Generational Random Graphs —
a “natural” model for
heterogeneous temporal
networks?

Jon crowcroft 9/3/2017



Graphs aren’t static or homoegenous

* Re-do two simple small world & clustered models
* Preferential attachment & re-wiring (alpha & beta) models

* Add one simple idea, but in two guises:
* Nodes are taken (in batches) from a sequence of generations
* There’s a birth (death) process of new (old) generations
* To note: discrete generations, but continuous time...

* TWO use cases
 Social media/graphs — parents, siblings, children

* Tech nets (internet, transport) - dialup, broadband, fiber, 3G/4,/ISP/IXP or
horse, car, plane, drone...
http://www.ee.ucl.ac.uk/~mrio/papers/hamedjrnl_camera.pdf



What makes a problem graph-like?

= There are two components to a graph
= Nodes and edges

= In graph-like problems, these components have natural
correspondences to problem elements

= Entities are nodes and interactions between entities are edges
= Most complex systems are graph-like
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Business ties in US
biotech-industry

]99] s __‘.mm = B NIAID

3 ,\\\_f'\.-“\;":} .
i 2 Buniv of Califo
rHoechst pBaxter Traveno
- LAl
- 4 m ‘ _l’ o ~ =
COESYE. U technology
UK eDhaen 2
IMUTECD o, Lo 4 Boerpnngor
o """‘,‘“"' oyes pMemorial Sloar
Ty LN [YS oy

4 - aNMEfcy

. pCIBA-GEIGY
: i LT el :g __ - Qgenentech
- ‘ e s v - < - . ;’: . ) & L S | dban
g - . b ,. ."_ No = -. Y a B Schert WPO“MWOI’
Warburg PincuAbbottLab — " 2 A Qi Liny

Roxtord Glyco -

QGENSET Manguard Med @ pinstitutiopiNeurogenetic | —
’ M&Bﬁhsh L e ithKline "}~ "Qinhale Therap



Genetic interaction network
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Protein-Protein Interaction Networks




Transportation Networks
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Internet




Ecological Networks
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xandom Graphs & Nature

Erd6s and Renyi (1959)

\V nodes

A pair of nodes has probability p of being

connected.

Average degree, k = pN

What interesting things can be said for
different values of p or k ?

(that are true as N cO)
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Random Graphs

Erd6s and Renyi (1959) © o
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Random Graphs

Erd6s and Renyi (1959)
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Random Graphs

Erd6s and Renyi (1959)
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\andom Graphs
;@ Renyi (1959) N—
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WVhat does this mean?

 If connections between people can be modeled as a random graph, then...

« Because the average person easily knows more than one person (k >> 1),
« We live in a “small world” where within a few links, we are connected to anyone in the world.
« Erdds and Renyi showed that average

path length between connected nodes is
* An example researcher with Erdos #=4
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Nhat does this mean? BIG “IF”_’!!

»@ections between people can be modeled as a random graph, then...

« Because the average person easily knows more than one person (k >> 1),
« We live in a “small world” where within a few links, we are connected to anyone in the world.

- Erdds and Renyi computed average
path length between connected nodes to be:
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The Alpha Model

Watts (1999)

'he people you know aren’t randomly chosen.

’eople tend to get to know those who are two
links away (Rapoport , 1957).

'he real world exhibits a lot of clustering.
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The Personal Map
by MSR Redmond’s Social Computing Group

* Same Anatol Rapoport, known for TIT FOI



The Alpha Model

Watts (1999)

a model: Add edges to nodes, as in random
graphs, but makes links more likely when two
nodes have a common friend.
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Propensity to become friends

Mutual friends as a fraction of total friends

Probability of linkage as a function
of number of mutual friends
(ais O in upper left,

1 in diagonal,
and « in bottom right curves.)



The Alpha Model

Watts (1999)

a model: Add edges to nodes, as in random
graphs, but makes links more likely when two
nodes have a common friend.

For a range of « values:
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The Beta Model

atts and Strogatz (1998), circular lattice,

wiring to random other link w/ probability 3

B=0

People know
their neighbors.

Clustered, but
not a “small world”

People know
their neighbors,
and a few distant people.

Clustered and
“small world”

People know
others at
random.

Not clustered,
but “small world”



e Beta Model
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Power Laws

Albert and Barabasi (1999)

What's the degree (number of edges) distributi

over a graph, for real-world graphs?
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Degree distribution of a random graph,
N=10,000 p=0.0015 k=15.
(Curve is a Poisson curve, for comparison.)



ower Laws

Albert and Barabasi (1999)

What’s the degree (number of edges) distributi
over a graph, for real-world graphs?

pik)

Random-graph model results in Poisson distribt

S But, many real-world networks exhibit a power
k distribution.

Typical shape of a power-law distribution.



ower Laws
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Power laws in real networks:

(a) WWW hyperlinks

(b) co-starring in movies

(c) co-authorship of physicists

(d) co-authorship of neuroscientists

* Same Velfredo Pareto, who defined Pareto optimality in game



Hippogriftfically

e Spatial parameter(s) —
e #generations —e.g. 1,3, infinity

* Alpha’ (Beta’) now —ratio of preferential attachment (rewire) probabilty
within and between generations —

* e.g. between siblings, children, parents e.g. (.25, .5, .25) for 3 generations,
 could be 1/n for n generations or could have a 1/d_i,j for distance between

generations or whatever, or pick your distr...
 Temporal parameter(s) markovish...

» #New Nodes/generation epoch
 Removal process (perhaps)



For genes, this is a natural fit

e Generations accummulate more mutations
* There’s a lot of modularity....



So lots of data out there (fb, internet topo
over time)

* Fit model params

* Properties now indexed by generation (for example)
* E.g. cliques for sibling v. family, centrality for grandparents, etc

 What other nets does this describe, intuitively?
* |s it still too complicated/complex?
* Does it make some things easier (or harder)?

* Do we need generational properties to keep global properties

* Global mean diameter, cluster science, centrality=mean of mean each
generation, etc

* Or can they deviate in weird ways?



