pietzuch - Imperial College London 7

SGX Enclaves

• SGX introduces notion of enclave
– Isolated memory region for code & data
– New CPU instructions to manipulate enclaves

and new enclave execution mode
• Enclave memory encrypted and integrity-

protected by hardware
– Memory encryption engine (MEE)
– No plaintext secrets in main memory

• Enclave memory can be accessed only by enclave code
– Protection from privileged code (OS, hypervisor)

• Application has ability to defend secrets
– Attack surface reduced to just enclaves and CPU
– Compromised software cannot steal application secrets

Process

OS

Enclave

Hypervisor

��
�
�

Peter Pietzuch - Imperial College London 8

SGX Enclave API & Operation

TEE (SGX)

Enclave

Trusted code
Untrusted code

Create enclave

Call trusted function

…

Execute

Return

Call
gate

Trusted function

• Enclave interface functions:
ECalls to provide input data
to enclave
• Calls outside enclave:

OCalls to return results from
enclave
• Constitute enclave boundary

interface

SGX application

Ed
ge

 ro
ut

in
es

Ed
ge

 ro
ut

in
es

ECalls

OCalls

Untrusted
component
(application)

Trusted
component

(enclave)

Peter Pietzuch - Imperial College London 9

Enclave Page Cache (EPC)

• Physical memory region protected by MEE
– EPC holds enclave contents

• Shared resource between all enclaves running on platform
– Currently only 128 MB
– ~96 MB available to user, rest for metadata

• Content encrypted while in DRAM, decrypted when brought to CPU
– Plaintext in CPU caches

Peter Pietzuch - Imperial College London 10

SGX Multithreading Support

• SGX allows multiple threads to enter same enclave simultaneously
– One thread control structure (TCS) per thread
– Part of enclave, reflected in measurement

• TCS limits number of enclave threads
– Upon thread entry TCS is blocked and cannot be used by another thread

• Each TCS contains address of entry point
– Prevents jumps into random locations inside of enclave

Peter Pietzuch - Imperial College London 11

SGX Paging

• SGX provides mechanism to evict EPC page to unprotected memory
– EPC limited in size

• Paging performed by OS
– Validated by HW to prevent attacks on address translations
– Metadata (MAC, version) kept within EPC

• Accessing evicted page results in page fault
– Page is brought back into EPC by OS
– Hardware verifies integrity of page
– Another page might be evicted if EPC is full

Peter Pietzuch - Imperial College London 12

SGX SDK Code Sample
SGX application: untrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{

...
while(1)
{

receive(request_buf);
ret = EENTER(request_buf, response_buf);
if (ret < 0)

fprintf(stderr, "Corrupted message\n");
else

send(response_buf);
}
...

}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{

decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}

Server:
• Receives encrypted requests
• Processes them in enclave
• Sends encrypted responses

Peter Pietzuch - Imperial College London 13

SGX Enclave Construction

Enclave populated using special instruction (EADD)
• Contents initially in untrusted memory
• Copied into EPC in 4KB pages
Both data & code copied before execution commences in enclave

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{

decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}
EPC

DRAM
1
2

3

Peter Pietzuch - Imperial College London 14

SGX Enclave Construction

• Enclave contents distributed in plaintext
– Must not contain any (plaintext) confidential data

• Secrets provisioned after enclave constructed and integrity verified
• Problem: what if someone tampers with enclave?
– Contents initially in untrusted memory
int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{

decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}

int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{

decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
copy_msg(output_buf, external_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}

Write unencrypted response to outside memory
Peter Pietzuch - Imperial College London 15

SGX Enclave Measurement

• CPU calculates enclave measurement hash during enclave construction
– Each new page extends hash with page content and attributes (read/write/execute)
– Hash computed with SHA-256

• Measurement can be used
to attest enclave to local or
remote entity

CPU calculates enclave measurement hash during
enclave construction
Different measurement if enclave modified

EPC

DRAM CPU

c0 94 7d bc 35 52 ba

9a 16 a6 63 0b 72 09

0d 0f 15 0b d0 2d ae
1a 55 f9 2f a8 20 98

Peter Pietzuch - Imperial College London 16

SGX Enclave Attestation

• Is my code running on remote machine intact?
• Is code really running inside an SGX enclave?

• Local attestation
– Prove enclave’s identity (= measurement) to another enclave on same CPU

• Remote attestation
– Prove enclave’s identity to remote party

• Once attested, enclave can be trusted with secrets

Peter Pietzuch - Imperial College London 17

Local Attestation

• Prove identity of A to local enclave B

1. Target enclave B measurement required for key generation
2. Report contains information about target enclave B, including its measurement
3. CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target

enclave B measurement
4. Report sent back to target enclave B
5. Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key

(available only on same CPU)
6. Check MAC received with report and do not trust A upon mismatch

CPU

Enclave A Enclave B
1. Hi! I’m 5f904ba8910bff! Who are you?

0d 0f 15 0b d0 2d ae

Measurement (enclave A)

5f 90 4b a8 91 0b ff

Measurement (enclave B)2. Please create a report for
5f904ba8910bff

0d 0f 15 0b d0 2d ae

3. Here you go!

4. Here is my report
0d 0f 15 0b d0 2d ae

5. Please give me my
report verification key

6. Here you go!

Peter Pietzuch - Imperial College London 18

Remote Attestation

• Transform local report to remotely verifiable “quote”

• Based on provisioning enclave (PE) and quoting enclave (QE)
– Architectural enclaves provided by Intel
– Execute locally on user platform

• Each SGX-enabled CPU has unique key fused during manufacturing
– Intel maintains database of keys

Peter Pietzuch - Imperial College London 19

Remote Attestation

• PE communicates with Intel attestation service
– Proves it has key installed by Intel
– Receives asymmetric attestation key

• QE performs local attestation for enclave
– QE verifies report and signs it using attestation key
– Creates quote that can be verified outside platform

• Quote and signature sent to remote attester, which communicates with
Intel attestation service to verify quote validity

Peter Pietzuch - Imperial College London 20

SGX Limitations & Research Challenges

• Amount of memory enclave can use needs to be known in advance
– Dynamic memory support in SGX v2

• Security guarantees not perfect
– Vulnerabilities within enclave can still be exploited
– Side-channel attacks possible

• Performance overhead
– Enclave entry/exit costly
– Paging very expensive

• Application partitioning? Legacy code? …

Peter Pietzuch - Imperial College London 21

SGX-Spark

Peter Pietzuch - Imperial College London 22

Secure Big Data Processing

• Processing of large amounts of sensitive information
• Outsourcing of data storage and processing
• Cloud provider can access processed data
– Not acceptable for number of industries

23

def main(args: Array[String]) {

new SparkContext(new SparkConf())

.textFile(args(0))

.flatMap(line => {line.split(" ")})

.map(word => {(word, 1)})

.reduceByKey{case (x, y) => x + y}

.saveAsTextFile(args(1))

}O
S

T
E
E

JVM
Spark

.

.

.

OS
JVM
Spark

Task1 Taskn

O
S

T
E
E

JVM
Spark

T.
.
.

OS
JVM
Spark

Task1 Taskn

O
S

T
E
E

JVM
Spark

.

.

.

OS
JVM
Spark

Task1 Taskn

O
S

T
E
E

JVM
Spark

.

.

.

OS
JVM
Spark

Task1 Taskn

Task 1 Task n

Distributed File System

Peter Pietzuch - Imperial College London

Secure Machine Learning

• Secure machine learning (ML) killer application for Maru
– Resource-intensive thus good use case for cloud usage
– Raw training data comes with security impliations

• Complex implementations of ML algorithms cannot be adapted for SGX
– Consider Spark MLlib with 100s of algorithms

• Challenges
– Extremely data-intensive domain
– Must support existing frameworks (Spark, TensorFlow, MXNet, CNTK, …)
– ML requires accelerators support (GPUs, TPUs, …)
– Prevention of side-channel attacks

Peter Pietzuch - Imperial College London 24

State of the Art

• Protect confidentiality and integrity of tasks and input/output data

• Opaque [Zheng, NSDI 2017]
– Hide access patterns of distributed data analytics (Spark SQL)
– Introduces new oblivious relational operators
– Does not support arbitrary/existing Scala Spark jobs

• VC3 [Schuster, S&P 2015]
– Protects MapReduce Hadoop jobs
– Confidentiality/integrity of code/data; correctness/completeness of results
– No support for existing jobs → Re-implement for VC3

25Peter Pietzuch - Imperial College London

SGX Support for Spark

• SGX-Spark
– Protect data processing from infrastructure provider
– Protect confidentiality & integrity of existing jobs
– No modifications for end users
– Acceptable performance overhead

• Idea:
Execute only sensitive parts of Spark inside enclave
– Code that accesses/processes sensitive data

• Code outside of enclave only accesses encrypted data
– Partition Spark
– Run two collaborating JVMs, inside enclave and outside of enclave

26

Spark

OS TEE

Spark
Manage-

ment

Taskn

OS SGX

JVM

Spark

Task1

Taskn

JVM

Peter Pietzuch - Imperial College London

Supporting Managed Runtimes in SGX Enclaves

• Many applications need runtime support
– JVM
– .NET
– JavaScript/V8/Node.js

•
• Requires complex system support
– Dynamic library loading
– Filesystem support
– Signal handling
– Complete networking stack

27Peter Pietzuch - Imperial College London

SGX-LKL Architecture

• Runs unmodified Linux applications in SGX enclaves
• Applications and dependencies provided via disk image
• Full Linux kernel functionality available

• Custom memory allocator
• User-level threading
– In-enclave synchronisation

primitives

28Peter Pietzuch - Imperial College London

Challenges & Current State

• 1. Partitioning Spark

• 2. Data movement between JVMs

• 3. Memory efficiency

29Peter Pietzuch - Imperial College London

1. Partitioning Spark
• Goal: Move minimal amount of Spark code to enclave

30

Outside Enclave

HadoopRDD
Provide iterator over input data partition (encrypted)

MapPartitionsRDD
Execute user-provided function (f)
(eg flatMap(line => {line.split(" ")})
(i) Serialise user-provided function f
(ii) Send f and it to enclave JVM
(iv) Receive result iterator it_result

(iii) Decrypt input data
(iv) Compute f(it) = it_result
(v) Encrypt result

ExternalSorter
Execute user-provided reduce function g
(eg reduceByKey{case (x, y) => x + y})

(iii) Decrypt input data
(iv) Compute g(it2) = it2_result
(v) Encrypt result

ResultTask
Output results

it

f,it

it2 = it_result

Peter Pietzuch - Imperial College London

g,it2

it2_result

1. Partitioning Spark

Peter Pietzuch - Imperial College London 31

RDD

MapPartitions
RDD HadoopRDD ResultTask

Task

ItConsumer ItProviderItProvider

SgxTask

SgxFirstTask SgxOtherTask SgxFct2

SgxMain

Communication Communication

ItConsumer

EncryptionEncryption Encryption EncryptionEncryption

1. Partitioning Spark

Peter Pietzuch - Imperial College London 32

HadoopRDD A

<outfile> <infile>

MapPartitions
RDD B

MapPartitions
RDD C

ResultTask

i’

j’

k’

i,j,k
A,B,C,D

Outside
Enclave
Tasks
Iterators
Iterate via shm

Communication

1. Partitioning Spark

Peter Pietzuch - Imperial College London 33

HadoopRDD A

ItProvider i

<outfile> <infile>

MapPartitions
RDD B

MapPartitions
RDD C

ResultTask

IItConsumer k

j=SgxTask(B,i) SgxTask B

ItConsumer i

SgxTask Ck=SgxTask(C,j)

i’

j’ j

k’

k

i

i,j,k
A,B,C,D

Outside
Enclave
Tasks
Iterators
Iterate via shm

ItProvider k

k

2. Data Movement between JVMs

• Goal: Shared memory

• Use use host OS shared memory between two JVMs
– Outside access by enclave JVM

• Manage shared memory between outside and enclave
• Implement high-level read/write primitives

34Peter Pietzuch - Imperial College London

Host OS

1. Partitioning Spark

Peter Pietzuch - Imperial College London 35

RDD

MapPartitions
RDD HadoopRDD ResultTask

Task

ItConsumer ItProviderItProvider

SgxTask

SgxFirstTask SgxOtherTask SgxFct2

SgxMain

RingBuffer

Serialisation

Shm
Communication

Manager

RingBuffer

Serialisation

Shm
Communication

Manager

ItConsumer

shmem

EncryptionEncryption Encryption EncryptionEncryption

2. Data Movement between JVMs

Peter Pietzuch - Imperial College London 36

HadoopRDD A

ItProvider i

<outfile> <infile>

MapPartitions
RDD B

MapPartitions
RDD C

ResultTask

I

Shm
Communicator

ItConsumer k

j=SgxTask(B,i) SgxTask B

Shm
Communicator

shm-enc-to-out

shm-out-to-enc

ItConsumer i

SgxTask Ck=SgxTask(C,j)

i’

j’ j

k’

k

i

k

i

ItProvider k
k

i,j,k
A,B,C,D

Outside
Enclave
Tasks
Iterators
Iterate via shm

3. Memory Efficiency

• Only ~80 MB available
• Native Spark Worker: ~320 MB

• Our Spark in-enclave code: 94 MB
– With Java flags (-XX:InitialCodeCacheSize=2m

-XX:ReservedCodeCacheSize=2m -Xms2m -Xmx3m
-XX:CompressedClassSpaceSize=2m
-XX:MaxMetaspaceSize=8m
-XX:+UseCompressedClassPointers) → 50 MB

• SGX-LKL:
8 MB Kernel + 18 MB other → 26 MB
– Working on memory efficiency
– Eg thread stack size, kernel size, deactivating

features

37

!

Peter Pietzuch - Imperial College London

Maru Research Directions

• 1. Security model for shielded data science jobs
– How to harden shielded jobs? How to deal with vulnerabilities, bugs?
– What about external dependencies/libraries?

• 2. Integration of language runtimes with secure enclaves
– How to integrate SGX support for the JVM?
– What is the right programming model for SGX enclaves?

• 3. Unikernel support for secure enclaves
– How to support existing legacy binaries?
– How to build type-safe minimal secure enclaves for data science jobs?

• 4. Prototype platform implementation and evaluation
– Integration with Apache Flink or other dataflow frameworks

• 5. Dataflow attacks and mitigations strategies
– What attacks are possible by observing encrypted dataflows?
– Can we apply techniques for unobservable communication?

Peter Pietzuch - Imperial College London 38

SGX-Spark: System Goals

Primary System Goals:

1. Ensure integrity & confidentiality for tasks, input data &
output results

2. Support arbitrary workloads and tasks

3. Low performance overhead (throughput and latency)

SGX-Spark: Summary of V1

Version 1 (V1):

1. Prototype of Apache Spark using TEEs (Intel SGX)
■ Shows the feasibility of the approach

2. Each worker partitioned into trusted and untrusted JVM:
■ Minimize the trusted computing base (TCB)
■ Provides confidentiality for input data & result

3. Use “pull” model for cross JVM communication:
■ Trusted JVM “asks” for data, objects, context
■ Blocking message requests → high overhead

SGX-Spark: Goals of V2

Version 2 (V2):

1. Provide integrity as well as confidentiality
■ Protect driver with TEE to enforce job integrity

2. Improve performance with a “push” model:
■ Push data into trusted JVM to avoid blocking requests

(e.g. use pre-fetching and leverage EPC memory)
■ Batch messages (reduce communication costs)
■ Use lock free and highly parallelized comm. channels

3. Support generic RDDs / avoid assumptions about data
layout (e.g. avoid DataFrames and DataSets)

SGX-Spark: Design of V2

High-level Overview:

SGX-Spark: Worker Execution

Worker

SGX-Spark: Design of V2

Spark Worker Execution:

