
1

Peer-peer and Application-level Networking

Presented by Jon Crowcroft
Based strongly on material by

Jim Kurose,Brian Levine,Don Towsley, and
the class of 2001 for the Umass Comp Sci

791N course..

2

0.Introduction

r Background
r Motivation
r outline of the tutorial

3

Peer-peer networking

4

Peer-peer networking Focus at the application level

5

Peer-peer networking
Peer-peer applications
r Napster, Gnutella, Freenet: file sharing
r ad hoc networks
r multicast overlays (e.g., video distribution)

6

Peer-peer networking
r Q: What are the new technical challenges?
r Q: What new services/applications enabled?
r Q: Is it just “networking at the application-level”?

m “There is nothing new under the Sun” (William Shakespeare)

7

Tutorial Contents

r Introduction
r Client-Server v. P2P
r Case Studies

m Napster
m Gnutella
m RON
m Freenet
m Publius

r Middleware
m Chord
m CAN
m Tapestry
m JXTA
m ESM
m Overcast

r Applications
m Storage
m Conferencing

8

Client Server v. Peer to Peer(1)

r RPC/RMI
r Synchronous
r Assymmetric
r Emphasis on language

integration and binding
models (stub
IDL/XDR compilers
etc)

r Kerberos style
security – access
control, crypto

r Messages
r Asynchronous
r Symmetric
r Emphasis on service

location, content
addressing, application
layer routing.

r Anonymity, high
availability, integrity.

r Harder to get right?

9

Client Server v. Peer to Peer(2)
RPC
Cli_call(args)

Srv_main_loop()
{
while(true) {
deque(call)
switch(call.procid)
case 0:
call.ret=proc1(call.args)
case 1:
call.ret=proc2(call.args)
… … …
default:
call.ret = exception
}

}

10

Client Server v. Peer to Peer(3)
P2P
Peer_main_loop()
{

while(true) {
await(event)
switch(event.type) {
case timer_expire: do some p2p work()

randomize timers
break;

case inbound message: handle it
respond
break;

default: do some book keeping
break;

}
}

11

Peer to peer systems actually
old
r IP routers are peer to peer.
r Routers discover topology, and maintain it
r Routers are neither client nor server
r Routers continually chatter to each other
r Routers are fault tolerant, inherently
r Routers are autonomous

12

Peer to peer systems

r Have no distinguished role
r So no single point of bottleneck or failure.
r However, this means they need distributed

algorithms for
m Service discovery (name, address, route,

metric, etc)
m Neighbour status tracking
m Application layer routing (based possibly on

content, interest, etc)
m Resilience, handing link and node failures
m Etc etc etc

13

Ad hoc networks and peer2peer

r Wireless ad hoc networks have many
similarities to peer to peer systems

r No a priori knowledge
r No given infrastructure
r Have to construct it from “thin air”!
r Note for later – wireless?

14

Overlays and peer 2 peer
systems
r P2p technology is often used to create

overlays which offer services that could be
offered in the IP level

r Useful deployment strategy
r Often economically a way around other

barriers to deployment
r IP Itself was an overlay (on telephone core

infrastructure)
r Evolutionary path!!!

15

Next we look at some case
studies
r Piracy^H^H^H^H^H^content sharing ?
r Napster
r Gnutella
r Freenet
r Publius
r etc

16

1. NAPSTER

r The most (in)famous
r Not the first (c.f. probably Eternity, from

Ross Anderson in Cambridge)
r But instructive for what it gets right, and
r Also wrong…
r Also has a political message…and economic

and legal…etc etc etc

17

Napster
r program for sharing files over the Internet
r a “disruptive” application/technology?
r history:

m 5/99: Shawn Fanning (freshman, Northeasten U.) founds
Napster Online music service

m 12/99: first lawsuit
m 3/00: 25% UWisc traffic Napster
m 2000: est. 60M users
m 2/01: US Circuit Court of

Appeals: Napster knew users
violating copyright laws

m 7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K, Morpheus: 300K

18

Napster: how does it work

Application-level, client-server protocol over point-
to-point TCP

Four steps:
r Connect to Napster server
r Upload your list of files (push) to server.
r Give server keywords to search the full list with.
r Select “best” of correct answers. (pings)

19

Napster

napster.com

users

File list is
uploaded

1.

20

Napster

napster.com

user

Request
and

results

User
requests
search at
server.

2.

21

Napster

napster.com

user

pings pings

User pings
hosts that
apparently
have data.

Looks for
best transfer
rate.

3.

22

Napster

napster.com

user

Retrieves
file

User
retrieves file

4.

23

Napster messages
General Packet Format

[chunksize] [chunkinfo] [data...]

CHUNKSIZE:
Intel-endian 16-bit integer
size of [data...] in bytes

CHUNKINFO: (hex)
Intel-endian 16-bit integer.

00 - login rejected
02 - login requested
03 - login accepted
0D - challenge? (nuprin1715)
2D - added to hotlist
2E - browse error (user isn't online!)
2F - user offline

5B - whois query
5C - whois result
5D - whois: user is offline!
69 - list all channels
6A - channel info
90 - join channel
91 - leave channel
…..

24

Napster: requesting a file
SENT to server (after logging in to server)

2A 00 CB 00 username
"C:\MP3\REM - Everybody Hurts.mp3"

RECEIVED
5D 00 CC 00 username

2965119704 (IP-address backward-form = A.B.C.D)
6699 (port)
"C:\MP3\REM - Everybody Hurts.mp3" (song)
(32-byte checksum)
(line speed)

[connect to A.B.C.D:6699]
RECEIVED from client

31 00 00 00 00 00
SENT to client

GET
RECEIVED from client

00 00 00 00 00 00

SENT to client
Myusername
"C:\MP3\REM - Everybody Hurts.mp3"
0 (port to connect to)

RECEIVED from client
(size in bytes)

SENT to server
00 00 DD 00 (give go-ahead thru server)

RECEIVED from client
[DATA]

From: http://david.weekly.org/code/napster.php3

25

Napster: architecture notes

r centralized server:
m single logical point of failure
m can load balance among servers using DNS

rotation
m potential for congestion
m Napster “in control” (freedom is an illusion)

r no security:
m passwords in plain text
m no authentication
m no anonymity

26

2 Gnutella

r Napster fixed
r Open Source
r Distributed
r Still very political…

27

Gnutella

r peer-to-peer networking: applications connect to
peer applications

r focus: decentralized method of searching for files
r each application instance serves to:

m store selected files
m route queries (file searches) from and to its neighboring

peers
m respond to queries (serve file) if file stored locally

r Gnutella history:
m 3/14/00: release by AOL, almost immediately withdrawn
m too late: 23K users on Gnutella at 8 am this AM
m many iterations to fix poor initial design (poor design

turned many people off)

28

Gnutella: how it works
Searching by flooding:
r If you don’t have the file you want, query 7 of

your partners.
r If they don’t have it, they contact 7 of their

partners, for a maximum hop count of 10.
r Requests are flooded, but there is no tree

structure.
r No looping but packets may be received twice.
r Reverse path forwarding(?)

Note: Play gnutella animation at:
http://www.limewire.com/index.jsp/p2p

29

Flooding in Gnutella: loop prevention

Seen already list: “A”

30

Gnutella message format

r Message ID: 16 bytes (yes bytes)
r FunctionID: 1 byte indicating

m 00 ping: used to probe gnutella network for hosts
m 01 pong: used to reply to ping, return # files shared
m 80 query: search string, and desired minimum bandwidth
m 81: query hit: indicating matches to 80:query, my IP

address/port, available bandwidth
r RemainingTTL: decremented at each peer to

prevent TTL-scoped flooding
r HopsTaken: number of peer visited so far by this

message
r DataLength: length of data field

31

Gnutella: initial problems and fixes

r Freeloading: WWW sites offering search/retrieval
from Gnutella network without providing file sharing
or query routing.

m Block file-serving to browser-based non-file-sharing users
r Prematurely terminated downloads:

m long download times over modems
m modem users run gnutella peer only briefly (Napster

problem also!) or any users becomes overloaded
m fix: peer can reply “I have it, but I am busy. Try again

later”
m late 2000: only 10% of downloads succeed
m 2001: more than 25% downloads successful (is this success

or failure?)

www.limewire.com/index.jsp/net_improvements

32

Gnutella: initial problems and fixes (more)

r 2000: avg size of reachable network ony 400-800
hosts. Why so smalll?

m modem users: not enough bandwidth to provide search
routing capabilities: routing black holes

r Fix: create peer hierarchy based on capabilities
m previously: all peers identical, most modem blackholes
m connection preferencing:

• favors routing to well-connected peers
• favors reply to clients that themselves serve large number of

files: prevent freeloading
m Limewire gateway functions as Napster-like central server

on behalf of other peers (for searching purposes)

www.limewire.com/index.jsp/net_improvements

33

Anonymous?

r Not anymore than it’s scalable.
r The person you are getting the file from

knows who you are. That’s not anonymous.

r Other protocols exist where the owner of
the files doesn’t know the requester.

r Peer-to-peer anonymity exists.
r See Eternity and, next, Freenet!

34

Gnutella Discussion:

r Architectural lessons learned?
r Do Gnutella’s goals seem familiar? Does it

work better than say squid or summary
cache? Or multicast with carousel?

r anonymity and security?
r Other?
r Good source for technical info/open

questions:
http://www.limewire.com/index.jsp/tech_papers

35

3. Overlays

r Next, we need to look at overlays in
general, and more specically, at

r Routing…
r RON is a good example…

36

Resilient Overlay Networks

Overlay network:
r applications, running at various sites
r create “logical” links (e.g., TCP or UDP

connections) pairwise between each other
r each logical link: multiple physical links,

routing defined by native Internet routing
r let’s look at an example, taken from:
r D. Anderson, H. Balakrishnan, F. Kaashoek, R. Morris, "The case for

reslient overlay networks," Proc. HotOS VIII, May 2001,
http://nms.lcs.mit.edu/papers/ron-hotos2001.html.

37

Internet Routing
r BGP defines routes between stub networks

UCLA Noho.net

Berkeley.net
UMass.net

Internet 2

Mediaone

C&W

38

Internet Routing
r BGP defines routes between stub networks

UCLA Noho.net

Berkeley.net
UMass.net

Internet 2

Mediaone

C&W

Noho-to-UMass

39

Internet Routing
r BGP defines routes between stub networks

UCLA Noho.net

Berkeley.net
UMass.net

Internet 2

Mediaone

C&W

Noho-to-Berkeley

40

Internet Routing

Congestion or
failure: Noho
to Berkely
BGP-
determined
route may not
change (or will
change
slowly)UCLA Noho.net

Berkeley.net
UMass.net

Internet 2

Mediaone

C&W

Noho-to-Berkeley

41

Internet Routing

Congestion or
failure: Noho
to Berkely
BGP-
determined
route may not
change (or will
change
slowly)UCLA Noho.net

Berkeley.net
UMass.net

Internet 2

Mediaone

C&W

Noho-to-Berkeley

Noho to UMass to
Berkeley

r route not visible or
available via BGP!

r MediaOne can’t route
to Berkeley via
Internet2

42

RON: Resilient Overlay Networks

Premise: by building application overlay
network, can increase performance,
reliability of routing

Two-hop (application-level)
noho-to-Berkeley route

application-layer
router

43

RON Experiments

r Measure loss, latency, and throughput with
and without RON

r 13 hosts in the US and Europe
r 3 days of measurements from data

collected in March 2001
r 30-minute average loss rates

m A 30 minute outage is very serious!
r Note: Experiments done with “No-

Internet2-for-commercial-use” policy

44

An order-of-magnitude fewer failures

0010100%
001480%
002050%
003230%
15412720%
475747910%

RON
Worse

No
Change

RON
Better

Loss
Rate

30-minute average loss rates

6,825 “path hours” represented here
12 “path hours” of essentially complete outage
76 “path hours” of TCP outage

RON routed around all of these!
One indirection hop provides almost all the benefit!

6,825 “path hours” represented here
12 “path hours” of essentially complete outage
76 “path hours” of TCP outage

RON routed around all of these!
One indirection hop provides almost all the benefit!

45

RON Research Issues

• How to design overlay networks?
• Measurement and self-configuration
• Understanding performance of underlying net.
• Fast fail-over.
• Sophisticated metrics.
• application-sensitive (e.g., delay versus

throughput) path selection.
• Effect of RON on underlying network

• If everyone does RON, are we better off?

46

4. Freenet

47

r Centralized model
m e.g. Napster
m global index held by central authority
m direct contact between requestors and

providers
r Decentralized model

m e.g. Freenet, Gnutella, Chord
m no global index – local knowledge only

(approximate answers)
m contact mediated by chain of intermediaries

P2P Application

48

Freenet history

r Final Year project Ian Clarke , Edinburgh
University, Scotland, June, 1999

r Sourceforge Project, most active
r V.0.1 (released March 2000)
r Latest version(Sept, 2001): 0.4

49

What is Freenet and Why?

r Distributed, Peer to Peer, file sharing
system

r Completely anonymous, for producers or
consumers of information

r Resistance to attempts by third parties to
deny access to information

50

Freenet: How it works

r Data structure
r Key Management
r Problems

m How can one node know about others
m How can it get data from remote nodes
m How to add new nodes to Freenet
m How does freenet mangage its data

r Protocol Details
m Header information

51

Data structure

r Routing Table
m Pair: node address: ip, tcp; corresponding key value

r Data Store
m Requirement:

• rapidly find the document given a certain key
• rapidly find the closest key to a given key
• keep track the popularity of documents and

know which document to delete when under
pressure

52

Key Management(1)

r A way to locate a document anywhere
r Keys are used to form a URI
r Two similar keys don’t mean the subjects

of the file are similar!
r Keyword-signed Key(KSK)

m Based on a short descriptive string, usually a
set of keywords that can describe the
document

m Example: University/umass/cs/hzhang
m Uniquely identify a document
m Potential problem – global namespace

53

Key Management (2)

r Signed-subspace Key(SSK)
m Add sender information to avoid namespace

conflict
m Private key to sign/ public key to varify

r Content-hash Key(CHK)
m Message digest algorithm, Basically a hash of

the document

Darling,
Tell me

the truth!

Believe me, I
don’t have it.

Freenet: Routing Algorithm:
search or insert

But I know Joe
may have it

since I
borrowed

similar stuff
him last time.

Freenet: Routing Algorithm:
search or insert

AA

BB

CC

DD

II

A, Help me!A, Help me!

Sorry, No

Freenet: Routing Algorithm:
search or insert

AA

BB CC

DD

II

57

Strength of routing
algorithm(1)
r Replication of Data Clustering (1)

(Note: Not subject-clustering but key-
clustering!)

r Reasonable Redundancy: improve data
availability.

58

Strength of routing
algorithm(2)

r New Entry in the Routing Table: the graph
will be more and more connected. --- Node
discovery

59

Protocol Details

r Header information
m DataReply

UniqueID=C24300FB7BEA06E3
Depth=a
* HopsToLive=2c
Source=tcp/127.0.0.1:2386
DataLength=131
Data 'Twas brillig, and the slithy toves Did
gyre and gimble in the wabe: All
mimsy were the borogoves And the
mome raths outgrabe

60

Some security and
authentication issues
r How to ensure anonymity:

m Nodes can lie randomly about the requests and
claim to be the origin or the destination of a
request

m Hop-To-Live values are fuzzy
m Then it’s impossible to trace back a document

to its original node
m Similarly, it’s impossible to discover which node

inserted a given document.

61

Network convergence

r X-axis: time
r Y-axis: # of pathlength
r 1000 Nodes, 50 items

datastore, 250 entries
routing table

r the routing tables were
initialized to ring-lattice
topology

r Pathlength: the number
of hops actually taken
before finding the data.

62

Scalability

r X-axis: # of nodes
r Y-axis: # of pathlength
r The relation between

network size and average
pathlenth.

r Initially, 20 nodes. Add
nodes regularly.

63

Fault Tolerance

r X-axis: # of nodes failing
r Y-axis: # of pathlength
r The median pathlength

remains below 20 even when
up to 30% nodes fails.

64

Small world Model

r X-axis: # of nodes failing
r Y-axis: # of pathlength
r Most of nodes have only few

connections while a small
number of news have large set
of connections.

r The authors claim it follows
power law.

65

So far, it’s really a good model

r Keep anonymity
r Distributed model; data available
r Converge fast
r Adaptive

66

Is it Perfect?

r How long will it take to search or insert?
m Trade off between anonymity and searching efforts:

Chord vs Freenet
m Can we come up a better algorithm? A good try: “Search in

Power-Law Networks”
r Have no idea about if search fails due to no such

document or just didn’t find it.
r File lifetime. Freenet doesn’t guarantee a document

you submit today will exist tomorrow!!

67

Question??

r Anonymity? Security?
r Better search algorithm? Power law?
r …

68

5. Publius: A robust, tamper-evident,
censorship-resistant web publishing
system

Marc Waldman Aviel Rubin Lorrie Faith Cranor

69

Outline

r Design Goals

r Kinds of Anonymity

r Publius Features

r Publius Limitations and Threats

r Questions

70

Design Goals

r Censorship resistant
m Difficult for a third party to modify or delete

content
r Tamper evident

m Unauthorized changes should be detectable
r Source anonymous

m No way to tell who published the content
r Updateable

m Changes to or deletion of content should be
possible for publishers

71

Design Goals

r Deniable
m Involved third parties should be able to deny

knowledge of what is published
r Fault Tolerant

m System remains functional, even if some third
parties are faulty or malicious

r Persistent
m No expiration date on published materials

72

Web Anonymity

r Connection Based
m Hides the identity of the individual requesting a

page Examples:
• Anonymizing proxies, such as The Anonymizer or

Proxymate
• Proxies utilizing Onion Routing, such as Freedom
• Crowds, where users in the Crowd probabilistically

route or retrieve for other users in the Crowd

73

Web Anonymity

r Author Based
m Hides the location or author of a particular

document Examples:
• Rewebber, which proxies requests for encrypted

URLs
• The Eternity Service, which for a fee inserts a

document into a random subset of servers, and
guarantees its future existence

• Freenet
m Publius provides this sort of anonymity

74

Publius System Overview

r Publishers
m Post Publius content to the web

r Servers
m A static set which host random-looking content

r Retrievers
m Browse Publius content on web

75

Publius System Overview

r Publish
m A publisher posts content across multiple

servers in a source anonymous fashion
r Retrieve

m A retriever gets content from multiple servers
r Delete

m The original publisher of a document removes it
from the Publius servers

r Update
m The original publisher modifies a document

76

Publius Publishing

r Alice generates a random symmetric key K
r She encrypts message M with key K,

producing {M}K

r She splits K into n shares, using Shamir
secret sharing, such that any k can
reproduce K

r Each share is uniquely named:
namei = wrap(H(M . sharei))

77

Publius Publishing

r A set of locations is chosen:
locationi = (namei MOD m) + 1

r Each locationi indexes into the list of m
servers

r If d >= k unique values are not obtained,
start over

r Alice publishes {M}K and sharei into a
directory namei on the server at locationi

r A URL containing at least the d namei
values is produced

78

Publius Publishing

...
name = de26fe4fc8c6

name = 620a8a3d63b

name = 1e0995d6698
1

2

n

...

135.207.8.15

121.113.8.5

1

2

m 206.35.113.9

105.3.14.1

...

...

...

3

4

7

12

201.18.24.5

210.183.28.4

209.185.143.19

location = 7

location = 12

loction = 4
1

2

n

Publisher

Servers

/publius/1e0995d6698/{M}K

Server 3

Server 8

/publius/de26fe4fc8c6/{M}K
/publius/620a8a3d63b/{M}K

Server 4

Server 12
Server 7

201.18.24.5

209.185.143.19
210.183.28.4

Server Table
Available

79

Publius Retrieval

r Bob parses out each namei from URL, and for each,
computes:

locationi = (namei MOD m) + 1
r Bob chooses k of these, and retrieves the

encrypted file {M}K and sharei at each server
r Bob combines the shares to get K, and decrypts

the file
r Bob verifies that each name value is correct:

namei = wrap(H(M . sharei))

80

Publius Delete

r Alice generates a password PW when
publishing a file

r Alice includes H(server_domain_name . PW)
in server directory when publishing
m Note that each server has its own hash, to

prevent a malicious server operator from
deleting content on all servers

r Alice deletes by sending
H(server_domain_name . PW) and namei to
each of the n servers hosting content

81

Publius Update

r Idea: change content without changing
original URL, as links to that URL may exist

r In addition to the file, the share, and the
password, there may be an update file in
the namei directory

r This update file will not exist if Alice has
not updated the content

82

Publius Update

r To update, Alice specifies a new file, the
original URL, the original password PW, and
a new password

r First, the new content is published, and a
new URL is generated

r Then, each of the n old files is deleted, and
an update file, containing the new URL, is
placed in each namei directory

83

Publius Update

r When Bob retrieves updated content, the
server returns the update file instead

r Bob checks that all of the URLs are
identical, then retrieves the content at the
new URL

84

Linking Documents

r Simple case: file A links to file B
m Solution: Publish B first, then rewrite URLs in A

r Harder: files C and D link to each other
m Cannot use simple solution above
m Alice publishes C and D in any order
m She then rewrites the URLs in each file, and

uses the Publius Update procedure on the new
files

85

Other Features

r Entire directories can be published by
exploiting the updateability of Publius

r Mechanism exists to encode MIME type
into Publius content

r Publius URLs include option fields and
other flags, the value of k, and other
relevant values
m Older broswers preclude URLs of length >255

characters
m Once this limitation is removed, URLs can

include server list, making this list non-static

86

Limitations and Threats

r Share deletion or corruption
m If all n copies of a file, or n-k+1 copies of the

shares, are deleted, then the file is unreadable
m Increasing n, or decreasing k, makes this attack

harder

87

Limitations and Threats

r Update file deletion or corruption 1
m If there is no update file, malicious server

operator Mallory could create one, pointing to
bad content

m This requires the assistance of at least k other
server operator, and motivates a higher value
of k

m The Publius URL has several fields, among them
a no_update flag, which will prevent this sort of
attack

88

Limitations and Threats

r Update file deletion or corruption 2
m If Publius content has already been updated,

Mallory must corrupt update files on n-k+1
servers

m Of course, if Mallory can do this, she can
censor any document

m Larger n and smaller k make this more difficult

r Deciding upon good values for n and k is
difficult
m No suggestions from Waldman et al.

89

Limitations and Threats

r Publius, like all internet services, is subject
to DoS attacks
m Flooding is less effective, as n-k+1 servers must

be attacked
m A malicious user could attempt to fill disk space

on servers
• Some mechanisms in place to prevent this

90

Limitations and Threats

r If the Publius content contains any
identifying information, anonymity will be
lost

r Publius does not provide any connection
based anonymity
m If you act as a publisher, you must anonymize

your connections with the Publius servers

91

Questions

r How do you publish Publius URLs
anonymously?
m Freenet keys can be guessed at, but Publius

URLs are entirely machine generated
m The first person to publish a Publius URL must

have some connection with the publisher of the
content

m If you have somewhere secure and anonymous
to publish the Publius URLs, why do you need
Publius?

• One possible answer: censorship resistance
• But server operators are then potentially liable

92

Questions

r How deniable is Publius?
m Publius URLs are public
m With minimal effort, a Publius server operator

could determine the content being served

93

Questions

r How does Publius compare to Freenet?
m Both provide publisher anonymity, deniability,

and censorship resistance
m Freenet provides anonymity for retrievers and

servers, as well
• Cost is high: data must be cached at many nodes

m Publius provides persistence of data
• Freenet does not
• Can any p2p system provide persistence?

94

Questions

r Could Publius be made into a p2p service?

r Would it be appropriate to do so?

95

Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, Hari Balakrishnan

MIT and Berkeley

Now we see some CS in strength – Hash and Content based….for more
scaleble (distributed) directory lookup

6. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

6. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

? presentation based on slides by Robert Morris (SIGCOMM’01)

96

OutlineOutline

? Motivation and background

? Consistency caching

? Chord

? Performance evaluation

? Conclusion and discussion

97

MotivationMotivation

How to find data in a distributed file sharing system?

? Lookup is the key problem

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?

98

Centralized SolutionCentralized Solution

? Requires O(M) state
? Single point of failure

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

? Central server (Napster)

99

Distributed Solution (1)Distributed Solution (1)

? Worst case O(N) messages per lookup

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

? Flooding (Gnutella, Morpheus, etc.)

100

Distributed Solution (2)Distributed Solution (2)
? Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

? Only exact matches

101

Routing ChallengesRouting Challenges

? Define a useful key nearness metric

? Keep the hop count small

? Keep the routing tables “right size”

? Stay robust despite rapid changes in membership

Authors claim:
? Chord: emphasizes efficiency and
simplicity

102

Chord OverviewChord Overview

? Provides peer-to-peer hash lookup service:
? Lookup(key) ? IP address

? Chord does not store the data

? How does Chord locate a node?

? How does Chord maintain routing tables?

? How does Chord cope with changes in membership?

103

Chord propertiesChord properties

? Efficient: O(Log N) messages per lookup

? N is the total number of servers

? Scalable: O(Log N) state per node

? Robust: survives massive changes in membership

? Proofs are in paper / tech report

? Assuming no malicious participants

104

Chord IDsChord IDs

? m bit identifier space for both keys and nodes

? Key identifier = SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“198.10.10.1” ID=123SHA-1
? Node identifier = SHA-1(IP address)

? Both are uniformly distributed

? How to map key IDs to node IDs?

105

Consistent Hashing [Karger 97]Consistent Hashing [Karger 97]

? A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

106

Consistent HashingConsistent Hashing
? Every node knows of every other node

? requires global information

? Routing tables are large O(N)
? Lookups are fast O(1)

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

107

Chord: Basic LookupChord: Basic Lookup

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

? Every node knows its successor in the ring

? requires O(N) time

108

“Finger Tables”“Finger Tables”

? Every node knows m other nodes in the ring

? Increase distance exponentially

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

109

“Finger Tables”“Finger Tables”

? Finger i points to successor of n+2i

N120

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

110

Lookups are FasterLookups are Faster

? Lookups take O(Log N) hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

111

Joining the RingJoining the Ring

? Three step process:
? Initialize all fingers of new node

? Update fingers of existing nodes

? Transfer keys from successor to new node

? Less aggressive mechanism (lazy finger update):
? Initialize only the finger to successor node

? Periodically verify immediate successor, predecessor

? Periodically refresh finger table entries

112

Joining the Ring - Step 1Joining the Ring - Step 1

? Initialize the new node finger table

? Locate any node p in the ring

? Ask node p to lookup fingers of new node N36

? Return results to new node

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

113

Joining the Ring - Step 2Joining the Ring - Step 2

? Updating fingers of existing nodes
? new node calls update function on existing nodes

? existing nodes can recursively update fingers of other
nodes

N36

N60

N40

N5

N20
N99

N80

114

Joining the Ring - Step 3Joining the Ring - Step 3

? Transfer keys from successor node to new node
? only keys in the range are transferred

Copy keys 21..36
from N40 to N36K30

K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

115

Handing FailuresHanding Failures
? Failure of nodes might cause incorrect lookup

N120
N113

N102

N80

N85

N10

Lookup(90)

? N80 doesn’t know correct successor, so lookup fails

? Successor fingers are enough for correctness

116

Handling FailuresHandling Failures

? Use successor list
? Each node knows r immediate successors

? After failure, will know first live successor

? Correct successors guarantee correct lookups

? Guarantee is with some probability

? Can choose r to make probability of lookup failure
arbitrarily small

117

Evaluation OverviewEvaluation Overview

? Quick lookup in large systems

? Low variation in lookup costs

? Robust despite massive failure

? Experiments confirm theoretical results

118

Cost of lookupCost of lookup
? Cost is O(Log N) as predicted by theory
? constant is 1/2

Number of Nodes

Av
er

ag
e

M
es

sa
ge

s
pe

r
Lo

ok
up

119

RobustnessRobustness
? Simulation results: static scenario

? Failed lookup means original node with key failed (no replica of keys)

? Result implies good balance of keys among nodes!

120

RobustnessRobustness
? Simulation results: dynamic scenario

? Failed lookup means finger path has a failed node

? 500 nodes initially

? average stabilize() call 30s

? 1 lookup per second (Poisson)

? x join/fail per second (Poisson)

121

Current implementationCurrent implementation

? Chord library: 3,000 lines of C++

? Deployed in small Internet testbed

? Includes:

? Correct concurrent join/fail

? Proximity-based routing for low delay (?)

? Load control for heterogeneous nodes (?)

? Resistance to spoofed node IDs (?)

122

StrengthsStrengths

? Based on theoretical work (consistent hashing)

? Proven performance in many different aspects
? “with high probability” proofs

? Robust (Is it?)

123

WeaknessWeakness

? NOT that simple (compared to CAN)

? Member joining is complicated
? aggressive mechanisms requires too many messages and updates

? no analysis of convergence in lazy finger mechanism

? Key management mechanism mixed between layers
? upper layer does insertion and handle node failures

? Chord transfer keys when node joins (no leave mechanism!)

? Routing table grows with # of members in group

? Worst case lookup can be slow

124

DiscussionsDiscussions

? Network proximity (consider latency?)

? Protocol security
? Malicious data insertion

? Malicious Chord table information

? Keyword search and indexing

? ...

125

7. Tapestry:
Decentralized
Routing and Location

Ben Y. Zhao
CS Division, U. C. Berkeley

126

Outline

r Problems facing wide-area applications

r Tapestry Overview

r Mechanisms and protocols

r Preliminary Evaluation

r Related and future work

127

Motivation

r Shared Storage systems need an data
location/routing mechanism

m Finding the peer in a scalable way is a difficult problem
m Efficient insertion and retrieval of content in a large

distributed storage infrastructure
r Existing solutions

m Centralized: expensive to scale, less fault
tolerant,vulnerable to DoS attacks (e.g.
Napster,DNS,SDS)

m Flooding: not scalable (e.g. Gnutella)

128

Key: Location and Routing

r Hard problem:
m Locating and messaging to resources and data

r Approach: wide-area overlay infrastructure:
m Scalable, Dynamic, Fault-tolerant, Load balancing

129

Decentralized Hierarchies

r Centralized hierarchies
m Each higher level node responsible for locating

objects in a greater domain
r Decentralize: Create a tree for object O

(really!)
m Object O has its

own root and
subtree

m Server on each level
keeps pointer to
nearest object in
domain

m Queries search up in
hierarchy

Root ID = O

Directory servers tracking 2 replicas

130

What is Tapestry?

r A prototype of a decentralized, scalable, fault-
tolerant, adaptive location and routing
infrastructure
(Zhao, Kubiatowicz, Joseph et al. U.C. Berkeley)

r Network layer of OceanStore global storage
system
Suffix-based hypercube routing

m Core system inspired by Plaxton Algorithm (Plaxton,
Rajamaran, Richa (SPAA97))

r Core API:
m publishObject(ObjectID, [serverID])
m sendmsgToObject(ObjectID)
m sendmsgToNode(NodeID)

131

Incremental Suffix Routing

r Namespace (nodes and objects)
m large enough to avoid collisions (~2160?)

(size N in Log2(N) bits)
r Insert Object:

m Hash Object into namespace to get ObjectID
m For (i=0, i<Log2(N), i+j) { //Define hierarchy

• j is base of digit size used, (j = 4 ? hex digits)
• Insert entry into nearest node that matches on

last i bits
• When no matches found, then pick node matching

(i – n) bits with highest ID value, terminate

132

Routing to Object

r Lookup object
m Traverse same relative nodes as insert, except searching

for entry at each node
m For (i=0, i<Log2(N), i+n)

Search for entry in nearest node matching on last i bits
r Each object maps to hierarchy defined by single

root
m f (ObjectID) = RootID

r Publish / search both route incrementally to root
r Root node = f (O), is responsible for “knowing”

object’s location

133

Object Location
Randomization and Locality

134

4

2

3

3

3

2

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3

2

4

Tapestry Mesh
Incremental suffix-based routing

NodeID
0x43FE

NodeID
0x13FENodeID

0xABFE

NodeID
0x1290

NodeID
0x239E

NodeID
0x73FE

NodeID
0x423E

NodeID
0x79FE

NodeID
0x23FE

NodeID
0x73FF

NodeID
0x555E

NodeID
0x035E

NodeID
0x44FE

NodeID
0x9990

NodeID
0xF990

NodeID
0x993E

NodeID
0x04FE

NodeID
0x43FE

135

Contribution of this work

Plaxtor Algorithm
r Limitations

m Global knowledge
algorithms

m Root node vulnerability
m Lack of adaptability

Tapestry
r Distributed algorithms

• Dynamic node insertion
• Dynamic root mapping

m Redundancy in location
and routing

m Fault-tolerance
protocols

m Self-configuring /
adaptive

m Support for mobile
objects

r Application
Infrastructure

136

Dynamic Insertion Example

NodeID
0x243FE

NodeID
0x913FENodeID

0x0ABFE

NodeID
0x71290

NodeID
0x5239E

NodeID
0x973FE

NEW
0x143FE

NodeID
0x779FE

NodeID
0xA23FE

Gateway
0xD73FF

NodeID
0xB555E

NodeID
0xC035E

NodeID
0x244FE

NodeID
0x09990

NodeID
0x4F990

NodeID
0x6993E

NodeID
0x704FE

4

2

3

3

3

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3

2

4

NodeID
0x243FE

137

Fault-tolerant Location

r Minimized soft-state vs. explicit fault-recovery
r Multiple roots

m Objects hashed w/ small salts ? multiple names/roots
m Queries and publishing utilize all roots in parallel
m P(finding Reference w/ partition) = 1 – (1/2)n

where n = # of roots
r Soft-state periodic republish

m 50 million files/node, daily republish,
b = 16, N = 2160 , 40B/msg,
worst case update traffic: 156 kb/s,

m expected traffic w/ 240 real nodes: 39 kb/s

138

Fault-tolerant Routing

r Detection:
m Periodic probe packets between neighbors

r Handling:
m Each entry in routing map has 2 alternate nodes
m Second chance algorithm for intermittent

failures
m Long term failures ? alternates found via

routing tables
r Protocols:

m First Reachable Link Selection
m Proactive Duplicate Packet Routing

139

Simulation Environment

r Implemented Tapestry routing as packet-
level simulator

r Delay is measured in terms of network
hops

r Do not model the effects of cross traffic
or queuing delays

r Four topologies: AS, MBone, GT-ITM,
TIERS

140

Results: Location Locality

Measuring effectiveness of locality pointers (TIERS
5000)

RDP vs Object Distance (TI5000)

0

2

4

6

8

10

12

14

16

18

20

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Object Distance

R
D

P

Locality Pointers No Pointers

141

Results: Stability via Redundancy

Parallel queries on multiple roots. Aggregate bandwidth measures b/w
used for soft-state republish 1/day and b/w used by requests at rate of
1/s.

Retrieving Objects with Multiple Roots

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5

of Roots Utilized

L
at

en
cy

 (
H

o
p

 U
n

it
s)

0

10

20

30

40

50

60

70

A
g

g
re

g
at

e
B

an
d

w
id

th

(k
b

/s
)

Average Latency Aggregate Bandwidth per Object

142

Related Work

r Content Addressable Networks
m Ratnasamy et al.,

(ACIRI / UCB)
r Chord

m Stoica, Morris, Karger, Kaashoek,
Balakrishnan (MIT / UCB)

r Pastry
m Druschel and Rowstron

(Rice / Microsoft Research)

143

Strong Points

r Designed system based on Theoretically
proven idea (Plaxton Algorithm)

r Fully decentralized and scalable solution
for deterministic location and routing
problem

144

Weaknesses/Improvements

r Substantially complicated
m Esp, dynamic node insertion algorithm is non-

trivial, and each insertion will take a non-
negligible amount of time.

m Attempts to insert a lot of nodes at the same
time

r Where to put “root” node for a given
object
m Needs universal hashing function
m Possible to put “root” to near expected clients

dynamically?

145

Routing to Nodes
Example: Octal digits, 218 namespace, 005712 ? 627510

005712

340880 943210

387510

834510

727510

627510

Neighbor Map
For “5712” (Octal)

Routing Levels
1234

xxx1

5712

xxx0

xxx3

xxx4

xxx5

xxx6

xxx7

xx02

5712

xx22

xx32

xx42

xx52

xx62

xx72

x012

x112

x212

x312

x412

x512

x612

5712

0712

1712

2712

3712

4712

5712

6712

7712

005712 0 1 2 3 4 5 6 7

340880 0 1 2 3 4 5 6 7

943210 0 1 2 3 4 5 6 7

834510 0 1 2 3 4 5 6 7

387510 0 1 2 3 4 5 6 7

727510 0 1 2 3 4 5 6 7

627510 0 1 2 3 4 5 6 7

146

Dynamic Insertion

Operations necessary for N to become fully
integrated:

r Step 1: Build up N’s routing maps
m Send messages to each hop along path from gateway to

current node N’ that best approximates N
m The ith hop along the path sends its ith level route table

to N
m N optimizes those tables where necessary

r Step 2: Send notify message via acked multicast
to nodes with null entries for N’s ID, setup
forwarding ptrs

r Step 3: Each notified node issues republish
message for relevant objects

r Step 4: Remove forward ptrs after one republish
period
Step 5: Notify local neighbors to modify paths to

147

Dynamic Root Mapping

r Problem: choosing a root node for every
object
m Deterministic over network changes
m Globally consistent

r Assumptions
m All nodes with same matching suffix contains

same null/non-null pattern in next level of
routing map

m Requires: consistent knowledge of nodes across
network

148

Plaxton Solution

r Given desired ID N,
m Find set S of nodes in existing network nodes n

matching most # of suffix digits with N
m Choose Si = node in S with highest valued ID

r Issues:
m Mapping must be generated statically using

global knowledge
m Must be kept as hard state in order to operate

in changing environment
m Mapping is not well distributed, many nodes in n

get no mappings

149

Sylvia Ratnasamy, Paul Francis, Mark Handley,

Richard Karp, Scott Shenker

8. A Scalable, Content-
Addressable Network

ACIRI U.C.Berkeley Tahoe
Networks

1 2 3

1,2 3 1

1,2 1

150

Outline

r Introduction
r Design
r Evaluation
r Strengths & Weaknesses
r Ongoing Work

151

Internet-scale hash tables

r Hash tables
m essential building block in software systems

r Internet-scale distributed hash tables
m equally valuable to large-scale distributed systems?

152

r Hash tables
m essential building block in software systems

r Internet-scale distributed hash tables
m equally valuable to large-scale distributed systems?

• peer-to-peer systems
– Napster, Gnutella,, FreeNet, MojoNation…

• large-scale storage management systems
– Publius, OceanStore,, CFS ...

• mirroring on the Web

Internet-scale hash tables

153

Content-Addressable Network
(CAN)

r CAN: Internet-scale hash table

r Interface
m insert(key,value)
m value = retrieve(key)

154

Content-Addressable Network
(CAN)

r CAN: Internet-scale hash table

r Interface
m insert(key,value)
m value = retrieve(key)

r Properties
m scalable
m operationally simple
m good performance (w/ improvement)

155

Content-Addressable Network
(CAN)

r CAN: Internet-scale hash table

r Interface
m insert(key,value)
m value = retrieve(key)

r Properties
m scalable
m operationally simple
m good performance

r Related systems: Chord/Pastry/Tapestry/Buzz/Plaxton ...

156

Problem Scope

4 Design a system that provides the interface
? scalability
? robustness
? performance
5 security

6 Application-specific, higher level primitives
? keyword searching
? mutable content
? anonymity

157

Outline

r Introduction
r Design
r Evaluation
r Strengths & Weaknesses
r Ongoing Work

158

K V

CAN: basic idea

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

159

CAN: basic idea

insert
(K1,V1)

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

160

CAN: basic idea

insert
(K1,V1)

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

161

CAN: basic idea

(K1,V1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

162

CAN: basic idea

retrieve (K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

163

CAN: solution

r virtual Cartesian coordinate space

r entire space is partitioned amongst all the nodes
m every node “owns” a zone in the overall space

r abstraction
m can store data at “points” in the space
m can route from one “point” to another

r point = node that owns the enclosing zone

164

CAN: simple example

1

165

CAN: simple example

1 2

166

CAN: simple example

1

2

3

167

CAN: simple example

1

2

3

4

168

CAN: simple example

169

CAN: simple example

I

170

CAN: simple example

node I::insert(K,V)

I

171

(1) a = hx(K)

CAN: simple example

x = a

node I::insert(K,V)

I

172

(1) a = hx(K)
b = hy(K)

CAN: simple example

x = a

y = b

node I::insert(K,V)

I

173

(1) a = hx(K)
b = hy(K)

CAN: simple example

(2) route(K,V) -> (a,b)

node I::insert(K,V)

I

174

CAN: simple example

(2) route(K,V) -> (a,b)

(3) (a,b) stores (K,V)

(K,V)

node I::insert(K,V)

I(1) a = hx(K)
b = hy(K)

175

CAN: simple example

(2) route “retrieve(K)” to (a,b) (K,V)

(1) a = hx(K)
b = hy(K)

node J::retrieve(K)

J

176

Data stored in the CAN is addressed by
name (i.e. key), not location (i.e. IP
address)

CAN

177

CAN: routing table

178

CAN: routing

(a,b)

(x,y)

179

A node only maintains state for its
immediate neighboring nodes

CAN: routing

180

CAN: node insertion

Bootstrap
node

1) Discover some node “I” already in CAN
new node

181

CAN: node insertion

I

new node
1) discover some node “I” already in CAN

182

CAN: node insertion

2) pick random
point in space

I

(p,q)

new node

183

CAN: node insertion

(p,q)

3) I routes to (p,q), discovers node J

I

J

new node

184

CAN: node insertion

newJ

4) split J’s zone in half… new owns one half

185

Inserting a new node affects only a single
other node and its immediate neighbors

CAN: node insertion

186

CAN: node failures

r Need to repair the space

m recover database (weak point)
• soft-state updates
• use replication, rebuild database from replicas

m repair routing
• takeover algorithm

187

CAN: takeover algorithm

r Simple failures
m know your neighbor’s neighbors
m when a node fails, one of its neighbors takes over its

zone

r More complex failure modes
m simultaneous failure of multiple adjacent nodes
m scoped flooding to discover neighbors
m hopefully, a rare event

188

Only the failed node’s immediate neighbors
are required for recovery

CAN: node failures

189

Design recap

r Basic CAN
m completely distributed
m self-organizing
m nodes only maintain state for their immediate neighbors

r Additional design features
m multiple, independent spaces (realities)
m background load balancing algorithm
m simple heuristics to improve performance

190

Outline

r Introduction
r Design
r Evaluation
r Strengths & Weaknesses
r Ongoing Work

191

Evaluation

r Scalability

r Low-latency

r Load balancing

r Robustness

192

CAN: scalability

r For a uniformly partitioned space with n nodes and d
dimensions

m per node, number of neighbors is 2d
m average routing path is (dn1/d)/4 hops
m simulations show that the above results hold in practice

r Can scale the network without increasing per-node
state

r Chord/Plaxton/Tapestry/Buzz
m log(n) nbrs with log(n) hops

193

CAN: low-latency

r Problem
m latency stretch = (CAN routing delay)

(IP routing delay)
m application-level routing may lead to high stretch

r Solution
m increase dimensions, realities (reduce the path

length)
m Heuristics (reduce the per-CAN-hop latency)

• RTT-weighted routing
• multiple nodes per zone (peer nodes)
• deterministically replicate entries

194

CAN: low-latency

#nodes

La
te

nc
y

st
re

tc
h

0

20

40

60

80

100

120

140

160

180

16K 32K 65K 131K

#dimensions = 2

w/o heuristics

w/ heuristics

195

0

2

4

6

8

10

CAN: low-latency

#nodes

La
te

nc
y

st
re

tc
h

16K 32K 65K 131K

#dimensions = 10

w/o heuristics

w/ heuristics

196

CAN: load balancing

r Two pieces

m Dealing with hot-spots
• popular (key,value) pairs
• nodes cache recently requested entries
• overloaded node replicates popular entries at neighbors

m Uniform coordinate space partitioning
• uniformly spread (key,value) entries
• uniformly spread out routing load

197

Uniform Partitioning

r Added check
m at join time, pick a zone
m check neighboring zones
m pick the largest zone and split that one

198

0

2 0

4 0

6 0

8 0

1 0 0

Uniform Partitioning

V 2V 4V 8V

Volume

Percentage
of nodes

w/o check

w/ check

V = total volume
n

V
16

V
8

V
4

V
2

65,000 nodes, 3 dimensions

199

CAN: Robustness

r Completely distributed
m no single point of failure (not applicable to pieces of

database when node failure happens)

r Not exploring database recovery (in case
there are multiple copies of database)

r Resilience of routing
m can route around trouble

200

Outline

r Introduction
r Design
r Evaluation
r Strengths & Weaknesses
r Ongoing Work

201

Strengths

r More resilient than flooding broadcast
networks

r Efficient at locating information
r Fault tolerant routing
r Node & Data High Availability (w/

improvement)
r Manageable routing table size & network

traffic

202

Weaknesses

r Impossible to perform a fuzzy search
r Susceptible to malicious activity
r Maintain coherence of all the indexed data

(Network overhead, Efficient distribution)
r Still relatively higher routing latency
r Poor performance w/o improvement

203

Suggestions

r Catalog and Meta indexes to perform
search function

r Extension to handle mutable content
efficiently for web-hosting

r Security mechanism to defense against
attacks

204

Outline

r Introduction
r Design
r Evaluation
r Strengths & Weaknesses
r Ongoing Work

205

Ongoing Work

r Topologically-sensitive CAN construction
m distributed binning

206

Distributed Binning

r Goal
m bin nodes such that co-located nodes land in same bin

r Idea
m well known set of landmark machines
m each CAN node, measures its RTT to each landmark
m orders the landmarks in order of increasing RTT

r CAN construction
m place nodes from the same bin close together on the CAN

207

Distributed Binning

m 4 Landmarks (placed at 5 hops away from each other)
m naïve partitioning

number of nodes

256 1K 4K

la
te

nc
y

St
re

tc
h

5

10

15

20

256 1K 4K

?
w/o binning
w/ binning

w/o binning
w/ binning

#dimensions=2 #dimensions=4

208

Ongoing Work (cont’d)

r Topologically-sensitive CAN construction
m distributed binning

r CAN Security (Petros Maniatis - Stanford)
m spectrum of attacks
m appropriate counter-measures

209

Ongoing Work (cont’d)

r CAN Usage

m Application-level Multicast (NGC 2001)

m Grass-Roots Content Distribution

m Distributed Databases using CANs
(J.Hellerstein, S.Ratnasamy, S.Shenker, I.Stoica, S.Zhuang)

210

Summary

r CAN
m an Internet-scale hash table
m potential building block in Internet applications

r Scalability
m O(d) per-node state

r Low-latency routing
m simple heuristics help a lot

r Robust
m decentralized, can route around trouble

211

9.Sun’s Project JXTA

Technical Overview

212

Presentation Outline

r Introduction - what is JXTA

r Goal - what JXTA wants to be

r Technology - what JXTA relies upon

r Structure - how JXTA is built

r Protocols - what protocols JXTA has

r Security - whether JXTA is secure

r Applications - what JXTA can be used for

r Collaboration - how JXTA grows

213

Introduction

r “JXTA” - pronounced as “juxta” as in “juxtaposition”

r started by Sun's Chief Scientist Bill Joy

r an effort to create a common platform for building distributed
services and applications

r Napster, Gnutella, and Freenet provide users with limited
ability to share resources and are unable to share data with
other, similar applications

214

Goal/Purpose

r enable a wide range of distributed computing
applications by developing a common set of general
purpose P2P protocols

r achieve platform independence - any language, any
OS, any hardware

r overcome the limitations found in many today's P2P
applications

r enable new applications to run on any device that
has a digital heartbeat (desktop computers, servers,
PDAs, cell phones, and other connected devices)

215

Technology
r JXTA technology is based on XML, Java technology, and key

concepts of UNIX operating system

r Transmitted information is packaged as messages. Messages
define an XML envelop to transfer any kind of data.

r The use of Java language is not required - JXTA protocols can be
implemented in C, C++, Perl, or any other programming language

216

JXTA Core

JXTA Services

JXTA Applications

Structure

Any Peer on the Web (Desktop, cell phone, PDA, Server)

Security

Peer Groups Peer Pipes Peer Monitoring

JXTA Community Services Sun
JXTA Services

JXTA Community Applications Sun Applications

JXTA
Shell

Peer
Commands

217

Multi-Layered Structure
r JXTA Core

• Peer Groups - mechanisms to/for create and delete, join, advertise,
discover, communication, security, content sharing

• Peer Pipes - transfer of data, content, and code in a protocol-
independent manner

• Peer Monitoring - including access control, priority setting, traffic
metering and bandwidth balancing

r JXTA Services
• expand upon the capabilities of the core and facilitate application

development
• mechanisms for searching, sharing, indexing, and caching code and

content to enable cross-application bridging and translation of files
r JXTA Shell - much like UNIX OS

• facilitate access to core-level functions through a command line
r JXTA Applications - built using peer services as well as the core

layer

218

Protocols
r JXTA is a set of six protocols

r Peer Discovery Protocol - find peers, groups, advertisements

r Peer Resolver Protocol - send/receive search queries

r Peer Information Protocol - learn peers’ status/properties

r Peer Membership Protocol - sign in, sign out, authentication

r Pipe Binding Protocol - pipe advertisement to pipe endpoint

r Endpoint Routing Protocol - available routes to destination

219

Security
r Confidentiality, integrity, availability - authentication, access

control, encryption, secure communication, etc.

r Developing more concrete and precise security architecture is an

ongoing project

r JXTA does not mandate certain security polices, encryption
algorithms or particular implementations

r JXTA 1.0 provides Security Primitives:
• crypto library (MD5, RC4, RSA, etc.)
• Pluggable Authentication Module (PAM)
• password-based login
• transport security mechanism modeled after SSL/TLS

220

Potential Applications
r Search the entire web and all its connected devices (not just

servers) for needed information
r Save files and information to distributed locations on the

network
r Connect game systems so that multiple people in multiple

locations
r Participate in auctions among selected groups of individuals
r Collaborate on projects from anywhere using any connected

device
r Share compute services, such as processor cycles or storage

systems, regardless of where the systems or the users are
located

221

JXTA Search Overview
r Started in June 2000 by Infrasearch as an idea to

distribute queries to network peers best capable of
answering them

r Now it is the default searching methodology for the JXTA
framework in the form of JXTA Search

r Communication via an XML protocol called Query Routing
Protocol (QRP)

r Network components: Providers, Consumers, Hubs

r Capable of providing both wide and deep search; deep
search shows the most benefits

r Design goals: Simplicity, Structure, Extensibility, Scalability

222

JXTA Search Benefits
r Speed of update - especially noticeable in deep

search, where large data in databases are accessed
directly without a need to create a central index.

r Access - in crawling based approach many companies
are resilient to grant access to web crawlers. In
distributed approach the companies can serve the
data as they feel appropriate.

r Efficiency - no need to create a centrally placed and
maintained index for the whole web.

223

JXTA Search Architecture

r Each JXTA peer can
run instances of
Provider, Consumer,
and Registration
services on top of its
JXTA core.

r Each peer interacts
with the JXTA Search
Hub Services, which is
also running on top of
the JXTA core.

224

JXTA Search Architecture

r Each peer within the network
interacts with the hub using its
appropriate service

Registration

Consumer

Provider

Hub

JXTA Peer

225

Collaboration

r Currently over 25 companies are participating in developing JXTA
projects.

r Core (7 projects)

• security, juxta-c, juxtaperl, pocketjxta
r Services (20 projects)

• search, juxtaspaces, p2p-email, juxta-grid, payment, monitoring
r Applications (12 projects)

• shell, jnushare, dfwbase, brando

r Other projects (5) - demos, tutorials, etc.

226

Future Work, Questions

r Future Work

• C/C++ implementation

• KVM based implementation (PDAs, cell phones)

• Naming and binding services

• Security services (authentication, access control)

• Solutions for firewalls and NAT gateways

r Is this the right structure?

r Do JXTA protocols dictate too much or too little?

227

10. Application Layer Anycasting: A Server Selection
Architecture and Use in Replicated Web Service

Ellen W. Zegura
Mostafa H. Amamr

Zongming Fei
Networking and Telecommunications Group

Georgia Tech, Atlanta, GA

Samrat Battacharjee
Department of Computer Science

University of Maryland, College Park, MD

228

Agenda

r Problem Statement
r The Anycasting Communication Paradigm
r Some Related Work
r Application Layer Anycasting
r Experimental Results
r Conclusions

229

Problem Statement

r Efficient service provision in wide area
networks

r Replicated services
r Applications want access to the best

server
r Best may depend on time, performance,

policy

230

Server Replication

r Standard technique to improve scalability
of a service

r Issues in server replication
m Location of servers
m Consistency across servers
m Server selection

r Server selection problem
m How does a client determine which of the

replicated servers to access ?

Client

Content Equivlent Servers

Request

??

232

Server Selection

r Alternatives
m Designated (e.g. nearest) server
m Round robin assignment (e.g. DNS rotator)
m Explicit list with user selection
m Selection architecture (e.g. Cisco

DistributedDirector)
r Application-Layer Anycasting:

m Client requests connection to anycast group
m Anycast group consists of replicated (equivalent) servers
m System connects client to any good server

233

Anycasting Communication
Paradigm

r Anycast identifier specifies a group of
equivalent hosts

r Requests are sent to best host in the group

Client

Content Equivlent Servers

Request

Reply

Anycast mechanism
resolves to one of

possible many

235

Existing Anycast Solutions and
Limitations

r Existing Solutions:
m RFC 1546 Host Anycasting Service

• Definition of anycasting communication paradigm
• Implementation suggestions for the network layer

m IETF Server Location Protocol – Still existing ?
m AKAMAI and other commercial cache/CDNs
m Cisco DistributedDirector

r Limitations
m Global router support
m Per diagram destination selection
m Limited set of metrics
m No option for user input in server selection
m Allocation of IP address space for anycast address

236

Application-Layer Anycasting

Application

Client filters

Anycast group
table

Resolver filters

Anycast-aware client Anycast Resolver

Anycast query

(truncated) list of
servers

List of
serversBest

server

237

Filters

r Content-independent filters
m E.g. Round-robin

r Metric-based filters
m E.g. Minimum response time

r Policy-based filters
m E.g. Minimum cost

r Filter Specification – Meteric Qualified ADN:
m <Meteric_Service>%<Domain Name>
m ServerLoad.Daily_News%cc.gatech.edu

238

Application-layer Anycasting
Architecture

Client-Server Communication

Push
Daemon

Content Server

Anycast
Resolver

Resolver Probe

Anycast aware
Client

Client

Server Resolver

Probes

Server Pushes

Anycast
Query/
Response

Probe
Updates

Performance
Updates

239

Anycast Groups

r Anycast groups consist of collection of IP
addresses, domain names or aliases

r Group members provide equivalent service,
e.g., mirrored FTP servers or web search
engines

r Anycast groups identified by Anycast
Domain Names

r Group membership an orthogonal issue
architecture aliases

240

Anycast Domain Names

r Structure: <Service>%<Domain Name>
r Example:

m Daily-News%cc.gatech.edu

Local anycast resolver
Authoritative anycast
resolver for AND X

Anycast client

1. Request
ADN X

2. Determine auth.
resolver

3. Request members,
metrics for ADN X

4. Members and
metrics for ADN X5. Cache ADN X

6. Anycast response

241

Implementation

r Implementation using Metric Qualified
ADNs

r Intercept calls to gethostbyname
r Transparent access to anycasting without

modifying existing applications

gethostbyname

Anycast Resolver

DNS

Filters

ADN Domain Names

other

IP Address

242

Response Time Determination
for Web Servers
r Response time:

m Measured from time client issues request until receives
last byte of file of network

m Round trip path delays + server processing delays
r Overview of technique:

m Resolver probes for path-dependent response time
m Server measures and pushes path-independent

processing time
m Lighter-weight push more frequent than heavier-weght

probe
m Probe result used to calibrate pushed value

243

Performance Metric Determination

r Metric collection techniques
m Server push algorithm
m Agent probe mechanism
m Hybrid push/probe technique

244

Server Push Process

r Typical server response cycle:
assign process to handle query
parse query
locate requested file
repeat until file is written

read from file
write to network

r Process:
m Measure and smooth time until first read

(TUFR)
m Push if significant change

245

Resolver Process and Hybrid
Technique
r Resolver probe process:

m Request dummy file from server
m Measure response time (RT)

r Hybrid push-probe technique
m Dummy file contains most recent TUFR
m Each probe: compute scaling factor SF =

RT/TUFR
m Each push: estimate RT = SF x TUFR

246

Performance of Hybrid Algorithm

247

Wide-Area Experiment

248

Refinement

r Problem of oscillation among servers
r Set of Equivalent Servers (ES)

m Subset of the replicated servers whose
measured performance is within a threshold of
best performance

249

Performance of Anycast vs Random
Selection

250

Performance of Server Location
Schemes

6.962.13Random

2.471.12Nearest Server

0.690.49Anycasting

Standard Deviation
(sec.)

Average Response Time
(sec.)

Server Location
Algorithm

50% improvement using Nearest Server50% improvement using Nearest Server
Another 50% improvement using Another 50% improvement using AnycastingAnycasting
More predictable serviceMore predictable service

251

Performance as More Clients
Anycast

252

Avoid Oscillations Among
Servers
r Basic technique:

m Estimate response time for each server
m Indicate the best server when queried

r Identifying one best server can result in
oscillations

r Use set of equivalent servers
r Choose randomly among equivalent servers

253

Effect of Technique on Server
Load

Figure 1. Low Threshold
Values

Figure 2: Higher Threshold
Values

254

Scalability Techniques

r Server can multicast pushed data
r Server and resolver can control overhead
r System can limit number of anycast groups
r Resolver can track “most promising”

servers
r Users can pay premium for service

255

Conclusions

r Summary
m Server replication increasingly important – web services

etc.
m Application layer architecture that is scalable using

replicated resolvers organized in a DNS like hierarchy
m Web server performance can be tracked with reasonable

relative accuracy. Techniques used can be generalized to
other servers

m A hybrid push-probe technique provides scalable
monitoring. May be useful in other contexts

m Application-layer anycasting gives significant
improvement over other server selection techniques

256

Any problems (truth in
advertising?

r Discussions
m Was the study extensive enough ?

• 4 Anycast-aware servers – UCLA (1), WUStL(1), Gatech (2)
• Anycast resolvers – UMD, Gatech
• 20 Anycast-aware clients – UMD (4), Gatech (16)

r Study of anycast vs random selection
m Experiments done one after another – any performance

difference due to cached content ?
r Would performance improve if network-support for

path performance metrics included ?
m Global IP-anycast [SIGCOMM00]

257

11. A Case For End System
Multicast

Yang-hua Chu, Sanjay Rao and Hui Zhang
Carnegie Mellon University

258

Talk Outline

r Definition, potential benefits & problems
r Look at Narada approach specifically
r Performance in simulation
r Performance in network experiment
r Related work
r Discussion

259

IP Multicast

•No duplicate packets
•Highly efficient bandwidth usage
Key Architectural Decision: Add support for multicast in IP layer

Berkeley

Gatech Stanford

CMU

Routers with multicast support

260

Key Concerns with IP
Multicastr Scalability with number of groups
m Routers maintain per-group state
m Analogous to per-flow state for QoS guarantees
m Aggregation of multicast addresses is complicated

r Supporting higher level functionality is difficult
m IP Multicast: best-effort multi-point delivery service
m End systems responsible for handling higher level functionality
m Reliability and congestion control for IP Multicast complicated

r Inter-domain routing is hard.
r No management of flat address space.
r Deployment is difficult and slow

m ISP’s reluctant to turn on IP Multicast

261

End System Multicast
Stanford

CMU

Stan1

Stan2

Berk2

Overlay Tree
Gatech

Berk1

Berkeley

Gatech Stan1

Stan2

Berk1

Berk2

CMU

262

r Scalability (number of sessions in the network)
m Routers do not maintain per-group state
m End systems do, but they participate in very few groups

r Easier to deploy
r Potentially simplifies support for higher level

functionality
m Leverage computation and storage of end systems
m For example, for buffering packets, transcoding, ACK

aggregation
m Leverage solutions for unicast congestion control and

reliability

Potential Benefits

263

Performance Concerns

CMU

Gatech Stan1

Stan2

Berk1

Berk2

Duplicate Packets:
Bandwidth Wastage

CMU

Stan1

Stan2

Berk2

Gatech

Berk1

Delay from CMU to
Berk1 increases

264

What is an efficient overlay
tree?r The delay between the source and receivers is small

r Ideally,
m The number of redundant packets on any physical link is

low
Heuristic we use:
m Every member in the tree has a small degree
m Degree chosen to reflect bandwidth of connection to

Internet

Gatech

“Efficient” overlay

CMU

Berk2

Stan1

Stan2

Berk1Berk1

High degree (unicast)

Berk2

Gatech

Stan2
CMU

Stan1

Stan2

High latency

CMU

Berk2

Gatech

Stan1

Berk1

265

Why is self-organization hard?
r Dynamic changes in group membership

m Members join and leave dynamically
m Members may die

r Limited knowledge of network conditions
m Members do not know delay to each other when they

join
m Members probe each other to learn network related

information
m Overlay must self-improve as more information available

r Dynamic changes in network conditions
m Delay between members may vary over time due to

congestion

266

Berk2 Berk1

CMU

Gatech

Stan1
Stan2

Narada Design (1)

Step 1

“Mesh”: Subset of complete graph may have cycles and includes all
group members
• Members have low degrees
• Shortest path delay between any pair of members along mesh is small

Step 0
Maintain a complete overlay graph of all group members
• Links correspond to unicast paths
• Link costs maintained by polling

Berk2
Berk1

CMU

Gatech

Stan1
Stan2

267

Narada Design (2)

CMU

Berk2 GatechBerk1

Stan1Stan2

•Source rooted shortest delay spanning trees of mesh
•Constructed using well known routing algorithms

– Members have low degrees
– Small delay from source to receivers

Step 2

268

Narada Components
r Mesh Management:

m Ensures mesh remains connected in face of membership
changes

r Mesh Optimization:
m Distributed heuristics for ensuring shortest path delay

between members along the mesh is small
r Spanning tree construction:

m Routing algorithms for constructing data-delivery trees
m Distance vector routing, and reverse path forwarding

269

Optimizing Mesh Quality

r Members periodically probe other members at
random

r New Link added if
Utility Gain of adding link > Add Threshold

r Members periodically monitor existing links
r Existing Link dropped if

Cost of dropping link < Drop Threshold

Berk1

Stan2
CMU

Gatech1

Stan1

Gatech2

A poor overlay topology

270

The terms defined
r Utility gain of adding a link based on

m The number of members to which routing delay
improves

m How significant the improvement in delay to each
member is

r Cost of dropping a link based on
m The number of members to which routing delay

increases, for either neighbor
r Add/Drop Thresholds are functions of:

m Member’s estimation of group size
m Current and maximum degree of member in the mesh

271

Desirable properties of
heuristics

r Stability: A dropped link will not be immediately
readded

r Partition Avoidance: A partition of the mesh is
unlikely to be caused as a result of any single link
being dropped

Delay improves to Stan1, CMU
but marginally.

Do not add link!

Delay improves to CMU, Gatech1
and significantly.
Add link!

Berk1

Stan2
CMU

Gatech1

Stan1

Gatech2

Probe

Berk1

Stan2
CMU

Gatech1

Stan1

Gatech2
Probe

272

Used by Berk1 to reach only Gatech2 and vice versa.
Drop!!

An improved mesh !!

Gatech1Berk1

Stan2
CMU

Stan1

Gatech2

Gatech1Berk1

Stan2
CMU

Stan1

Gatech2

273

Narada Evaluation

r Simulation experiments
r Evaluation of an implementation on the

Internet

274

Performance Metrics
r Delay between members using Narada
r Stress, defined as the number of identical copies

of a packet that traverse a physical link

Berk2

Gatech Stan1
Stress = 2

CMU Stan2

Berk1

Berk2
CMU

Stan1

Stan2
Gatech

Berk1

Delay from CMU to Delay from CMU to
Berk1 increasesBerk1 increases

275

Factors affecting performance
r Topology Model

m Waxman Variant
m Mapnet: Connectivity modeled after several ISP backbones
m ASMap: Based on inter-domain Internet connectivity

r Topology Size
m Between 64 and 1024 routers

r Group Size
m Between 16 and 256

r Fanout range
m Number of neighbors each member tries to maintain in the mesh

276

Delay in typical run4 x unicast delay 1x unicast delay

Waxman : 1024 routers, 3145 links
Group Size : 128
Fanout Range : <3-6> for all members

277

Naive Unicast

Native Multicast

Narada : 14-fold reduction in
worst-case stress !

Stress in typical run

278

Overhead

r Two sources
m pairwise exchange of routing and control

information
m polling for mesh maintenance.

r Claim: Ratio of non-data to data traffic
grows linearly with group size.

r Narada is targeted at small groups.

279

Related Work

r Yoid (Paul Francis, ACIRI)
m More emphasis on architectural aspects, less on

performance
m Uses a shared tree among participating members

• More susceptible to a central point of failure
• Distributed heuristics for managing and optimizing a

tree are more complicated as cycles must be avoided
r Scattercast (Chawathe et al, UC Berkeley)

m Emphasis on infrastructural support and proxy-based
multicast

• To us, an end system includes the notion of proxies
m Also uses a mesh, but differences in protocol details

280

Conclusions

r Proposed in 1989, IP Multicast is not yet widely
deployed

m Per-group state, control state complexity and scaling
concerns

m Difficult to support higher layer functionality
m Difficult to deploy, and get ISP’s to turn on IP Multicast

r Is IP the right layer for supporting multicast
functionality?

r For small-sized groups, an end-system overlay
approach

m is feasible
m has a low performance penalty compared to IP Multicast
m has the potential to simplify support for higher layer

functionality
m allows for application-specific customizations

281

Open Questions

r Theoretical bounds on how close an ESM
tree can come to IP multicast performance.

r Alternate approach: Work with complete
graph but modify multicast routing
protocol.

r Leveraging unicast reliability and
congestion contol.

r Performance improvements: Reduce polling
overhead.

282

Internet Evaluation

r 13 hosts, all join the group at about the same time
r No further change in group membership
r Each member tries to maintain 2-4 neighbors in

the mesh
r Host at CMU designated source

Berkeley

UCSB

UIUC1

UIUC2 CMU1

CMU2

UKY

UMass

GATech

UDel
Virginia1

Virginia2

UWisc

8

31

1
10

13

15

14

11
1

38
1

10

283

Narada Delay Vs. Unicast Delay

Internet Routing
can be sub-optimal

(ms)

(m
s)

2x unicast delay 1x unicast delay

284

12. Overcast: Reliable
Multicasting with an Overlay
Network

Paper authors: Jannotti, Gifford,
Johnson, Kaashoek, O’Toole Jr.

285

Design Goals

r Provide application-
level multicasting
using already existing
technology via
overcasting

r Scalable, efficient,
and reliable
distribution of high
quality video

r Compete well against
IP Multicasting

286

Overcasting vs IP Multicast

Overcasting
imposes about
twice as much
network load
as IP multicast
(for large
networks). This
difference is in
O(n). (Figure 4)

287

Architecture of an Overcast
system
r The entities which form the architecture

of the Overcast system are called nodes.
r Nodes are connected via an organizational

scheme distribution tree.
r Each group provides content, which is

replicated at each of the nodes. A node can
conceivably participate in more than one
group.

r Clients are end-system consumers of
content.

288

Root nodes (1)

r Content originates at the root node and is
streamed down the distribution tree.

r The root is the administrational center of
the group.

r When clients join the group, they go to a
webpage at the root, which redirects them
to the “best” overcast node

r Is the root a single point of failure?

289

Root nodes (2)

• Linear roots can alleviate this
problem. For the source to fail, all
roots must fail.

• Using round robin IP
resolution, you can stop your
content serving cluster from being
‘slashdotted’ (overloaded by sheer
popularity) by client requests.

290

Distribution tree

r The distribution tree is built and
maintained using a self-organizing
algorithm.

r The primary heuristic of this algorithm is
to maximize bandwidth from the root to an
overcast node.

r Backbone nodes are nodes which are
located on or close to a network backbone.
Overcast performs better when these
backbone nodes are located at the top of
the tree (ie, they are switched on first)

291

Tree building protocol (1)

r A node initializes by booting up, obtaining
its IP, and contacts a “global, well-known
registry” (Possible point of failure?) with a
unique serial number.

r Registry provides a list of groups to join.
r This node initially chooses the root as its

parent. A series of rounds will begin in
which the node decides where on the tree
it should be.

292

Tree building protocol (2)

r For each round, evaluate the bandwidth we have to
our parent. Also consider the bandwidth to the
rest of our parent’s children.

r If there is a tie (bandwidth differences between
2 or more nodes within 10%), break it by the
number of hops reported by traceroute.

r The child selects the best of it’s parents children
as its new parent.

r Nodes maintain an ancestor list and can rejoin
further up the tree when it’s ancestors fail.

293

Reaching a stable state

Overcast nodes
can still receive
content from the
root, even when
the tree is not
stabilized. A
typical round
period is about 1
to 2 seconds.

294

Tree building protocol (3)

r By having consecutive rounds of tree building, the
distribution tree can overcome conditions occuring
on the underlying network.

r The up/down protocol is used to maintain
information about the status of nodes.

r Each node in the network maintains a table of
information about all of it’s descendants.

r After the tree stabilizes, nodes will continue to
consider relocating after a reevaluation period.

295

Up/down protocol

r A parent that gets a new child gives its parent a
birth certificate, which propagates to the root.
The node’s sequence number is incremented by 1.
Sequence numbers are used to prevent a race
condition.

r When a parent’s child fails to report its status
(called checkin), after a length of time called a
lease period, the parent propagates a death
certificate for its child up the tree.

r A child also presents any certificates or changes
it has accumulated from its last checkin.

296

Problems

r A simple approach leads to a simple solution:
r Not appropriate for software (same as mirroring a

file!)
r Not appropriate for games (latency is too high!)
r What about teleconferencing? Authors suggest

that if a non-root node wishes to send to other
nodes, the node should first unicast (send via
normal TCP/IP to the root, which will then
overcast it as normal). Is this a good solution?

297

Closing thoughts

r Simulated on a virtual network topology
(Georgia Tech Internetwork Topology
Models). Take results with a grain of salt
(or two).

r Might work out well commercially. Consider
a high demand for high definition video
over the net, and corporations/entities
willing to deliver it (CNN,Hollywood
studios,Olympics). Overcast could be a
premium service for ISP subscribers [like
newsgroups,www hosting].

298

13. Enabling Conferencing
Applications
on the Internet using an
Overlay Multicast Architecture
Yanghua Chu et al. (CMU)
SIGCOMM’01

most slides comes from authors presentation

299

internet

Overlay Multicast Architecture

300

Past Work
r Self-organizing protocols

m Yoid (ACIRI), Narada (CMU), Scattercast (Berkeley),
Overcast (CISCO), Bayeux (Berkeley), …

m Construct overlay trees in distributed fashion
m Self-improve with more network information

r Performance results showed promise, but…
m Evaluation conducted in simulation
m Did not consider impact of network dynamics on overlay

performance

301

Focus of This Paper

r Can End System Multicast support real-world
applications on the Internet?
m Study in context of conferencing applications
m Show performance acceptable even in a dynamic

and heterogeneous Internet environment

r First detailed Internet evaluation to show
the feasibility of End System Multicast

302

Why Conferencing?

r Important and well-studied
m Early goal and use of multicast (vic, vat)

r Stringent performance requirements
m High bandwidth, low latency

r Representative of interactive applications
m E.g., distance learning, on-line games

303

Supporting Conferencing in ESM

r Framework
m Bandwidth estimation
m Adapt data rate to bandwidth est. by packet dropping

r Objective
m High bandwidth and low latency to all receivers along the

overlay

D

C

A

B
2 Mbps

2 Mbps 0.5 Mbps
Source rate

2 Mbps
Estimated bandwidth

Transcoding (possible)

(DSL)

304

Enhancements of Overlay Design

r Two new issues addressed
m Dynamically adapt to changes in network conditions
m Optimize overlays for multiple metrics

• Latency and bandwidth

r Study in the context of the Narada protocol
(Sigmetrics 2000)
m Use Narada to define logical topology
m Techniques presented apply to all self-organizing

protocols

305

• Capture the long term performance of a link
– Exponential smoothing, Metric discretization

Adapt to Dynamic Metrics
r Adapt overlay trees to changes in network

condition
m Monitor bandwidth and latency of overlay links

r Link measurements can be noisy
m Aggressive adaptation may cause overlay instability
m Conservative adaptation may endure bad

performance

time

ba
nd

w
id

th raw estimate
smoothed estimate
discretized estimate

transient:
do not react

persistent:
react

306

Optimize Overlays for Dual Metrics

r Prioritize bandwidth over latency
r Break tie with shorter latency

Source
Receiver X

30ms, 1Mbps

60ms, 2Mbps
Source rate

2 Mbps

307

Example of Protocol Behavior
M

ea
n

R
ec

ei
ve

r B
an

dw
id

th

Reach a stable overlay
• Acquire network info
• Self-organization

Adapt to network congestion

r All members join at time 0
r Single sender, CBR traffic

308

Evaluation Goals

r Can ESM provide application level
performance comparable to IP Multicast?

r What network metrics must be considered
while constructing overlays?

r What is the network cost and overhead?

309

Evaluation Overview

r Compare performance of our scheme with
m Benchmark (sequential unicast, mimicing IP

Multicast)
m Other overlay schemes that consider fewer

network metrics
r Evaluate schemes in different scenarios

m Vary host set, source rate
r Performance metrics

m Application perspective: latency, bandwidth
m Network perspective: resource usage, overhead

310

Benchmark Scheme
r IP Multicast not deployed
r Sequential Unicast: an approximation

m Bandwidth and latency of unicast path from source
to each receiver

m Performance similar to IP Multicast with ubiquitous
deployment

C

A B

Source

311

Overlay Schemes

Choice of Metrics

Latency

Random

Latency-Only

Bandwidth-Only

Bandwidth-Latency
Bandwidth

Overlay Scheme

312

Experiment Methodology

r Compare different schemes on the Internet
m Ideally: run different schemes concurrently
m Interleave experiments of schemes
m Repeat same experiments at different time of

day
m Average results over 10 experiments

r For each experiment
m All members join at the same time
m Single source, CBR traffic
m Each experiment lasts for 20 minutes

313

Application Level Metrics
r Bandwidth (throughput) observed by each

receiver
r RTT between source and each receiver along

overlay

D

C

A

B

Source Data path

RTT measurement

These measurements include queueing and
processing delays at end systems

314

Performance of Overlay Scheme

“Quality” of overlay tree produced by a scheme
r Sort (“rank”) receivers based on performance
r Take mean and std. dev. on performance of same

rank across multiple experiments
r Std. dev. shows variability of tree quality

Rank
1 2

RTT
CMU

MIT

Harvard

CMU

MIT

Harvard

Exp2Exp1

Different runs of the same scheme may
produce different but “similar quality” trees

32ms

42ms

30ms

40ms

Exp1
Exp2

Mean Std. Dev.

315

Factors Affecting Performance

r Heterogeneity of host set
m Primary Set: 13 university hosts in U.S. and

Canada
m Extended Set: 20 hosts, which includes hosts in

Primary Set , Europe, `Asia, and behind ADSL
r Source rate

m Fewer Internet paths can sustain higher source
rate

316

Three Scenarios Considered

r Does ESM work in different scenarios?
r How do different schemes perform under

various scenarios?

Primary Set
1.2 Mbps

Primary Set
2.4 Mbps

Extended Set
2.4 Mbps

(lower) ? “stress” to overlay schemes ? (higher)

Primary Set
1.2 Mbps

317

BW, Primary Set, 1.2 Mbps

Naïve scheme performs poorly even in a less “stressful” scenario

RTT results show similar trend

Internet pathology

318

Scenarios Considered

r Does an overlay approach continue to work
under a more “stressful” scenario?

r Is it sufficient to consider just a single
metric?
m Bandwidth-Only, Latency-Only

Primary Set
1.2 Mbps

Primary Set
2.4 Mbps

Extended Set
2.4 Mbps

(lower) ? “stress” to overlay schemes ? (higher)

319

BW, Extended Set, 2.4 Mbps

no strong correlation between
latency and bandwidth

Optimizing only for latency has poor bandwidth performance

320

RTT, Extended Set, 2.4Mbps

Bandwidth-Only cannot avoid
poor latency links or long path length

Optimizing only for bandwidth has poor latency performance

321

Summary so far…

r For best application performance: adapt
dynamically to both latency and bandwidth
metrics

r Bandwidth-Latency performs comparably to IP
Multicast (Sequential-Unicast)

r What is the network cost and overhead?

322

Resource Usage (RU)
Captures consumption of network resource of overlay tree
r Overlay link RU = propagation delay
r Tree RU = sum of link RU

UCSD

CMU

U.Pitt

UCSD

CMU

U. Pitt

40ms
2ms

40ms

40ms

Efficient (RU = 42ms)

Inefficient (RU = 80ms)

2.24Random

1.49Bandwidth-Latency
1.0IP Multicast

2.62Naïve Unicast

Scenario: Primary Set, 1.2 Mbps
(normalized to IP Multicast RU)

323

Protocol Overhead

r Results: Primary Set, 1.2 Mbps
m Average overhead = 10.8%
m 92.2% of overhead is due to bandwidnth probe

r Current scheme employs active probing for
available bandwidth
m Simple heuristics to eliminate unnecessary probes
m Focus of our current research

Protocol overhead =
total non-data traffic (in bytes)

total data traffic (in bytes)

324

Contribution
r First detailed Internet evaluation to show the

feasibility of End System Multicast architecture
m Study in context of a/v conferencing
m Performance comparable to IP Multicast

r Impact of metrics on overlay performance
m For best performance: use both latency and

bandwidth

r More info: http://www.cs.cmu.edu/~narada

325

Discussion (1)

r Peer-to-peer versus proxy based architecture

Proxy basedPeer-to-peer

Manage resource allocation
among groups

Long term connection, more
stable

Scalable to
number of groups

Share network information ,
history across groups

Distributed

326

Discussion (2)

r Multipath framework where each recipient
gets data from the source along multiple
paths, with a fraction of the data flowing
along any given path
m Any individual path doesn’t radically affect

overall performance
m Receive data while monitoring

327

Discussion (3)

r Rigorous change detection algorithm
m On the Constancy of Internet Path Properties

• www.aciri.org/vern/imw2001-papers/38.ps.gz

m Idea of more formally identifying changes
• www.variation.com/cpa/tech/changepoint.html

328

14. Fault-tolerant replication
management in
large-scale distributed storage systems

Richard Golding
Storage Systems Program, Hewlett Packard

Labs

golding@hpl.hp.com

Elizabeth Borowsky
Computer Science Dept., Boston

College

borowsky@cs.bc.edu

329

Introduction

r Palladio - solution for detecting, handling, and recovering
from both small- and large-scale failures in a distributed
storage system.

r Palladio - provides virtualized data storage services to
applications via set of virtual stores, which are structured
as a logical array of bytes into which applications can write
and read data. The store’s layout maps each byte in its
address space to an address on one or more devices.

r Palladio - storage devices take an active role in the
recovery of the stores they are part of. Managers keep
track of the virtual stores in the system, coordinating
changes to their layout and handling recovery from failure.

330

•Provide robust read and write
access to data in virtual stores.

•Atomic and serialized read and
write access.
•Detect and recover from
failure.
•Accommodate layout changes.

Entities
Hosts
Stores
Managers
Management policies

Protocols
Layout Retrieval protocol
Data Access protocol
Reconciliation protocol
Layout Control protocol

331

Access protocol allows hosts to read and write data
on a storage device as long as there are no failures or layout
changes for the virtual store. It must provide serialized, atomic
writes that can span multiple devices.
Layout retrieval protocol allows hosts to obtain the current layout
of a virtual store — the mapping from the virtual store’s address
space onto the devices that store parts of it.
Reconciliation protocol runs between pairs of devices to bring
them back to consistency after a failure.
Layout control protocol runs between managers and devices —
maintains consensus about the layout and failure status of the
devices, and in doing so coordinates the other three protocols.

Protocols

332

Layout Control Protocol

The layout control protocol
tries to maintain agreement
between a store’s manager
and the storage devices that
hold the store.

•The layout of data onto
storage devices
•The identity of the store’s
active manager.

The notion of epochs

•The layout and manager are
fixed during each epoch
•Epochs are numbered
•Epoch transitions
•Device leases acquisition and
renewal
•Device leases used to detect
possible failure.

333

Operation during an epoch

•The manager has quorum and
coverage of devices.
•Periodic lease renewal

»In case a device fails to report and
try to renew its lease, the manager
considers it failed
»In case the manager fails to renew
the lease, the device considers the
manager failed and starts a manager
recovery sequence

•When the manager looses quorum
or coverage the epoch ends and a
state of epoch transition is entered.

334

Epoch transition

•Transaction initiation
•Reconciliation
•Transaction commitment
•Garbage collection

335

The recovery sequence

•Initiation - querying a recovery manager
with the current layout and epoch number

336

The recovery sequence (continued)

•Contention - managers struggle to obtain quorum and
coverage and to become active managers for the store -
(recovery leases, acks and rejections)

337

The recovery sequence (continued)

•Completion - setting correct recovery leases & starting
epoch transition
•Failure - failure of devices and managers during recovery

338

Extensions

•Single manager v.s. Multiple managers
•Whole devices v.s. Device parts (chunks)
•Reintegrating devices
•Synchrony model (future)
•Failure suspectors (future)

339

Conclusions & recap

Palladio - Replication management system featuring

» Modular protocol design
» Active device participation
» Distributed management function
» Coverage and quorum condition

340

Application example

Manager node
ID=hash<FileID, MGR>

Storage nodes
ID=hash<FileID, STR, n>

Popularity indicator

Very popular content

341

Application example - benefits

Stable manager node

Stable storage nodes

•Self-manageable storage

•Increased availability

•Popularity is hard to fake

•Less per node load

•Could be applied
recursively (?)

342

Wrapup discussion questions (1):
r What is a peer-peer network (what is not a peer-to-peer

network?). Necessary:
m every node is designed to (but may not by user choice)

provide some service that helps other nodes in the
network get service

m no 1-N service providing
m each node potentially has the same responsibility,

functionality (maybe nodes can be polymorhpic)
• corollary: by design, nothing (functionally) prevents two

nodes from communicating directly
m some applications (e.g., Napster) are a mix of peer-peer

and centralized (lookup is centralized, file service is
peer-peer) [recursive def. of peer-peer]

m (logical connectivity rather than physical connectivity)
routing will depend on service and data

343

Overlays?

r What is the relationship between peer-peer and
application overlay networks?

m Peer-peer and application overlays are different things.
It is possible for an application level overlay to be built
using peer-peer (or vice versa) but not always necessary

m Overlay: in a wired net: if two nodes can communicate in
the overlay using a path that is not the path the network
level routing would define for them. Logical network on
top of underlying network

• source routing?
m Wireless ad hoc nets – what commonality is there

REALLY?

344

Wrapup discussion questions (2):
r What were the best p2p idea
r Vote now (and should it be a secret ballot

usign Eternity?

345

Wrapup discussion questions (3):
r Is ad hoc networking a peer-peer application?

m Yes (30-1)
r Why peer-peer over client-server?

m A well-deigned p2p provides better “scaability”
r Why client-server of peer-peer

m peer-peer is harder to make reliable
m availability different from client-server (p2p is more

often at least partially “up”)
m more trust is required

r If all music were free in the future (and organized), would
we have peer-peer.

m Is there another app: ad hoc networking, any copyrighted data,
peer-peer sensor data gathering and retrieval, simulation

r Evolution #101 – what can we learn about systems?

