
▪ ▪

▪ ▪▪
▪

Co-learn - federated learning for IoT 
Resource- and Data-Constrained AI Discussion Group<

Jon Crowcroft,  
http://www.cl.cam.ac.uk/~jac22 

Apr/May 2021

http://www.cl.cam.ac.uk/~jac22


▪ ▪

▪ ▪▪
▪

■ osMUD - concern over misbehaving 
devices 

■ PySft -  network worker + coordinator 
■ Scale up for future work:-) 

■ Secure Multiparty Computation via SPDZ 
& SecureNN 
■ Threat model - device owner fear of 

bad publicity?

Systems Context - the problem



▪ ▪

▪ ▪▪
▪

Co-learn context…
EdgeSys ’20, April 27, 2020, Heraklion, Greece Feraudo et al.

2 BACKGROUND & RELATED WORK
Many distributed learning algorithms assume that the data are
homogeneously distributed among the distributed nodes. However,
in Federated Learning (FL), the dimensions and contents of the data-
sets are typically heterogeneous, and the FL coordinator server does
not have full control of the distributed computational resources.
Additionally, to preserve privacy, the FL coordinator server often
receives only model updates, and not the local training data from
participating IoT devices. Thus recent research in FL has focused
on system design and scalability [3, 5] and algorithm design to
address communication e�ciency, systems heterogeneity, statistical
heterogeneity, and privacy [12, 16, 23]. However there is limited
work on deploying FL on resource-constrained IoT devices [4, 26].

The use of MUD as an isolation-based defensive mechanism to
restrict tra�c generated from IoT devices is still in its early phase.
Therefore, only a few deployment scenarios and proof-of-concept
(PoC) implementations currently exist [1, 2, 10, 11, 19, 28]. To the
best of our knowledge, no work has considered the deployment of
FL in MUD-compliant networks.

To enable FL in MUD-compliant IoT edge networks, we chose the
Open Source MUD implementation1 and the PySyft [24] framework.
Open Source MUD (osMUD) is developed by a consortium of device
manufacturing and network security companies. It is designed to
be suitable for resource-constrained routers and �rewalls, running
the OpenWRT platform, though it can also be compiled outside of
OpenWRT for most C compatible environments. It integrates with
dnsmasq for network infrastructure services, and running it outside
of OpenWRT requires a compatible �rewall and a MUD-compliant
DHCP server able to extract the MUD URL from the DHCP header
packet. To build a federated learning system, we use the PySyft [24]
framework, built on top of PyTorch [8] to provide transparent APIs
for privacy-preserving deep learning. This allows straightforward
implementation of privacy-preserving constructs, such as FL, Se-
cure Multiparty Computation, and Di�erential Privacy.

3 COLEARN ARCHITECTURE
Interaction between the main components of CoLearn (the MUD
manager, the User Policy Server (UPS) and the FL Coordinator) are
depicted in Figure 1. The “Thing” represents a MUD-compliant IoT
device that emits its MUD-URL in its DHCP request (the exact pro-
tocol used depends on MUD implementation). The MUD manager
then interacts with MUD Server and UPS, sending a list of valid
devices to the Coordinator helping to reduce the attack surface in
the FL protocol [3] if device authentication is used by excluding
compromised IoT devices. The Coordinator interacts with IoT de-
vices using MQTT broker and WebSockets. Details of components
and their interactions are presented in §3.1 and §3.2. We assume
the entity that hosts the Coordinator is trusted and so all the com-
munication between the osMUD manager and the entity hosting
the UPS and the Coordinator are trusted and encrypted.

3.1 MUD Manager & User Policy Server
The MUD manager uses the osMUD manager implementation de-
signed to be integrated with the dnsmasq and OpenWRT services.
When theMUDmanager receives a DHCP request from a connected

1https://github.com/osmud/osmud
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Figure 1: CoLearn architecture.

IoT device, dnsmasq invokes a script that processes the MUD re-
quest, fetching the MUD �les from the MUD server. The User Policy
Server (UPS) allows network administrator to enforce new rules
beyond those de�ned by the manufacturer. The manufacturer thus
does not need insight into internal network behaviour – the UPS,
in addition to making all devices MUD-compliant, allows de�nition
of categories of rules speci�c to the network in which MUD is de-
ployed and so hard to be determined by the manufacturer, while
preserving the YANG structure that is typical for MUD �les [15].

The introduction of UPS in CoLearn raises two implementation
challenges that need to be addressed. First, the osMUD manager
has to be modi�ed in order to request a new MUD �le for each
MUD-compliant device. Second, the UPS must identify the network
administrators and keep a separate session for each of them.

To insertMUD �les into the database, the UPS provides a JavaScript
program that executes insertion queries. The UPS provides a GUI
with which it is possible to have a view of all the MUD �les that
are hosted by it. By analysing the osMUD deployment we con-
�gured how to implement a new feature that provides the ability
for an administrator to upload new MUD �les. Using UPS, an ad-
ministrator can also de�ne a new MUD �le for MUD-compliant
devices, which results in the production of new rules di�erent from
those de�ned by the manufacturer. Thus, the UPS enables us to
both make non-MUD compliant device MUD-compliant and insert
administrator-de�ned rules.

The �les inserted by the administrator represent MUD �les (UPS
�les) that must be retrieved by the MUD manager. In our setup,
the MUD-compliant devices do not provide an extra MUD-URL to
identify the UPS location, the MUDmanager must know in advance
the UPS location and locate the MUD �le using the devices’ MAC
addresses. At the UPS side, the administrator authentication and
validation of the UPS �le name are required. For our prototype,
we implemented a simple authentication form with username and
password, where the user data is stored in MongoDB. The form
allows a separate environment for each end-user, so that they can
insert and remove only their �les. The UPS �le names are validated
using a regular expression matching schema.

In the current version, the UPS implements the union of MUD
rules, which can result in redundant rules. Additional problems we
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see in the current solution are resolution of con�ict rules, i.e. the
administrator rules that can either remove or reverse the manufac-
turer rules, requires thoughtful considerations. Even though the
current incremental-rule enforcement mechanism using UPS needs
further work, we believe that the introduction of UPS provides a
secure way to consider di�erent deployment scenarios which can
improve the security and reliability of a MUD deployment.

3.2 CoLearn: Federated Learning
To deploy an automated federated learning mechanism in our MUD-
compliant network we chose PySyft framework as it provides the
Network Worker structure that enables the remote communication
of the model and uses the Web Socket protocol to lower overhead,
and facilitates real-time data transfer from and to the Server.

The FL architecture needs a central entity that coordinates all
the on-device learning activities and receives device availability
information – we refer to this as the Coordinator. The Coordinator
must be able to recognise when devices are ready to start a training
phase, and when they are ready to receive the model in order to do
inference on their data.

To automate the above process in light of the heterogeneity in
IoT devices, we opted for a lightweight publish/subscribe archi-
tecture implemented using Message Queue Telemetry Transport
(MQTT) [21] protocol. In our setup, the Coordinator becomes a
subscriber and the devices, which want to communicate their state,
become the publishers. We de�ne three states of FL systems in IoT
networks: (i) a device being ready for training a model; (ii) a device
needing to perform inference on its local data; and (iii) a device
could be in not ready state when the training starts.

A challenge due to heterogeneity and unavailability of devices
in FL is that, even if a device declares its training intention, it
may not be available anymore when the training starts. To address
this problem, Bonawitz et al. [5] proposed a solution where the
Coordinator waits until the number of devices is enough to obtain
improvements to the model. We therefore include a wait state at
the Coordinator. We model wait state as a temporal window in
which the Coordinator waits and collects training requests. During
this wait state, the devices can remove or drop themselves from
the Coordinator’s devices list. The temporal window starts after
the �rst training request has been received by the Coordinator,
whereas the end of the window depends on the architecture design
(e.g., how many devices the model needs in order to have some
improvements).

Due to the asynchronous pattern of training requests, it is pos-
sible that some devices declare their training intentions when the
training has already begun. In this case, the Coordinator chooses
one of the two actions: (i) discard these devices’ requests or (ii) keep
them until a new temporal window starts. The former may make
sense when either a further cycle of model training is not needed,
because the model has been trained su�ciently or to prevent the
Coordinator from overloading. The latter represents the default
case especially in the early stages of training.

Figure 2 shows the work�ow of FL between IoT devices and
the Coordinator. In Steps 1�, 2� and 3�, the Coordinator and the
devices establish a connection with the Broker, which thenmediates
the communication. At the same time, the Coordinator subscribes
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Figure 2: CoLearn Distributed architecture for Federated
Learning.

itself to a particular topic (topic/state in the �gure), so that it can
receive the status updates from the devices (publishers). Steps 4�
and 5� involves sending the model to devices. The Coordinator
allocates and prepares all the parameters that are useful for the
communication phase (resource allocation, model serialisation, etc.)
before this step. In Steps 6� and 7�, the participating devices start
the training or inference depending on their states.

In case of training, Figure 2 also de�nes a round, which includes:
(i) selection of clients that demonstrate their training intention;
(ii) training the received model and computation of model updates;
(iii) sending the model updates; (iv) aggregation of the model up-
dates by the Coordinator to construct an improved global model.
The round is typically repeated more than once to reach acceptable
levels of accuracy due to the limited capabilities of the devices. For
e�cient use of the limited amount of available resources (commu-
nication and computation), it is necessary to �nd the best trade-o�
between the number of rounds and the number of iterations (device
performance) [26], or apply model compression techniques [12].

4 EXPERIMENTAL EVALUATION
We seek to check the feasibility of running such a system in home
routers or small business environments using a setup depicted
in Figure 3. We use an OpenWRT Netgear router (model WNDR
3700v2) to host the MUD manager, a MacBook Pro (Intel Core i5
and 8 GB of RAM) to host both the UPS and the FL Coordinator, and
two Raspberry Pi 3 B+ (hereafter, RPi) as edge devices running FL
clients and supporting the Python environment needed for PySyft.

All communications from the IoT devices thus pass through the
associated RPi, which collects the data and performs training or
inference as required. This allows us to make all the devices MUD
compliant. As a consequence of interfacing the IoT devices to the
network through a RPi, it is possible to modify the DHCP client
con�gurations to forge MUD-compliant DHCP requests.

To evaluate CoLearn federated learning, we use the open-source
IoT BoTnet identi�cation dataset [13] and a feed forward neural
networkmodel composed of two hidden layers, one with 50 neurons
and the other with 30 neurons, an input size of 10 (the number
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Figure 3: Experimental setup.

of features selected from the dataset) and one output neuron for
anomaly detection [9].

In our experiments, we use a �xed batch size of one and vary
the number of rounds (interactions between the Coordinator and
the edge devices) and maximum number of iterations (number of
stochastic gradient descent steps per device). For example, using
1000 iterations indicates that random batches of data are selected
to perform training for up to a maximum of 1000 times. Given a
batch size of one this means that 1000 random rows of the dataset
are selected to perform training. At each new round the subset of
the dataset used changes – that is, we choose a new random subset
from the dataset. In our experiments we consider three, six, and 12
rounds, and 1000, 2000, 3000 iterations.

Overall, we see that increasing iterations reduces the relative
bandwidth overheads and produces more accurate results. However,
doing so can cause problems with device performance as a large
number of iterations will in�uence the device’s CPU temperature
and may induce thermal throttling. We validated the following
components useful for a remote case implementation: (i) a MQTT
subscriber able to receive and process state events from unknown
devices; (ii) a parser able to process and verify the event syntax cor-
rectness; and (iii) an algorithm able to collect workers’ information
and manage the temporal window problem.

4.1 Training Loss
We measured training losses to understand the trade-o� between
the number of rounds and iterations used. To give a valid compari-
son we initialize the model with random weights in each test, then
train the model for the given number of iterations and rounds. Tests
are performed with 1000, 2000, 3000 iterations and three, six and 12
rounds. Results are shown in Table 1 where we found that training
loss value decreases with total number of iterations but is largely
una�ected by the number of rounds for a �xed number of total
iterations. This is because, with our current experimentation setup,
the data at devices are independent and identically distributed (IID).
The number of rounds will likely have a signi�cant impact on the
training loss if devices have non-IID data [26].

Figure 4: RPi temperature variations with 1000, 2000, 3000
iterations per round and six rounds. Peaks correspond to
the end of a round in all cases.

4.2 Temperature Monitoring
The temperature monitoring experiments show the e�ects of train-
ing and learning on the temperature rise in the RPis, a potentially
important parameter for use in the decision logic of FL clients. In
this experiment, the temperature measurements are repeated three
times to obtain an average value and are considered in a time win-
dow that starts 5 seconds before training starts and ends 5 seconds
after training ends. For the baseline value, we analysed the tem-
perature variation behaviour of the RPi in an idle case, i.e., before
the training phase. We noticed that the temperature did not exceed
the 50°C threshold (stayed between 48 and 50°C) in a one-hour
monitoring window. This value is used as a baseline for comparison
to understand if the temperature rise during training can cause
slowdown problems due to thermal throttling around 85°C. Overall,
Figure 4 demonstrates that the temperature does not exceed 60°C.
Rather, the maximum temperature reached is the case with 2000
iterations with 58.4°C, as result of the highest initial temperature.

It is noticeable that for both RPis the worst case is represented
by the case with up to 3000 iterations, where the temperature in-
creases with an average of 6.75°C, followed by 2000 iterations with
around 6.18°C, and lastly the 1000 iterations with an average of
5.875°C (Figure 4). The 12 rounds case with 1000 max. iterations
(Figure 5) increases the average of 0.4°C which is considered neg-
ligible. From this analysis, we can conclude that the number of
iterations in�uences the temperature of the components involved.
From a trade-o� perspective, considering the above temperature
analysis, it is preferred to increase the interactions rather than the
data analysed locally in one round. Obviously, as the next analysis
con�rms, the reduction of data analysed is made at the expense of
other parameters.

4.3 Bandwidth Monitoring
In this experiment, we cumulatively measure bandwidth at the
network interfaces of both RPis and FL Coordinator using 1000
iterations per round for training. We send the same FL model in all
scenarios, and so we present here only the outgoing tra�c mon-
itoring. We conducted experiments for three, six, and 12 rounds,
starting measurement three seconds before training start time and
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Figure 3: Experimental setup.

of features selected from the dataset) and one output neuron for
anomaly detection [9].

In our experiments, we use a �xed batch size of one and vary
the number of rounds (interactions between the Coordinator and
the edge devices) and maximum number of iterations (number of
stochastic gradient descent steps per device). For example, using
1000 iterations indicates that random batches of data are selected
to perform training for up to a maximum of 1000 times. Given a
batch size of one this means that 1000 random rows of the dataset
are selected to perform training. At each new round the subset of
the dataset used changes – that is, we choose a new random subset
from the dataset. In our experiments we consider three, six, and 12
rounds, and 1000, 2000, 3000 iterations.

Overall, we see that increasing iterations reduces the relative
bandwidth overheads and produces more accurate results. However,
doing so can cause problems with device performance as a large
number of iterations will in�uence the device’s CPU temperature
and may induce thermal throttling. We validated the following
components useful for a remote case implementation: (i) a MQTT
subscriber able to receive and process state events from unknown
devices; (ii) a parser able to process and verify the event syntax cor-
rectness; and (iii) an algorithm able to collect workers’ information
and manage the temporal window problem.

4.1 Training Loss
We measured training losses to understand the trade-o� between
the number of rounds and iterations used. To give a valid compari-
son we initialize the model with random weights in each test, then
train the model for the given number of iterations and rounds. Tests
are performed with 1000, 2000, 3000 iterations and three, six and 12
rounds. Results are shown in Table 1 where we found that training
loss value decreases with total number of iterations but is largely
una�ected by the number of rounds for a �xed number of total
iterations. This is because, with our current experimentation setup,
the data at devices are independent and identically distributed (IID).
The number of rounds will likely have a signi�cant impact on the
training loss if devices have non-IID data [26].
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Figure 4: RPi temperature variations with 1000, 2000, 3000
iterations per round and six rounds. Peaks correspond to
the end of a round in all cases.

4.2 Temperature Monitoring
The temperature monitoring experiments show the e�ects of train-
ing and learning on the temperature rise in the RPis, a potentially
important parameter for use in the decision logic of FL clients. In
this experiment, the temperature measurements are repeated three
times to obtain an average value and are considered in a time win-
dow that starts 5 seconds before training starts and ends 5 seconds
after training ends. For the baseline value, we analysed the tem-
perature variation behaviour of the RPi in an idle case, i.e., before
the training phase. We noticed that the temperature did not exceed
the 50°C threshold (stayed between 48 and 50°C) in a one-hour
monitoring window. This value is used as a baseline for comparison
to understand if the temperature rise during training can cause
slowdown problems due to thermal throttling around 85°C. Overall,
Figure 4 demonstrates that the temperature does not exceed 60°C.
Rather, the maximum temperature reached is the case with 2000
iterations with 58.4°C, as result of the highest initial temperature.

It is noticeable that for both RPis the worst case is represented
by the case with up to 3000 iterations, where the temperature in-
creases with an average of 6.75°C, followed by 2000 iterations with
around 6.18°C, and lastly the 1000 iterations with an average of
5.875°C (Figure 4). The 12 rounds case with 1000 max. iterations
(Figure 5) increases the average of 0.4°C which is considered neg-
ligible. From this analysis, we can conclude that the number of
iterations in�uences the temperature of the components involved.
From a trade-o� perspective, considering the above temperature
analysis, it is preferred to increase the interactions rather than the
data analysed locally in one round. Obviously, as the next analysis
con�rms, the reduction of data analysed is made at the expense of
other parameters.

4.3 Bandwidth Monitoring
In this experiment, we cumulatively measure bandwidth at the
network interfaces of both RPis and FL Coordinator using 1000
iterations per round for training. We send the same FL model in all
scenarios, and so we present here only the outgoing tra�c mon-
itoring. We conducted experiments for three, six, and 12 rounds,
starting measurement three seconds before training start time and
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Figure 5: RPi temperatures for 12 rounds and 1000 itera-
tions per round.

Figure 6: Outgoing tra�c in six rounds with 1000 itera-
tions per round.

�nishing three seconds after training ends. We repeat each experi-
ment three times.

Figure 6 presents outgoing tra�c measurements (aggregated
over time) for six rounds and 1000 iterations per round. The stair-
shaped step represents the round in which the model is sent and so
the step value is an indication of the approximate size of the model.
The model size depends on di�erent factors, such as the number of
hidden layers and weights. The bottom part of the �rst step for the
coordinator is around 13 kB, while the top part is approximately
85 kB. By using these two values, it is possible to �nd the approxi-
mate dimension of the TrainCon�g object (around 36 kB), the object
used in PySyft to transfer a model in training phases. By looking at
the steps’ dimensions of the RPi outgoing bandwidth, we computed
an approximate average model size of 30.61 kB. However, we also
take into consideration that the WebSocket protocol requires the
exchange of other values to perform the initial handshake, which
implies we need to subtract this overhead of around 1 kB while
calculating the bandwidth used by model parameters. We can see
that the total outgoing tra�c, as expected, is strictly correlated to
the model dimension, number of rounds, and the number of devices
involved.

4.4 Training Time
In this experiment we present the training time taken by the RPis.
This depends on the device’s capabilities and allows us to under-
stand how long the Coordinator waits for a response from the

Table 1: Average total training time and training losses.

Per-round Number of Total Training Training
Iterations Rounds Iterations Time [s] Loss

1 1000 3 3000 26.868 0.001814
2 1000 6 6000 53.148 0.001068
3 1000 12 12000 105.921 0.000863
4 2000 3 6000 38.378 0.00107
5 2000 6 12000 76.139 0.000877
6 3000 3 9000 56.467 0.000957
7 3000 6 18000 112.247 0.000852

RPis on average. We present the total training time in Table 1 for
di�erent numbers of iterations and rounds.

As expected, the total training time increases with total number
of iterations. However, comparing rows 2 (iterations: 1000, rounds:
6) and 4 (iterations: 2000, rounds: 3), both having 6000 iterations,
we see that training time is less for row 4 (38.378 s) than row
2 (53.148 s); similarly for rows 3 and 5. That is, apart from the
total number of iterations, increasing the number of rounds also
increases total training time due to additional communication time
and waiting/processing delay at FL clients and Coordinator.

4.5 Impact of Privacy Preservation via SMPC
NB. Results for this experiment were performed in an emulated con-
�guration with the FL Coordinator and FL Clients as Virtual Workers
on the MacBook Pro as we unfortunately lost access to our lab-based
RPi con�guration due to the COVID-19 outbreak triggering closure
of University buildings. Nonetheless our results indicate the relative
overheads of introducing SMPC as a privacy preserving measure.

The FL Coordinator is a subscriber of a particular topic on which
all the device states are published. The state event follows the
(device name, state) syntax. The device name is ordinarily repre-
sented by the IP address of the device generating the event. The
state, commonly indicating the device’s intention, speci�es the be-
haviour assumed by the Virtual Worker, and is drawn from these
three states: Training, Inference, and Not Ready. At the end of each
training round, the model’s updates are gathered in a dictionary,
which is then used to compute the global model using federated
averaging [17, 20].

We repeated themodel training using SecureMulti-Party Compu-
tation (SMPC). The SMPC algorithm relies on two crypto protocols
SPDZ [7] and SecureNN [25]. We compare the training times in
Figure 7. Both experiments were repeated �ve times, using only
one round to compute the training time and varying batch sizes
(100, 200, 800, 1000). Figure 7 clearly shows the extra time spent
training when using SMPC.

5 DISCUSSIONS & FUTUREWORK
We have presented and evaluated CoLearn, an integrated system
which we built on top of the state-of-the-art open-source MUD im-
plementation osMUD [6] and open-source FL framework PySyft [24].
By deploying CoLearn on resource-constrained devices in a labora-
tory setting, we demonstrated a mechanism for reducing the attack
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�nishing three seconds after training ends. We repeat each experi-
ment three times.

Figure 6 presents outgoing tra�c measurements (aggregated
over time) for six rounds and 1000 iterations per round. The stair-
shaped step represents the round in which the model is sent and so
the step value is an indication of the approximate size of the model.
The model size depends on di�erent factors, such as the number of
hidden layers and weights. The bottom part of the �rst step for the
coordinator is around 13 kB, while the top part is approximately
85 kB. By using these two values, it is possible to �nd the approxi-
mate dimension of the TrainCon�g object (around 36 kB), the object
used in PySyft to transfer a model in training phases. By looking at
the steps’ dimensions of the RPi outgoing bandwidth, we computed
an approximate average model size of 30.61 kB. However, we also
take into consideration that the WebSocket protocol requires the
exchange of other values to perform the initial handshake, which
implies we need to subtract this overhead of around 1 kB while
calculating the bandwidth used by model parameters. We can see
that the total outgoing tra�c, as expected, is strictly correlated to
the model dimension, number of rounds, and the number of devices
involved.

4.4 Training Time
In this experiment we present the training time taken by the RPis.
This depends on the device’s capabilities and allows us to under-
stand how long the Coordinator waits for a response from the

Table 1: Average total training time and training losses.

Per-round Number of Total Training Training
Iterations Rounds Iterations Time [s] Loss

1 1000 3 3000 26.868 0.001814
2 1000 6 6000 53.148 0.001068
3 1000 12 12000 105.921 0.000863
4 2000 3 6000 38.378 0.00107
5 2000 6 12000 76.139 0.000877
6 3000 3 9000 56.467 0.000957
7 3000 6 18000 112.247 0.000852

RPis on average. We present the total training time in Table 1 for
di�erent numbers of iterations and rounds.

As expected, the total training time increases with total number
of iterations. However, comparing rows 2 (iterations: 1000, rounds:
6) and 4 (iterations: 2000, rounds: 3), both having 6000 iterations,
we see that training time is less for row 4 (38.378 s) than row
2 (53.148 s); similarly for rows 3 and 5. That is, apart from the
total number of iterations, increasing the number of rounds also
increases total training time due to additional communication time
and waiting/processing delay at FL clients and Coordinator.

4.5 Impact of Privacy Preservation via SMPC
NB. Results for this experiment were performed in an emulated con-
�guration with the FL Coordinator and FL Clients as Virtual Workers
on the MacBook Pro as we unfortunately lost access to our lab-based
RPi con�guration due to the COVID-19 outbreak triggering closure
of University buildings. Nonetheless our results indicate the relative
overheads of introducing SMPC as a privacy preserving measure.

The FL Coordinator is a subscriber of a particular topic on which
all the device states are published. The state event follows the
(device name, state) syntax. The device name is ordinarily repre-
sented by the IP address of the device generating the event. The
state, commonly indicating the device’s intention, speci�es the be-
haviour assumed by the Virtual Worker, and is drawn from these
three states: Training, Inference, and Not Ready. At the end of each
training round, the model’s updates are gathered in a dictionary,
which is then used to compute the global model using federated
averaging [17, 20].

We repeated themodel training using SecureMulti-Party Compu-
tation (SMPC). The SMPC algorithm relies on two crypto protocols
SPDZ [7] and SecureNN [25]. We compare the training times in
Figure 7. Both experiments were repeated �ve times, using only
one round to compute the training time and varying batch sizes
(100, 200, 800, 1000). Figure 7 clearly shows the extra time spent
training when using SMPC.

5 DISCUSSIONS & FUTUREWORK
We have presented and evaluated CoLearn, an integrated system
which we built on top of the state-of-the-art open-source MUD im-
plementation osMUD [6] and open-source FL framework PySyft [24].
By deploying CoLearn on resource-constrained devices in a labora-
tory setting, we demonstrated a mechanism for reducing the attack
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Figure 7: Comparison of training time with and without
SMPC.

surface in FL architecture by allowing only IoT MUD-compliant de-
vices to participate in the distributed learning phases using MQTT
based publish/subscriber architecture.

We demonstrated a trade-o� between communication bandwidth
usage and training time and e�ects on device temperature (thermal
fatigue) by using an anomaly detection dataset. We presented in-
sights derived from system design and experimental results, which
can help to design e�cient, adaptive and secure FL logic clients,
taking into consideration both device heterogeneity and the appli-
cations’ communication-e�ciency and performance requirements.

In the current CoLearn deployment, we assumed that edge de-
vices do not fail in the training phases and during their activity
of tra�c eavesdropping. This assumption necessitates further con-
siderations and improvements. Additionally, we did not focus on
IoT device identi�cation and authentication, which is vital for both
MUD-compliant networks and FL architecture, and can be solved
by using IoT device manufacturer provisioned X.509 certi�cate. An-
other valuable improvement for our architecture is to extend the
YANG-based MUD �le by adding a �eld containing structure and
weights of a model. Thus, the manufacturers can de�ne a model
that describes normal behaviours for each device category, and is
able to identify and �ag abnormal behaviour. Furthermore, auto-
adaptive temporal window sizing can improve the model training
process and Coordinator performance.
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