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i Cloud, Data Center, Networks

1. New Cloud OS to meet new workloads

= Includes programming language

= Collabs incl REMS (w/ P.Gardner/Imperial)
2. New Data Center structure

= Includes heterogeneous h/w

= Collabs incl NaaS(Peter Pietzuch Imperial)
= Trilogy (Mark Handley et al UCL)

3. New Networks (for data centersé)
= To deal with above®



i What not talking about

= Security
= (we do that - had another workshop)

= Data

= Hope Ed folks willl
= Scaling Apps

= Oxford

= Languages for Apps
| Ed++



* 1. Cloud OS

» Unikernels (Mirage, SEL4, ClickOS)
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i Unikernels in OCaml

= But also Go, Scala, Rust etc
» Type safety->security, reliability
= Apps can be legacy or in same languages
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Figure 1: Jitsu architecture: external network connec-
tivity is handled solely by memory-safe unikernels con-
nected to general purpose VMs via shared memory.



i Data Centers don't just go fast

= They need to serve applications
1. Latency, not just throughput

2. Face users
1. Web, video, ultrafast trade/gamers
2. Face Analytics...

3. Availability & Failure Detectors
4. Application code within network
5. NIC on host or switch - viz



i Industry (see pm© )

Azure

http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/keynote.pdf

Facebook:

http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/pl123.pdf

Google:

http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/p183.pdf



i 2. Deterministic latency bounding

= Learned what I was teaching wrong!

= I used to say:

= Integrated Service too complex
= Admission&scheduling hard

= Priority Queue can't do it
= PGPS computation for latency?
= I present Qjump scheme, which
= Uses intserv (PGPS) style admission ctl
= Uses priority queues for service levels
= http://www.cl.cam.ac.uk/research/srg/



i Data Center Latency Problem

= Tail of the distribution,
= due to long/bursty flows interfering

= Need to separate classes of flow

= Low latency are usually short flows (or
RPCs)

= Bulk transfers aren't so latency/jitter
sensitiv



i Data Center Qjump Solution

= In Data Center, not general Internet!
= can exploit topology &
= traffic matrix &
= source behaviour knowledge

= Regular, and simpler topology key
= But also largely "cooperative” world...



* Hadoop perturbs time synch
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* Hadoop perturbs memcached
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i QJump - two pieces

1. At network config time
= Compute a set of (8*) rates based on
= Traffic matric & hops => fan in (f)

2. At run time
= Flow assigns itself a priority/rate class
= subject it to (per hypervisor) rate limit

* 8 arbitrary - but often h/w supported®©



* Memcached latency redux w/ QJ
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redux

| QJ naiad barrier synch latency
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* Web search FCT100Kb ave
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Big Picture Comparison - Related
work...
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i Failure Detectors

s 2PC & CAP theorem

= Recall CAP (Brewer's Hypothesis)
= Consistency, Availability, Partitions
= Strongd weak versions!

= If have net&node deterministic failure
detector, isn't necessarily so!

= What can we use CAP-able system for?




2b 2PC throughput with and
without QJump
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i Consistent, partition tolerant app?

= Software Defined Net updatel

= Distributed controllers have distributed
rules

= Rules change from time to time
= Need to update, consistently

= Need update to work in presence of
partitions
= By definition!

= S0 Qjump may let us do this too!



i 3. Application code -> Network

» Last piece of data center working for
application

= Switch and Host NICs have a lot of
smarts
= Network processors,
= like GPUs or (net)FPGAs
= Can they help applications?

= In particular, avoid pathological traffic
patterns (e.g. TCP incast)



i Application code

= E.g. shuffle phase in map/reduce
= Does a bunch of aggregation
= (min, max, ave) on a row of results
= And is cause of traffic "implosion”

= S0 do work in stages in the switches in the
net (like merge sortl)

= Code very simple
= Cross-compile into switch NIC cpus



i Other application examples

= Are many ..

= Arose in Active Network research
= Transcoding
= Encryption
= Compression
= Index/Search

s Etc etc



i Need language to express these

= Finite iteration
= (not Turing-complete language)
= So design python- with strong types!

= Work in progress in Naa$S project at
Imperial and Cambridge...



Cloud Computing Isn’t For Everything!

Latency effect on facial recognition Source: Glimpse project, MIT, 2014
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Remote Processing Local Processing
e “being fast really matters...half a second delay caused a 20% drop in traffic and it

killed user satisfaction” - Marissa Mayer @ Web 2.0 (2008)

“A millisecond decrease in a trade delay may boost a high-speed firm's earnings by
about 100 million per year” — SAP, 2012

e “It’s simply not appropriate to just drag and drop our databases into a cloud
nlatform” — Thomas Kadlec, Tesco, 2015
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Tiny Terabit Datacentre

An End-Host Networked-Server Architecture
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Software

Hardware

Hardware Accelerated
Distributed Locking |

Cambridge I/O Framework (Caml|O)

e et
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i Conclusions/Discussion

= Data Center is a special casel

= Its important enough to tackle
= We can hard bound latency easily

= We can detect failures and therefore solve
some hice distributed consensus problems

= We can optimise applications pathological
traffic patterns

= Integrate programming of neté&hosts
= Weird new h/w...

= Plenty more to do...



