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ABSTRACT 

This paper presents the design of a reliable multicast 
transport protocol. The aim of the protocol is to provide a 
service equivalent to a sequence of reliable sequential 
unicasts between a client and a number of servers, whilst 
using the broadcast nature of some networks to reduce both 
the number of packets transmitted and the overall time 
needed to collect replies. 

The service interface of the protocol offers several 
types of service, ranging from the collection of a single 
reply from any one of a set of servers to the collection of 
all replies from all known servers. The messages may be 
of effectively arbitrary size, and the number of servers may 
be quite large. To support this service over real networks, 
special flow control mechanisms are used to avoid multiple 
replies overrunning the client, Reliable delivery is ensured 
using timeouts and a distributed acknowledgement scheme. 
The protocol is implemented over a network layer which 
supports multicast destination addressing and packet 
delivery. The behaviour of the protocol over both LANs 
and LANs interconnected by WAN lines is discussed. We 
also include some notions for possible future support from 
network interface hardware. 

Keywords: Distributed Systems, Multicast, Transport 
Protocols 

1. Introduction 

This protocol supports a sequence of exchanges of 
arbitrarily sized request and response messages between a 
client and a large number of servers.l It is intended to 
replace existing protocols which employ either sequential 
unicasts or broadcast. One of the most important uses is to 
support replicated procedure calls2y3 but it would also be 
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appropriate as an underlying communications layer for 
replicated database access, for dissemination of 
information such as routing tables or electronic mail, or for 
location of services such as nameservers or gateways.4 

The aim of this paper is solely to present and evaluate 
the design of the protocol. We do not discuss, in any 
detail, the applications that might use multicast, nor do we 
discuss the management of multicast groups at the network 
or host Ievel. 

The first section of the paper examines the range of 
multicast semantics required by distributed applications to 
be supported by the protocol. The next section describes 
the underlying network layer, together with its support for 
multicast destination addressing and packet delivery. 

The next two sections present the messaging service 
interface and operation. This sublayer of the protocol is 
designed to ensure reliable delivery of multicasts using a 
distributed acknowledgement scheme and retransmission 
after timeouts. It also provides multiple source and 
destination flow control using a coupled window scheme. 

The next section describes the request and response 
sublayer, and the use of up calls to provide Voting on 
replies. 

In the last two sections, we discuss a pilot 
implementation of the protocol and present some 
conclusions about the operation of the protocol. 

The annexes include a formal analysis of the effect of 
many reply packets to a multicast request, the state 
required for the protocol and the packet formats used in the 
pilot implementation. We also discuss what kind of 
hardware support might make the protocol implementation 
simpler. 

2. Multicast Semantics 

A range of multicast semantics and how they relate to 
the application requirements have been discussed in the 
literature.5s 6’ 

Here, we are only concerned with the transport service 
semantics. We assume that group membership is managed 
by some other mechanism, and that it can change during a 
single exchange. However, we allow the user of this 
multicast protocol to state the group membership, and lock 
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onro if for the duration of each single exchange. By this we 
mean that once a server is replying, the group management 

mechanisms will not allow it to leave the group, or that if it 
does, a failure will be reported by this protocol, since the 
server process involved will no longer be correctly 
addressable. This will involve interaction between the 
application, the protocol and the group management 
mechanisms. 

This protocol is geared towards client-server type 
applications, in which a client requests a service from a 
group of which it is not a member. However, it is possible 
to use the protocol in peer-to-peer type applications, where 
members of a group communicate amongst themselves. In 
this case, each member will also receive its own multicast 
requests. 

The protocol supports a variety of types of service, 
ranging from the collection of a single reply from any of a 
set of (possibly identical) servers, to the collection of all 
replies from all known servers. On receiving the initial 
part of a reply, the protocol will lock onto this given server, 
and may cancel the request to other servers. 

When more than one, or all the replies are required, the 
protocol will periodically retransmit the request until it has 
received all the replies. Failure modes are exactly 
analogous to those of a sequence of reliable unicasts, one to 
each server. 

setup (if stream oriented) has been received from any or a 
particular member. (This may however have consequences 
for the rate at which sequence numbers can be recycled). 

For applications requiring n-reliable multicast, where n 
is more than one, the user may also specify a voting 
function, which is up-called from the receiving code when 
one reply has been received from each of the (possibly 
individually specified) servers. 

An example of an application requiring this service 
might be failure recovery in a replicated system, where 
voting on the replies would be used for a re-build request - 
the vote function might be based on timestamps. 

So if the user specifies 1 out of any of the servers, with 
no voting, we have the weakest semantics. If the user 
specifies n, “out of all”, and no voting, we have the 
equivalent of sequential unicast requests (with perhaps less 
chance of the group changing). If the user specifies voting, 
the protocol will return some single reply, or subset of 
replies based on the user supplied voting function. 

In this sense, as far as the receipt arid reaction to a 
multicast request is concerned, we may call the protocol 
“At most once - At least all”. 

As far as the successful operation of the protocol is 
concerned in packet delivery, we may call the protocol “At 
least once - At most all”. 

If a multicast request only requires replies from a 
subset of the group addressed, and this subset is indicated 
by the user (either by size, or by a list of specific addresses) 
then the client will lock onto servers as they repIy. The 
protocol will inform non-members of the subset that their 
replies are not required. This is necessary for performance 
reasons, since dynamic regrouping into sub-groups could 
involve to many interactions with the group management 
system. 

3. Underlying Network Service 

We assume that the underlying network service has 
three characteristics: 

It provides a datagram service such as the IS0 
connectionless network service or the DOD Internet 
Datagram hotocol. 

Host multicast or host group addressing is supported, 
and where possible, a packet addressed to a group address 
will use a physical broadcast or multicast facility on the 
network (e.g. on broadcast LANs or Satellite networks). 

2.1 N-Reliable Maximal Service 

The protocol presented here is intended to support n- 
reliable multicast requests and replies, where n denotes the 
number of servers guaranteed to see the request. In most 
cases this will correspond with the number of replies 
required. The client may specify how many and which 
members of a group it is interested in. 

How many may be wild-carded meaning all current 
members. 

Which members is a list of zero or more normal unicast 
addresses, indicating a subset of the multicast group of 
SeNerS. 

Many applications require only 1 -reliable multicast. 
These are usually location type services, where the 
exchange is of the form: 

- Multicast Req: Where is Service X? 

- N Unicast Replies: Service X is at Y. 

Any reliable transport protocol may he enhanced to 
support this by simply delaying binding the destination 
address to a particular member of a multicast group, until 
some satisfactory part of the reply message or connection 

It is possible, by some out of band mechanism, to 
ascertain the individual addresses of exactly all the 
members of a group, if required. This may itself be an 
application using some form of this multicast protocol. 

The assumption of a physical broadcast facility 
obviously does not hold for most WANs and some non- 
broadcast LANs. For these types of networks, Deerir$ 
suggests a collection of multicast agents to forward 
multicast packets over point-to-point links, with no change 
to the best attempt datagram protocol provided by the 
Internet. 

The agents for WAN multidestination delivery will 
usually form some spanning tree to route the packets.9 The 
client is unlikely to be at the root of such a tree, in which 
case the route that reply packets follow has more 
bottlenecks than just that at the client. (There may be some 
part of the network that is far slower than any actual client 
host). The operation of au adaptive retransmission timer 
and the aggregate worst case window scheme in the 
transport protocol will alleviate the problem of packets 
imploding at such a bottleneck. 
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The reliable delivery guaranteed by some connection 
oriented (e.g. X.25) networks is not necessarily an 
advantage to our multicast transport: When the multicast 
group is large, it is possible that the agents, responsible for 
multidestination packet delivery at the network level, may 
not support adequate network level connections to reach all 
destinations at once. Rather than enhance them to buffer all 
the packets, and round robin deliver through connections as 
they become available, it may be wiser to leave this 
functionality in the transport level.lo 

In this way we see that the transport should be similar 
whatever the underlying service, and there is little point in 
adding more than a multidestination addressing and routing 
capability to any underlying network service. 

&tl%ati Deliver 
nside A Server 

esponse 

4. The Messaging Service Interface 

Given that a datagram service is not reliable, we must 
introduce some acknowledgement, timeout and 
retransmission scheme to ensure delivery of a message to 
the required number of destinations. message.11s1*12 We 
must also deal with the fact that large messages have to be 
broken into segments, which may then be lost, duplicated 
and misordered. These problems are solved by the 
messaging service and are offered as facilities by the 
service interface at this level. 

The messaging service is in effect a simplex data 
protocol, which is then used by another layer to associate a 
request with a number of responses. 

4.1 Message Primitives 

There are two varieties of send primitive, and two 
varieties of receive primitive. All message primitives may 
take an arbitrary size buffer of data, and reliably deliver it 
once (or indicate failure) to each destination. There is a 
mechanism to abort the sending of any message, which 
results in an error report being sent to the receiver. 

1. CMSend(Mid, Buf) 

This is for a user to send a multicast 
message (Buf) to a group identified by Mid, 
a multicast identifier. 

When the client calls CMSend, it is 
effectively blocked until everything has 
been sent and acknowledged (except for the 
last windows worth of packets in the 
message: see section 5.1). 

2. CMRecv(Mid, IdList, BufList, VoteFn, 
Timeout) 

This is for a user to receive a list of 

replies (Budist) from a list of possibly 
specified members of the group (Mid, 
IdList). IdList may be a wild-card to mean 
any II. VoteFn is the (optionally) user 
supplied function to vote on received 
messages. 

When the client calls CMRecv it is 
blocked again until all the packets from ali 
~pecijed servers have arrived, or the 
timeout expires. 

3. SMSend(Id, Buf) 

This is intended for a server to reply and 
looks like a simple reliable unicast message. 

4. SMRecv(Id, Buf, Timeout) 

This is for the server to receive a 
request. 

5. Abort(IdList) 

This cancels any outstanding messages 
to the list of receivers. 

Applications can choose the weakest semantics they 
can possibly use, to achieve the maximum performance. 

4.2 Buffering and Markers in the Interface 

The buffer parameters to the service interface are not 
contiguous bytes in memory. Buffers are linked lists of 
descriptors which hold pointers to sections of contiguous 
memory, together with the length of that section of 
memory. 

This avoids the need for a presentation layer type 
conversion to place the. network format values in a 
contiguous buffer. Where the host presentation format is 
the same as the network format, or of the same size, this 
means that no buffer copying is required at all. In the latter 
case, type conversions may be done in place where 
necessary. 

Each message catries an end of message marker in the 
last packet, and the protocol guarantees that boundaries 
indicated by the sender’s marks will be preserved in calls 
to the receiver routines. Therefore the (possibly 
automatically generated) presentation layer does not have 
to check for application object boundaries overlapping 
buffer boundaries. 

4.3 Failure Modes 

CMSend can fail if the number of retransmissions of 
any part of the multicast message exceeds some threshold. 
CMRecv can fail if the requested number of replies are not 
forthcoming inside the timeout. SMSend and SMRecv fail 
in similar ways, 

When a multipacket multicast transport protocol 
operates over an intemet, it is susceptible to more complex 
failure modes of the underlying network. The protocol 
should make use of network reachability information, 
especially if this changes during a CMSend or CMRecv. If 
a message is received from any agent or router that a 
requested member, or more than an acceptable number of 
requested members, are not reachable, the protocol pre- 
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empts the timeout and reports failure to the user. 

5. Messaging Protocol Operation 

CMSend and SMSend cut large messages into packets 
for transmission over the network. CMSend uses the 
multicast network service to transmit packets. SMSend is 
essentially a unicast version of CMSend with simpler 
acknowledgement and retransmission schemes. 

Both choose a packet size appropriate to the worst case 
network route (from a routing table if possible). All 
packets carry a packet sequence number, and this is used 
by the receivers to tilter duplicates, to sort misordered 
packets and to detect missing packets. The last packet 
carries a flag to indicate the end of a message. 

5.1 Acknowledgement Scheme for Multipacket Messages 

The acknowledgement scheme used at the message 
level depends on the number of transmitters and receivers. 

Acknowledgements of a multicast message are unicast 
by each of the receivers to the transmitter, rather than 
multicast to the group, to minimise the number of packets 
on an intemet and minimise host processing on a local area 
network. 

Acknowledgements also carry the receivers’ advertised 
window. The client generally adapts its transmission rate to 
smallest window (see section 5.4). However, lagging 
servers may selectively acknowledge out of sequence 
packets, for the client to unicast missing packets. 

Since the higher layer of the protocol may send a reply, 
the protocol will piggyback acknowledgements to the last 
windows worth of packets in a message on the next 
message in the opposite direction. A timeout operates to 
trigger an explicit acknowledgement if a further message is 
not generated soon enough. 

At one point we considered using a rotating primary 
receiver scheme based on a design by Chang and 
Maxemchuk.13 This involves designating a special server 
(the primary), which multicasts acknowledgements to the 
current request (the primary moves to another server for the 
next packet). If a secondary server sees the multicast 
acknowledgement for a packet sequence number greater 
than the last one it received, it can trigger a negative 
acknowledgement to the client, who then (unicast) 
retransmits the missing packets. 

We now think this is inappropriate on LANs for the 
following reason: Since this protocol supports the 
exchange of large messages, the number of multicast 
acknowledgements would be large, causing more work for 
the group. This is very undesirable when the underlying 
multicast delivery in the network is not based on broadcast 
(i.e. agents in the internet). 

The window and selective retransmission scheme 
operated by the client part of this protocol have the same 
functional effect without the overhead. 

5.2 Retransmission Schemes 

Retransmissions are necessary if a packet remains 
unacknowledged for a set period of time. 

CMSend uses a dynamic retransmission timer in the 
same fashion as TCP.14 This timer is set as the upper 
bound of the round trip times estimated for each destination 
in the multicast group. 

When the retransmission timer fires in CMSend, the 
client calculates the proportion of hosts which have not yet 
acknowledged the outstanding packets. 

If this proportion is beyond some threshold, CMSend 
multicasts the retransmission. Otherwise we can optimise 
the retransmission scheme by unicasting the packet only to 
those hosts which did not send acknowledgements. 

The threshold is set depending on the distance and 
number of the servers, lower for LANs and higher for 
intemet use. This is done to minimise timer events in the 
client and packets on a local network. 

The last packet of a message is retransmitted 
periodically to check for client/server liveness with a bit set 
to indicate that this is deliberate. 

SMSend uses a timer similar to that in CMSend, but 
based on the single server-client path. 

5.3 Duplicate Filtering 

Each packet carries a 32 bit sequence number as well as 
source and destination identifiers. Duplicate packets are 
discarded but acknowledged, in case the duplicate arose 
from a lost acknowledgement, and also to allow the 
transmitter to keep an up to date round trip time 
measurement. 

5.4 Window Scheme 

A window scheme operates on the segments of a 
message both to limit flow and to utiIise long delay 
networks effectively. The scheme operates in two different 
ways: 

1. CMSend operates an overall transmit 
window for the group and a separate 
transmit window for each of the servers. 

The overall window is the lower bound 
of the smallest of the advertised receive 
windows and the estimated number of 
packets that the pipeline with the shortest 
delay times bandwidth path to a server will 
hold. 

The separate windows are used to limit 
the number of unicast retransmitted packets 
to any server. 

2. CMRecv keeps a receive window for each 
server, plus an overall receive window for 
the group. When the servers start to use 
SMSend, the client allows some of the 
servers to send some small number of 
packets more than others. The protocol 
closes individual windows if one server is 
too far ahead of the others in a reply or if the 
aggregate reply window is too large. 

This is to enable a host receiving many 
replies to pass parts of each reply, in order 
and also in step, up to the next level. 
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The No. of Contention Slots Needed for n Replies to a Multicast Picture 2. 
The Implosion Problem 
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5.5 The Implosion Problem 

A common problem with distributed systems is the 
tendency of collections of related events to synchronise. In 
particular, if servers responding to a multicast request do so 
nearly all at the same time, they may swamp both the 
network and the client, causing a high number of packets to 
be dropped. If they then time out and retransmit at nearly 
the same time the same problem will occur again, leading 
to very poor overall performance. 

Statistical analysis of this problem on an Ethernet 
shows that the limiting capacity is likely to be the client 
rather than the network. This analysis attempts to quantify 
what a large group size is for Ethernet operation of the 
protocol, so that we may choose appropriate values for 
timers and windows,15g l6 

Suppose that a multicast request has been received 
correctly by n servers, all at the same time r . Each of them, 
will try to acquire e er 

r ! 

er or access the network during 
the time interval t ,r+& with probability a. (This is 
equivalent to assurnmg that the servers respond with some 
kind of randomised delay). 

If one of the servers succeeds in acquiring the ether, the 
others wait until it finishes transmitting, at a time t2 say. 
They then compete during the next interval, tz,t& , in [ 1 
the same way as they did for the first. If, on the other hand, 
there was a collision during the first contention interval, all 
servers involved in the collision stop transmitting at once, 
and repeat the contention process at time r+&. We first 
assume that background traffic is so light as to be 
negligible. We also assume that the replies are of similar 
size. 

With these assumptions we can calculate the mean 
number of contention slots needed to transmit n replies, as 
well as the mean number of packets needed overall. (The 
formulae are given in the annex). 

Looking at the mean number of contention slots, which 
is shown in figure 1. we can see that it varies with a, which 
is the probability that a server will attempt to transmit 
during a given contention slot. 

n-3 

b 
I 8 I 

Prob. of!&-ver tryint!o transm!% a slot 

‘igure 1 

For fixed n, if a is small (less than 0.1 say), the number 
of contention slots needed is high. We would expect this to 
be due to the fact that many contention slots go by unused. 
As we increase a the number of contention slots decreases 
initially as fewer are left idle. Eventually, however, further 
increases in a lead to more and more collisions and hence 
to a sharp increase in the number of contention slots 
required. 

This behaviour is similar for all n, except that the 
trough of the curve becomes increasingly more narrow, and 
occurs at a lower range of a. 

Looking at the graphs for the mean number of packets 
sent, we see that their behaviour tallies up with our 
interpretation of the contention slots: When a is low. few 

collisions occur and only one or two packets are needed for 
each response. As a increases, so does the number of 
packets sent.(figure 2) 

No. of Packets Needed by Each of Respondents to a Multicast 

no. 

Note, of course, that in practice the number of slots and 
packets is limited by some maximum number of retries for 
each server. This has not been incorporated in the our 
analysis, but is scarcely important in cases where the cut- 
off point is high compared to the mean number of retries. 
Since we are interested in an upper bound on the number of 
servers which do not cause an implosion problem, i.e. for 
which the number of retries is low, the above analysis is 
adequate. 

This upper bound can be obtained as follows: Looking 
at a curve in fig.1 for a fixed number of servers, we expect 
them to be safe for all values of a for which the curve is 
downward sloping. Inversely, for a given value of a, any 
number of servers n will be safe, as long as the vertical line 
above a intersects the downward sloping part of the curve 
forn. 
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Values for a depend partly on the number of servers 
involved and partly on the length of the packets they are 
trying to send: the length of contention slots in the 
Ethernet is of the order of Conrendp. Assume that typical 
repIy times after a receipt of a multicast lie in the range 
Rongeps. The actual values wiil be determined by 
experiment. 

Since we are in the downward sloping part of the 
curves, collisions and hence retransmissions are rare and 
can be neglected for this calculation. Assuming 
furthermore that the reply times are evenly distributed, then 
the probability of au attempted reply in any contention slot 
can be taken as approximately 

Contend 
a= (Range-n1 fcontend) 
where n is the no of servers and I is the length of their 
replies in bits. 

55.1 Differing Background Loads 

Medium or high levels of background traffic during a 
multicast transaction can be modelled as follows: we 
denote the probability that any host not involved in the 
multicast transaction will transmit during a current 
contention slot as 13. Substituting and evaluating for 
different values of 13 seems to show that I3 affects mainly 
the number of slots needed: the number of packets needed 
increases only at very high values. 

5.6 Scheduling replies 

A client may able to accept the aggregate rate of reply 
from some number of servers. However, if the servers’ 
reply packets tend to clump together, then the client may 
well be swamped by back-to-back packets. 

A good implementation of the selective unicast 
acknowledgement scheme used by this protocol, will 
randomise the scheduling of replies from each of the 
servers. 

In the literature, this problem has been solved by 
introducing independent random back-off schemes at each 
server.l This has the disadvantage that it cannot be adapted 
dynamically: reply times will be delayed even if changing 
circumstances make it unnecessary. This can be overcome 
by driving the scheduling scheme from the client. 

A simple algorithms for this is to take the current 
aggregate window and divide it evenly over all the servers. 
Then round robin schedule acknowledgements to each 
server with a mean and variance of delay based on the time 
for processing one server’s window worth of packets. 

In the local network case, this may not be feasible, 
since the processing times per packet need to be fast, and 
the variance on packet transmission times by each server 
tend to be too low for such a complex statistical calculation 
to be done dynamically. 

6. Request and Response 

The reliable message protocol can be used by a request 
response protocol. 

This has five service primitives: 

1. Request(Mid, IdList, Buf, Flags, Timeout) 

This is used by the client to send a part 
of a request. Mid is the group identifier. 
IdList is a possible subset. Buf contains 
some of the request data. Flags indicates the 
service wanted and an indication if this is 
the last part of the request. 

Timeout here is set by a fault tolerant 
application, which may give up a request 
after some time. Normally it would be 
infinite. 

2. Response(IdList, B&List, VoteFn, Flags, 
Timeout) 

This is used by the client to collect reply 
messages. Flags is used to indicate the type 
of multicast receive service. Depending 
how it is set, Response can return with each 
buffer from each server, or with the list of 
buffers (if servers are deemed equivalent) 
for this part of the message, or with all the 
entire messages. Timeout allows the user to 
poll for replies. 

An indication in Flags is set for the end 
of a reply. 

3. ReqAbort(IdList) 

This allows the user to abort a request to 
a given number of servers. It results in an 
error packet being sent to each of those 
servers. 

Request, Response and Abort are used 
together by a client. The might be part of an 
automatically generated stub for a remote 
procedure call. 

4. Listen(Id, Buf, Timeout) 

This is used by the server to listen for 
calls. 

5. Reply(Buf) 

This is used by the server to send a 
reply. 

Listen and Reply are used by a server, 
and may be used as the counterpart of the 
client’s stub described above. 

In addition to these functions which build fairly 
straightforwardly on the message level, the first packet of a 
reply message can be used to acknowledge delivery of a 
request to that server, and a new request from the client to 
the server can be taken to indicate that the client has 
received all the replies that it is interested in, and that 
servers may discard any held replies. 

Requests and responses carry a conversation identifier 
to associate them, and a special bit to distinguish them. 

6.1 Voting Function 

The voting function is provided by the user to the 
request-response level. Most frequently, this is a function 
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that takes a list of buffer descriptors and simply compares 
some particular field to some value. It may also compare 
the list of replies against each other and return the most 
common. 

6.2 Operation of Request/Response using Message Level 

The request-response level uses the message level. This 
operates as follows: 

. Request sets up state for the request, and uses CMSend 
to issue each part of the request. 

. Response uses the state from Request, and calls 
CMRecv to collect appropriate parts of replies from 
servers. When unwanted replies arrive at a client, 
CMRecv may call Abort to send error reports to save 
servers unwanted work. Similarly, if the VoteFn has 
been applied successfully, Abort will be called for any 
remaining servers. 

Each call to Response hands the equivalent 
segments of replies from different servers to the user 

l ReqAbott is called by the user when some out of band 
event means that the Request is no longer useful. It uses 
Abort to cancel all the servers’ effort. 

l Listen uses SMRecv to collect each part of a request 
from a client. It saves the source address of the request. 

Reply simply uses SMSend to send each part of the 
reply message to the saved address. 

6.3 Failure Modes and Cancelled Requests 

The failure modes of the request response layer are 
derived from the failure modes of the message layer in the 
obvious manner. 

If the client aborts a request while receiving a reply, the 
protocol sends a message level abort to all the servers in 
the group. This is to enable the servers to tidy up any state 
and discard the replies they may have buffered. 

7. Implementation 

There is an experimental implementation of this 
protocol in user space under Berkeley Unix. It is similar in 
some ways to the ones designed in”> l8 

Initial use and performance of this protocol on a single 
LAN is under investigation. 

For a single packet call and reply, initial performance 
against number of servers behaves as one would expect 
from the theoretical analysis. We have not yet 
experimented with multipacket calls and replies, either on a 
single LAN or on an Internet. 

8. Conclusions 

We have presented the design of a new transport 
protocol which supports an n-Reliable multicast Request 
Response type service. Initial implementation experience 
shows that this kind of protocol can reduce the number of 
packets on the network, whilst more conveniently 
providing a similar type of service to sequential unicast 
requests and responses. 

Analysis supports this experience for LAN use of the 
protocol. 

Based on this analysis, the protocol implements a 
multiple coupled windowing scheme of flow control for n 
to one communication, which is designed to solve the 
problem of overruns in both a client host, and in 
intermediate nodes in an intemet. 

The implementation and use of voting functions 
requires further investigation. The request response layer 
should not have to buffer all the parts of all the replies until 
the vote function has been applied. This is why we 
introduced a message level vote function. This is in some 
way derived (hopefully automatically) from the higher 
level vote function, so that the client message layer may 
cancel unwanted replies as soons as possible in an 
exchange. This derivation may be non-trivial, and so for 
the present, the vote function may only be a simple 
comparison of some portion (or all) of some number of 
reply messages, which returns the list of addresses of 
servers whose replies are acceptable. 

9. Annex 1 - Analysis of Implosion for Single LAN 

We make the assumptions presented in section 5.5 
above. 

Let pii- be the probability that out of i receivers still 
trying to respond, one is successful during the current 
contention slot (thus reducing the number of outstanding 
responses to i-l ). This will be the case if only one tries to 
transmit while all the others are silent: 

pi j-1 = i a(l-a)‘-’ where O<i 5 n. 

Let pii be the probability that no message is transmitted 
during the current contention interval (either because no 
receiver tried to transmit or because of a collision). 

pa = 1 -ia(l-a)‘-’ 

Then the probability Pr(n) that all n messages are 
transmitted using only n contention slots is the probability 
of a successful transmission following every slot: 

f+(n) = p~.tt-lpm-l,n-2” ‘p21p10 = ,= pij-1 
0 

The probability Pr(n+l) that (n+l) slots are needed can 
be calculated as follows: out of n+l slots n must have been 
used for successful transmissions whereas the remaining 
one was badly used in the sense that either it went by 
unused or it contained a collision. This badly used slot 
may have been the first when all P receivers still had to 
respond, or the second, with (n-1) receivers still trying to 
respond, or indeed any of the others. Hence: 

Pr(n+l) = PnnfJPij-1 + Pn-I.*-l,QPij-1 + *” + Pl1fJPi.i~I 

= ,= Pii 
84 

Pij-1 
,= 

Similarly, it can be shown that: 

Pr(n+2) = [p,(p~~ +p22+ ... +Pnn) 

+ p”.n-1 (Pll +pzz+ ***. +pa-b-1 I 
+ . . . 

+ P22CPll +P22) + Ph 1 f&ii-1 
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Ei+3) = (,gPii,$PjjkPl* 1 f&ii-1 

In general, these and further expressions can be 
obtained by using a lower triangular matrix P and vectors e 
and2 : 

PI1 0 0 .’ 

Pz2 P22 0 
p33 p33 P33 

P=. . 

1. PM Plvr PM ‘.. 

Pll 
P22 t 
P33 1 

:- 1: 

. and&= 

PNI 1 

Using the dot product of e and u, we can write: 

Pr(n+l) = 
f? 

Pi.i-1 (e.u ) 
1= 

Pr(n-62) = QPi,i-I ( pE ) 44 

and, in general, 

Pr(n+i) = 
f? 

jJi,i-1 ( Pielp ) .U 
,= 

Then the mean number of slots needed is pi : 

j.L = ,\(ll+i)Pr(n+i) 

= 

Now P can be diagonalised as QAQ-l, where h=a?ag()ci), 
the diagonal matrix with the eigenvalues of P on the 
diagonal, and Q is the matrix whose columns are the 
eigenvectors of P , Q-1 being the inverse of Q . 

We then have : 

p,y = [ R + ( ,z(n+i)(Q AQ-’ )i-’ )E.K 1 QPii-1 

= [PI + Q ( q(n+i) A’-‘) Q-‘e.a I @ii-r 
I= 

= [ n + Q diag (n,zkj-’ + ,zi hj-’ ) Q-‘.E.~ 1 @j-t 

The eigenvalues & of P are PIIPZZ*. ‘pm, and hence 
IhiI<l,foralli. 

Therefore theseries 

(n,g?P + ,zi V-l ) = 
Wij-1+1 

-I++*= z Pi>-1 

It can then be shown that 

Q diag (d)Q-‘e.& = ,$ 
pddi where di = nPi j -l+l 

e 

z 
@ii-Pjj> 

Piz-1 

j= Ju’ 

Note that this formula cannot be applied if any pii, pjj 

are equal for any different ij. In this case, it is impossible 
to diagonalise the matrix P . However, because the spectral 
radius of P is less than one, u3 is still guaranteed to be 
finite. 

The mean no. of packet transmissions can now be 
obtained as follows: out of ur contention slots needed to 
transmit all replies, we know that there were n slots in 
which a transmission was successful, incurring one packet 
each. Out of the remaining b-n) slots, a proportion were 
idle slots, and the rest involved collisions. 

The probability of i receivers being silent during a 
current contention slot is (l-a>‘. so at a stage where i 
receivers still have to respond, the probability of them 
being silent given that there was no packet tranSmitted 

during the current slot is: 

Over all stages, this averages to: 

s = $&+$&i=r 
The probability of collisions is l-s. 

Trivially, the mean number of packets transmitted in an 
unused contention slot is 0. 

The mean number of packets involved in a collision at 
a stage when i receivers still have to respond is: 

Co& = 
%A11 

j j aj(l-a)‘-’ where i>2 
I= 

Hence over all stages the mean number of packets per 

collision is: ppc = +$COli . 
I 

So the mean number of packets sent in ~ls contention 
slots is t,tP : 

/.lp = n + (J.ls-n)s*O + &--n)(l-s)ppc = n + (ps-n)(l-slppc 

9.1 Differing Background Loads 

Medium or high levels of background traffic during a 
multicast transaction can be modelled as follows: we 
denote the probability that any host not involved in the 
multicast transaction will transmit during a current 
contention slot as p. The probability of a successful 
response to the multicast then changes to 

pi,i-1 = i a(l-a)‘-’ (1-p) 

Consequently 

where Oci< n. 

pi = 1 -i a (l-a)‘-’ (1-P) 

Substituting these new values into p,r and pP and 
evaluating for different values of p seems to show that p 
affects mainly the number of slots needed: the number of 
packets needed increases only at very high values, 

10. Annex 2 - Potential Hardware Support 

For large multicast requests, it would be convenient to 
have network interfaces that filtered not only on network 
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address, broadcast and multicast address, but also on 
sequence number of packets within messages. This would 
obviate the need for a complex selective retransmission 
scheme. 

Multicast protocols are most attractive where the 
underlying technology is broadcast. One of the main 
problems on a broadcast medium is the excess work for 
hosts not interested in a current broadcast packet. Current 
hardware support for filtering packets is based simply on 
per host multicast address lists. 

A convenient extension of this would be to filter on 
packet source and sequence number. The Cambridge ring 
minipacket mechanism19 provided the former, but no LAN 
or WAN interfaces provide sequence number filtering. 
Mockapetris suggests a scheme for a pseudo “alternating 
bit protocol” to filter unwanted multicast packets20 Mogul, 
Rashid and Accetta*L suggest a more general but similar 
mechanism within the operating system software to support 
efficient user level protocol implementation. 

This could be extended down to hardware, to use 
multiple filters per multicast address. Hosts would accept 
all packets within some sequence space addressed to it, and 
the hardware would roll the sequence number filter forward 
as each packet was successfully passed up to the 
application. 

11. Annex 3 - Protocol State Required 

constant ANY-N-RELIABLE 1 
ccnstant KNOWN-N-RELIABLE 2 
constant SOME-KNOWN-N-RELIABLE 4 

constant WHICH-MASK 0x07 

def Any-N(x) 
((x->NReliabl~~CH_MASK)=ANY_N_RELIA) 

def Known-N(x) 
((x->NReliabl~~~-MASK)==KNOWN_N_RBLE) 

def SomeKnown-N(x) 
((x->NReliable%~~-MASK)==SOME-BOB-N-RE~BLE) 

~~tsnt LESS-N-RELIABLE 8 
ccmstam MAJORITY-RELIABLE 16 

def Reliable(x) 
((x->NR~~~~~~~~~HOW-~-MW_MANY_MASK)==O) 

def LesslhanN(x) 
((x->NReli~l~HOW-MW_MANY_MASK)=LESS_N_REBLE) 

def Majority(x) 
((x-~NRceablesrHOW_MANY_MASK)==MASK~~OR~-RE~AB~) 

ccnstant HOW-MANY-MASK 0x70 

-- Acknowledgement Style 

ccnstant FLOOD-STYLE 0 
constant MACK-STYLE 1 
carstint SACK-STYLE 2 
ccnstantNACK_STYLE 3 

--Per server iofokq,t r,t client 

type PerServer ( 
Mid Server: 
int state; 
Seqno Pktseq: -- Seq no. sck’d by this server so far -- 
Widow RxWiidow; --Window for this server -- 
Window TxWindow; -- Sctvcr’s t-x window .- 
Pkt *Rep; 

-- srau cm Calls -- 
inr Rtx: 
int ReplyCount: 

I psi 

-- Client state table holds all info for 
--this client & forall servers 

type ClientState I 
-- Addressing info 

Mid Client; -- My address 
Mid GroupAddr; -- Group Address 
Seqno AllPktSeq: -- Latest seqm over au 
Window AllWidow; -- Overall window on all svrs 

--Info required Per Server in the Group 
Ps *Member. 
in1 Grouplen: -- Lmgth of group list 

-- Fn supplied by user to vbe at replies if thars whau wanted 
function votc.rQ -- User supplied voting fn 

-- Protocol Specific Info 
int NReliable: --Type of multicast 
in1 Style: -- Ack style 
Tim TimuS -- CUIT Timeout for each member 
int stare; -- ovelall state 

--Request Info 
Seqno This; --Request Sequence number 
Pkt Req; -_ Current request 

-- stats al calls 
int TotalRus; --count of au rtxs 

-- Handy network th& 
int Socket; -_ Handle on network 
int AddrSize: _- sizeof 8 group eddr 

1 CPCB; 

-- State for each Member server in Group 
-- Total state is some convolution of the member stat- 

constant IDLE-STATE 0 
constant REQSTATE I 
constant REP-STATE 2 
caxtant ACK-STATE 3 
constant NACK-STATE 4 

constant PROGRESS-STATE 0 
constant REPLIED-STATE 1 
EOnstam FAILED-STATE 2 

constant OVERSUBSCRIBED 64 

--Sewer state = 1 of these foreach client + general info 

type PerClient ( 
Mid Client: -- Address of B past client 
Seqno Lass -- Last msg # from that client 
Seqno PktScq; -- Pkt in msg so far 
Window Window; -- Client’s n window for US 
int state; --our state for that Client 
Pkt Rep: -- Saved reply for that client 
~erC?lient *Next; 

1% 

type sw-vers~te ( 
-- Address Info 

Mid Server. -_ ?his Server 
-- Per Client Info 

PC *PcrClimS 
int clientcount; 
widow wiiow; -- My current n window 
Pkt Req; -- current request 

-- Protccol Info 
Tii TimecuS -- Timeout at Rcpliw 17 
int State: -- state of server 

-- Fn supplied by user to do se,vcr work 
function worko; 

-- General things of use 
int Socket: --Network handle 
int AddrSk; -- LQlgth of addr 

1 SPCB; 

-- widow sii base values 

-- This is typically for .s unicast multipacket msg 
constant ACREGATE-WINWW 16 

--while this is a max for a fast rePlying server 
__ to be ahead of slow ones 
constant EACH-SERVER-WINDOW 4 
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12. Annex 4 - Packet Formats 9. 

10. 

Y. Dalal, “Broadcast Protocols”, SVPhD Thesis, . 

JH Saltzer, DP Reed, and DD Clark, “End-to-End 
Arguments in System Design”, ACM Transactions 
on Computer Systems 2(4) pp. 277-288 (November 
1984). 

11. D.R. Cheriton, “VMTP: a transport protocol for the 
next generation of communication systems”, 
Computer Communications Review 16pp. 406- 15 
(5-7 August 1986). 

12. 

13. 

14. 

15. 

F Panzieri and S Shrivastava, Rajdoot: A Remote 
Procedure Call Machanism Supporting Orphan 
Detection and Killing, Univerity of Newcastle upon 
Tyne, Computing Laboratory (1985). 

J. Chang and N.F. Maxemchuk, “Reliable 
Broadcast Protocols”, ACM Trans. Camp. Systems. 
2,3pp. 251-273 (Aug. 1983). 

J. Postel, “Transmission Control Protocol”, RFC 
793, DARPA (September 1981). 

A. J. Frank, L. D. Whittie, and A. J. Bernstein, 
“Multicast Communication on Network 
Computers”, 
1985). 

JEEE Software, pp. 49-61 (May 

-. Packa stNc.t”m 

tYpePI 
Seqno seq: -- Req/Rep Seq matching 
char type; --solt0fpk1 

--Per p&t info 
Seqno pscq; -- %&or AckY within a 

-- single Req/Rep 

Window win; --Current advenised tx window 
shalt len: -- ‘his pkt lcn in bytes 
short flags: -- indicates last pkt now 
Buffer da; 

-- User Dam 
-- Also used for bitmap in SACKS 

.-Sack pk~ has list of holes. 

-- Seqno + Len of each hole 
1 Pkt; 

-- Packet Types 

~awtant REQ 1 
ccmlant REP 2 

-_ Client to Server REP ACKS -- 

constant ACK 3 
constam NACK 4 

amstan, SACK 5 

-. Selver to Client Req Pkt ACKS _- 

constam PACK 6 

constan, LAST 1 

con~mnt MARK 2 
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