Implementing Real Time Packet Forwarding Policies using

Streams

Ian Wakeman, Atanu Ghosh, Jon Crowcroft *
Computer Science Dept, University College London,
Gower Street, London WC1E 6BT.

Van Jacobson and Sally Floyd
Lawrence Berkeley Laboratory
One Cyclotron Road
Berkeley, CA 94720

November 7, 1994

Abstract

This paper describes an implementation of the
class based queueing (CBQ) mechanisms pro-
posed by Sally Floyd and Van Jacobson [1]
[2] to provide real time policies for packet for-
warding. CBQ allows the flows sharing a data
link to be guaranteed a share of the bandwidth
when the link is congested yet allows flexible
sharing of the unused bandwidth when the link
is unloaded. In addition, it provides mecha-
nisms which give flows requiring low delay pri-
ority over other flows. In this way, links can be
shared by multiple flows yet still meet the pol-
icy and Quality of Service (QoS) requirements
of the flows.

We present a brief description of the im-
plementation and some preliminary perfor-
mance measurements. The problems of packet
classification are addressed in a flexible and
extensible yet efficient manner, and whilst
the Streams implementation cannot cope with
very high speed interfaces, it can cope with the
serial link speeds that are likely to be loaded.

1 Introduction

The Internet is fast approaching a period of
revolutionary change in the services provided
and how they are paid for. New architectures
and protocols are being designed and imple-

*Supported by DARPA grant
number AFOSR890514 and generous donations from
Sun Microsystems Laboratories Inc

mented to extend the Internet to support In-
tegrated Services, based on the work of the
INT-SERV working group of the IETF [3]. It
is envisioned that audio, video and other real-
time services will be sent over the Internet.
The ongoing commercialisation of the Inter-
net necessitates a new model of service where
the users and providers exchange money for a
guarantee of a basic level of service. Since the
delivered service for both real time applica-
tions and contractual guarantees is dependent
upon the mix of packets on the links and in the
switches, a key component of the new Internet
will be the packet forwarding scheduler within
the switch. This must provide both a method
for sharing bandwidth amongst the agencies
who pay for the link and provide appropriate
levels of Quality of Service for flows with real-
time requirements.

One vision of how to design this building
block has been offered by Sally Floyd and Van
Jacobson [1] [2]. They start from the premise
of link sharing, where links are leased by mul-
tiple organisations, or agencies, who then re-
quire a guarantee of a share of the bandwidth
when they need it, but if the bandwidth is not
used, then other users can send packets. These
requirements can only be satisfied in any sen-
sible manner through the scheduling of pack-
ets to be forwarded. Each of the agencies are
guaranteed a minimum amount of the band-
width, with the proviso that any instanta-
neously unused bandwidth is shared amongst
the agencies in some previously agreed upon
manner. This technique for allocating band-

network management

i

routing and class

Hyys

database + output
queue rings, one
H H H a for each priority
Pkts packet —» | packet -«— | output Pkts
in classifier scheduler driver out

Figure 1: Conceptual Breakdown of the CBQ filter Code

width can be naturally extended to provide
the allocation mechanisms for real-time traf-
fic, providing the required Quality of Service
(QoS) through guaranteeing bandwidth and
low delay. The unifying abstraction for link-
sharing and real-time traffic is the use of a
class hierarchy. Each class is provided with
a share of the bandwidth and a delay char-
acteristic, and the hierarchy enables mecha-
nisms and policies for “borrowing” of band-
width from other classes.

The conceptual breakdown of how this
should be implemented has been proposed by
Van Jacobson and is illustrated in Figure 1.
The classifier interprets the header informa-
tion of an incoming packet to determine the
class of service that the packet should re-
ceive from the scheduler. The classifier returns
a pointer to the class structure that holds
the queues and associated information. The
packet is placed on the appropriate queue by
the scheduler if the queue is not full. The out-
put driver works asynchronously, invoking the
scheduler to determine from which of the non-
empty queues to send the next packet, accord-
ing to the current utilisation of that queue and
its priority.

Classifying a packet is very similar to the
problem of determining the route matching a
destination address in a packet. In both cases,
fields in the header are used to look up infor-
mation in a table. However, the classification
problem is more complex because the patterns
upon which the packet may match a class must

be more general and can match any part of
the header. For instance packets may be from
one of multiple agencies, requiring the exam-
ination of destination and source addresses,
classified on transport or other protocols such
as TCP, UDP or ICMP, or applications such
as ftp or telnet, requiring the examination of
the port numbers. For video streams we may
look even further within the packet to deter-
mine the level and “droppability” of a packet
within a hierarchically encoded video stream
[4].

It is a point of some controversy as to
how widely the above mechanisms need to be
fielded within the Internet. It could be ar-
gued that they need only be used where the
links are heavily utilised, and thus subject
to congestion. Links which have low utilisa-
tion can supply the necessary Quality of Ser-
vice for all types of stream with normal FIFO
packet scheduling, since queues on the links
are very small or non-existent. The motivation
for the work described in this paper came from
attempting to make the allocation of band-
width more efficient on the Trans-Atlantic link
(known as the FAT pipe) used to connect the
data networks of the UK Ministry of Defence
(MoD) and the Department of Defence (DoD),
of the European Space Agency (ESA) and
NASA, and of the UK academic IP network
and the US academic network. Currently, the
link is hard-multiplexed into three parts, one
for each agency pair!. However, cost savings

1 Currently split into an E1 and a T1 link, with the

on an extremely expensive link could be large
if we guarantee each of the agencies a mini-
mum share of the bandwidth for their mission,
yet could allow any unused bandwidth to be
used by agencies with excess traffic. The cur-
rent version of the CBQ filter is fielded on the
FAT pipe.

In this paper we describe the implementa-
tion of a programmable class based queueing
mechanism within the Streams implementa-
tion of IP forwarding. The classes and the
patterns that determine the membership of
a particular class are compiled in user space,
and lookup engines are chosen to optimise the
per-packet lookup code. The classes are then
downloaded to the CBQ filter module, which
schedules the packets using the downloaded
information. The scheduling code is largely
based upon the work of Lawrence Berkeley
Laboratory (LBL), whilst the classifier and
the surrounding infra-structure are the work of
University College London (UCL). The partic-
ular choices made in the design of the classes
and the classifier are described in Section 2,
the design of the Streams module and its vir-
tual interface are described in Section 3 and
performance measurements in Section 4. We
conclude in Section 5 with ruminations on the
feasibility of this design and the limitations of
the design from the Streams mechanism and
the pointers to future work.

2 Link Sharing Policies
and the Classifier

The problem is to map the high level specifi-
cation of policies onto a classifier that maps a
packet into a particular class so that the nec-
essary information can be found for scheduling
the packet for output.

The high level specification of policies
should be at a level of abstraction that can
be used in the negotiation of legally binding
sharing of the link. For instance, the agencies
should be named as NASA or UK academic
organisations, packet types should be speci-
fied by the services they provide - interactive
data, bulk data, video data, audio data, spe-
cific sites, protocol suites (DECnet, IP etc.),
and specific protocols.

T1 link split into two equal channels. For details on
the usage see [5]

Our initial class structure definition has the
following hierarchical ordering when we are al-
locating the shares of the bandwidth:-

1. Agency

2. Protocol Suite
3. Protocol

4. Service

This partitioning first allows the bandwidth to
be divided up by organisation, allowing arbi-
trary levels in this level. The next level is a
suggestion that bandwidth should be given to
protocol suites separately, so, for instance, OSI
and IP packets are separated out in treatment.
However, an actual implementation would re-
verse the process in classifying the packets,
since the agency could only be discovered after
knowing the structure of the packet. In this
paper, we consider only IP. The partitioning
by protocols allows protection against various
forms of link sharing at the congestion control
level - e.g. none vs slow start [6] vs respon-
sible second order sharing [7] [8], [9] and to
specify appropriate actions when the classes
are exceeding their bandwidth allocation when
the link is loaded. The final division by ser-
vice allows us to divide up bandwidth amongst
the applications. By adding a priority level at
this point and implementing sensible borrow-
ing policies in the scheduler, we can ensure
that when there is congestion the service of-
fered to the applciations is degraded accord-
ing to their importance, such as video packets
being dropped before audio in a video confer-
ence.

2.1 What’s a class?

Having derived the abstractions used to map a
packet onto a class, we then want to consider
the actual attributes that will be attached to
a class. A class is :-

e A share of the bandwidth
e A priority
e A parent class

o A set of pattern tuples over a packet, P; =
{{A4i, V;}},where a pattern is:-

— A pattern A4;.

— A mask of significant bits V;.

As happens in the solution to many comput-
ing problems, we define a hierarchy of classes.
Rather than attempting to map a packet onto
a class in one step, our pattern matching pro-
ceeds in order down the tree. We thus compare
the packet against the patterns of the children
of the current class. To ensure that a packet
maps unambiguously only onto a single class,
the patterns specified should follow the follow-
ing constraint in the general case:-

e For each child of a given parent, each pat-
tern of each child should be distinguish-
able from the patterns of all other chil-
dren, ie for children ¢ and j, there should
exist no pattern tuples in 7 and j such
that 4; A V; EA]'/\‘/]'.

To simplify the implementation, and be-
cause the mapping abstractions correspond
nicely to the packet headers we are us-
ing, the patterns are further constrained
to map directly onto fields in the protocol
header. For our initial IP implementation, the
agency maps onto the destination and source
addresses?, the protocol maps onto the proto-
col field, whilst the application maps onto the
port numbers in UDP or TCP [10,10].

The abstraction of a class and the tree struc-
ture of the classes leads to the number of pat-
terns we have to compare a packet against be-
ing exponential in the depth of the tree. In
addition, the number of patterns at a par-
ticular level may be very large - e.g. at the
agency level, the current design of protocols
insists that we compare against the destina-
tion and source net numbers of the composite
networks of the agency. For the initial case
this can be as large as 10,000 or more (UK
and US academic institutions). Furthermore,
since the patterns will be repeated at each level
(because each agency will want to partition
traffic along similar lines), this will require a
large number of patterns to be constructed if
we attempt to classify the pattern in one step.
Making a comparison at each level of the tree
reduces the total number of patterns that need
to be stored, but increases the number of com-
parison operations.

2If a member of agency A is temporarily on walk-
about, yet still wishes to use the share of the link, an
additional pattern can be added to the class to cope
with the temporary addresses.

However, this is not a problem, since the
class tree will be shallow - generally three or
four levels - and we can select a lookup engine
for a given class level according to the nature
of the patterns to be compared against. The
use of IP and simple classes allows the classifi-
cation to proceed by a sequence of hash table
or simple table lookups. Note that there is a
default class as a child of the root of the tree
into which a packet falls if it does not map to
any other class. This default class gives the
lowest quality of service, since it is not be-
ing used by any of the agencies paying for the
link. It should be noted that the existence of
a default class will encourage agencies to offer
their link as a transit link for other agencies,
and promote greater connectivity.

The use of sequenced lookups for the classes
thus adds additional parameters to the class -
a lookup engine function, and the data struc-
tures for the lookup engine.

Its then becomes natural for the network
manager to specify the full set of parameters
for the classes in a file, which is then compiled.
Simple parenthesised definitions are used to
define the tree. Patterns are defined very sim-
ply at present, just as a specification of the
field within the IP packet and the pattern to
compare it against.

The classifier compiler types the set of pat-
terns that define the child classes of a class,
checking that they can all be used to create a
single engine. It then creates the data struc-
tures for the engine, placing the engine type in
the class data, along with functions to lookup,
insert and relocate the data, along with other
parameters to describe a class.

Relocation of the data structures is neces-
sary to allow the compiler to work in user
space and then pass the data structures down
to the kernel driver. The design is split in
this manner so that we could experiment with
reservation strategies - adjustments to the
bandwidth and the priorities of classes can
be worked out in user space and then passed
down to the kernel. Additional management
functionality, such as Management Informa-
tion Base (MIB) creation etc., can be easily
designed and added at a later date. An ex-
ample configuration file is shown in Figure 2,
which is used in the tests described below. An
alternative approach to packet classification
is to use a generalised patricia lookup engine
[11], [12]. Patricia constructs a tree which is

bandwidth of wire in # nanoseconds per byte
ucl-cs # percentage of bandwidth bandwidth
128.16.0.0] { name ucl-cs-tcp # percentageoc}‘%g%%%a

a class is transmitting more than its share of
the bandwidth and is thus “overlimit”. If the
class of a,cPacket i.f overlimit, the “borrow”
llnksip%ﬁ 20000 ,{.name . .
cégs%a(%te e pac Igt is examined to see if the
| fabsasn %I:.Edl;gﬁrrow bandwidth to trans-

bandwidth 50 # action when overlimit oveﬂiﬁj@bedxgi)c%eatbt@m Fpr@lpo up the hierarchy.

tcp] { name highTCP # high number =

high friihe ©lgstngeey yopsulimiiyand can’t borrow,

6 bandwidth 29 overlimit drop pattern L&t tduooverlimibmetion is invoked, such as
1lowTCP bandwidth 19 overlimit drop pattlppmgt#lE0q2dcket} ér delaying the packet.
name ucl-cs-udp bandwidth 39 overlimit dfBhepmtdeirnuinmite efphe{avgidle estimator is
name CBR priority 7 bandwidth 38 overl:miﬁtéao]pypﬁ;ézqmm;gtparameter which pre-

45791 } } }

Figure 2: Classes used in Testing the Streams
Module

traversed by testing only against the bits of
the key which differentiate the patterns stored
in the tree. The technique has been gener-
alised to cope with masked keys by Halpern
[13] and Tsuchiya [14]. However, because our
patterns may have no bits in common, such
as matching on one of either destination or
source address, multiple passes are still re-
quired through the tables. In addition, tests
against a generalised Patricia tree lookup en-
gine show the sequenced table lookup as more
efficient (Section 4).

Another common mechanism for classifying
packets is the automata used inside the Berke-
ley Packet Filter (BPF) and other similar en-
tities [15]. These are designed to match a nar-
row range of patterns across a packet, and to
do this very efficiently. However, the range of
patterns we expect the classifier to handle is
very wide, which would end up with a num-
ber of automata which would all need to be
tried sequentially. Therefore we have gener-
alised the framework of the classifier to use
generalised engines. This does not preclude
use of the a BPF automata as a particular in-
stance of an engine, if that is the most suitable.

2.2 The scheduling properties of
a Class

Each of the classes maintains an exponentially
weighted moving average (EWMA) (avgidle
in Figure 3) of the idle period between pack-
ets, updated on every packet using the time it
would take to send the same size packet using
the percentage of the bandwidth allocated to
the class. When the average is less than zero,

vents the class from building up credit when it
isn’t transmitting, and so limits the maximum
burst size from the class.

The scheduling code maintains equal pri-
ority classes with traffic to send in circular
queues. The packet to send is either from the
highest priority class which is underlimit, or
from the highest priority class which is over-
limit but can borrow from classes above it in
the borrowing hierarchy of classes. After a
packet is sent from a particular class the queue
pointer is advanced to the next position in the
queue. Thus we implement prioritised round
robin as long as classes are underlimit. When
the class goes overlimit, it allows other under-
limit classes to send first and so prevent star-
vation of any class. In this way, real time flows
can ensure low delay by setting the priority
of the class high and ensuring that the band-
width share requested is sufficient such that
they are always underlimit. When the queues
are full or when the overlimit action specified is
to drop a packet, the current implementation
drops from the tail.
nisms such as dropping from a random posi-
tion within the queue are possible [16]. The
details of scheduler are described more fully in

[1].

However, other mecha-

3 Implementation of
a Streams-based Packet
Forwarding Engine

The Streams “plumbing” used for the CBQ
filter can be seen in Figure 4. The CBQD
module is used to communicate with the CBQ
filter module and to download the class buffers
and to obtain statistics on usage.

Our target scenario was for the workstation,
a SparcClassic running Solaris 5.2, to sit trans-
parently in front of the router whose output

struct rm_class {
mbuf_t *tail; /#* tail of circularly linked output q */
struct timeval last; /* time last packet sent */
struct timeval undertime; /* time can next send */
int sleeping; /* '= 0 if delaying */
int qecnt; /* # packets in queue */
int avgidle; /* EWMA of idle time between pkts */
struct rm_class *peer; /* Linked list of same priority classes */
struct
rm_class *borrow; /* Class to borrow bandwidth from */
struct rm_class *parent; /* Parent class */
struct rm_ifdat *ifdat; /* Output Device data structure */
int priority; /* Class priority */
int maxidle; /* Roof of avgidle */
int offtime; /* Penalty added to class when overlimit */
int gmax; /* Maximum queued pkts */
void (*overlimit)(); /* Action to take when we can’t borrow */

Figure 3: The Class Structure related to Scheduling (after Sally Floyd)

P
: Downloadable |
| Driver, with |
4 I Ioctl interface |
i o I
CBQ <Jmm@ .| cBaD I
filter I datal | |
Lo JI controller :
! J
Ethernet
Output

Figure 4: The Streams Plumbing of the CBQ filter modules.

serial line we wished to protect3. The work-
station and the router would be connected by
Ethernet or some high bandwidth link. Thus
we had to emulate the speed of the router in-
terface in the CBQ software. This is done by
tracking the time that the packet would be
sent from the interface if it were the speed of
the serial line in virtual time and suspending
transmission if the virtual time gets too far in
front of real time - ie the queue in the router
builds up. We rely on incoming packets and a
backstop timer to ensure that the transmis-
sion is continued at some point after being
suspended. An additional advantage of run-
ning in “virtual” time is that the code becomes
independent of output completion interrupts.
The original LBL code used the completion in-
terrupt to service another packet, but device
drivers in Solaris do not provide this interrupt.

Implementing the CBQ filter as a Streams
module and driver had some excellent bene-
fits. We could introduce code into the protocol
stack without requiring changes to the kernel
source, with one major proviso. At the time
the work was started the Streams plumbing
code was built into a program (“ifconfig”); it
was therefore necessary to take a copy of the
“ifconfig” program and modify the source to
enable us to insert the CBQ module at the cor-
rect point in the Stream. It would have been
more convenient if the Streams implementa-
tions had used a configuration file to set up
the plumbing, as some other implementations

do.

As Solaris only supports dynamically load-
able drivers we had hoped that it would be
possible to write and debug the CBQ module
without ever having to reboot the development
machine. Unfortunately there was no obvious
way of tearing down a Stream and creating a
new one with a new CBQ module. Therefore it
was necessary to reboot each time we wished
to test a new module. If there were any se-
rious bugs in the CBQ module the only way
of recovering was to boot the machine from
the boot prompt and edit the relevant startup
files to not use the CBQ module. One way we
attempted to circumvent this problem was to
try and create a file before attempting to load
the CBQ module - if this file already existed
then the CBQ module would not be placed in

3The obvious place to implement this code is in the
router, but we had no way of modifying the router.

the Streams stack. Unfortunately the network
is configured so early in the Solaris boot se-
quence that the filestores are still readonly, so
this strategy failed.

The scheduling code used was written at
LBL and had been written for a BSD derived
kernel. The first task was to change the code
to use the Streams interface. This turned out
to be quite easy; the BSD interface structure
mapped quite simply onto a Streams queue
and the “mbuf” structures mapped onto the
Streams message buffers with the aid of some
macros. The major change was the addition of
some locks. The classification code was then
integrated into the CBQ module.

A mechanism was required to control the
CBQ module, to enable/disable the classifi-
cation and to change the tables. The stan-
dard mechanism for sending information to
drivers/modules is by obtaining a file de-
scriptor to the driver/module and then issu-
ing an “ioctl” which is understood by the
driver. However the CBQ module is below
a Streams multiplexor, and there is no way
that the multiplexor layer can correctly de-
liver the ioctl message without rewriting the
multiplexor code. The only way around this
problem was to write a CBQ driver which ac-
cepts “ioctl” requests and makes a direct con-
nection to the CBQ module, as in Figure 4,
using a shared piece of memory in the queue
structure.

4 Performance
measurements

4.1

The classifier is designed to be flexible in the
lookup engines used on the packets. The al-
ternative design choice would have been to use
a single engine, such as the modified Patricia
code from Joel Halpern [13]. We compared
the performance of the two approaches, using
a classifier with multiple hash and normal ta-
ble lookups with a modified Patricia engine.
We specified the classes to consist of 1920 ad-
dresses culled from the NSFNet acceptable use
database, with child classes of UDP and TCP
traffic, and child classes of Telnet and FTP-
data for the TCP class. We profiled the en-
gines using the gprof profiler on a sparcSta-
tion10 under Solaris 2.3, and in all tests, the

Classifier performance

Code Lookups
UCL Classifier 15186
Patricia 15186

Total Time spent /s

Mean ms/Call
0.01
0.03

0.20
0.47

Table 1: Classifier test results

UCL classifier code was faster, even though
the patricia code ignored the destination ad-
dress and port fields, due to the limitations
described in Section 2. We present sample re-
sults from a test designed to exercise all paths
of the engine in Table 1.

4.2 Streams Module

Performance

In the experiments described below, we use the
setup described in Figure 6. Both interfaces
of the CBQ filter machine are on the same
Ethernet, so we can see both input and output
packets using a single tcpdump [17].

To measure the throughput of the Streams
module, we measured the time taken to for-
ward a series of packets well below the speci-
fied output rate of the filter for one of the con-
nections on its own, and compared these with
the performance of IP forwarding without the
CBQ module. The results can be seen in Fig-
ure 5. These suggest that a sparcClassic can
forward 700 kBit/s of minimum sized pack-
ets, or 7 MBit/s of maximum sized packets
on an Ethernet, and that traversing the CBQ
module takes in the order of 300-450 microsec-
onds. It should be noted that the current code
is unoptimised - it does an extra copy to en-
sure alignment of the headers, and will pull up
buffers without hesitation. The next version of
the code will remove these inefficiencies.

To illustrate the performance of the Streams
code in separating real packet streams, we set
up an experiment using the classes in Figure
2. The three flows are routed into the CBQ
filter which exists on a dual-homed host with
both ethernet outputs on the same physical
segments. The flows are then routed to their
target hosts via an ordinary cisco router. The
return path does not pass through the CBQ
filter. The medium priority TCP flow starts
first, followed twenty seconds later by the low
priority TCP flow. After a further twenty sec-
onds, we get a minute of high priority constant
bit rate UDP packets. The constant bit rate

traffic is intended to simulate audio traffic.

The data gathered from the tcpdump were
analysed and can be seen in Figure 7. The
data are clumped in five second buckets for
clarity. It is important to realise that the con-
stant bit rate stream suffered no loss, whilst
the TCP streams incurred loss when the con-
gestion window was opened too large. In ad-
dition, the streams are kept to within some
margin of their allocated shares of the 62.5
KByte/s that we have set the virtual Interface
to.

The time series illustrating the delays suf-
fered by the packets, measured by the time
difference between the IP packets entering the
filter and emerging on the wire again can be
seen in Figure 8. The data are bucketed in 1
second buckets. The high priority CBR stream
suffers low delay, whilst the TCP streams suf-
fer variable delays, dependent upon whether
they are underlimit and thus transmitted in
priority order, or overlimit and thus transmit-
ted after any underlimit classes with traffic to
send have been sent.

Non-intuitively the average delay experi-
enced by the higher priority TCP class is larger
than the average delay of the lower priority
TCP class. This is an artifact of the partic-
ular borrowing strategy we’ve implemented.
Packets that are sent in the higher priority
TCP class when this class is underlimit are
at higher priority and thus suffer low delay.
When this class is overlimit, it has greater
claim on unused bandwidth than any other
overlimit class, but at lower priority than any
underlimit class, so the packets sent using this
bandwidth have a higher delay, contributing to
an overall higher delay. Alternative borrowing
schemes are detailed in [1].

5 Conclusion

We have described an implementation of the
class based queueing strategy to provide link
sharing, suggested by Sally Floyd and Van Ja-

latency /ms

200 T 7 Streams with CBQ

1.90 — _ | Streams without CBQ

1.80 -
170 -
1.60 -
150 -
140 -
130 -
120 -
110 -
1.00 -
090 -
080 - .
070 -]
060]
050 / .
os0l -
030 - .
020 - .
010 .
000 - .

‘ ‘ ‘ ‘ Packet Size /kBytes
0.00 0.50 1.00 150

Figure 5: Latency of Streams module against size of packet

______________________________ Gf———mm—mmmm—— o -
high priority CBQ K high priority
router cbr
host |cbr At n »| host
er O
A A A A 11
1
1
1
host iy . —>| host
i medium priority
medium priority 1 tcp
1
tep 1
1 >
host T . host
low oriorit 1 low priority
p y [tep
tep : :
ethernet 1 J':_ ethernet 2

Figure 6: Experimental Setup for Testing the Streams Module

34.00
32.00
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00

8.00

6.00

4.00

2.00

0.00

Throughput kBytes/'s

0.00

50.00

100.00

150.00

200.00

High Priority CBR stream

Medium Priority TCP

Low Priority TCP

Time/s

Figure 7: Throughput for the illustrative Streams Experiment

10

delay /sx 103

I High Priority CBR stream
Medium Priority TCP

Low Priority TCP

240.00 —

220.00 —

200.00 —

180.00 [~

160.00 —

140.00 —

120.00 —

100.00 —

‘ ‘ ‘ ‘ ‘ Time/s
0.00 50.00 100.00 150.00 200.00

Figure 8: Delay for the illustrative Streams Experiment: Average delays - CBR stream - 0.01s,
high priority TCP - 0.045s, low priority TCP - 0.038s

11

cobson. The Streams installation provided a
modular environment in which to work. How-
ever, a number of factors proved a hindrance.
The Solaris 2.3 release currently does not allow
modules to be downloaded dynamically below
the IP code. This slowed the development
somewhat. In addition, some problems were
encountered in determining when the packet
had left the output driver.

The code is currently in use on part of the
traffic passing over the UK-US FATpipe. This
partitions traffic amongst a number of agen-
cies, and allows the guaranteeing of multicast
traffic for real-time applications a minimum of
bandwidth and low delay scheduling.

We plan to extend this work to optimise
the lookup engines and to allow more sophis-
ticated pattern matching within the classifier.
A remote management option will be added so
that classes can be added, changed and deleted
dynamically, without having to download all
classes again. With this in place, we shall be
able to experiment with real-time reservation,
such as RSVP [18] and traffic management
within the Internet.

Acknowledgements

We are deeply indebted to Joel Halpern and
Paul Francis for their code and help on Patri-
cia derived algorithms, to the folks at ULCC,
Sura and BBN for their work and help in
putting the CBQ code on the FATpipe and
to Greg Minshall and the anonymous referees
for their helpful comments.

References

Sally Floyd, “Link-sharing and Resource Man-
agement Models for Packet Networks,”
Submitted to ACM/IEEE Transactions on
Networking.

Sally Floyd & Van Jacobson, “Class based
queueing for policy based resource shar-
ing,” 1993, Internal presentation and pri-
vate email.

R. Braden, D. Clark & S. Shenker, “In-
tegrated Services in the Internet Archi-
tecture: an Overview,” rfc1633 (September
1994).

[12]

[13]

12

[4] Tan Wakeman, “Packetised Video: Options
for interaction between the User, the Net-
work and the Codec,” The Computer Jour-
nal 36,1 (February 1993).

Tan Wakeman, Dave
Lewis & Jon Crowcroft, “Traffic Analysis
of trans-Atlantic traffic,” Computer Com-
munications 16 (June 1993), 376,388.

Van Jacobson, “Congestion Avoidance and
Control,” Proceedings ACM SIGCOMM
Symposium (August 1988).

Tan Wakeman & Jon Crowcroft, “A Com-
bined Admission and Congestion Control
Scheme for Variable Bit Rate Video,” To
be published in Journal of Distributed Sys-
tems Engineering (October 1992).

[5]

[6]

[7]

8] Wang & Crowcroft, “A New Congestion
g g
Control Scheme: Slow Start and Search
(Tri-S),” Computer Communications Re-

view 21 (January 1991), 32-43.

Lawrence S. Brakmo, Sean W. O’Malley &
Larry L. Peterson, “TCP Vegas: New tech-
niques for congestion detection and avoid-
ance,” Proceedings of ACM Sigcomm94,
London (Spetember 1994).

D. Comer, Interworking with TCP/IP,
Principles, Protocols and Architecture,
Prentice Hall International, ISBN 0 13
468505 9, 1988.

Donald R. Morrison, “PATRICIA - Prac-
tical Algorithm to Retrieve Information
Coded In Alpha-numeric,” Journal of the
ACM 15,4 (October 1968).

Robert Sedgewick, Algorithms, Addison-
Wesley, 1988.

Joel Halpern, “Modifications of Patricia
Trees for Handling values with discontigu-
ous masks with emphasis on internet rout-
ing applications,” Private Communication.

Paul Tsuchiya, “A Search Algorithm for
Table Entries with Non-contiguous Wild-
carding,” Cecilia software distribution..

Steven McCanne & Van Jacobson, “The
BSD Packet Filter: A New Architecture for
User-Level Packet Capture,” Proceedings
of Winter Usenix Conference, San Diego
Ca. (January 1993).

[9]

[16] Sally Floyd & Van Jacobson, “Ran-
dom Early Drop Gateways,” IEEE/ACM
Transactions on Networking 1,1 (August
1993), 397,413.

[17] Van Jacobson, Steve McCanne
et al, “TCPDUMP(1),” Unix Manual Page
(1990).

[18] L. Zhang, S. Deering, D. Estrin, S. Shenker
& D. Zappala, “RSVP: A New Resource
ReSerVation Protocol,” IEEE Network
(September 1993.).

13

