
A Multicast Transport Protocol

J. Crowcroft
K. Paliwoda

Department of Computer Science
University College London, Gower Street, London, UK.

ABSTRACT

This paper presents the design of a reliable multicast
transport protocol. The aim of the protocol is to provide a
service equivalent to a sequence of reliable sequential
unicasts between a client and a number of servers, whilst
using the broadcast nature of some networks to reduce both
the number of packets transmitted and the overall time
needed to collect replies.

The service interface of the protocol offers several
types of service, ranging from the collection of a single
reply from any one of a set of servers to the collection of
all replies from all known servers. The messages may be
of effectively arbitrary size, and the number of servers may
be quite large. To support this service over real networks,
special flow control mechanisms are used to avoid multiple
replies overrunning the client, Reliable delivery is ensured
using timeouts and a distributed acknowledgement scheme.
The protocol is implemented over a network layer which
supports multicast destination addressing and packet
delivery. The behaviour of the protocol over both LANs
and LANs interconnected by WAN lines is discussed. We
also include some notions for possible future support from
network interface hardware.

Keywords: Distributed Systems, Multicast, Transport
Protocols

1. Introduction

This protocol supports a sequence of exchanges of
arbitrarily sized request and response messages between a
client and a large number of servers.l It is intended to
replace existing protocols which employ either sequential
unicasts or broadcast. One of the most important uses is to
support replicated procedure calls2y3 but it would also be

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage.
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

appropriate as an underlying communications layer for
replicated database access, for dissemination of
information such as routing tables or electronic mail, or for
location of services such as nameservers or gateways.4

The aim of this paper is solely to present and evaluate
the design of the protocol. We do not discuss, in any
detail, the applications that might use multicast, nor do we
discuss the management of multicast groups at the network
or host Ievel.

The first section of the paper examines the range of
multicast semantics required by distributed applications to
be supported by the protocol. The next section describes
the underlying network layer, together with its support for
multicast destination addressing and packet delivery.

The next two sections present the messaging service
interface and operation. This sublayer of the protocol is
designed to ensure reliable delivery of multicasts using a
distributed acknowledgement scheme and retransmission
after timeouts. It also provides multiple source and
destination flow control using a coupled window scheme.

The next section describes the request and response
sublayer, and the use of up calls to provide Voting on
replies.

In the last two sections, we discuss a pilot
implementation of the protocol and present some
conclusions about the operation of the protocol.

The annexes include a formal analysis of the effect of
many reply packets to a multicast request, the state
required for the protocol and the packet formats used in the
pilot implementation. We also discuss what kind of
hardware support might make the protocol implementation
simpler.

2. Multicast Semantics

A range of multicast semantics and how they relate to
the application requirements have been discussed in the
literature.5s 6’

Here, we are only concerned with the transport service
semantics. We assume that group membership is managed
by some other mechanism, and that it can change during a
single exchange. However, we allow the user of this
multicast protocol to state the group membership, and lock

247

onro if for the duration of each single exchange. By this we
mean that once a server is replying, the group management

mechanisms will not allow it to leave the group, or that if it
does, a failure will be reported by this protocol, since the
server process involved will no longer be correctly
addressable. This will involve interaction between the
application, the protocol and the group management
mechanisms.

This protocol is geared towards client-server type
applications, in which a client requests a service from a
group of which it is not a member. However, it is possible
to use the protocol in peer-to-peer type applications, where
members of a group communicate amongst themselves. In
this case, each member will also receive its own multicast
requests.

The protocol supports a variety of types of service,
ranging from the collection of a single reply from any of a
set of (possibly identical) servers, to the collection of all
replies from all known servers. On receiving the initial
part of a reply, the protocol will lock onto this given server,
and may cancel the request to other servers.

When more than one, or all the replies are required, the
protocol will periodically retransmit the request until it has
received all the replies. Failure modes are exactly
analogous to those of a sequence of reliable unicasts, one to
each server.

setup (if stream oriented) has been received from any or a
particular member. (This may however have consequences
for the rate at which sequence numbers can be recycled).

For applications requiring n-reliable multicast, where n
is more than one, the user may also specify a voting
function, which is up-called from the receiving code when
one reply has been received from each of the (possibly
individually specified) servers.

An example of an application requiring this service
might be failure recovery in a replicated system, where
voting on the replies would be used for a re-build request -
the vote function might be based on timestamps.

So if the user specifies 1 out of any of the servers, with
no voting, we have the weakest semantics. If the user
specifies n, “out of all”, and no voting, we have the
equivalent of sequential unicast requests (with perhaps less
chance of the group changing). If the user specifies voting,
the protocol will return some single reply, or subset of
replies based on the user supplied voting function.

In this sense, as far as the receipt arid reaction to a
multicast request is concerned, we may call the protocol
“At most once - At least all”.

As far as the successful operation of the protocol is
concerned in packet delivery, we may call the protocol “At
least once - At most all”.

If a multicast request only requires replies from a
subset of the group addressed, and this subset is indicated
by the user (either by size, or by a list of specific addresses)
then the client will lock onto servers as they repIy. The
protocol will inform non-members of the subset that their
replies are not required. This is necessary for performance
reasons, since dynamic regrouping into sub-groups could
involve to many interactions with the group management
system.

3. Underlying Network Service

We assume that the underlying network service has
three characteristics:

It provides a datagram service such as the IS0
connectionless network service or the DOD Internet
Datagram hotocol.

Host multicast or host group addressing is supported,
and where possible, a packet addressed to a group address
will use a physical broadcast or multicast facility on the
network (e.g. on broadcast LANs or Satellite networks).

2.1 N-Reliable Maximal Service

The protocol presented here is intended to support n-
reliable multicast requests and replies, where n denotes the
number of servers guaranteed to see the request. In most
cases this will correspond with the number of replies
required. The client may specify how many and which
members of a group it is interested in.

How many may be wild-carded meaning all current
members.

Which members is a list of zero or more normal unicast
addresses, indicating a subset of the multicast group of
SeNerS.

Many applications require only 1 -reliable multicast.
These are usually location type services, where the
exchange is of the form:

- Multicast Req: Where is Service X?

- N Unicast Replies: Service X is at Y.

Any reliable transport protocol may he enhanced to
support this by simply delaying binding the destination
address to a particular member of a multicast group, until
some satisfactory part of the reply message or connection

It is possible, by some out of band mechanism, to
ascertain the individual addresses of exactly all the
members of a group, if required. This may itself be an
application using some form of this multicast protocol.

The assumption of a physical broadcast facility
obviously does not hold for most WANs and some non-
broadcast LANs. For these types of networks, Deerir$
suggests a collection of multicast agents to forward
multicast packets over point-to-point links, with no change
to the best attempt datagram protocol provided by the
Internet.

The agents for WAN multidestination delivery will
usually form some spanning tree to route the packets.9 The
client is unlikely to be at the root of such a tree, in which
case the route that reply packets follow has more
bottlenecks than just that at the client. (There may be some
part of the network that is far slower than any actual client
host). The operation of au adaptive retransmission timer
and the aggregate worst case window scheme in the
transport protocol will alleviate the problem of packets
imploding at such a bottleneck.

248

The reliable delivery guaranteed by some connection
oriented (e.g. X.25) networks is not necessarily an
advantage to our multicast transport: When the multicast
group is large, it is possible that the agents, responsible for
multidestination packet delivery at the network level, may
not support adequate network level connections to reach all
destinations at once. Rather than enhance them to buffer all
the packets, and round robin deliver through connections as
they become available, it may be wiser to leave this
functionality in the transport level.lo

In this way we see that the transport should be similar
whatever the underlying service, and there is little point in
adding more than a multidestination addressing and routing
capability to any underlying network service.

&tl%ati Deliver
nside A Server

esponse

4. The Messaging Service Interface

Given that a datagram service is not reliable, we must
introduce some acknowledgement, timeout and
retransmission scheme to ensure delivery of a message to
the required number of destinations. message.11s1*12 We
must also deal with the fact that large messages have to be
broken into segments, which may then be lost, duplicated
and misordered. These problems are solved by the
messaging service and are offered as facilities by the
service interface at this level.

The messaging service is in effect a simplex data
protocol, which is then used by another layer to associate a
request with a number of responses.

4.1 Message Primitives

There are two varieties of send primitive, and two
varieties of receive primitive. All message primitives may
take an arbitrary size buffer of data, and reliably deliver it
once (or indicate failure) to each destination. There is a
mechanism to abort the sending of any message, which
results in an error report being sent to the receiver.

1. CMSend(Mid, Buf)

This is for a user to send a multicast
message (Buf) to a group identified by Mid,
a multicast identifier.

When the client calls CMSend, it is
effectively blocked until everything has
been sent and acknowledged (except for the
last windows worth of packets in the
message: see section 5.1).

2. CMRecv(Mid, IdList, BufList, VoteFn,
Timeout)

This is for a user to receive a list of

replies (Budist) from a list of possibly
specified members of the group (Mid,
IdList). IdList may be a wild-card to mean
any II. VoteFn is the (optionally) user
supplied function to vote on received
messages.

When the client calls CMRecv it is
blocked again until all the packets from ali
~pecijed servers have arrived, or the
timeout expires.

3. SMSend(Id, Buf)

This is intended for a server to reply and
looks like a simple reliable unicast message.

4. SMRecv(Id, Buf, Timeout)

This is for the server to receive a
request.

5. Abort(IdList)

This cancels any outstanding messages
to the list of receivers.

Applications can choose the weakest semantics they
can possibly use, to achieve the maximum performance.

4.2 Buffering and Markers in the Interface

The buffer parameters to the service interface are not
contiguous bytes in memory. Buffers are linked lists of
descriptors which hold pointers to sections of contiguous
memory, together with the length of that section of
memory.

This avoids the need for a presentation layer type
conversion to place the. network format values in a
contiguous buffer. Where the host presentation format is
the same as the network format, or of the same size, this
means that no buffer copying is required at all. In the latter
case, type conversions may be done in place where
necessary.

Each message catries an end of message marker in the
last packet, and the protocol guarantees that boundaries
indicated by the sender’s marks will be preserved in calls
to the receiver routines. Therefore the (possibly
automatically generated) presentation layer does not have
to check for application object boundaries overlapping
buffer boundaries.

4.3 Failure Modes

CMSend can fail if the number of retransmissions of
any part of the multicast message exceeds some threshold.
CMRecv can fail if the requested number of replies are not
forthcoming inside the timeout. SMSend and SMRecv fail
in similar ways,

When a multipacket multicast transport protocol
operates over an intemet, it is susceptible to more complex
failure modes of the underlying network. The protocol
should make use of network reachability information,
especially if this changes during a CMSend or CMRecv. If
a message is received from any agent or router that a
requested member, or more than an acceptable number of
requested members, are not reachable, the protocol pre-

249

empts the timeout and reports failure to the user.

5. Messaging Protocol Operation

CMSend and SMSend cut large messages into packets
for transmission over the network. CMSend uses the
multicast network service to transmit packets. SMSend is
essentially a unicast version of CMSend with simpler
acknowledgement and retransmission schemes.

Both choose a packet size appropriate to the worst case
network route (from a routing table if possible). All
packets carry a packet sequence number, and this is used
by the receivers to tilter duplicates, to sort misordered
packets and to detect missing packets. The last packet
carries a flag to indicate the end of a message.

5.1 Acknowledgement Scheme for Multipacket Messages

The acknowledgement scheme used at the message
level depends on the number of transmitters and receivers.

Acknowledgements of a multicast message are unicast
by each of the receivers to the transmitter, rather than
multicast to the group, to minimise the number of packets
on an intemet and minimise host processing on a local area
network.

Acknowledgements also carry the receivers’ advertised
window. The client generally adapts its transmission rate to
smallest window (see section 5.4). However, lagging
servers may selectively acknowledge out of sequence
packets, for the client to unicast missing packets.

Since the higher layer of the protocol may send a reply,
the protocol will piggyback acknowledgements to the last
windows worth of packets in a message on the next
message in the opposite direction. A timeout operates to
trigger an explicit acknowledgement if a further message is
not generated soon enough.

At one point we considered using a rotating primary
receiver scheme based on a design by Chang and
Maxemchuk.13 This involves designating a special server
(the primary), which multicasts acknowledgements to the
current request (the primary moves to another server for the
next packet). If a secondary server sees the multicast
acknowledgement for a packet sequence number greater
than the last one it received, it can trigger a negative
acknowledgement to the client, who then (unicast)
retransmits the missing packets.

We now think this is inappropriate on LANs for the
following reason: Since this protocol supports the
exchange of large messages, the number of multicast
acknowledgements would be large, causing more work for
the group. This is very undesirable when the underlying
multicast delivery in the network is not based on broadcast
(i.e. agents in the internet).

The window and selective retransmission scheme
operated by the client part of this protocol have the same
functional effect without the overhead.

5.2 Retransmission Schemes

Retransmissions are necessary if a packet remains
unacknowledged for a set period of time.

CMSend uses a dynamic retransmission timer in the
same fashion as TCP.14 This timer is set as the upper
bound of the round trip times estimated for each destination
in the multicast group.

When the retransmission timer fires in CMSend, the
client calculates the proportion of hosts which have not yet
acknowledged the outstanding packets.

If this proportion is beyond some threshold, CMSend
multicasts the retransmission. Otherwise we can optimise
the retransmission scheme by unicasting the packet only to
those hosts which did not send acknowledgements.

The threshold is set depending on the distance and
number of the servers, lower for LANs and higher for
intemet use. This is done to minimise timer events in the
client and packets on a local network.

The last packet of a message is retransmitted
periodically to check for client/server liveness with a bit set
to indicate that this is deliberate.

SMSend uses a timer similar to that in CMSend, but
based on the single server-client path.

5.3 Duplicate Filtering

Each packet carries a 32 bit sequence number as well as
source and destination identifiers. Duplicate packets are
discarded but acknowledged, in case the duplicate arose
from a lost acknowledgement, and also to allow the
transmitter to keep an up to date round trip time
measurement.

5.4 Window Scheme

A window scheme operates on the segments of a
message both to limit flow and to utiIise long delay
networks effectively. The scheme operates in two different
ways:

1. CMSend operates an overall transmit
window for the group and a separate
transmit window for each of the servers.

The overall window is the lower bound
of the smallest of the advertised receive
windows and the estimated number of
packets that the pipeline with the shortest
delay times bandwidth path to a server will
hold.

The separate windows are used to limit
the number of unicast retransmitted packets
to any server.

2. CMRecv keeps a receive window for each
server, plus an overall receive window for
the group. When the servers start to use
SMSend, the client allows some of the
servers to send some small number of
packets more than others. The protocol
closes individual windows if one server is
too far ahead of the others in a reply or if the
aggregate reply window is too large.

This is to enable a host receiving many
replies to pass parts of each reply, in order
and also in step, up to the next level.

250

The No. of Contention Slots Needed for n Replies to a Multicast Picture 2.
The Implosion Problem

Client :

mc-reques

I--;
mc-replies e ap y

ap retransm.

r

s2 s3

1

!1

1

processing

time out

time

5.5 The Implosion Problem

A common problem with distributed systems is the
tendency of collections of related events to synchronise. In
particular, if servers responding to a multicast request do so
nearly all at the same time, they may swamp both the
network and the client, causing a high number of packets to
be dropped. If they then time out and retransmit at nearly
the same time the same problem will occur again, leading
to very poor overall performance.

Statistical analysis of this problem on an Ethernet
shows that the limiting capacity is likely to be the client
rather than the network. This analysis attempts to quantify
what a large group size is for Ethernet operation of the
protocol, so that we may choose appropriate values for
timers and windows,15g l6

Suppose that a multicast request has been received
correctly by n servers, all at the same time r . Each of them,
will try to acquire e er

r !

er or access the network during
the time interval t ,r+& with probability a. (This is
equivalent to assurnmg that the servers respond with some
kind of randomised delay).

If one of the servers succeeds in acquiring the ether, the
others wait until it finishes transmitting, at a time t2 say.
They then compete during the next interval, tz,t& , in [1
the same way as they did for the first. If, on the other hand,
there was a collision during the first contention interval, all
servers involved in the collision stop transmitting at once,
and repeat the contention process at time r+&. We first
assume that background traffic is so light as to be
negligible. We also assume that the replies are of similar
size.

With these assumptions we can calculate the mean
number of contention slots needed to transmit n replies, as
well as the mean number of packets needed overall. (The
formulae are given in the annex).

Looking at the mean number of contention slots, which
is shown in figure 1. we can see that it varies with a, which
is the probability that a server will attempt to transmit
during a given contention slot.

n-3

b
I 8 I

Prob. of!&-ver tryint!o transm!% a slot

‘igure 1

For fixed n, if a is small (less than 0.1 say), the number
of contention slots needed is high. We would expect this to
be due to the fact that many contention slots go by unused.
As we increase a the number of contention slots decreases
initially as fewer are left idle. Eventually, however, further
increases in a lead to more and more collisions and hence
to a sharp increase in the number of contention slots
required.

This behaviour is similar for all n, except that the
trough of the curve becomes increasingly more narrow, and
occurs at a lower range of a.

Looking at the graphs for the mean number of packets
sent, we see that their behaviour tallies up with our
interpretation of the contention slots: When a is low. few

collisions occur and only one or two packets are needed for
each response. As a increases, so does the number of
packets sent.(figure 2)

No. of Packets Needed by Each of Respondents to a Multicast

no.

Note, of course, that in practice the number of slots and
packets is limited by some maximum number of retries for
each server. This has not been incorporated in the our
analysis, but is scarcely important in cases where the cut-
off point is high compared to the mean number of retries.
Since we are interested in an upper bound on the number of
servers which do not cause an implosion problem, i.e. for
which the number of retries is low, the above analysis is
adequate.

This upper bound can be obtained as follows: Looking
at a curve in fig.1 for a fixed number of servers, we expect
them to be safe for all values of a for which the curve is
downward sloping. Inversely, for a given value of a, any
number of servers n will be safe, as long as the vertical line
above a intersects the downward sloping part of the curve
forn.

251

Values for a depend partly on the number of servers
involved and partly on the length of the packets they are
trying to send: the length of contention slots in the
Ethernet is of the order of Conrendp. Assume that typical
repIy times after a receipt of a multicast lie in the range
Rongeps. The actual values wiil be determined by
experiment.

Since we are in the downward sloping part of the
curves, collisions and hence retransmissions are rare and
can be neglected for this calculation. Assuming
furthermore that the reply times are evenly distributed, then
the probability of au attempted reply in any contention slot
can be taken as approximately

Contend
a= (Range-n1 fcontend)
where n is the no of servers and I is the length of their
replies in bits.

55.1 Differing Background Loads

Medium or high levels of background traffic during a
multicast transaction can be modelled as follows: we
denote the probability that any host not involved in the
multicast transaction will transmit during a current
contention slot as 13. Substituting and evaluating for
different values of 13 seems to show that I3 affects mainly
the number of slots needed: the number of packets needed
increases only at very high values.

5.6 Scheduling replies

A client may able to accept the aggregate rate of reply
from some number of servers. However, if the servers’
reply packets tend to clump together, then the client may
well be swamped by back-to-back packets.

A good implementation of the selective unicast
acknowledgement scheme used by this protocol, will
randomise the scheduling of replies from each of the
servers.

In the literature, this problem has been solved by
introducing independent random back-off schemes at each
server.l This has the disadvantage that it cannot be adapted
dynamically: reply times will be delayed even if changing
circumstances make it unnecessary. This can be overcome
by driving the scheduling scheme from the client.

A simple algorithms for this is to take the current
aggregate window and divide it evenly over all the servers.
Then round robin schedule acknowledgements to each
server with a mean and variance of delay based on the time
for processing one server’s window worth of packets.

In the local network case, this may not be feasible,
since the processing times per packet need to be fast, and
the variance on packet transmission times by each server
tend to be too low for such a complex statistical calculation
to be done dynamically.

6. Request and Response

The reliable message protocol can be used by a request
response protocol.

This has five service primitives:

1. Request(Mid, IdList, Buf, Flags, Timeout)

This is used by the client to send a part
of a request. Mid is the group identifier.
IdList is a possible subset. Buf contains
some of the request data. Flags indicates the
service wanted and an indication if this is
the last part of the request.

Timeout here is set by a fault tolerant
application, which may give up a request
after some time. Normally it would be
infinite.

2. Response(IdList, B&List, VoteFn, Flags,
Timeout)

This is used by the client to collect reply
messages. Flags is used to indicate the type
of multicast receive service. Depending
how it is set, Response can return with each
buffer from each server, or with the list of
buffers (if servers are deemed equivalent)
for this part of the message, or with all the
entire messages. Timeout allows the user to
poll for replies.

An indication in Flags is set for the end
of a reply.

3. ReqAbort(IdList)

This allows the user to abort a request to
a given number of servers. It results in an
error packet being sent to each of those
servers.

Request, Response and Abort are used
together by a client. The might be part of an
automatically generated stub for a remote
procedure call.

4. Listen(Id, Buf, Timeout)

This is used by the server to listen for
calls.

5. Reply(Buf)

This is used by the server to send a
reply.

Listen and Reply are used by a server,
and may be used as the counterpart of the
client’s stub described above.

In addition to these functions which build fairly
straightforwardly on the message level, the first packet of a
reply message can be used to acknowledge delivery of a
request to that server, and a new request from the client to
the server can be taken to indicate that the client has
received all the replies that it is interested in, and that
servers may discard any held replies.

Requests and responses carry a conversation identifier
to associate them, and a special bit to distinguish them.

6.1 Voting Function

The voting function is provided by the user to the
request-response level. Most frequently, this is a function

252

that takes a list of buffer descriptors and simply compares
some particular field to some value. It may also compare
the list of replies against each other and return the most
common.

6.2 Operation of Request/Response using Message Level

The request-response level uses the message level. This
operates as follows:

. Request sets up state for the request, and uses CMSend
to issue each part of the request.

. Response uses the state from Request, and calls
CMRecv to collect appropriate parts of replies from
servers. When unwanted replies arrive at a client,
CMRecv may call Abort to send error reports to save
servers unwanted work. Similarly, if the VoteFn has
been applied successfully, Abort will be called for any
remaining servers.

Each call to Response hands the equivalent
segments of replies from different servers to the user

l ReqAbott is called by the user when some out of band
event means that the Request is no longer useful. It uses
Abort to cancel all the servers’ effort.

l Listen uses SMRecv to collect each part of a request
from a client. It saves the source address of the request.

Reply simply uses SMSend to send each part of the
reply message to the saved address.

6.3 Failure Modes and Cancelled Requests

The failure modes of the request response layer are
derived from the failure modes of the message layer in the
obvious manner.

If the client aborts a request while receiving a reply, the
protocol sends a message level abort to all the servers in
the group. This is to enable the servers to tidy up any state
and discard the replies they may have buffered.

7. Implementation

There is an experimental implementation of this
protocol in user space under Berkeley Unix. It is similar in
some ways to the ones designed in”> l8

Initial use and performance of this protocol on a single
LAN is under investigation.

For a single packet call and reply, initial performance
against number of servers behaves as one would expect
from the theoretical analysis. We have not yet
experimented with multipacket calls and replies, either on a
single LAN or on an Internet.

8. Conclusions

We have presented the design of a new transport
protocol which supports an n-Reliable multicast Request
Response type service. Initial implementation experience
shows that this kind of protocol can reduce the number of
packets on the network, whilst more conveniently
providing a similar type of service to sequential unicast
requests and responses.

Analysis supports this experience for LAN use of the
protocol.

Based on this analysis, the protocol implements a
multiple coupled windowing scheme of flow control for n
to one communication, which is designed to solve the
problem of overruns in both a client host, and in
intermediate nodes in an intemet.

The implementation and use of voting functions
requires further investigation. The request response layer
should not have to buffer all the parts of all the replies until
the vote function has been applied. This is why we
introduced a message level vote function. This is in some
way derived (hopefully automatically) from the higher
level vote function, so that the client message layer may
cancel unwanted replies as soons as possible in an
exchange. This derivation may be non-trivial, and so for
the present, the vote function may only be a simple
comparison of some portion (or all) of some number of
reply messages, which returns the list of addresses of
servers whose replies are acceptable.

9. Annex 1 - Analysis of Implosion for Single LAN

We make the assumptions presented in section 5.5
above.

Let pii- be the probability that out of i receivers still
trying to respond, one is successful during the current
contention slot (thus reducing the number of outstanding
responses to i-l). This will be the case if only one tries to
transmit while all the others are silent:

pi j-1 = i a(l-a)‘-’ where O<i 5 n.

Let pii be the probability that no message is transmitted
during the current contention interval (either because no
receiver tried to transmit or because of a collision).

pa = 1 -ia(l-a)‘-’

Then the probability Pr(n) that all n messages are
transmitted using only n contention slots is the probability
of a successful transmission following every slot:

f+(n) = p~.tt-lpm-l,n-2” ‘p21p10 = ,= pij-1
0

The probability Pr(n+l) that (n+l) slots are needed can
be calculated as follows: out of n+l slots n must have been
used for successful transmissions whereas the remaining
one was badly used in the sense that either it went by
unused or it contained a collision. This badly used slot
may have been the first when all P receivers still had to
respond, or the second, with (n-1) receivers still trying to
respond, or indeed any of the others. Hence:

Pr(n+l) = PnnfJPij-1 + Pn-I.*-l,QPij-1 + *” + Pl1fJPi.i~I

= ,= Pii
84

Pij-1
,=

Similarly, it can be shown that:

Pr(n+2) = [p,(p~~ +p22+ ... +Pnn)

+ p”.n-1 (Pll +pzz+ ***. +pa-b-1 I
+ . . .

+ P22CPll +P22) + Ph 1 f&ii-1

253

Ei+3) = (,gPii,$PjjkPl* 1 f&ii-1

In general, these and further expressions can be
obtained by using a lower triangular matrix P and vectors e
and2 :

PI1 0 0 .’

Pz2 P22 0
p33 p33 P33

P=. .

1. PM Plvr PM ‘..

Pll
P22 t
P33 1

:- 1:

. and&=

PNI 1

Using the dot product of e and u, we can write:

Pr(n+l) =
f?

Pi.i-1 (e.u)
1=

Pr(n-62) = QPi,i-I (pE) 44

and, in general,

Pr(n+i) =
f?

jJi,i-1 (Pielp) .U
,=

Then the mean number of slots needed is pi :

j.L = ,\(ll+i)Pr(n+i)

=

Now P can be diagonalised as QAQ-l, where h=a?ag()ci),
the diagonal matrix with the eigenvalues of P on the
diagonal, and Q is the matrix whose columns are the
eigenvectors of P , Q-1 being the inverse of Q .

We then have :

p,y = [R + (,z(n+i)(Q AQ-’)i-’)E.K 1 QPii-1

= [PI + Q (q(n+i) A’-‘) Q-‘e.a I @ii-r
I=

= [n + Q diag (n,zkj-’ + ,zi hj-’) Q-‘.E.~ 1 @j-t

The eigenvalues & of P are PIIPZZ*. ‘pm, and hence
IhiI<l,foralli.

Therefore theseries

(n,g?P + ,zi V-l) =
Wij-1+1

-I++*= z Pi>-1

It can then be shown that

Q diag (d)Q-‘e.& = ,$
pddi where di = nPi j -l+l

e

z
@ii-Pjj>

Piz-1

j= Ju’

Note that this formula cannot be applied if any pii, pjj

are equal for any different ij. In this case, it is impossible
to diagonalise the matrix P . However, because the spectral
radius of P is less than one, u3 is still guaranteed to be
finite.

The mean no. of packet transmissions can now be
obtained as follows: out of ur contention slots needed to
transmit all replies, we know that there were n slots in
which a transmission was successful, incurring one packet
each. Out of the remaining b-n) slots, a proportion were
idle slots, and the rest involved collisions.

The probability of i receivers being silent during a
current contention slot is (l-a>‘. so at a stage where i
receivers still have to respond, the probability of them
being silent given that there was no packet tranSmitted

during the current slot is:

Over all stages, this averages to:

s = $&+$&i=r
The probability of collisions is l-s.

Trivially, the mean number of packets transmitted in an
unused contention slot is 0.

The mean number of packets involved in a collision at
a stage when i receivers still have to respond is:

Co& =
%A11

j j aj(l-a)‘-’ where i>2
I=

Hence over all stages the mean number of packets per

collision is: ppc = +$COli .
I

So the mean number of packets sent in ~ls contention
slots is t,tP :

/.lp = n + (J.ls-n)s*O + &--n)(l-s)ppc = n + (ps-n)(l-slppc

9.1 Differing Background Loads

Medium or high levels of background traffic during a
multicast transaction can be modelled as follows: we
denote the probability that any host not involved in the
multicast transaction will transmit during a current
contention slot as p. The probability of a successful
response to the multicast then changes to

pi,i-1 = i a(l-a)‘-’ (1-p)

Consequently

where Oci< n.

pi = 1 -i a (l-a)‘-’ (1-P)

Substituting these new values into p,r and pP and
evaluating for different values of p seems to show that p
affects mainly the number of slots needed: the number of
packets needed increases only at very high values,

10. Annex 2 - Potential Hardware Support

For large multicast requests, it would be convenient to
have network interfaces that filtered not only on network

254

address, broadcast and multicast address, but also on
sequence number of packets within messages. This would
obviate the need for a complex selective retransmission
scheme.

Multicast protocols are most attractive where the
underlying technology is broadcast. One of the main
problems on a broadcast medium is the excess work for
hosts not interested in a current broadcast packet. Current
hardware support for filtering packets is based simply on
per host multicast address lists.

A convenient extension of this would be to filter on
packet source and sequence number. The Cambridge ring
minipacket mechanism19 provided the former, but no LAN
or WAN interfaces provide sequence number filtering.
Mockapetris suggests a scheme for a pseudo “alternating
bit protocol” to filter unwanted multicast packets20 Mogul,
Rashid and Accetta*L suggest a more general but similar
mechanism within the operating system software to support
efficient user level protocol implementation.

This could be extended down to hardware, to use
multiple filters per multicast address. Hosts would accept
all packets within some sequence space addressed to it, and
the hardware would roll the sequence number filter forward
as each packet was successfully passed up to the
application.

11. Annex 3 - Protocol State Required

constant ANY-N-RELIABLE 1
ccnstant KNOWN-N-RELIABLE 2
constant SOME-KNOWN-N-RELIABLE 4

constant WHICH-MASK 0x07

def Any-N(x)
((x->NReliabl~~CH_MASK)=ANY_N_RELIA)

def Known-N(x)
((x->NReliabl~~~-MASK)==KNOWN_N_RBLE)

def SomeKnown-N(x)
((x->NReliable%~~-MASK)==SOME-BOB-N-RE~BLE)

~~tsnt LESS-N-RELIABLE 8
ccmstam MAJORITY-RELIABLE 16

def Reliable(x)
((x->NR~~~~~~~~~HOW-~-MW_MANY_MASK)==O)

def LesslhanN(x)
((x->NReli~l~HOW-MW_MANY_MASK)=LESS_N_REBLE)

def Majority(x)
((x-~NRceablesrHOW_MANY_MASK)==MASK~~OR~-RE~AB~)

ccnstant HOW-MANY-MASK 0x70

-- Acknowledgement Style

ccnstant FLOOD-STYLE 0
constant MACK-STYLE 1
carstint SACK-STYLE 2
ccnstantNACK_STYLE 3

--Per server iofokq,t r,t client

type PerServer (
Mid Server:
int state;
Seqno Pktseq: -- Seq no. sck’d by this server so far --
Widow RxWiidow; --Window for this server --
Window TxWindow; -- Sctvcr’s t-x window .-
Pkt *Rep;

-- srau cm Calls --
inr Rtx:
int ReplyCount:

I psi

-- Client state table holds all info for
--this client & forall servers

type ClientState I
-- Addressing info

Mid Client; -- My address
Mid GroupAddr; -- Group Address
Seqno AllPktSeq: -- Latest seqm over au
Window AllWidow; -- Overall window on all svrs

--Info required Per Server in the Group
Ps *Member.
in1 Grouplen: -- Lmgth of group list

-- Fn supplied by user to vbe at replies if thars whau wanted
function votc.rQ -- User supplied voting fn

-- Protocol Specific Info
int NReliable: --Type of multicast
in1 Style: -- Ack style
Tim TimuS -- CUIT Timeout for each member
int stare; -- ovelall state

--Request Info
Seqno This; --Request Sequence number
Pkt Req; -_ Current request

-- stats al calls
int TotalRus; --count of au rtxs

-- Handy network th&
int Socket; -_ Handle on network
int AddrSize: _- sizeof 8 group eddr

1 CPCB;

-- State for each Member server in Group
-- Total state is some convolution of the member stat-

constant IDLE-STATE 0
constant REQSTATE I
constant REP-STATE 2
caxtant ACK-STATE 3
constant NACK-STATE 4

constant PROGRESS-STATE 0
constant REPLIED-STATE 1
EOnstam FAILED-STATE 2

constant OVERSUBSCRIBED 64

--Sewer state = 1 of these foreach client + general info

type PerClient (
Mid Client: -- Address of B past client
Seqno Lass -- Last msg # from that client
Seqno PktScq; -- Pkt in msg so far
Window Window; -- Client’s n window for US
int state; --our state for that Client
Pkt Rep: -- Saved reply for that client
~erC?lient *Next;

1%

type sw-vers~te (
-- Address Info

Mid Server. -_ ?his Server
-- Per Client Info

PC *PcrClimS
int clientcount;
widow wiiow; -- My current n window
Pkt Req; -- current request

-- Protccol Info
Tii TimecuS -- Timeout at Rcpliw 17
int State: -- state of server

-- Fn supplied by user to do se,vcr work
function worko;

-- General things of use
int Socket: --Network handle
int AddrSk; -- LQlgth of addr

1 SPCB;

-- widow sii base values

-- This is typically for .s unicast multipacket msg
constant ACREGATE-WINWW 16

--while this is a max for a fast rePlying server
__ to be ahead of slow ones
constant EACH-SERVER-WINDOW 4

255

12. Annex 4 - Packet Formats 9.

10.

Y. Dalal, “Broadcast Protocols”, SVPhD Thesis, .

JH Saltzer, DP Reed, and DD Clark, “End-to-End
Arguments in System Design”, ACM Transactions
on Computer Systems 2(4) pp. 277-288 (November
1984).

11. D.R. Cheriton, “VMTP: a transport protocol for the
next generation of communication systems”,
Computer Communications Review 16pp. 406- 15
(5-7 August 1986).

12.

13.

14.

15.

F Panzieri and S Shrivastava, Rajdoot: A Remote
Procedure Call Machanism Supporting Orphan
Detection and Killing, Univerity of Newcastle upon
Tyne, Computing Laboratory (1985).

J. Chang and N.F. Maxemchuk, “Reliable
Broadcast Protocols”, ACM Trans. Camp. Systems.
2,3pp. 251-273 (Aug. 1983).

J. Postel, “Transmission Control Protocol”, RFC
793, DARPA (September 1981).

A. J. Frank, L. D. Whittie, and A. J. Bernstein,
“Multicast Communication on Network
Computers”,
1985).

JEEE Software, pp. 49-61 (May

-. Packa stNc.t”m

tYpePI
Seqno seq: -- Req/Rep Seq matching
char type; --solt0fpk1

--Per p&t info
Seqno pscq; -- %&or AckY within a

-- single Req/Rep

Window win; --Current advenised tx window
shalt len: -- ‘his pkt lcn in bytes
short flags: -- indicates last pkt now
Buffer da;

-- User Dam
-- Also used for bitmap in SACKS

.-Sack pk~ has list of holes.

-- Seqno + Len of each hole
1 Pkt;

-- Packet Types

~awtant REQ 1
ccmlant REP 2

-_ Client to Server REP ACKS --

constant ACK 3
constam NACK 4

amstan, SACK 5

-. Selver to Client Req Pkt ACKS _-

constam PACK 6

constan, LAST 1

con~mnt MARK 2

13. References

References.

1.

2.

3.

4.

5.

6.

7.

8.

J Crowcroft and M Riddoch, “Sequenced Exchange
Protocol’ ’ , UC.5 Internal Note 1824, ADMIRAL
Project Nore A.341, (1985).

Andrew D. Birrell and Bruce J. Nelson,
“Implementing Remote Procedure Calls”, ACM
Trans.Comp.Sys. 2(l) pp. 39-59 (Feb 1984).

S Wilbur and B Bacarisse, “Building Distributed
Systems with Remote Procedure Call”, IEE
Softwure Engineering Journal 2(5) pp. 148-159
(September 1987).

S.Wilbur and P.J.M.Polkinghorne, “Distributed
Robust Filestore”, Internal Note, (1987).

Kenneth P. Birman and Thomas A. Joseph,
“Reliable Communication in the Presence of
Failures”, ACM Trans.Comp.Syst. S(1) pp. 47-76
(Feb 1987).

D.R.Cheriton and Willi Zwaenepool, “Distributed
Processes in the V-kernel”, ACM Transactions on
Computer Systems 3pp. 77- 107 (May 1985).

L. Hughes, “A Multicast Transmission
Taxonomy”, Technical Report Series no. 221, pp.
l-15, Newcastle University (Aug 1986).

S. E. Deering and Dave E. Cheriton, “Host Groups:
A Multicast Extension to the Internet Protocol”,
RFC-966, pp. 1-27 (Dee 1985).

256

