!'_ Systems (th)at Scale

Jon Crowcroft,
http://www.cl.cam.ac.uk/~jac22

i Cloud, Data Center, Networks

1. New Cloud OS to meet new workloads

= Includes programming language

= Collabs incl REMS (w/ P.Gardner/Imperial)
2. New Data Center structure

= Includes heterogeneous h/w

= Collabs incl NaaS(Peter Pietzuch Imperial)
= Trilogy (Mark Handley et al UCL)

3. New Networks (for data centersé)
= To deal with above®

i What not talking about

= Security
= (we do that - had another workshop)

= Data

= Hope Ed folks willl
= Scaling Apps

= Oxford

= Languages for Apps
| Ed++

* 1. Cloud OS

» Unikernels (Mirage, SEL4, ClickOS)

Docker Container

Configuration Files
Application Binary
Language Runtime

Configuration Files

Application Binary

Language Runtime

Configuration Files

Application Binary

Language Runtime

User Processes

User Processes User Processes 8 Kernel Threads
N
) o —m—o === Tem——————
S & Kernel Threads § £ Kernel Threads g 10 Stack
B i S g V———————
L& Filesystem L& Filesystem S Device Dri
S Fie L em g fesystem S Device Drivers
Network Stack Network Stack ntoskrnl
L [y
Hypervisor Hardware
Hardware

(a) Containers, e.g., Docker.

Drawbridge

Picoprocess

Configuration Files

Configuration Files

Host OS

Application Binary
Library OS

Platform Adaptation
Layer

Security Monitor

Kernel Threads

Device Drivers

ntoskrnl

Hardware

ing

Operat

Application Binary

Language Runtime

User Processes

Network Stack

Xen Xen

ARM Hardware

ARM Hardware

(b) Picoprocesses, e.g., Drawbridge.

(c) Unikernels, e.g., MirageOS.

Figure 2: Contrasting approaches to application containment.

i Unikernels in OCaml

= But also Go, Scala, Rust etc
» Type safety->security, reliability
= Apps can be legacy or in same languages

domain 0

——

|
L [
b ' 00 | |
A Ly
,—ﬁ [
Linux Kernel +
¥ \ Unikernels Legacy VMs ¥ by

Figure 1: Jitsu architecture: external network connec-
tivity is handled solely by memory-safe unikernels con-
nected to general purpose VMs via shared memory.

i Data Centers don't just go fast

= They need to serve applications
1. Latency, not just throughput

2. Face users
1. Web, video, ultrafast trade/gamers
2. Face Analytics...

3. Availability & Failure Detectors
4. Application code within network
5. NIC on host or switch - viz

i Industry (see pm©)

Azure

http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/keynote.pdf

Facebook:

http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/pl123.pdf

Google:

http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/p183.pdf

i 2. Deterministic latency bounding

= Learned what I was teaching wrong!

= I used to say:

= Integrated Service too complex
= Admission&scheduling hard

= Priority Queue can't do it
= PGPS computation for latency?
= I present Qjump scheme, which
= Uses intserv (PGPS) style admission ctl
= Uses priority queues for service levels
= http://www.cl.cam.ac.uk/research/srg/

i Data Center Latency Problem

= Tail of the distribution,
= due to long/bursty flows interfering

= Need to separate classes of flow

= Low latency are usually short flows (or
RPCs)

= Bulk transfers aren't so latency/jitter
sensitiv

i Data Center Qjump Solution

= In Data Center, not general Internet!
= can exploit topology &
= traffic matrix &
= source behaviour knowledge

= Regular, and simpler topology key
= But also largely "cooperative” world...

* Hadoop perturbs time synch

TN

o

o
|

Clock offset [us]
N
o
o O
[1

-200 — ptpd only -
400 F — ptpd with Hadoop _
I I I

0 100 200 300 400 500
Time since start [sec]

* Hadoop perturbs memcached

1.0
0.8 -
0.6 -

0.4 |

L memcached only

0.2} /- memd with Hadoop
0.0 L= ' | |
0 500 1000 1500 2000

Request latency [us]

0.0
0

— Naiad only

— = Naiad with Hadoop .
I I I I

500 1000 1500 2000
Barrier sync. latency [us]

i QJump - two pieces

1. At network config time
= Compute a set of (8*) rates based on
= Traffic matric & hops => fan in (f)

2. At run time
= Flow assigns itself a priority/rate class
= subject it to (per hypervisor) rate limit

* 8 arbitrary - but often h/w supported®©

* Memcached latency redux w/ QJ

1.0 T |
0.8 -
0.6 -
0.4 |- —— alone B
02 L // — = + Hadoop |
/ -+ + Had. w/ QJ
oS | | | |

0.0
0 500 1000 1500 2000
Latency in us

redux

| QJ naiad barrier synch latency

1.0

I - —_— 1 T
0.8 |- - _
0.6 _
0.4 - —— alone .
02 L — - +Hadoop
- 4+ Had. w/ QJ
0.0 ' ! ' l
0 500 1000 1500 2000

Latency in us

AN MNNT 0 NT 20X 1o 2 oAt

* Web search FCT100Kb ave

20 '_e—'eTCP ' x—xpi:abric |
+—+ DCTCP
= O—OQJump

Normalized FCT [logy,]

Big Picture Comparison - Related
work...

Commodity Unmodified Coord. Flow Bounded Imple-

System hardware protocols | OS kernel | apps. free deadlines latency mented
| Pause frames v v v 4 4 X X v
s| ECN v/*,ECN v v v v X X v
2| DCTCP[1] /* ECN Ve X v v X X Vg
E Fastpass [29] v v v/, module v X X X v
EyeQ [22] v/*, ECN v X v X X X v
QJump Ve ve v/, module ve Ve Ve v /i
D”TCP [33] v/*,ECN vE X X X* v X v
2| HULL [2] X v X v v X X e

| D [35] X X X X v v X X*, softw
_; PDQ [17] X X X X X 4 X X
2| pFabric [3] X X X v v Ve X X

| DeTail [37] X v v X X* X X X*, softw
2| Silo [21] v v X v x* | /*, SLAs X v
TDMA Eth. [34] vt vt X 4 X X 4 v

)

1~

i Failure Detectors

s 2PC & CAP theorem

= Recall CAP (Brewer's Hypothesis)
= Consistency, Availability, Partitions
= Strongd weak versions!

= If have net&node deterministic failure
detector, isn't necessarily so!

= What can we use CAP-able system for?

2b 2PC throughput with and
without QJump

14000 I I I I I —I} I [I"}II [[I'_

Throughput [reqg/s]

4000 |- ¥=k Broadcast UDP + QJump

Y—¥ UDP + retries

2000 [4 TCP
| | | |

o\O o\O o\O o\O o\O o\O o\O
N ™ © Vv N N Q
Q" QO AT T Ho
v W®

Burst size / switch buffer size [log,]

i Consistent, partition tolerant app?

= Software Defined Net updatel

= Distributed controllers have distributed
rules

= Rules change from time to time
= Need to update, consistently

= Need update to work in presence of
partitions
= By definition!

= S0 Qjump may let us do this too!

i 3. Application code -> Network

» Last piece of data center working for
application

= Switch and Host NICs have a lot of
smarts
= Network processors,
= like GPUs or (net)FPGAs
= Can they help applications?

= In particular, avoid pathological traffic
patterns (e.g. TCP incast)

i Application code

= E.g. shuffle phase in map/reduce
= Does a bunch of aggregation
= (min, max, ave) on a row of results
= And is cause of traffic "implosion”

= S0 do work in stages in the switches in the
net (like merge sortl)

= Code very simple
= Cross-compile into switch NIC cpus

i Other application examples

= Are many ..

= Arose in Active Network research
= Transcoding
= Encryption
= Compression
= Index/Search

s Etc etc

i Need language to express these

= Finite iteration
= (not Turing-complete language)
= So design python- with strong types!

= Work in progress in Naa$S project at
Imperial and Cambridge...

Cloud Computing Isn’t For Everything!

Latency effect on facial recognition Source: Glimpse project, MIT, 2014

g -

|

8- |1

Remote Processing Local Processing
e “being fast really matters...half a second delay caused a 20% drop in traffic and it

killed user satisfaction” - Marissa Mayer @ Web 2.0 (2008)

“A millisecond decrease in a trade delay may boost a high-speed firm's earnings by
about 100 million per year” — SAP, 2012

e “It’s simply not appropriate to just drag and drop our databases into a cloud
nlatform” — Thomas Kadlec, Tesco, 2015

#B2 UNIVERSITY OF
=§> CAMBRIDGE

Tiny Terabit Datacentre

An End-Host Networked-Server Architecture

— 900
F: : Socket Socket ::> 800
s W\ /§ 700 L
__ 600 |
73]
§ 500 |
a S 400 |
3 300 |
Socket Felelals Socket i
——— (CAN D) ——— 200
/// \\\ 100 |
— /// ‘[M H]‘ \\\\£ ’ L1 Local IB 2 1-Hop L2+ 2-Hop L3 1-Hop 2-Hop 3-Hop 4-Hop
]I /O Ports] Switch DRAM Switch SwitchQPINHT SwitchQPNHT Switch NUMA NUMA NUMA NUMA
(e.g., Storage, Network)
v" High Performance v Predictable Latency
v" Resource Isolation v" Low Latency Interconnect
v FIexibIe Implementation v Affordable
=< ﬁ@ \&) Q/:’?V
Centrallzed network fabric Distributed network fabric Multi- controIIermemory Centralized memory

#8s UNIVERSITY OF

CAMBRIDGE

Software

Hardware

Hardware Accelerated
Distributed Locking |

Cambridge I/O Framework (Caml|O)

e et

Reliable Real Time Data Distributer (R2D2)

[Operational [FirstPrototype [

Networks, Interfaces and Transports
for Rack-Scale Operating Systems

Applications Layer

Virtualisation Layer

Distributed Services Layer

Protocol Layer

Transport Layer

Network Layer

Design stage

i Conclusions/Discussion

= Data Center is a special casel

= Its important enough to tackle
= We can hard bound latency easily

= We can detect failures and therefore solve
some hice distributed consensus problems

= We can optimise applications pathological
traffic patterns

= Integrate programming of neté&hosts
= Weird new h/w...

= Plenty more to do...

