TCP-like congestion control for layered multicast

data transfer

1

Lorenzo Vicisano Luigi Rizzo?

Jon Crowcroft!

'Department of Computer Science, University College, London
Gower Street, London WCI1E 6BT, UK
email: {L.Vicisano,J.Crowcroft}@cs.ucl.ac.uk
*Dip. di Ingegneria dell’Informazione, Universita di Pisa
via Diotisalvi 2 — 56126 Pisa (Italy)
tel. +39-50-568533 — fax +39-50-568

email: 1.rizzo@iet.unipi.it (corresponding author)

Abstract

We present a novel congestion control algorithm suitable for use with cumulative, layered
data streams in the MBone. Our algorithm behaves similarly to TCP congestion control
algorithms, and shares bandwidth fairly with other instances of the protocol and with TCP
flows. It is entirely receiver driven and requires no per-receiver status at the sender, in
order to scale to large numbers of receivers. It relies on standard functionalities of multicast
routers, and is suitable for continuous stream and reliable bulk data transfer.

In the paper we illustrate the algorithm, characterize its response to losses both ana-
lytically and by simulations, and analyse its behaviour using simulations and experiments
in real networks. We also show how error recovery can be dealt with independently from

congestion control by using FEC techniques, so as to provide reliable bulk data transfer.

Keywords: congestion control, multicast.

1 Introduction

The design of one-to-many data transfer protocols which run on top of the Internet multicast
service have to face the fundamental problem of congestion control. The network is shared by

many competing users, and uncontrolled, aggressive flows can bring the network to a congestion

collapse. To avoid this, protocol instances should behave in such a way to achieve a fair sharing of
network resources with instances of other well-behaved protocols. At the same time, in multicast
protocols, effective congestion control should not come at the expense of scalability, since we

wish to address scenarios comprising thousands of receivers.

The problem is becoming more and more important with the increasing diffusion of of
bandwidth-intensive multimedia tools for video and audioconferencing, which stimulate the use
of the network for reaching large, heterogeneous groups of users. For these applications, tech-
niques have been proposed [17, 18] for transmitting the same stream using multiple data rates
(which map into different quality levels) based on a cumulative layered data organization. By

using proper data arrangements [19], a similar approach can be used for the reliable transfer of

bulk data.

Multicast routing provides the basic mechanism for distributing data with different rates
to subsets of the multicast distribution trees. By joining/leaving multicast groups, receivers
in a subtree can in principle adapt the data rate to the available network capacity. But this
approach can only work if receivers are able to evaluate and adapt to the network capacity, act
in coordination, and if the algorithms that are used can scale to large groups of receivers. The
requirement of being a fair competitor with other well-behaved protocols such as TCP further
complicates the problem of devising a suitable algorithm for letting receivers dynamically choose

the appropriate data rate.

In this paper we will describe a receiver driven congestion control algorithm which is TCP-
friendly and suitable for use in the Mbone. We support different bandwidths by using a layered
organization of data, and letting receivers adapt to the available bandwidth by joining to one or
more multicast groups. Each receiver takes decisions autonomously, but techniques are used to
synchronise receivers behind the same bottleneck (and belonging to the same protocol instance),
so that an effective use of the bandwidth is achieved. No explicit forms of group membership
are used, so that the algorithm is fully scalable and simple to implement, both at the sender

and the receiver side.

Previous works on this subject [2, 7, 11] have already used layered data organization to
implement some form of multicast congestion control. The novel results of our work are the
development of a congestion control algorithm which competes fairly with TCP flows, and the
achievement of receiver synchronisation without recurring to the use of explicit group member-
ship protocols. Other significant contributions of the paper lie in the evaluation of the algorithm
and its interaction with TCP using analytical techniques, simulations, and experiments in real

networks.

The paper is structured as follows. In Section 2 we briefly describe the basic mechanisms
our congestion control algorithm is based upon, namely the relation between throughput and
loss rate, multicast group membership in the Mbone, and layered data organization. Section 3
describes in detail our congestion control algorithm, while in Section 4 we analyse its behaviour.
First, using a simplified steady state model, we show that the relation between loss rate and
throughput is similar to that of TCP. Simulations are then used to validate the model, and,
together with experiments on real networks, to show that the algorithm has the desired features
in terms of receiver aggregation, adaptivity to varying network conditions, and intra- and inter-
protocol fairness. Finally, Section 5 briefly discusses the application of the algorithm to contin-
uous streams, and then shows techniques to achieve reliable bulk data transfer while preserving

scalability and optimizing the usage of the network.

2 Basic mechanisms

In this Section we briefly review the three basic mechanism our congestion control algorithm is

based upon.

2.1 Relation between throughput and loss rate

IP networks do not have an explicit congestion notification mechanism. The response to conges-
tion is dropping packets, and the loss of one or more packets at the receiver is interpreted as a
congestion signal. A congestion control algorithm must react to congestion signals by reducing
the transmission rate. The relation between the packet loss rate, p, and the throughput, T,
of a well behaved session is such that increasing values of p correspond to decreasing values of
T. For the congestion control algorithms used in TCP [8, 16], various authors have derived the

following approximate relation between throughput and loss rate:

. s-C
- RTT./p

where s is the packet size, RTT is the round trip time for the session, and the constant c is

T (1)

in the range 0.9...1.5 [6, 10, 13]. The relation holds for small values of p; at high loss rates,
TCP tends to lose its ACK-based self clock, the session assumes a chaotic behaviour, and the
actual throughput has a sharp decrease and becomes highly dependent on the length of the
retransmission timeouts.

Equation 1 does not capture completely the behaviour of the control system. Another

important parameter of any control algorithm is the speed of response to variations in the

controlled system — in our case, in network conditions. For TCP congestion control, this response
time is in the order of the RTT of the session, which is the time required for the sender to notice
a congestion signal and react (by either shrinking or inflating the congestion window).
Equation 1 shows that, in presence of competing receivers behind the same bottleneck (thus
experiencing a similar loss rate), the actual share of the bandwidth for each of them strongly
depends on s and RTT. Apart from this variance, competing TCP sessions all reduce their
throughput similarly in response to losses. Fairness among different protocols requires that all
of them have a similar behaviour in response to losses, with comparable functional dependencies,

absolute throughput values, and response times.

2.2 Multicast group membership

Forwarding of multicast data in the Mbone is implemented by multicast routers, which commu-
nicate with hosts using a dedicated group membership protocol, IGMP [4, 5]. Packets for a given
multicast group are forwarded into a network segment only if the segment leads to active re-
ceivers for that group (be them end nodes or other multicast routers serving active receivers). In
the join phase, a receiver joining a new group sends an IGMP message to the router, which will
in turn enable forwarding for that group, possibly propagating the information to the upstream
router (graft message). The join phase is fast, taking roughly one RTT (computed between the
joining node and the first router towards the source which is blocking the group). In the leave
phase, a receiver informs its local router that it is not interested in the group anymore. This
triggers a polling phase in which the multicast router checks if other receivers in the local subnet
are still interested in the group. If no active receivers exist, the router sends a prune message for
the group to the upstream multicast router, so that forwarding for that group is blocked. Since
the absence of active receivers can only be determined after a timeout, the leave phase can take
a considerable time (a few seconds) which we call the leave delay.

By joining and leaving a group, a set of receivers acting in coordination can exercise a simple
on/off control the flow data in a subtree, although the minimum duration of the on period is

constrained by the leave delay.

2.3 Layered organisation of data

Our congestion control protocol is aimed to the distribution of the same data (possibly, with
different quality) to a set of receivers with different, increasing bandwidths B;’s, t =0...l — 1.
The use of [different multicast groups, each with bandwidth B;, would make a very poor use of

the network capacity. The problem can be solved in a more efficient way by using a cumulative,

layered data organisation (layered data organisation for brevity) based on [multicast groups or

layers. Each layer carries data with bandwidth L;, in such a way that

Each receiver can tune its receive bandwidth by joining the appropriate number of layers, and
there is no duplication of data if receivers with different requirements share the same links.

A layered data organisation is only possible if the data to be transferred supports it, i.e.
Vi, the data carried with bandwidth B; is a subset of the data carried with bandwidth B;44.
This is usually feasible for multimedia data streams; for bulk data such as a file, suitable data
arrangements which minimize replications of data are shown in [19]. In both cases, however, the
problem of finding a suitable data organisation becomes more and more complex as the number
of layers grows. This, and scalability reasons, suggest that only a small number of values for B;
are made available from the transmitter, e.g. exponentially spaced; receivers can then choose

the subscription level which best matches the available bandwidth.

3 Congestion control for multicast layered data

Our congestion control mechanism is designed for a transmitter sending data to many receivers
in the Mbone. The communication might involve a continuous stream (e.g. video or audio data),
or a reliable, bulk data transfer (e.g. a file). In this Section we will ignore the fact that lost
packets will need to be retransmitted in order to complete a reliable file transfer; this problem
will be tackled in Section 5.

In unicast communications, the sender takes part to congestion control by changing its send-
ing rate according to the congestion signals that it receives. In multicast communications, this
approach would be problematic, since different groups of receivers with different requirements
may exist, and adapting to the needs of one set of receivers would penalize others with contrast-
ing requirements.

As in other proposals appeared in the literature [11], we achieve the desired effect by using
the multicast router driving the bottleneck to modulate the sending rate for the subtree. This is
possible thanks to the layered data organisation, which gives receivers the possibility to modulate
the receive rate by joining/leaving layers. Adaptation to heterogeneous requirements becomes
possible (and simple) because it can be done independently on each subtree served by a multicast
router. As a consequence of this approach, the transmitter does not even need to take part in

congestion control (except for using a layered data organisation).

In our algorithm, receivers try to infer the status of the network using congestion signals
(typically, packet losses), and control the flow of incoming data using the pruning capability of
IP multicast routing. Each receiver joins or leaves layers depending on the received congestion
signals. The strategy to join or leave layers is chosen in such a way to emulate the behaviour of
TCP and generate a similar relation between throughput and loss rate. Intuitively, a receiver

with subscription level 7 will behave as follows:

if a loss is experienced, decrease the subscription level; otherwise, if no losses are

experienced for a time ¢,(4), increase the subscription level.

The above rule mimics the behaviour of TCP. With a proper choice of the bandwidth B; cor-
responding to each subscription level, and the delay ¢, () before moving to the next level, the
above algorithm yields a relation between throughput and loss rate similar to that of TCP,
namely 7" < 1/,/p. Parameters can also be tuned to yield a response time comparable to that
of TCP congestion control.

Unfortunately, we also have to deal with some additional problems, not present in unicast
communications, for which the simple algorithm presented above is not adequate. First, con-
gestion control cannot be effective if receivers behind the same router act in uncoordinated way.
Second, the length of the leave delay makes failed joint attempts (i.e. joins to a layer which cause
the bandwidth to exceed the bottleneck bandwidth) have long lasting effects. Both phenomena
can severely compromise the effectiveness of the algorithm, so we need to develop appropriate

countermeasures.

3.1 Synchronisation points

With more than one receiver behind a bottleneck, synchronization among receivers is funda-

mental in order to make the pruning mechanism work. In fact:

(a) the action of a receiver dropping a layer (leaving a group) has no effect unless all the

receivers sharing the bottleneck drop that layer;

(b) if a receiver causes congestion on the bottleneck by adding a new layer, another receiver
might interpret the resulting losses as a consequence of its too high level of subscription

and and drop a layer;

(c) if two receivers behind the same bottleneck have different subscription levels, the bottleneck

bandwidth allocated to that protocol instance is not fully exploited;

All these problems can be minimised if join attempts from different receivers are coordinated.
Unfortunately, receivers tend to diverge because of different start times, propagation delays,
loss patterns, and the history of events experienced by each of them. We have avoided the
introduction of an explicit protocol for receiver coordination, since it could pose scalability
problems, and could be slow to converge. Rather, we have used an implicit coordination protocol
based on the use of synchronisation points (SP’s).

SP’s correspond to specially flagged packets in the data stream. A receiver can only make a
join attempt immediately after an SP, and can only base its decisions on the history of events
since the last SP. Both strategies help in keeping receivers in synch, especially for nearby nodes
which will be less affected by skews in propagation delays and losses caused by background
traffic. The deletion of history across SP’s serves to avoid that random events experienced by
each receiver accumulate their effects and cause receivers to diverge.

The distance between SP’s on each layer is related to the time ¢,(4) that a receiver must
spend at a given level before doing a join attempt. The phenomenon illustrated in point (b)
above suggests that when a receiver at level ¢ does a join attempt, all receivers at the same or
lower levels might experience the losses related to a failure. To overcome this problem, SP’s at
each level are always a subset of the SP’s at the previous level. This has two implications. First,
when a receiver does a join attempt, all receivers at the same or lower levels will do an attempt
as well; as a consequence, any congestion signal will not cause further divergent behaviours.
Second, receiver with a lower subscription level have more chances to increase the level and

aggregate to other receivers at a higher level.

3.2 Sender-initiated probes

The problems described in the previous section are further aggravated by the length of the
leave delay, which makes a join attempt (and especially, a failed one) have consequences on the
network for a long time. Join attempts (and consequently, SP’s) should then be sufficiently far
apart to let the network settle in between. Furthermore, as an optimisation of the algorithm,
we would like to be able to increase the subscription level only when there is confidence that
the attempt can be successful.

Our algorithm involves a form of sender-initiated probe for bandwidth, consisting in the
periodic generation of short bursts of packets, followed by an equally long relaxation period
during which no packets are sent. The bursts have the effect of a join attempt. For the duration
of the burst, the bandwidth is effectively doubled; if the bottleneck bandwidth is not sufficient,

queues build up and possibly cause packet losses, or an increase in the packet interarrival times.

Such congestion signals are not interpreted as a signal to lower the subscription level, but rather
as hints for not increasing the subscription level. The advantage of these sender-initiated probes
over real join attempts is that the surge of packets that would follow the failed join attempt will
not last for the whole leave delay, but just for the (much shorter) duration of the burst, and
recovery will be possible during the subsequent relaxation period. We note that sender initiated
probes also mimic the behaviour of TCP sessions, which, in a number of occasions (e.g. when
opening windows, or receiving an ACK for more than one MSS) transmit two or more back to

back packets.

3.3 The deaf period

The leave phase takes a long time to complete, even when all receivers in a subtree drop the
layer which caused congestion. A naive application of the algorithm presented in Section 3 would
probably result in decreasing the subscription level multiple times in response to a failed join
attempt. To overcome this problem, we have introduced a deaf period tp . After a loss, and
the subsequent decrease in the subscription level, a receiver does not react to further losses for
a time tp, in order to account for the slow response of the multicast router to leave requests.
The deaf period is set slightly larger than the leave delay, so as to leave the multicast router

sufficient time to respond to the leave request.

3.4 The congestion control algorithm

In this Section we provide the full description of our congestion control algorithm, with the
addition of the mechanisms discussed so far.

We assume that [different bandwidths are offered, B;,7 = 0.../ — 1, with increasing values
(e.g. exponentially spaced by a factor of 2). Data is transmitted over [multicast groups with
bandwidths L;, where Lo = By and L; = B; — B;_1,i=1...1 — 1.

For each bandwidth B; packets are normally transmitted at a constant! rate, appropriately
placed onto the different layers; we call 7; the inter-packet time at each layer 7.

During bursts, which have a duration 79, two back-to-back packets are sent at each trans-
mission. Following the burst, there is an interval 7o during which the transmission is suspended.
Finally, an interval (W — 2)7y follows during which transmissions occur at the nominal rate.

Synchronisation points are spaced proportionally to the bandwidth corresponding to the

subscription level, and are located at the end of a burst (which corresponds to the last packet

'depending on the actual values of B;, this might only apply to the average rate

........
L4 swunpasssnanbooooooossssssssssssss s s s s nunununnnnnunmnnnnn
L3 .o

a|s ® % |0 D DD E E E E E EE S S EEESESESSESE=E=8=8=8=8838383838#33

L2 « |2 &2 |c o = = = = = = = = = = = = = =

L1

s
o
N
N
N
N
N
N
N

L0 i s

Burst

L4
L3
L2
L1
Lo

Figure 1: Above: the sequence of packet transmissions; below: the location of synchronisation points at

the various layers. P =1, W = 8 and five layers.

of the burst in layer Lg). As a reference, Figure 1 shows the sequence of packet transmissions
for P =1,W = 8 and five layers, and the location of synchronisation points.
The distance between SP’s at subscription level i is (B;/Bo) PW . The constants 7o, P and
W appear in the relation between throughput and loss rate, and will be discussed in Section 4.2.
Subscription levels can increase only at SP’s, and decrease at any time, using the following

rules:

o decrease if a loss is experienced during normal transmissions (except for a time tp after a

previous decrease);
e increase at a SP if no losses are experienced during the burst preceding that SP;

e unchanged otherwise (this includes the case of losses experienced during a burst, or during

the deaf period).

The deaf period tp after a decrease serves to avoid cascaded losses while the leave can effectively
complete.
It should be noted that the protocol does not depend heavily on the bandwidths being

exponentially distributed, or on the use of probes (although probes do show a performance

10/ 100

10/ 30 10/ 30

. 128/ 150
10/ 100

@ 10/ 120

Figure 2: The network topologies used in the simulations.

improvement in our simulations). The main, and novel, elements of the algorithm are the use

of synchronisation points and the rules for changing subscription levels.

4 Performance analysis

In this section we evaluate the performance of our congestion control algorithm. We first derive
an analytical relation between throughput and loss rate basing on an approximate steady state
model. The analytical model is then validated through simulations and measurement on the
Internet, which show a very close match to the analytical value. Subsequently, a number of
experiments are conducted to determine the behaviour of the algorithm in different conditions.
We investigate the start up behaviour, steady state behaviour, adaptation to changing network
conditions, fairness among protocol instances and with TCP instances. Measurements on the
real network have been performed using a prototype implementation of the algorithm, while
simulations have been done using the ns simulator [12], both using tail-drop and RED routers.
The network topologies used in the simulations are shown in Figure 2, with transmitters and
receivers spread on the various nodes. Experiments (both simulation and real measurements)
generally include multiple instances of our multicast congestion control algorithms, possibly
competing with TCP protocol instances, and background traffic. The protocol we evaluated

used exponentially distributed bandwidths and parameters P =1, W = 8.

10

4.1 Throughput versus loss rate

The relation between throughput and loss rate can be derived using an approximate steady state
model of the system, in which a receiver oscillates among two subscription levels, 2 and 7 + 1,
which surround the “correct” bandwidth. In the approximate model, the throughput depends
on the fraction « of time which is spent at level 7 4+ 1, which in turn depends on the loss rate
experienced by the connection. In Appendix A we derive the following approximation for the

throughput:

s el

T ©
To /pvV PW

where W is the number of packets between two bursts, P is the distance (in bursts) between

(2)

synchronisation points at the lower level, and the parameter 1 < ¢’ < 2 is a function of a. The
parameter p represents the burst loss rate, computed accounting closely spaced (i.e. closer than
tp) losses as a single one. Note that s/7g = Bp, but we have left s and 75 in the equation to
remark its similarity to the same relation for TCP. Apart for a multiplying constant, Equations 1

and 2 reflect the same behaviour in response to losses.

4.2 Parameter tuning

Our algorithm uses several parameters (P, W, By) whose values influence the actual response
(both steady state and dynamic) to losses. Our goal is to tune parameters to achieve the same
response as TCP.

TCP sessions have a wide range of RT'T’s, with common values for non-local communications
in the 0.1-1 s range. For the reasons we will discuss in the following paragraphs, it is difficult
for us to achieve very short response times, so we can only aim for the high end of the range.
i.e. a response time of about 1 s.

W is the distance between bursts, measured in packets transmitted at the lowest level. W
cannot be less than 2, but in practice it needs to be larger in order to make bursts sufficiently far
apart. On the other hand, W should not be too large or it would make synchronisation points
too distant, hence making the algorithm slower to converge to the correct operating point. In
our experiment we have used W =8

P represents the distance between synchronisation points at the lowest level, measured in
bursts (the same distance, measured in packets, is PW). The contrasting requirements of making
W large and synchronisation points not too distant almost unavoidably forces us to use P =1,

unless we work with very high bandwidths.

11

By = s/7g is the lowest bandwidth that we can use on our session. There are some practical
lower bounds on its acceptable values. The first one comes from the application, in that some
data streams (e.g. audio or video) cannot be transferred with an acceptable quality below a
certain bandwidth. A second lower bound is related to the speed of response of the congestion
control protocol. Since the distance between synchronisation points is at least PW packets,
lowering the bandwidth also means increasing the distance between synchronisation points.
Reducing the packet size is only possible to a certain extent, above which the overhead for
packet headers becomes unacceptably large.

In our experiments, we have used a packet size s = 256 bytes. Our target of 1 second between
synchronisation points at the lowest subscription level, and the minimum values for P and W

of 1 and 8 respectively, translate into a minimum bandwidth of 2 KB/s.

4.3 Differences with TCP

Although our algorithm tries to mimic the behaviour of TCP congestion control, and Equa-
tions 1 and 2 only differ by a multiplying constant, there are some differences between the
behavior of the two algorithms.

First of all, with our algorithm, the relative throughputs for competing sessions experiencing
the same loss rate does not depend on the “distance” (RTT) between the sender and the receiver.
In this respect, TCP congestion control has what can appear as a degree of unfairness, in that
the throughput is inversely proportional to the RTT. In fact, both approaches are appropriate
having different targets:

e In TCP, congestion control is completely controlled by the sender, and the only way the
receiver has to reduce throughput is to delay the generation of acknowledgements, making
the RTT appear larger than it really is. Furthermore, connections with a larger RTT are
less responsive than those with a shorter RTT. For both reasons, it is more than acceptable
that bandwidth is not allocated evenly to sessions with a different RTT, and this should

not be seen as a sign of unfairness.

e Our congestion control algorithm lets receivers control throughput via the join/leave mech-
anism, so there is no need for an additional mechanism such as the dependency on the
RTT. Besides, the response time of the algorithm does not depend on the RTT but rather
on (usually longer) parameters such as 75 and the leave delay, so it is reasonable that all

protocol instances get the same share of bandwidth irrespective of the RTT.

A second difference is that our protocol works by controlling the data rate, while TCP

12

congestion control is based on the ‘conservation of packets’ principle [8]: a new packet is not put
into the network until an old packet leaves; this allows TCP to fine-tune its traffic generation
and to react quickly in the face of short-term network load changes. On the other hand it heavily

relies on the acknowledgements to work, making TCP break at high loss rate, as discussed below.

Another important difference is that our algorithm has a limited set of throughputs allowed
(exponentially distributed), while TCP is able to adjust its throughput which much finer gran-
ularity. This has two major consequences: one is that we obtain a worse bandwidth utilization,
the other is that the minimum allowed throughput can be higher than what the network can
sustain; this happens in presence of high losses. Both Eq. 1 and 2 are only valid at low loss levels,
corresponding to a TCP session able to recover through fast retransmit, and our algorithm used
with a bandwidth B > Bgy. If these conditions do not hold, the source becomes not controllable,

since we do not have a way to reduce the sending rate to an acceptable level.

The effect of high losses on TCP is that a connection tends to lose its ACK-based self
clock, resulting in timeouts and consequent hiccups in the flow of data. The actual throughput
quickly decreases (perhaps by an order of magnitude or more) and becomes heavily dependent
on the value of the retransmission timeouts, rather than on the actual loss rate. In the same
conditions, our algorithm behaves differently since the sender continues to transmit at a fixed
rate, the congestion control mechanism ceases to be effective, and the actual throughput becomes
dependent on the number of uncontrolled sources and the queue management policy at the

router.

It could be possible, in principle, to implement a behaviour similar to TCP even in our
algorithm, so that when excessive losses are experienced at subscription level 0, a receiver dis-
connects even from layer 0 to resume reception at a later time. Of course, all receivers behind the
same bottleneck should act synchronously, for the reasons explained in Section 3.1. However, we
believe such a behaviour to be implemented more properly at the application level. In fact, the
time constants involved in this mechanism must be extremely long (several seconds at the very
best). This can make the resulting quality unacceptable for some applications (e.g. audio or
video) suggesting a permanent, rather than temporary, disconnection. Furthermore, experience
with the use of Web browser on congested networks suggests that the user will always try to
override timeouts when they become too long (e.g. pushing the ’Reload’ button, or opening new

connections), thus defeating the mechanism.

As a consequence, we believe that the proper approach to deal with high losses lies in the
use of appropriately low values of By, and in the use of queue management mechanisms in the

routers to deal with uncontrollable flows [6].

13

40

2 40
o
4 + 121 i
35 87w 35 8w
16 x 16 x
: 32 & 32 &
30 d Tisart(P*wWp)) === 30 | HSr(PHWp))-==
25 F 25
= i :
2 20 2 20
[| = :
+ :
‘o
B 15 [
: s
10 *ag 10 o
- L
5 & 5 -
Sy . %
* T B ST IS VYNV VPV * FRR R s R IR VN SRS
0 0
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025
loss rate loss rate

Figure 3: The relation between throughput and (burst) loss rate in simulations, compared to the ana-

lytical results from Eq. 2 (solid line). Left: RED routers; right: tail-drop routers.

4.4 Validation of the model — inter-protocol fairness

To validate our analytical model, we have both simulated the behaviour of several instances of
the protocol sharing a bottleneck link, and run an implementation of our protocol on a real
Internet path.

For the simulations we have used the topology of Figure 2,a with both RED and tail-drop
routers. Routers’ parameters setting was the default with ns (queue size of 50 packets and, for
RED routers, thresholds of 5 and 15 packets and queue weight of 0.002). In this experiment, we
spread N pairs of sender/receiver on the two paths with different delays (ng—ns and ns—ng).
Senders were started at random times over an interval of N/2 seconds, and receivers had been
kept active for 300 seconds.

In Figure 3 we compare Eq. 2 with simulation results: as we can see there is a very close
match between the model and simulations, in particular when using RED routers.

A similar experiment has been done using an experimental implementation of the algorithm
on a real Internet path that connect two subnets, one in UCL (London) and the other in DEIT
(Pisa). The path crosses the ‘TEN-34’ network?, the Italian research network (GARR) and the
English one (JANET). It is characterized by an unloaded average RTT of about 70 ms and a
loaded RTT of about 300 ms; it traverses 15 nodes in both directions, the route having been

2TEN-34 is a high speed pan-European interconnect facility between the national research networks. TEN-34’s
connection between UK and Italy is made of two links (IT-DE and DE-UK) with 20Mb/s and 22Mb/s respectively,

for further information see http://www.dante.net/ten-34.html .

14

260

BO/sqrt(P*W*p) -
240 0 nEP

220

200

5 T

180

160

140 R

thruoghput (kbit/s)

120 S
o o
100 &

80

60

40
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
loss rate

Figure 4: The relation between throughput and (burst) loss rate in real measurement, compared to the
analytical results from Eq. 2 (solid line). Protocol instances run concurrently are represented by the same

symbol.

stable for the whole duration of the experiment. The maximum throughput experienced on the
path is a little greater than 1Mb/s, probably due to a 2Mb/s link in the Italian part of the path.
RTT and nodes traversed have been monitored periodically using ping and traceroute pro-
grams respectively. For the experiments we have setup a multicast tunnel (without throughput
limitation) between two multicast routers feeding the two subnets. We have run senders on four
UNIX machines in the subnet at one site, while receivers have been run on two machine at the
other site. The protocol parameters are the same as those used in the simulations. We have
run from one to eight concurrent instances of the protocol, sharing the links with the normal

Internet traffic —although it was quite low due to the non busy time chosen for the experiments.

Figure 4 shows the experiment results, which are in accord with the model prediction and
with simulations. The actual throughput, slightly higher than the analytical value, can be
motivated by the (probable) use of tail-drop routers in the network, which cause more bursty

losses.

The experiments presented above have also been used to evaluate the fairness in sharing
bottleneck bandwidth among several instances of the same protocol. Both Figure 3 and Figure 4

show that protocol instances running concurrently present a similar throughput. To evaluate

15

protocol instances 2 4 8 16 32

RED

fairness index 0.998 0.978 0.992 0.993 0.994
router loss rate 0.0054 0.0125 0.0250 0.0354 0.0737
perceived loss rate 0.0030 0.0070 0.0143 0.0231 0.0495
burst loss rate 0.000077 0.000510 0.001752 0.007092 0.021459

bandwidth exploitation | 0.563 0.624 0.696 0.776 0.907

tail-drop

fairness index 0.986 0.779 0.876 0.897 0.978
router loss rate 0.0034 0.0180 0.0283 0.0486 0.0825
perceived loss rate 0.0029 0.0117 0.0135 0.0267 0.0504
burst loss rate 0.000150 0.001458 0.001894 0.005198 0.018356

bandwidth exploitation | 0.579 0.773 0.766 0.857 0.942

Table 1: Various Protocol Instances sharing the same bottleneck: Fairness Index, Loss Rate at the
router, Perceived Loss Rate, burst Loss Rate and Bandwidth Exploitation. Average values on all the

instances. Top: RED router, bottom: Drop-Tail router.

16

better this feature, we have computed the fairness index® [3] from the results of the simulations.

Table 1 shows f7 and some other parameters computed for 2, 4, 8 16 and 32 protocol
instances. From the table we can see that our protocol achieves a good fairness both with RED
routers and with tail-drop routers, although, with the latter, we measured an appreciably worse
fairness with 4 and 8 protocol instances.

Table 1 also shows three different loss rate indexes: the loss rate seen at the router, the loss
rate seen at receivers, and the burst loss rate. The first two values differ in that a receiver, once
a layer is left, does not consider packets (and losses) from that layer anymore. The last value is
computed by considering closely spaced losses (namely less than ¢p seconds apart) as a single
loss.

The last parameter shown in Table 1 is the average bandwidth utilisation of the aggregate
flow. The coarse quantisation of allowed throughputs sometimes leads to a non optimal util-
isation of the available bandwidth. This is more evident with fewer protocol instances which
stabilise on high throughput levels, characterised by larger rate steps between one level and the

adjacent ones.

4.5 Fairness with TCP

A second set of simulations and experiments has been done to investigate the behaviour of
our protocol when competing with other TCP instances. Using the simulator, we have run 8
multicast protocol instances as in the previous experiments, together with 8 TCP connections
on the path ng—mns characterised by a 420 ms RTT. Figure 5 shows the aggregate throughput
of TCP connections and that of our protocol instances. The graph on the left refers to TCP
with 256 bytes packet size, while the one on the right refers to 1024 bytes packet size. According
to Eq 1 and 2, TCP with 256 bytes packet size and 420ms RTT should be as aggressive as
our protocol (with the usual parameter setting). However Figure 5 shows that our multicast
protocol is slightly more aggressive; that is due to the fact that our algorithm tends to aggregate
burst losses more than TCP does; in other words, given the same loss rate, our protocol sees a
lower congestion-event rate than TCP does.

Figure 6 shows the same experiment performed in the real network. Using the testbed

3The fairness index is defined as s
N-1 \
_ (Zx:O T(.’L‘))
NSV ()2

where T'(x) is the throughput of the z-th protocol instance. fi always lies between 1 (indicating that all instances

fi

get the same share) and 1/N (when one of the instances gets all the bandwidth).

17

1.4e+06

1.6e+06
1.2e+06 ° 1.4e+06 1
1e+06 1.2e+06 1
w —~
g L 1e+06 |
£ 800000 1 =8 ;
2 o i
g T 800000 7 g
T 600000 [1 3 T 5
= i 2 L B 88 _ _8._.0a [N i
= :.’ £ 600000 S e wa¥a®eag "E:'m"‘ ¥ hey
400000 {4 i & TPsa tao
/ 400000 | 7 1
£ i
200000 f 200000 | | 1
o é
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
time (s) time (s)

Figure 5: Aggregate throughput of TCP connections and that of our protocol instances. Left: TCP
with 256 bytes packet size; right: 1024 bytes packet size.

1000

900

TCR, ~300ms
800 ! gregate

700

600

500

goodput (kbit/s)

400

300

200

100

0
2550 2600 2650 2700 2750 2800 2850 2900 2950
time (s)

Figure 6: Bandwidth sharing among one TCP connection (top) and 4 protocol instances (bottom) on a

real network. RTT ~ 300ms, and TCP packet size of 1440 bytes.

18

described above, we have run 4 instances of our protocol and one TCP connection on our network
path. Both in TCP case and in our case data rate has been evaluated at the application level

averaging over non-overlapping windows 5 seconds wide.

As we can see in Figure 5, network load was almost entirely determined by our traffic: before
we started the multicast transfers, the TCP connection was using all the available bottleneck
bandwidth (excluding that used by non-responsive protocols); after our traffic started, the TCP
throughput decreased, accounting for the bandwidth used by the multicast traffic. As we can
see and according with Equations 1 and 2, with the parameters used (full-sized ethernet packets

for TCP) and with with the RTT we had, our protocol was less aggressive than TCP.

4.6 Startup and steady state dynamics

A final set of experiments has been run to determine the dynamic behaviour of our algorithm.
We were particularly concerned about the startup behaviour, to see how quickly a new receiver
would synchronise with other receivers belonging to the same protocol instance and located
behind the same bottleneck, and the steady state dynamics, to verify that receivers remain in

synch and only move between adjacent layers.

On the topology of Figure 2,b, we have run an instance of our protocol placing a sender
on node mg and five receivers on nodes ns—mng. Receivers on node ns—n; have a bottleneck
bandwidth of 1.5Mb/s while receivers on nodes ng and ng have a bottleneck bandwidth of .5Mb/s
and .128Mb/s respectively. Moreover each bottleneck link is crossed by a random uncorrelated

traffic which accounts for about half of the available bandwidth.

Figure 7 (left) shows the result of the experiment: receivers on node ns—ny (ro—r4) experi-
ence the same network conditions and converge reasonably fast to the same subscription level
even if started at different times. They also keep synchronized until the end of the run. The
other receivers, which stabilize on lower subscription levels, are not subject to any appreciable

interference caused by the formers.

Figure 7 (right) shows the throughput seen at the application level in a similar experiment.
This time we have run a single receiver after the first bottleneck, but we have run a TCP
connection on the path ng—mn7 with 256 bytes packet-size. We can notice that TCP competes
for the available bandwidth on the first bottleneck with receiver ry interfering very little with

the other receivers and achieving a good bandwidth sharing.

19

1200

700

1— i 1
1000 2 — 1 600 - i 2]
3 e i TCP e
4 —
500 -
o 800 F _
= 2
5 =
< € 400
= | =
%: 600 N
8 g 300 -
= 400 | s
200
200 100k

i
0 60 0 20 40 60 80 100 120 140
time (s) time (s)

Figure 7: Different receivers of the same protocol instance, joining at different time and with different
bandwidths. On the left is shown throughput pertinent to the subscription level while on the right is

shown the throughput as seen at the application level.

5 Applications

The congestion control algorithm we have presented is applicable to both continuous data
streams and to reliable bulk data transfer. In general, receivers will not receive all packets
transmitted by the sender on all layers, either because their subscription level is too low, or be-
cause of losses due to congestion or to the hopping between layers. It should be noted, though,
that our congestion control protocol aims at keeping the loss rate at very low values. Still, the
effect of missing packets is obviously different for continuous data streams and for reliable bulk

file transfers.

5.1 Continuous streams

In the transfer of continuous data streams, delay constraints generally do not allow to give hard
guarantees on the integrity of the received data, and the recovery of lost packets is generally
useless. The goal, for a continuous data stream, is to transfer data with the maximum achievable
quality for the available bandwidth. This is simply achieved by using the layered data organi-
sation, where each subscription level corresponds to the same data transmitted with a different
quality.

It is desirable to limit the latency in transferring data, and to make burst losses reasonably
short. These are contrasting requirements since burst losses can be reduced by using techniques

such as interleaving, at the price of an increase in the latency. Regarding latency, we should

20

also note that the use of the sender-initiated probe produces a degree of burstiness in the traffic
which requires at least 79 seconds of buffering at the receiving end in order to produce a uniform

flow of data.

5.2 Reliable bulk data transfer

We come now to the problem of reliable bulk data transfer, which requires to find a proper
layered data arrangement for a fixed-size data object, and an effective way for recovering from
any packet that may have been lost because of congestion or during the jumps between different
layers. We assume that the transmitter starts sending packets as soon as it receives a request
from the first receiver, and continues transmission until there are active receivers. Transmission
is always done on all layers, which are then selectively forwarded by the multicast routers. We
also assume the existence of an upper level session management protocol which possibly collects
feedback to decide how long to continue transmissions and select which packets to send.

The approach we follow is based on the use of FEC techniques (see [1, 14]). Intuitively,
the problems of finding a suitable transmission order for the data, and achieving an effective
recovery from losses, can be solved by passing all the k& packets which make up the object to an
encoder which can produce a large number n > k of packets. The encoding is such that any
subset of k encoded packets suffice to reconstruct the original data.

When the transmitter has to send a packet, it takes a new one produced by the encoder.
Provided that each packets is not transmitted twice during the time a receiver needs to complete
reception (the condition n >> k insures this), each receiver only has to collect k different packets,
no matter which ones or which layer they come from, in order to complete reception. This
approach has already been used by the authors in the RMDP protocol [15], a reliable multicast
protocol which can be easily extended with the congestion control algorithm described in this
paper.

The use of a FEC encoding with high redundancy makes all packets equivalent for data
reconstruction, and solves many problems at once. First, there are no scalability problems due
to the presence of uncorrelated losses at different receivers, since each receiver can conduct
recovery autonomously, by simply waiting for more packets to come. Second, there is no need
for detailed feedback from the receivers, since all received packets are equally good for data
reconstruction purposes. Third, there is no need to devise a special data arrangement for the
different layers in order to avoid that a receiver sees the same packet more than once.

The use of FEC has a drawback, though, which consists in the potentially high encoding

and decoding costs. However, this overhead can be limited to acceptable values.

21

The principle of operation of conventional FEC encoders and decoders is shown in [1],
while [14] presents an implementation suitable for use in computer communication protocols.
Such encoders/decoders require O(k) operations per packet produced, although the multiplying
constants are small and encoding speeds in the Mbit/s (or higher) can be achieved on cheap
PCs with values of k in the range 32..64 (see [14] for such an implementation). The use of FF'T
techniques (see [1]) can reduce the complexity of FEC encoding to O(logk).

The encoding costs can be bounded, at the price of a slight decrease in efficiency (i.e. number
of packets which are necessary to reconstruct the original data), by limiting the number of
packets used to produce each encoded packet. A first approach consists in associating the k
packets making up the file to be transferred to points of a t—dimensional cube of side kg, i.e.
k = ki, with kg sufficiently small to make the computation feasible at the desired speed. For
each group of kg packets differing in one coordinate, the encoder can produce ng packets. The
encoding costs are then bounded by the value of kqg; the receiver efficiency decreases slightly,
in that the condition of having a minimum number of packets must hold on each group of ng
packets rather than on the whole file.

As an alternative, a recent paper [9] presents a different encoding algorithm, based on proba-
bilistic techniques, which is very efficient for large values of k, requiring constant time per packet

produced.

6 Conclusions and future work

We have presented a congestion control algorithm for multicast data transfer on the MBone,
evaluated its performance, and shown its applicability to continuous stream and reliable bulk
transfer. The algorithm does not require router support, or per-receiver status at the sender; it
is completely receiver driver, and does not rely on any explicit protocol for receiver synchroni-
sation or managing group membership. Analytical results, simulations and experiments on real
networks have shown the algorithm to achieve a fair sharing of bottleneck bandwidth with other
protocol instances and with TCP instances.

Future work will include a more extensive set of simulations, and measurements using larger

network topologies and more complex scenarios.

References

[1] R.E.Blahut, “Theory and Practice of Error Control Codes” Addison Wesley, MA, 1984

22

[2] T.Brown, S.Sazzad, C.Schroeder, P.Cantrell, J,Gibson, “Packet video for heterogeneous
networks using CU-SeeMe”, Proc. of IEEE Intl. Conf. on Image Processing, Lausanne,

Sept.96

[3] D-M.Chiu, R.Jain “Analysis of the Increase and Decrease Algorithm hms for Congestion
Avoidance in Computer Networks”, computer Networks and ISDN Systems, V.17, pp.1-14,
1989.

[4] S.Deering, “Multicast Routing in a Datagram Internetwork”, PhD Thesis, Stanford Uni-
versity, Dec.1991.

[5] W. Fenner, “Internet Group Management Protocol, Version 27, INTERNET-
DRAFT (working draft), Jan. 20, 1997, http://ds.internic.net/internet-drafts/-

draft-ietf-idmr-igmp-v2-06.txt

[6] S.Floyd, K.Fall, “Router Mechanisms to Support End-to-End Congestion Control”, Tech-
nical report, ftp://ftp.ee.1bl.gov/papers/collapse.ps.

[7] D.Hoffman, M.Speer, “Hierarchical video distribution over Internet-style networks”, Proc.

of IEEE Intl. Conf. on Image Processing, Lausanne, Sept.1996

[8] V.Jacobson, “Congestion Avoidance and Control”, ACM SIGCOMM’88, August 1988,
Stanford, CA, pp.314-329.

[9] M.Luby, M.Mitzenmacher, A.Shokrollahi, D.Spielman, and V.Stemann. “Practical loss-
resilient codes”, Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, page 150, El Paso, Texas, 4-6 May 1997.

[10] M.Mathis, J.Semke, J.Mahdavi, T.Ott, “The Macroscopic Behavior of the TCP Congestion
Aviodance Algorithm”, CCR, Vol.27 N.3, July 1997.

[11] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven Layered Multicast”, SIG-
COMM’96, August 1996, Stanford, CA, pp.1-14.
Available as ftp://ftp.ee.1lbl.gov/papers/mccanne-sigcomm96.ps.gz

[12] UCB/LBNL Network Simulator - ns - version 2, 1997,

http://www-mash.cs.berkeley.edu/ns/.

[13] T.Ott, J.Kemperman, M.Mhathis, “The stationary distribution of ideal TCP congestion

avoidance”, Technical Report, Aug. 1996.

23

[14] L. Rizzo, “Effective erasure codes for reliable computer communication protocols”, CCR,
V.27 N.2, April 1997, pp.24-36.

Source code available as http://www.iet.unipi.it/"luigi/vdm.tgz

[15] L.Rizzo, L.Vicisano, “A Reliable Multicast data Distribution Protocol based on software
FEC techniques”, The Fourth IFEE Workshop on the Architecture and Implementation
of High Performance Communication Systems (HPCS’97), Sani Beach, Chalkidiki, Greece
June 23-25, 1997

[16] W. Stevens., “T'CP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms.”, RFC2001, January 1997.

[17] N.Shacham, “Multipoint communication by hierarchically encoded data”, Proc. of IEEE
Infocom’92, (1992), pp.2107-2114.

[18] D.Taubman, A.Zakhor, “Multi-rate 3-D subband coding of video”, IEEE Trans. on Image
Processing 3, 5 (Sept.1994), pp.572-588.

[19] L.Vicisano, “Notes on a cumulative layered organisation of data packets across multiple

streams with variable-rate”, http://www.cs.ucl.ac.uk/staff/L.Vicisano/layers.ps .

24

A Simplified Model of the Receiver

To compute the dependency of the throughput on the loss rate, we use a simplified model of our
congestion control algorithm, assuming that receivers reach a steady state, where they oscillate
between two subscription levels: 7 and ¢+ 1. Experimental observations have shown this to be a
realistic assumption, and we will see that the results we obtain from this model conform to the
simulation outcome.

Let the subscription level become 7+ 1 after an SP at level 7, and assume that the first loss
is encountered after tyy = a2t PWry. After the loss, the receiver will decrease the subscription
level and remain at level i until the next SP, which will occur after a time ¢7, (t7, = (1—2a)2!PW
if 0 < a<0.5,t, =(2—2a)2° PW otherwise). Let Ny and Ny, the number of packets received
during tg and t7,, with Ny = 4aPW(2%)2, and Np, = (1—2a) PW (2))% or Ni, = (2—2a) PW (2!)?
depending on «. The throughput is then

N N
7o JHTNL (3)
tg +tr,

Assuming (approximately) one loss per cycle, we can express the reciprocal of the loss rate as
1/p=Nu+ Ng (4)

By substituting the values of tg,tr,, Ng and Ny, in Eqgs. 3 and 4, and writing Eq.4 as

1

2= V(14 2a)pPW (5)

(for @ < 0.5), and plugging Eq.5 into Eq.3 we obtain

s c

T o JpVPW

where ¢’ varies between 1 and 2 depending on a (using ¢/ = 1 gives a conservative estimate of
the throughput).

The model suffers from several approximations, the main one being not taking into account
the presence of the leave delay. Its presence has the effect of increasing the actual throughput
for a given loss rate. In fact, after the loss which triggers the leave of layer 7 + 1, further loss
might occur at all layers for the duration of the leave delay. As a consequence, when matching
experimental data (from simulations and measurements in real networks) to the analytical model,
we have used the burst loss rate as a parameter, computed by considering closely spaced losses

as a single one. With this correction, experimental results fit well our model.

25

