The Conference Control Channel Protocol (CCCP):

A scalable base for building conference control applications

Mark Handley, lan Wakeman and Jon Crowcroft
University College London
M. Handley@cs.ucl.ac.uk

Abstract

This paper presents the Conference Control Channel Pro-
tocol (CCCP), a new scheme intended for controlling con-
ferences ranging from small, tightly coupled meetings, to
extremely large loosely coupled seminars. We describe the
requirements of such a scheme, and present a framework for
building systems that connect together new and existing ap-
plications.

1 Introduction

In this paper, we will discuss some of the lessons that we
have garnered from previous work involving computer
based multimedia conferencing, and use these as a basis
for developing an architecture for the next generation
of conference control applications, suitable for confer-
encing over wide area networks. We show that a simple
protocol acting over a conference specific communica-
tions channel, named the Conference Control Channel
or CCC, will perform all tasks within the scope of con-
ference control.

The previous generation of conferencing tools, such as
CAR, mmconf, etherphone and the Touring Machine
([han], [cro], [sch], [vin] and [ara]), were based on cen-
tralised architectures, where a central application on a
central machine acted as the repository for all infor-
mation relating to the conference. Although simple to
understand and simple to implement, this model proved
to have a number of disadvantages, the most important
of which was the disregard for the failure modes arising
from conferencing over the wide area.

An alternative approach to the centralised model is the
lightweight session model promoted by Van Jacobson
and exemplified by the vat [cas],[jal] and wb [ja2] appli-
cations. In the lightweight session model, connectivity
is regarded as inherently unreliable. Our observations
of the Mbone (see 2.1) show that humans can cope with

a degree of inconsistency that arises from partitioned
networks and lost messages, as long as the distributed
state will tend to converge in time.

We have taken these and the other lessons we have de-
rived from experience with conferencing tools, and de-
rived two important aims that any conference control
architecture should meet:-

1. The conference architecture should be flexible enough

so that any mode of operation of the conference
can be used and any application can be brought
into use. The architecture should impose the min-
imum constraints on how an application is de-
signed and implemented.

2. The architecture should be scalable, so that “rea-
sonable” performance is achieved across confer-
ences involving people in the same room, through
to conferences spanning continents with different
degrees of connectivity, and large numbers of par-
ticipants. To support this aim, it is necessary ex-
plicitly to recognise the failure modes that can oc-
cur, and examine how they will affect the confer-
ence, and then attempt to design the architecture
to minimise their impact.

We model a conference as composed of a (possibly un-
known) number of people at geographically distributed
sites, using a variety of applications. If an application
shares information across remote sites, we distinguish
between the cases when the participating processes are
tightly coupled ! - the application cannot run unless all
processes are available and contactable - and when the
participating processes are loosely coupled, in that the
processes can run when some of the sites become un-
available. A tightly coupled application is considered to
be a single instantiation spread over a number of sites,

1We define a tightly coupled system as one which attempts
to ensure consistency at all sites. By contrast a more loosely
coupled system tolerates inconsistencies, though it should attempt
to resolve them in time. A very loosely coupled system will not
even know the full list of conference members.

whilst loosely coupled applications have a number of
(cooperating) instantiations.

The tasks of conference control break down in the fol-
lowing way:

e Application control - Applications need to be
started with the correct initial state, and the knowl-
edge of their existence must be propagated across
all participating sites. Applications may need to
cooperate (for example to achieve audio and video
synchronisation).

e Membership control - Who is currently in the
conference and has access to what applications.

e Floor management - Who or what has control
over the input to particular applications.

e Network management - Requests to set up and
tear down media connections between end-points
(no matter whether they be analogue through a
video switch, a request to set up an ATM virtual
circuit, or using RSVP [zha] over the internet),
and requests from the network to change band-
width usage because of congestion.

e Meta-conference management - How to initi-
ate and finish conferences, how to advertise their
availability, and how to invite people to join.

We maintain that the problem of meta-conference man-
agement is outside the bounds of the conference control
architecture, and should be addressed using tools such
as LBL’s Session Directory [ha4], traditional directory
services or through external mechanisms such as email.
The conference control system is intended to maintain
consistency of state amongst the participants as far as
is practical and not to address the social issues of how
to bring people together, and co-ordinate initial infor-
mation.

We then take these tasks as the basis for defining a
set of simple protocols that work over a communica-
tion channel. We define a simple class hierarchy, with
an application type as the parent class and subclasses
of network manager, member and floor manager, and
define generic protocols that are used to talk between
these classes and the application class, and an inter-
application announcement protocol. We derive the nec-
essary characteristics of the protocol messages as reli-
able/unreliable and confirmed/unconfirmed (where ‘un-
confirmed’ indicates whether responses saying “I heard
you” come back, rather than indications of reliability).

We have abstracted a messaging channel, using a simple
distributed inter-process communication system, pro-
viding reliable/unreliable semantics. The naming of

sources and destinations is based upon application level
naming, allowing wildcarding of fields such as instanti-
ations (thus allowing messages to be sent to all instan-
tiations of a particular type of application). Whether
a message is confirmed or not is up to the application
using the channel.

The final section of paper briefly describes the design
of the high level components of the messaging chan-
nel. Mapping of the application level names to network
level entities is performed using a distributed naming
service, based upon multicast once again, and draw-
ing upon the extensive experience already gained in the
distributed operating systems field in designing highly
available name services.

2 Requirements

2.1 Multicast Internet Conferencing

Since early 1992, a multicast virtual network has been
constructed over the Internet. This multicast backbone
or Mbone [mac| has been used for a number of appli-
cations including multimedia (audio, video and shared
workspace) conferencing. These applications involved
include vat (LBL’s Visual Audio Tool), ivs (INRIA Video-
conferencing System, [tur]), nv (Xerox’s Network Video
tool, [fre]) and wb (LBL’s shared whiteboard) amongst
others. These applications have a number of things in
common:

e They are all based on IP Multicast.

e They all report who is present in a conference by
occasional multicasting of session information.

e The different media are represented by separate
applications 2

e There is no conference control, other than each
site deciding when and at what rate they send.

These applications are designed so that conferencing
will scale effectively to large numbers of conferees. At
the time of writing, they have been used to provide au-
dio, video and shared whiteboard to conference with
about 500 participants. Without multicast3, this is clearly
not possible. It is also clear that, with unreliable net-
works, these applications cannot achieve complete con-
sistency between all participants, and so they do not

2 Actually IVS does support audio, but has also been widely
used as a pure video codec with vat as the audio tool.

3or broadcast (in the radio or TV sense), but that is outside
the scope of this document

attempt to do so - the conference control they support
usually consists of:

e Periodic (unreliable) multicast reports of receivers.

e The ability to locally mute a sender if you do not
wish to hear or see them. However, in some cases
stopping the transmission at the sender is actually
what is required.

Thus any form of conference control that is to work with
these applications should at least provide these basic
facilities, and should also have scaling properties that
are no worse that the media applications themselves.

The domains these applications have been applied to
vary immensely. The same tools are used for small (say
20 participants), highly interactive conferences as for
large (500 participants) disseminations of seminars, and
the application developers are working towards being
able to use these applications for “broadcasts” that scale
towards millions of receivers.

It should be clear that any proposed conference control
scheme should not restrict the applicability of the appli-
cations it controls, and therefore should not impose any
single conference control policy. For example we would
like to be able to use the same audio encoding engine
(such as vat), irrespective of the size of the conference or
the conference control scheme imposed. This leads us to
the conclusion that the media applications (audio, video,
whiteboard, etc) should not provide any conference con-
trol facilities themselves, but should provide the handles
for ezternal conference control and whatever policy is
suitable for the conference in question.

2.2 The MICE Project Requirements

MICE is a European funded project to promote video
conferencing for researchers. Since sites have a mix of

equipment and capabilities, MICE is required to support:

e Multicast based applications running on worksta-
tions.

e Hardware video and audio codecs and the need to
multiplex their output.

e Sites connecting into conferences from ISDN.
e Interconnecting all the above.
These requirements have dictated that a number of mul-

tiplexing points are used to provide the necessary for-
mat conversion and multiplexing to interwork between

the multicast workstation based domain and unicast
(whether IP or ISDN) hardware based domain [ha2] and
[ha3].

Traditionally such a multiplexing centre (or multipoint
control unit) would employ a centralised conference con-
trol system such as the ITU’s T.120 family of protocols,
but on the Mbone that is not desirable as the reliable
communication required by such an MCU would pro-
hibit users from participating in very large multicast
based conferences. It would also be inappropriate and
inconvenient for the users to change multicast media
applications when they switch from a entirely multicast
based conference to one using a CMMC for some par-
ticipants.

It is inevitable that translators, multiplexors, format
converters and so forth will form some part of future
conferences, and that large conferences will be primarily
multicast based. Thus although CCCP has originated
primarily from the needs of the MICE project, it has
done so from a process of generalisation that should
make it widely applicable.

2.3 Where current systems fail

The sort of conference control system we are addressing
here cannot be:

e Centralised. This will not scale.

e Fixed Policy. This would restrict the applicability.
The important point here is that only the users
can know what the appropriate policies a meeting
may need.

e Application Based. It is very likely that separate
applications will be used for different media for the
foreseeable future. We need to be able to switch
media applications where appropriate. Basing the
conference control in the applications prevents us
changing policy simply for all applications.

e Homogeneous. Most existing systems have been
fairly homogeneous. An increasing requirement is
for different systems to interwork. There needs
to be some basis for this interworking, at both
the media data stream level and at the conference
control level.

2.4 Specific requirements

Modularity: Conference Control mechanisms and Con-
ference Control applications should be separated. The

mechanism to control applications (mute, unmute, change
video quality, start sending, stop sending, etc) should
not be tied to any one conference control application in
order to allow different conference control policies to be
chosen depending on the conference domain. This sug-
gests that a modular approach be taken, with for exam-
ple, specific floor control modules being added when re-
quired (or possibly choosing a conference manager tool
from a selection of them according to the conference).

A unified user interface: A general requirement of
conferencing systems, at least for relatively small con-
ferences, is that the participants need to know who is in
the conference and who is active. Vatis a significant im-
provement over telephone audio conferences, in part be-
cause participants can see who is (potentially) listening
and who is speaking. Similarly if the whiteboard pro-
gram wb is being used effectively, the participants can
see who is drawing at any time from the activity win-
dow. However, a participant in a conference using, say,
vat (audio), ivs (video) and wb (whiteboard) has three
separate sets of session information, and three places to
look to see who is active.

Clearly any conference interface should provide a single
set of session and activity information. A useful feature
of these applications is the ability to “mute” (or hide
or whatever) the local playout of a remote participant.
Again, this should be possible from a single interface.
Thus the conference control scheme should provide lo-
cal inter-application communication, allowing the dis-
play of session information, and the selective muting of
participants.

Taking this to its logical conclusion, the applications
should only provide media specific features (such as vol-
ume or brightness controls), and all the rest of the con-
ference control features should be provided through a
conference control application.

Flexible floor control policies: Conferences come
in all shapes and sizes. For some, having no floor con-
trol, with everyone sending audio when they wish, and
sending video continuously is fine. For others, this is
not satisfactory due to insufficient available bandwidth
or a number of other reasons. It should be possible
to provide floor control functionality, but the providers
of audio, video and workspace applications should not
specify which policy is to be used. Many different floor
control policies can be envisaged. A few example sce-
narios are:

e Explicit chaired conference, with a chairperson de-
ciding when someone can send audio and video.

e Audio triggered conferencing. No chairperson, no
explicit floor control. Video data rate depends on
who is sending audio.

e Audio triggered conferencing with a multiplexing
point. Video streams are multiplexed depending
on the audio channel activity.

e The traditional Mbone lightweight session model.
No control.

Scaling from tightly coupled to loosely coupled
conferences: CCCP originates in part as a result of
experience gained from tightly coupled centralised sys-
tems, such as the CAR Multimedia Conference Control
system [han] and also from Mbone based loosely coupled
conferences. Tightly coupled conferences have advan-
tages for small conferences where membership needs to
be controlled. Loosely coupled conferences are the only
way to achieve scalability, but the current lightweight
sessions are too unrestricted for some uses.

CCCP allows the same media tools and same confer-
ence control mechanism to be used for both tightly and
loosely coupled conferences, whilst allowing conference
control policy to change.

3 CCCP

3.1 The Conference Control Channel

To bind the conference constituents together, a common
communication channel is required, which offers facili-
ties and services for the applications to send to each
other. This is akin to the inter process communication
facilities offered by the operating system. The confer-
ence communication channel should offer the necessary
primitives upon which heterogeneous applications can
talk to each other.

The first cut would appear to be a messaging service,
which can support one-to-many communication, and
with various levels of confirmation and reliability. We
can then build the appropriate application protocols on
top of this abstraction to allow the common functional-
ity of conferences.

We need an abstraction to manage a loosely coupled
distributed system, which can scale to as many parties
as we want. Thus the underlying communication should
use multicast. Many people have suggested that one
way of thinking about multicast is as a multifrequency
radio, in which one tunes into particular channels in
which we are interested. We extend this model to build

an Inter Process Communications model, on which we
can build specific conference management protocols.

What do we actually want from the system?

e We want to ask for services

e We want to send requests to specific entities, or
groups of entities and receive responses from some
subset of them, with notifications sent out to oth-
ers.

CCCP originates in the observation that in a reliable
network, conference control would behave like a bus -
addressed messages are put on the bus, and the rele-
vant applications receive the messages, and if necessary
respond. In the Internet, this model maps directly onto
IP multicast. In fact the IP multicast groups concept
is extremely close to what is required. In CCCP, ap-
plications have a tuple as their address: (instantiation,
application type, address, conference id). We shall dis-
cuss exactly what goes into these fields in more detail
later. In actual fact, an application can have a num-
ber of tuples as its address, depending on its multiple
functions. Examples of the use of this would be:

Destination Tuple

(1, audio, local, 1)

(*, activity_mgmt, local, 1)
(*, session_mgmt, *, 1)

(*, session_mgmt, *, 1)

Message

START_SENDING

I_RECV <media> <address>
I_AM <name>
I_.HAVE_MEDIA <media list>
(*, session_mgmt, *, 1) USER_LIST <user list>

(*, floor_control, *, 1) REQUEST_FLOOR

(1, floor_control, u@®x.y.z, 1) GRANT_FLOOR

and so on. The actual messages carried depend on the
application type, and thus the protocol is easily ex-
tended by adding new application types.

3.2 CCC Names

Using this bus model, we based our naming scheme upon
the attributes of an application that could be used in
deciding whether to receive a message. We thus build a
name tuple from three parts:

(instantiation, type, address, conf-id)

An application registers itself with its CCC library (and
transparently through to a distributed nameserver in
the more sophisticated CCC - more of that in a later
version of this paper), specifying one or more tuples

that it considers describe itself. In the current proto-
type design, a control group address or control host ad-
dress or address list is specified at startup, and meta-
conferencing (ie, allocation and discovery of conference
addresses) is assumed to be outside the scope the the
CCC itself. The parts of the tuple are:

address In our model of a conference, applications are
associated with a machine and optionally with a user at
a particular machine. Thus we use a representation of
the user or the machine as a field in the tuple, to allow
us to specify applications by location.. The address field

will normally be registered as one of the following:

e hostname

e username®@hostname

When the application is associated with a user, such as a
shared whiteboard, the username®@hostname form is used,
whereas applications which are not associated with a
particular user, such as a video switch controller regis-
ter simply as hostname. For simplicity, we use the do-
main naming scheme in our current implementation, al-
though this does not preclude other identifiable naming
schemes. Note that hostname matches only applications
that are not associated with a user unlike *@hostname.
When other applications wish to send a message to a
destination group (a single application is a group of size
1), they can specify the address field as one of the fol-
lowing:

e username®@hostname
e hostname

e *@hostname - This matches all applications on the
given host.

e * _ this is used to address applications regardless
of location.

The CCC library is responsible for ensuring a suitable
multicast group (or other means) is chosen to ensure
that all possible matching applications are potentially
reachable (though depending on the reliability mode, it
does not necessarily ensure the message reaches them

all).

It should be noted that in any tuple containing a wild-
card (*) in the address, specifying the instantiation (as
described below) does not guarantee a unique receiver,
and so normally the instantiation should be wildcarded
too.

Session : Session : Session !
Control H 1| Control H 1| Control H
Control : . . :
Applications : H H : :
Floor Floor Floor :
Control : : Control : : Control :
CCCP Cbnference Control Channel
Audio :
Media
Applications

Conceptualisation of CCCP

White
Board

Control Messages (CCCP)

-

Media Data -

Figure 1: Conceptualisation of CCCP

type The primary attribute we use in naming appli-
cations is based on hierarchical typing of the applica-
tion and of the management protocols. The type field
is descriptive both of the protocol that is being used
and of the state of the application within the proto-
col at a particular time. For example, a particular
application such as vat may use a private protocol to
communicate between instantiations of the application,
so a vat type is defined, and only applications which
believe they can understand the vat protocol and are
interested in it would register themselves as being of
type vat. An alternative way of using the type field
is to embed the finite state machine corresponding to
the protocol within the type field - thus a floor man-
agement protocol could use types floor.management.holder
and floor.management.requester in a simple floor control
protocol, that can cope with multiple requests at once.
A final way of using the type field is to allow extensions
to existing protocols in a transparent fashion, by sim-
ply extending the type field by using a version number.
Some examples of these techniques can be found in the
examples given.

Some base types are needed to ensure that common ap-
plications can communication with each other. As a
first pass, the following types have been suggested:

audio.send - the application is interested in mes-
sages about sending audio

audio.recv - the application is interested in mes-
sages about receiving audio

video.send - the application is interested in mes-
sages about sending video

video.recv - the application is interested in mes-
sages about receiving video

workspace - the application is a shared workspace
application, such as a whiteboard

session.remote - the application is interested in know-
ing the existence of remote applications (exactly
which ones depends on the conference, and the
session manager)

session.local - the application is interested in know-
ing of the existence of local applications

media-ctrl - the application is interested in being
informed of any change in conference media state
(such as unmuting of a microphone).

floor.manager - the application is a floor manager

e floor.slave - the application is interested in being
notified of any change in floor, but not (necessar-
ily) in the negotiation process.

It should be noted that types can be hierarchical, so
(for example) any message addressed to audio would be
received by both audio.send and audio.recv applications.
It should also be noted that an application expressing
an interest in a type does not necessarily mean that the
application has to be able to respond to all the func-
tions that can be addressed to that type, although (if
required) the CCC library will acknowledge receipt on
behalf of the application.

Examples of the types existing applications would reg-
ister under are:

e vat - vat, audio.send, audio.recv
e 7vs - ivs, video.send, video.recv
e nv - nv, video.send, video.recv
e wb - wb, workspace

e a conference manager - confman, session.local,
session.remote, media-ctrl, floor.slave

e a floor ctrl agent - flooragent, floor.manager,
floor .slave

In the current implementation, the type field is text
based, so that debugging is simpler, and we can extend
the type hierarchy without difficulty.

instantiation The instantiation field is purely to en-
able a message to be addressed to a unique application.
When an application registers, it does not specify the
instantiation - rather this is returned by the CCC li-
brary such that it is unique for the specified type at the
specified address. It is not guaranteed to be globally
unique - global uniqueness is only guaranteed by the
triple of (instantiation, type, address) with no wildcards in
any field. When an application sends a message, it uses
one of its unique triples as the source address. Which
one it chooses should depend on to whom the message
was addressed.

conference id The conference identifier is useful in
unifying conference management and conference meta-
management, and considerably simplifies the design of
applications which may be part of multiple conferences
simultaneously. It should be supplied to conference tools
at startup, or alternatively supplied to media tools over

the CCC. A default conference id is supplied for tools
which are not currently involved in a conference. We
omit conf-id from the examples later for simplicity.

3.3 Reliability

CCCP would be of very little use if it were merely the
simple protocol described above due to the inherent un-
reliable nature of the Internet. Techniques for increas-
ing the end-to-end reliability are well known and varied,
and so will not be discussed here. However, it should
be stressed that most (but not all) of the CCCP mes-
sages will be addressed to groups. Thus a number of
enhanced reliability modes may be desired:

e None. Send and forget. (an example is session
management messages in a loosely coupled sys-
tem)

e At least one. The sending application wants to be
sure that at least one member of the destination
group received the message. (an example is a re-
quest floor message which would not be ACKed
by anyone except the current floor holder).

e n out of m. The sending application wants to be
sure that at least n members of the destination
group received the message. For this to be useful,
the application must have a fairly good idea of
the destination group size. (an example may be
joining of a semi-tightly coupled conference)

e all. The sending application wants to be sure that
all members of the destination group received the
message. (an example may be “join conference”
in a very tightly coupled conference)

It makes little sense for applications requiring confer-
ence control to reimplement the schemes they require.
As there are a limited number of these schemes, it makes
sense to implement CCCP in a library, so an applica-
tion can send a CCCP message with a requested relia-
bility, without the application writer having to concern
themselves with how CCCP sends the message(s). The
underlying mechanism can then be optimised later for
conditions that were not initially foreseen, without re-
quiring a re-write of the application software.

There are a number of “reliable” multicast schemes avail-
able, such as [pet] and [bir], which can be used to build
consensus and agreement protocols in asynchronous dis-
tributed systems. However, the use of full agreement
protocols is seen to be currently limited to tightly cou-
pled conferences, in which the membership is known,

and the first design of the CCC library will not include
reliable multicast support, although it may be added
later as additional functionality.

We believe that sending a message with reliability “all’
to an unknown group is undesirable. Even if CCCP can
track or obtain the group membership transparently to
the application through the existence of a distributed
nameserver, we believe that the application should ex-
plicitly know who it was addressing the message to. It
does not appear to be meaningful to need a message to
get to all the members of a group if we can’t find out
who all those members are, since if the message fails
to get to some members, the application can’t sensibly
cope with the failure. Thus we only support the all re-
liability mode to an explicit list of fully qualified (ie no
wildcards) destinations. Applications such as joining a
secure (and therefore externally anonymous) conference
which requires voting can always send a message to the
group with ”at least one” reliability, and then an exist-
ing group member initiates a reliable vote, and returns
the result to the new member.

3.4 Ordering

Of course loss is not the only reliability issue. Mes-
sages from a single source may be reordered or dupli-
cated and due to differing delays, messages from dif-
ferent sources may arrive in “incorrect” order. There
are many possible schemes for ordering messages from
a single source, almost all of which require a sequence
number or a timestamp. Within CCCP, a source can
ask for any of the following ordering constraints when
registering to receive messages:

No constraint Pass the packets directly through to
the application as they arrive. A suitable exam-
ple is for session messages reporting presence in a
conference.

Late discard Discard any packets that are older than
the latest seen. Quite a number of applications
may be able to operate effectively in this manner,
such as informational event reporting of “join”
and “leave” events.

Adaptive playout Using the timestamp in a message
and the local clock, estimate the perceived delay
from the packet being sourced that allows 90% of
packets to arrive. When a packet arrives out of
order, buffer it for this delay minus the perceived
trip time to give the missing packet(s) time to ar-
rive. If a packet arrives after this timeout, discard
it. A similar adaptive playout buffer is used in vat

for removal of audio jitter. This is useful where or-
dering of requests is necessary and where packet
loss can be tolerated, but where delay should be
bounded.

Fixed playout Similar to above, specify a fixed max-
imum delay above minimum perceived trip time,
before deciding that a packet really has been lost.
If a packet arrives after this time, discard it.

Adaptive playout with ceiling A combination of [3]
and [4]. Some delay patterns may be so odd that
they upset the running estimate in [3]. Many con-
ference control functions fall into this category, ie
time bounded, but tolerant of loss.

ARQ Explicitly acknowledge every packet, allowing the
sender to use timeouts to govern retransmission.

It should be noted that all except No Constraint require
state to be held in a receiver for every source. As not
every message from a particular source will be received
at a particular receiver due to CCCP’s multiple destina-
tion group model, receiver based mechanisms requiring
knowing whether a packet has been lost will not work
unless the source and receiver use a different sequence
space for every (source, destination group) pair. Since
we wish to avoid this, we must restrict the application
level ARQ to a window size of 1. If the sender is at-
tempting a reliable transmission, then it will use the
underlying transport protocol (such as TCP) to main-
tain the state.

Although we believe these ordering mechanisms to be
adequate for most cases, an application (with some se-
mantic knowledge) can build a more elaborate mecha-
nism on top of any of the ordering constraints. However
it does mean that message timestamps and sequence
numbers must be available at the application level.

CCCP does not intend to provide clock synchronisation
and global ordering facilities, since this increases com-
plexity and the necessary state within CCCP. If applica-
tions require this, they must do so themselves. However,
for most applications, a less complex option is to design
the application protocol to tolerate temporary incon-
sistencies, and to ensure that these inconsistencies are
resolved in a finite number of exchanges. An example
is the algorithm for managing shared teleconferencing
state proposed by Scott Shenker, Abel Weinrib and Eve
Schooler [she].

For algorithms that do require global ordering and clock
synchronisation, CCCP will pass the sequence numbers
and timestamps of messages through to the application.
It is then up to the application to implement the desired

global ordering algorithm and/or clock synchronisation
scheme using one of the available protocols and algo-
rithms such as NTP [mil] or ordering protocols such as
[lam], [bir], or [pet].

3.5 A few examples

Before we describe what should comprise CCCP, we will
present a few simple examples of CCCP in action. There
are a number of ways each of these could be done - this
section is not meant to imply these are the best ways of
implementing the examples over CCCP.

3.5.1 Unifying user interfaces - session messages
in a “small” conference

This requirement is described in section 2.4.

Session | < : > to other Session Controllers
Control !

Control Messages (CCCP) -g——p

Media Data#

) audio data
Audio

video data

White 0: graphical data
: Board |

Figure 2: Using CCCP to unify interfaces

Applications:

e An Audio Tool (at), registers as types: at,
audio.send, audio.recv

e A Video Tool (vt), registers as types: vt, video.send,
video.recv

e A Whiteboard (wb), registers as types: wb, workspace

e A Session Manager (sm), registers as types: sm,
session.local, session.remote

The local hostname is x. There are a number of remote
hosts, including y and z.

A typical exchange of messages may be as follows:

From To Message
the following will be sent periodically:
(1,audio.recv,x) (*,sm.local,x) KEEPALIVE
(1,video.recv,x) (*,sm.local,x) KEEPALIVE

(1,wb,x) (*.sm.local,x) KEEPALIVE

the following will be sent periodically with interval

(1,sm,x) (*,sm.remote,*) |_AM <user name>
(1,sm,x) (*,sm.remote,*) | _'HAVE_MEDIA audio.recv

video.recv wb

an audio speech burst arrives at the audio tool from y
(1,audio.recv,x) (*,sm.local,x) = MEDIA_STARTED audio y

session manager highlights the name of the person speaking

speech burst finishes
(1,audio.recv,x) (*,sm.local,x) = MEDIA_STOPPED audio y
session manager de-highlights the person who stopped speaking

video starts from z

(1,video.recv,x) (*,sm.local,x) = MEDIA_STARTED video z

periodical reports:

(1,audio.recv,x) (*,sm.local,x) KEEPALIVE
(1,video.recv,x) (*,sm.local,x) = MEDIA_ACTIVE video z
(1,wb,x) (*.sm.local,x) KEEPALIVE

someone restarts the session manager:

(1,sm,x) * % x) WHOS_THERE
(1,audio.recv,x) (*,sm.local,x) KEEPALIVE
(1,video.recv,x) (*,sm.local,x) MEDIA_ACTIVE video z
(1,wb,x) (*,sm.local,x) KEEPALIVE

and so on...

This example assumes that the session managers are
responsible for communicating the participants of the
conference to other sites. In practice, most of the me-
dia tools in such a conference would be likely to use the
Real-time Transport Protocol (RTPv2). This specifies
that applications should send session messages (RTCP
messages) which communicate the participants for a
particular media. In such cases, there is little point
in duplicating this traffic with equivalent messages be-
tween session managers, so instead the applications would
pass on the participant information they derive from
RTCP messages to the local session manager, which
then collates and presents this information to the user.
Thus there is then no need for direct communication
between session managers.

3.5.2 A voice controlled video conference

In this example, the desired behaviour for participants
to be able to speak when they wish. A user’s video
application should start sending video when their au-
dio application starts sending audio. No two video ap-
plications should aim to be sending at the same time,
although some transient overlap can be tolerated.

Session] H » (0 other Session Controllers

i | Control .

: Floor |

E Cgr?trol 1 to other Floor Managers

: : Control Messages (CCCP) < >
: : Media Data ey
:) H audio data

: | Audio N

E)] . video data

: Video v

E White | 0: graphical data

H Board !

Figure 3: Using CCCP for simple floor control

Applications:

e An Audio Tool (at), registers as types: at,
audio.send, audio.recv

e A Video Tool (vt), registers as types: vt, video.send,
video.recv

e A Session Manager (sm), registers as types: sm,
session.local, session.remote

e A Floor Manager (fm), registers as types: fm,
floor.master

There are hosts x and y, amongst others. It is assumed
that session control messages are being sent, as in the
example above. The message exchange can be seen in
Figure 4

3.6 CCCP Messages

CCCP messages have a plain text addressing scheme
and a plain text payload. The addressing scheme con-
sists of a source tuple (as described in section 3.2) which

10

identifies which module in a conference originates the
message and a list of destination tuples to which the
message should be delivered. In addition there are a
number of header bits which specify the reliability mode.

The payload can be free format with the exception that
it must start with a function name which identifies the
purpose of the message. The function name is normally
followed by a space separated parameter list, but it is
up to the receiving application to parse this.

(SRC tuple)<list of (DST tuple)s> FUNCTION <parameter
list>

3.7 More complex needs
3.7.1 Dynamic type-group membership

Many potential applications require to be able to con-
tact a server or a token holder reliably without necessar-
ily knowing the location of that server. An example may
be a request for the floor in a conference with one roam-
ing floor holder. The application requires that the mes-
sage gets to the floor holder if it is at all possible, which
may require retransmission and will require acknowledg-
ment from the remote server, but the application writer
should not have to write the re-transmission code for
each new application. CCCP supports “at least one”
reliability, but to address such a REQUEST_FLOOR mes-
sage to all floor managers is meaningless. By support-
ing dynamic type-groups CCCP can let the application
writer address a message to a group which is expected
to have only one (or a very small number) of members,
but whose membership is changing constantly.

In the example described, the application requiring the
floor sends:

SRC Tuple DEST Tuple Message
(1,floor.master,x)(*,floor.master.holder,*)REQUEST_FLOOR

with “at least one” reliability. Retransmissions continue
until the message is acknowledged or a timeout occurs.
When the floor holder receives this message, it can then
either send a grant floor or a deny floor message:

(1, floor.master, y) (1, floor.master, x) GRANT_FLOOR
This message is sent reliably (ie, retransmitted by CCCP
until an ACK is received).

On receiving the GRANT_FLOOR message, the floor man-
ager at x expresses an interest in the type-group

From To Message

the user at z starts speaking. Silence suppression cuts out, and the audio tool starts sending audio data:

(1, audio.send, x) (*,sm.local,x),(*,floor.master,x) MEDIA_STARTED audio x

...this causes the sm to highlight the “you are sending audio” icon. It also causes the floor manager to report to
the other floor managers:

(1, floor.master,x) (*, floor.master, *) MEDIA_STARTED audio x
and also it requests the local video tool to send video:

(1, floor.master,x) (*, video.send, x) START_SENDING video
...this causes the video tool to start sending

(1, video.send, x) (*, sm.local, x),(*.floor.master, xX) MEDIA_STARTED video x

...which, in turn, causes the sm to highlight the “you are sending video”icon

the user at z stops speaking. Silence suppression cuts in, , and the audio tool stops sending audio data

(1, audio.send, x) (*,sm.local,x),(*,floor.master,x) MEDIA_STOPPED audio x

...this causes the sm to de-highlight the “you are sending audio” icon. The session manager starts a timeout
procedure before it will stop sending video

a user at y starts sending audio and video data. The local audio and video tools report this to the session manager:

(1,audio.recv,x) (*,sm.local,x) MEDIA_STARTED audio y

(1,video.recv,x) (*,sm.local,x) MEDIA_STARTED video y

...as in previous example, sm highlights sender’s name. Also y’s floor manager reports what’s happening
(1, floor.master, y) (*, floor.master,*) MEDIA_STARTED audio y

(1, floor.master, y) (*, floor.master,*) MEDIA_STARTED video y

the local floor manager tells the local video tool to stop sending

(1, floor.master,x) (*, video.send, x) STOP_SENDING video

...this causes the video tool at z to stop sending

(1, audio.send, x) (*,sm.local,x),(*,floor.master,x) MEDIA_STOPPED video x

Figure 4: Message exchange for a voice controlled video conference

floor.master.holder. On sending the GRANT_FLOOR mes- cation to modify the reliability with which other appli-
sage, the floor manager at y also removes its interest cations send specific messages by allowing messages of
in the type-group floor.master.holder to prevent spurious the form:

acking of other REQUEST_FLOOR messages. However, if
the GRANT_FLOOR message retransmissions time out, it (SRC tuple) (*, floor.manager, *) NEED_TO_KNOW
should re-express an interest. (* floor.;lave *) <list c;f fns>

See section 3.8 on the Naming Service for more details

of how dynamic type-groups work. In this case the application specified by the source tuple
is telling all floor.manager applications that when they
send one of the specified functions to (*, floor.slave, *),
this application would like reliable delivery of the mes-
sage.

3.7.2 Need to know

When an application sends a message, it is up to the
sending application to choose the reliability mode for NEED_TO_KNOW messages should be sent periodically,

the message. For example, in a large loosely coupled and will timeout if one hasn’t been received in a set
conference, a floor change announcement may be mul- amount of time. NEED_TO_KNOW requests will also time
ticast in an unreliable mode. However, there may be a out at a particular application if that application ever
number of applications that really do require to see that fails to reliably deliver a message to the specified ad-

information. In the floor control example, the existing dress. Clearly NEED_TO_KNOW messages should be used
floor holding applications need to see the floor change sparingly, as they adversely affect the scaling propertied
announcements. We propose allowing a receiving appli- of the CCC. However, there are a number of cases where

11

they can be useful. The same effect could be achieved by
declaring another type (for example floor.holder, which
may be desirable in some cases), but NEED_TO_KNOW
also has the benefit that it can be used to modify the be-
haviour of existing applications without a requirement
to access the source code.

3.8 The Naming Service

CCC can be run on the bus model, passing all messages
around a single multicast group per conference. This
will scale reasonably, since it scales with the number of
participants in the conference. Name resolution occurs
at each host, matching the destination naming tuple in
the message against the list of tuples that are registered
at this particular host. However, it it does not scale
indefinitely, because the load on each host and the net-
work increases with the complexity of the conference
and the number of messages. To improve scaling, the
communications should be optimised so that messages
are only propagated to the machines that are interested.
Thus we need a service that maps the naming tuples to
locations, so that intelligent mapping of message paths
to locations can be performed (aka intelligent routing
and placement of multicast groups). This name loca-
tion service (or naming service as it is more generally
known) has a number of properties that differentiate it
from other naming services such as X.500 and the DNS:

e Dynamic and frequent updates.
e Fast propagation of changes.

e Ability to fall back to broadcast to interested par-
ties when uncertain about the consistency of a re-
fined addressing group, since names are unique per
conference and are included in each message.

The last property is important, since it allows a relaxed
approach to maintenance of consistency amongst the
naming servers, saving greatly in the messages and com-
plexity of the internals of the service.

We intend to implement a nameserver suitable for loosely
coupled conferences as the default in the CCC library.
However, CCCP will also allow the use of an external
nameserver to supplement or replace the internal name-
server behaviour, which will allow much greater use of
the nameserver to be made in more tightly coupled con-
ferences, for instance by using the nameserver to keep
an accurate list of members.

12

3.9 Security

The CCCP library currently supports encryption using
DES, where all messages in a conference are encrypted
using the same session key. Key distribution is through
external means, and manual entry. Whilst this does pro-
vide a limited degree of confidentiality and protection,
we plan to further investigate security for conferencing
through the model offered by CCCP.

Stubblebine [stu] identifies scalable key distribution as a
problem for conferences. Since access permissions may
change for individuals during a conference, new keys
may need to be distributed quickly and reliably to the
recipients. We are investigating techniques for solving
this problem using protocols built upon the CCCP ar-
chitecture, based upon automatically configured hierar-
chies of trusted servers and public key cryptography.

Within a conference, the access and control rights over
the various media and functions will vary across indi-
viduals and organisations. It is likely that the appropri-
ate protection mechanisms will be a mixture of access
control lists and encryption technology to ensure confi-
dentiality, integrity and authentication. One approach
is to limit access to the parts of the CCCP type hier-
archy through the use of multiple keys. As the protec-
tion model becomes clearer, we will enhance CCCP to
provide the necessary functionality, such as an authen-
tication header, and experiment with security control
protocols over CCCP.

3.10 Conference Membership Discovery

CCCP will support conference membership discovery by
providing the necessary functions and types. However,
the choice of discovery algorithm, loose or tight con-
trol of the conference membership and so forth, are not
within the scope of CCCP itself. Instead these algo-
rithms should be implemented in a Session Manager on
top of the CCC.

4 Status and Future Work

The authors always had an implementation based on
IP multicast in mind. However, every effort has been
made to ensure there is nothing in CCCP that precludes
implementation over unicast IP. However, CCCP does
make the assumption the the Conference Communica-
tion Channel (however implemented) is always avail-
able. On systems based over circuit switched channels
such as ISDN, this may not be the case.

We have implemented two basic versions of a CCCP li-
brary for testing and evaluation purposes, and are in
the process of writing or modifying conference tools to
These libraries currently use a
single multicast address per CCC, but scope local mes-
sages appropriately.

utilise these libraries.

An interesting area we hope to look at is the binding
of multicast addresses to the application level names,
ranging from imposing application level semantics upon
the addresses through binding based solely on the mea-
sured traffic characteristics.

5 Acknowledgments

We would like to thank Isidor Kouvelas, Stuart Clay-
man, Atanu Ghosh, Dave Lewis and Thierry Turletti for
their valuable comments and suggestions. This work is
funded by the European Commission under the MICE
ESPRIT 7602 and PREPARE RACE 2004 projects.

6 References

[ara] M. Arango et al: Touring Machine: A software plat-
form for distributed multimedia applications, IFIP Upper
Layer Protocols, Architectures and Applications, Vancouver
Canada, June 1992

[bir] Birman K. P., Schiper, A. and Stephenson P. (1991),

Lightweight Causal and Atomic Group Multicast, ACM Trans-

actions on Computer Systems 9(3), 272-314

[cas] S. Casner: First IETF Internet Audiocast, ACM SIG-
COMM Computer Communication Review, 22, pp92-97, July
1992

[cro] T. Crowley et al: MMConf: An infrastructure for build-
ing Shared Multimedia Applications, Proceedings of CSCW
’90, Los Angeles, USA, October 1990

[fre] Ron Frederick: nv, UNIX Manual Pages, Xerox Palo
Alto Research Centre

[han] Handley, MJ et al: Multimedia conferencing: from
prototype to National pilot, Proc INET ’92, pp 483-490,
Internet Society, Reston, VA, USA, 1992.

[ha2] Handley, MJ and Clayman, S: Specification of the
MICE Conference Management and Multiplexing Centre,
MICE Project Internal Report, Jan 1994.
ftp://cs.ucl.ac.uk/mice/reports/draft-cmmc-spec-2.ps.Z

[ha3] M. Handley, P. Kirstein, A. Sasse: Multimedia Inte-
grated Conferencing for European Researchers (MICE): Pi-
loting Activities and the Conference Management and Mul-
tiplexing Centre, Computer Networks and ISDN Systems, V
26, pp275-290, Nov 1993

13

[ha4] Mark Handley, Van Jacobson: SDP - Session Descrip-
tion Protocol, Internet Draft, March 1995.

[kou] Isidor Kouvelas et al - A naming service for the CCC
(under preparation)

[jal] Van Jacobson and Steve McCanne: vat, UNIX Manual
Pages, Lawrence Berkeley Laboratory, Berkeley, CA.

[ja2] Van Jacobson and Steve McCanne: Using the LBL Net-
work Whiteboard, Lawrence Berkeley Laboratory, Berkeley,
CA.

[lam] Leslie Lamport, Time, Clocks and the Ordering of
Events in a Distributed System, Comm. of the ACM, V
21, pp558-565, July 1978

[mac] Mike Macedonia and Don Brutzman: MBONE pro-
vides Audio and Video across the Internet, IEEE Computer,
v27,4, April 1994

[mil] D. Mills: Network Time Protocol (v3), RFC1305, Septem-
ber 1992

[pet] Peterson, L. L., Bucholz, N. C., and Schlichting, R. D.
(1989) Preserving and Using Context Information in Inter-
process Communications, ACM Transactions on Computing
Systems, 7,(3), 217-246

[sch] Eve Schooler: The Connection Control Protocol: Ar-
chitecture Overview ISI/RS-92-294 January 1992

[she] Scott Shenker, Abel Weinrib and Eve Schooler: An
Algorithm for Managing Shared Teleconferencing State, In-
ternet Draft, Oct 1993

[stu] Suart Stubblebine: Security Services for Multimedia
Conferencing, Proc. of the 16th National Computer Security
Conference, Baltimore, Ma, September 1993.

[tur] H.261 Software Codec for Videoconferencing over the
Internet, Research Report No 1834, INRIA, Sophia-Antipolis,
France, January 1993

[vin] Harrick M. Vin et al: Multimedia Conferencing in the
Etherphone Environment, IEEE Computer, v24,10, October
1991

[xse] Xsecurity, X11 Release 5 manual page, Massachusetts
Institute of Technology.

[zha] L. Zhang, S.Deering, D.Estrin, S.Schenker and D.Zappala:
RSVP: A New Resource ReSerVation Protocol, IEEE Net-
work, pp-8-18, September 1993.

