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ABSTRACT
User Generated Content (UGC) is re-shaping the way peo-
ple watch video and TV, with millions of video producers
and consumers. In particular, UGC sites are creating new
viewing patterns, social interactions, empowering users to be
more creative, and developing new business opportunities.
To better understand the impact of such UGC systems, we
have analyzed YouTube, the world-largest UGC VoD sys-
tem. Based on a large amount of data collected, we pro-
vide an in-depth study of YouTube and other similar UCG
systems. In particular, we study the popularity life-cycle
of videos, the intrinsic statistical properties of requests and
their relationship with video age, and the level of content
aliasing or of illegal content in the system. We also pro-
vide insights on the potential for more efficient UCG VoD
systems (e.g., utilizing P2P systems or making better use of
caching). Finally, we discuss the opportunities to leverage
the latent demand for niche videos that are not reached today
due to information filtering effects or other system scarcity
distortions. Overall, we believe that the results presented
in this paper are crucial in understanding UGC systems and
their inefficiencies, which can have tremendous commercial
and technical consequences.

Keywords
User-generated contents, VoD, P2P, Caching, Popular-
ity analysis, Content aliasing

1. INTRODUCTION
Video content in standard Video-on-Demand (VoD)

systems has been historically created and supplied by
a limited number of media producers, such as licensed
broadcasters and production companies. Content pop-
ularity was somewhat controllable through professional
marketing campaigns. The advent of user-generated
content (UGC) has re-shaped the online video market
enormously. Nowadays, hundreds of millions of Inter-
net users are self-publishing consumers. The content
∗The data traces used in this paper will be shared
for the wider community use in due time at
http://an.kaist.ac.kr/YouTube Trace 2007.html.

length is shortened by two orders of magnitude and
so is the production rate. Wired magazine refers to
this small-sized content pop culture as “bite-size bits
for high-speed munching” [31].

The scale, dynamics, and decentralization of the UGC
videos makes the old mode of content popularity pre-
diction impractical. UGC popularity is more ephemeral
and has a much more unpredictable behavior. As op-
posed to the early days of TV where everyone watched
the same program at the same time, such strong re-
inforcement of popularity (or unpopularity) is much
more diluted in UGC. Constant waves of new videos
and the convenience of the Web is quickly personalizing
the viewing experience, leading to a great variability in
user behavior and attention span. At the same time, the
corresponding lack of editorial control in UGC is creat-
ing problems of copyright infringement, which seriously
threatens the future viability of such systems.

Understanding the popularity characteristics is im-
portant because it can bring forward the latent demand
on UGC created by bottlenecks that distort the popu-
larity distribution. It also greatly affects the strategies
for marketing, target advertising, recommendation, and
search engines.

To understand the nature and the impact of UGC
systems, in this paper, we analyze YouTube, the world-
largest UGC VoD system. The main contribution of
this paper is an extensive trace-driven analysis of UGC
video popularity distributions. We have collected a
large amount of data from YouTube and another UGC
system, Daum. Our analysis reveals very interesting
properties regarding the distribution of requests across
videos, the evolution of viewer’s focus, and the shifts
in popularity. Such analysis is pivotal in understand-
ing some of the most pressing questions regarding UGC
opportunities. Our analysis also reveals key results re-
garding the level of piracy and the level of content du-
plication in such systems, which could have major im-
plications in the deployment of future UGC services.

The highlights of our work could be summarized as
follows:

1. We compare some prominent UGC systems with
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other standard VoD systems such as Netflix and
Lovefilm. We highlight the main differences be-
tween the two systems and point out very interest-
ing properties regarding content production, con-
sumption patterns, and user participation.

2. By analyzing the popularity distributions from var-
ious categories of UGC services and by tracking
the time evolution of it, we show that the popu-
larity distribution of UGC exhibits power-law with
truncated tails. We discuss several filtering mech-
anisms that create truncated power-law distribu-
tion. Based on this, we estimate the potential
benefits arising from leveraging the latent demand
that is hidden due to the filtering effects

3. The increase amount of traffic generated by UGC
is a pressing issue for both ISPs and content providers
due to the exploding mass of videos. We provide
insights into more efficient UGC VoD systems by
making a better use of caching and utilizing a peer-
to-peer (P2P) technique in UGC distribution.

4. Content aliasing and illegal uploads are critical
problems of today’s UGC systems, since they can
hamper the efficiency of UGC systems and cause
costly lawsuits respectively. We measure the preva-
lence of content duplication and illegal uploads in
UGC, and their impact in various system’s char-
acteristics.

The rest of the paper is organized as follows. §2 de-
scribes our trace methodology and the key characteris-
tics of UGC. In §3, we analyze the popularity distribu-
tion of UGC and the forces that shape it. §4 investigates
how popularity of videos evolve over time. §5 consid-
ers the performance potential of server workload and
bandwidth savings via caching and P2P techniques. §6
focuses on the level of content duplication and illegal
uploads in UGC. Finally, we present related works in
§7 and in §8, we conclude.

2. METHODOLOGY AND PROPERTIES
This section introduces our data collection process

and the general properties of the measured UGC videos.

2.1 Data Collection
Our dataset consists of meta-information about user-

generated videos from YouTube and Daum UGC ser-
vices. YouTube, the largest UGC site world-wide,
serves 100 million distinct videos and 65, 000 uploads
daily [6]. Daum UCC), the most popular UGC ser-
vice in Korea, is well-known for its high-quality videos
(streaming as high as at 800 kb/s) and serves 2 million
visitors and 35 million views weekly [1].

We crawled YouTube and Daum sites and collected
meta information about videos by visiting their indexed

pages that link all videos belonging to a category. Due
to the massive scale of YouTube, we limited our data
collection to two of the categories: ‘Entertainment’ and
‘Science & Technology’ (now called ‘Howto & DIY’).
Throughout this paper, we simply refer to them as Ent
and Sci. For Daum, we have collected video informa-
tion from all the categories. Each video record con-
tains fixed information, such as the uploader, the up-
load time, and the length, and time-varying informa-
tion, such as views, ratings, stars, and links. Views
and ratings indicate the number of times the video has
been played or evaluated by users. Stars indicate the
average score from rating, and links indicate the list of
external web pages hyper-linking the video. Our trace
includes multiple snapshots of video information taken
daily across 6 days for Sci. These multiple snapshots
give insights on the actual request patterns and the pop-
ularity evolution of UGC videos. Table 1 summarizes
our datasets with basic statistics.

Our trace does not contain information about indi-
vidual user requests. However, our analysis focuses on
video popularity evolution, aggregated request distri-
bution, and other statistics that do not require detailed
knowledge of such individual user’s behavior.

2.2 UGC versus Non-UGC
To begin with, we present several distinctive features

of our UGC video trace. To put things in perspec-
tive, we highlight the key differences and similarities
between UGC and non-UGC (or professionally gener-
ated contents). For comparison purposes, we use data
from three representative non-UGC services. Netflix,
a popular online video rental store, make customer rat-
ings of their 17,770 videos publicly available at [4] and
we include this data in our comparison. We additionally
crawled the web site of Lovefilm [3], Europe’s largest
online DVD rental store, and Yahoo! Movies [5] for
meta-information about their movie collections. Our
Lovefilm dataset contains the video length and the di-
rector. Our Yahoo dataset contains the daily top ten
US Box Office Chart from 2004 to March 2007, and
their theater gross. Table 2 summarizes the non-UGC
dataset.

Table 2: Summary of non-UGC traces
Trace # Videos Period Description

Netflix 17,770 Oct 2006 Customer ratings
Lovefilm 39,447 Jan 2007 Length and director
Yahoo 361 2004 - 2007 Theater gross income

2.2.1 Content Production Patterns

One key characteristic of UGC is the fast content pro-
duction rate. As we have reported in [28], the scale of
production for UGC shows a striking difference with
non-UGC. IMDb, the largest online movie database,
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Table 1: Video trace summary and statistics.
Name Category # Videos Tot. views Tot. length Data collection period

YouTube Ent 1,687,506 3,708,600,000 15.2 years Dec 28, 2006 (crawled once)
YouTube Sci 252,255 539,868,316 1.8 years Jan 14 - 19, ’07 (daily), Feb 14, ’07, Mar 15, ’07 (once)
Daum All 196,037 207,555,622 1.0 year Mar 1, 2007 (crawled once)

carries 963,309 titles of movies and TV episodes pro-
duced since 1888, up until now [2]. In contrast, YouTube
enjoys 65,000 daily new uploads – which means that it
only takes 15 days in YouTube to produce the same
number of videos as in IMDb.

UGC requires less production efforts, compared to
non-UGC. Accordingly, the number of distinct publish-
ers is massive for UGC. The average number of posts
per publisher, however, is similar for UGC and non-
UGC (e.g., 90% of film directors publish less than 10
movies). Interestingly, there exist extremely heavy pub-
lishers in UGC, who post over 1,000 videos over a few
years. In contrast, the largest number of movies pro-
duced by a single director scales only up to a hundred
movies over half a century.

Next, length of UGC videos varies across categories.
Daum CF category shows the shortest median length of
30 seconds, while Daum Music Video shows the longest
median length of 203 seconds. Compared with non-
UGC, the UGC video length is much shorter by two
orders of magnitude. The median movie length in Love-
film is 94 minutes.

2.2.2 User Participation

The video popularity and ratings (i.e., the number
of viewers who evaluated the video) show a strong lin-
ear relationship for both UGC and non-UGC, with the
correlation coefficient of 0.8 for YouTube and 0.87 for
Yahoo. This is an interesting observation, because it in-
dicates that users are not biased towards rating popular
videos more than unpopular ones.

Despite the Web2.0 features to encourage user par-
ticipation, the level of active user participation is very
low in YouTube. While 54% of all videos are rated, the
aggregate ratings only account for 0.22% of the total
views. Comments, a more active form of participation,
account for mere 0.16% of total views. While we are
not able to verify this from VoD traces, other Web 2.0
sites also report similar trends on relatively low user
involvements [11].

2.2.3 How Content Is Found?

We will now examine at the pages that link to YouTube
videos. Based on Sci trace, 47% of all videos have in-
coming links from external sites. The aggregate views
of these linked videos account for 90% of the total views,
indicating that popular videos are more likely to be
linked. Nevertheless, the total clicks derived from these
links account for only 3% of the total views, indicat-

ing that views coming from external links is not very
significant. We have identified that the top five web
sites linking to videos in YouTube Sci are myspace.com,
blogspot.com, orkut.com, Qooqle.jp, and friendster.
com; four of them from social networking sites, and one
on video recommendation.

3. IS UGC TRAFFIC POWER-LAW?
Analyzing the exact form of probability distribution

does not only help us to understand the underlying
mechanism, but also help us answer important design
questions in UGC services. This is true in multiple
other areas, for instance, the study of the scale-free na-
ture of Web requests has brought insights into improv-
ing search engines and advertising. Similarly, under-
standing the distributions from book sales in an online
store helps online retailers estimate their lost opportu-
nities due to poor item categorization or description, or
näıve recommendation engines [10,20,34].

The power-law has been increasingly used to model
various statistics appearing in the computer science and
its applications. A distinguished feature of power-law
is a straight line in the log-log plot of views versus fre-
quency. However, there are some distributions (e.g.,
log-normal) that show almost straight line waist across
a few orders in a log-log plot. Therefore it is entirely
a non-trivial task to determine whether a certain dis-
tributions is power-law or log-normal, unless the plot
shows a clear straight line across several orders of mag-
nitude [16,18,30,32,35]. The shape of a distribution im-
plies the underlying mechanism that generates it. Nor-
mally, the power-law distribution arises from rich-get-
richer principle, while the log-normal distribution arises
from the law of proportionate effect1.

In a real-world, the shape of the natural distribu-
tion can be affected due to various reasons (e.g., bottle-
necks in the system). In fact, many distributions whose
underlying mechanism is power-law fail to show clear
power-law patterns, especially at the both end of the
distribution: the most popular and the least popular
items. In the case of movies in cinemas [9], the distor-
tion may come from the lack of enough movie theaters,
where niche content is not seen as much as it should.
This is a distribution bottleneck and bringing such con-
tent online removes the distribution bottleneck.

However, this is not the only bottleneck that modifies
the shape of a distribution. For example, NetFlix data
1The log-normal distribution is very similar to the normal distri-
bution; the difference is at is multiplicative process, not additive.
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(Figure 1) does not show a power-law pattern for the
non-popular videos. This is an information bottleneck,
and relates to the fact that users cannot easily discover
niche content, or content is not properly categorized or
ranked2. The latent demand for products, that cannot
be reached by inefficiencies in system, can have tremen-
dous commercial and technical consequences [10]. No
wonder, NetFlix recently launched the $1 million net-
flix prize to improve their recommendation engine [4].
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Figure 1: Empirical plot of ranks against ratings,

with a synthetic power-law plot for ranks [1 100].

In this section, we study the statistical properties
of YouTube video popularity. We first examine how
skewed requests are across videos. Then we delve deeper
into the actual statistical properties of the system, fo-
cusing on how user requests are distributed across pop-
ular and non-popular content, and discuss the potential
factors that shape such distributions. To provide differ-
ent comparison points of view, we will use traces from
both UGC and non-UGC services.

3.1 Pareto Principle
The Pareto Principle (or 80-20 rule) is widely used

to describe the skewness in distribution. Such skewness
tells us how niche-centric the service is and is useful in
re-adjusting the design principle of the system. To test
the Pareto Principle, we count the number of views for
the least r-th popular videos and show it in Figure 2.
The horizontal axis represents the videos sorted from
the most popular to the least popular, with video ranks
normalized between 0 and 100. The graph shows that
10% of the top popular videos account for nearly 80% of
views, while the rest 90% of videos account for less than
20% of views. This result is quite surprising, since in
the other online systems, the 90% of least popular files
contributes much larger portion to the total number of
views. For instance, analysis of a large VoD system in
China, PowerInfo, shows that 90% of least popular VoD
files account for 40% of all requests [36]. It is expected
that more broader availability of videos enhances the
2
Note that we plot customer ratings rather than views since this was

the only data available [4]. However, we have observed from other
VoD and UCG sites that ratings and views are related by a linear
relationship (see §2.2.2). Thus the general distribution presented in
this plot should not differ greatly when plotting rank against views.

diversity of user’s requests and results in more spread of
requests across files. However, counter-intuitively, the
requests on YouTube seem to be highly skewed towards
popular files.

A nice immediate implication of this skewed distri-
bution is that caching can be made very efficient since
storing only a small set of objects can produce high
hit ratios. That is, by storing only 10% of long-term
popular videos, a cache can serve 80% of requests. We
revisit this issue in §5.1, where we hypothesize a global
cache for YouTube and assess its performance. Another
implication is that YouTube is not so niche-centric and
serves mostly popular content. It is disputable whether
this phenomenon is a signature characteristic of UGC,
as opposed to commercial videos, or a consequence of
the YouTube’s video categorization or recommendation.
We expect that a better recommendation engine would
mitigate the strong dominance of the popular content
and shift the user’s requests toward non-popular con-
tent. High skewness in popularity is also confirmed from
Daum data as shown in Figure 2.
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Figure 2: Skewness of user interests across videos

3.2 Statistical Properties
We now analyze the intrinsic statistical properties of

UGC video popularity. Here we will use two differ-
ent representations of the popularity distribution. Each
representation will serve to analyze the behavior of dif-
ferent types of videos. In particular, we use a plot of
views against the complementary cumulative number of
views (i.e., frequency) and a plot of video ranks against
views. The first representation focuses on the most
popular videos and has been widely used to determine
whether a given distribution exhibits certain statistical
properties or not (e.g., power-law) by many researchers.
The second representation shows the behavior of unpop-
ular videos and has recently been used to understand
the behavior and so-called “the Long Tail” potential of
the non-popular content by Anderson [10]. These two
plots in fact are transposed versions of one another and
represent the same quantity [34].

3.2.1 Popular Content Analysis

Figures 3(a) and (b) display the popularity distri-
bution of videos of four representative categories from
YouTube and Daum. All of them exhibit power-law be-
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(a) YouTube empirical plot (b) Daum empirical plot (c) Curve fitting for YouTube

Figure 3: Video popularity distribution of YouTube and Daum follows power-law in the waist, with varying

exponent from 1.5 to 2.5. YouTube Sci and Daum Food exhibit sharp decay in the tail of hot content.

havior (a straight line in a log-log plot) across for more
than two orders of magnitude. The fitted power-law ex-
ponents are also shown in the figure. However YouTube
Sci and Daum Travel categories show a sharp decay for
the most popular content. To examine the truncation in
detail, Figure 3(c) shows the plot of Sci with the best-
fit curves of power-law, log-normal, exponential, and
power-law with an exponential cutoff. A log-normally
distributed quantity is one whose logarithm is normally
distributed. Power-law with an exponential cutoff has
an exponential decay term e−λx that overwhelms the
power-law behavior at large values of x. For x < 1

λ ,
it is almost identical to a normal power-law, and for
x > 1

λ , a normal exponential decay.
Our fitting result suggests that truncation at the tail

follows power-law with an exponential cutoff. Daum
Travel shows a similar result. Video popularity also
seems category-dependent. Popularity distributions of
other Daum categories (not shown here) showed high
variability; some do not follow power-law distribution,
the others follow power-law distribution but in which
the exponent varies. Nonetheless, all of them showed
power-law waist, with most of them having a truncated
tail that fits best by power-law with an exponential cut-
off.

While there exists significant difficulty in determin-
ing whether a certain distribution is power-law or not,
here, we will next consider the case where the innate
shape of popularity distribution is power-law, and that
the exponential cutoff arises from the limitation on the
number of videos and the user’s behavior. There are
several mechanisms that generate power-law distribu-
tions, but the simplest and the most convincing one is
the Yule process (also rephrased as preferential attach-
ment or rich-get-richer principle) [12, 27, 37]. In UGC,
this process can be translated as following: if k users
have already watched a video, then the rate of other
users watching the video is proportional to k. We will
now investigate why a power-law distribution can have
a sharp decay for the most popular content.

Power-law with a truncated tail appears frequently

in the degree distributions of various real-world net-
works such as WWW, protein networks, e-mail net-
works, actor networks, and scientific collaboration net-
works [19, 33]. Several models have been suggested to
explain the cause of this truncation. We will review two
models and investigate whether they are applicable to
our case.

First, Amaral et. al [8] suggested that the aging ef-
fect can yield truncation. Consider a network of actors,
where every actor will stop acting, in time. This means
that even a very highly connected vertex will, eventu-
ally, stop receiving new links. However, the aging ef-
fect does not apply to our case, because videos across
all ages shows truncated tail. In fact, as we will see
later in the paper, our daily trace shows that 80% of
the videos requested on a given day are older than 1
month, contradicting the hypothesis of aging effect in
our case.

Second, Mossa et. al. [33] suggested a network model
to explain the degree distribution of WWW. Along with
the preferential attachment, the model adopts the con-
cept of information filtering, which means that a user
cannot regard all the information but receive informa-
tion from only a fraction or a fixed number of existing
pages. Due to this information filtering process, the
preferential attachment is hindered and the exponen-
tial cutoff appears. The information filtering is surely
present also in both UGC and standard VoD services.
However, highly popular videos are prominently fea-
tured within these VoD services to attract more viewers,
and thus it is unlikely that information filtering causes
truncation for our case.

A study by Gummadi et al. [23] gives us some hints
on the truncated tail. In their study of file popularity
in P2P downloads, they suggest the cause of distortion
from “fetch-at-most-once” behavior of users. That is,
unlike in the WWW traffic where a single user fetches a
popular page (e.g., CNN) many times, P2P users fetch
each object at most once. Given a fixed number of
users, U , the videos, V , and the average number of
requests per user, R, the authors simulate P2P down-
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(a) Varying the requests per user (R) and the number of users (U) (b) Varying the number of videos (V )

Figure 4: Numerical simulation on the impact of “fetch-at-most-once” on the tail distribution

loads with two types of user populations: Power and
HitOnce. Both user groups make requests based on the
same initial Zipf file popularity. However, Power group
may request videos multiple times, and HitOnce group,
at most once. HitOnce user will make multiple draws
until a new item is requested. The resulting popularity
graph for HitOnce users appears truncated, compared
to a straight line for Power users [23].

UGC also has “Fetch-at-most-once”-like behavior; since
video content does not change (i.e., immutable), viewers
are not likely to watch the same video multiple times,
as they do for mutable web objects. Expanding the
work in [23], we suggest that other system character-
istics such as R and V , in combination with “fetch-at-
most-once”, have a major impact in forming the trun-
cated tail. To numerically verify this, we repeat the
simulation described above, but with varying parame-
ters for U , R, and V . In our setting, the Zipf parameter
is set as 1.0 for the initial video popularity.

Figure 4 shows the resulting video popularity in a
plot of views against the cumulative number of videos.
We make several observations from Figure 4(a). First,
compared with Power, HitOnce shows in a truncated
tail, as expected. Interestingly, the truncated tail gets
amplified as the number of requests per user, R, in-
creases. If R is small, then the “fetch-at-most-once”
effect does not take place. With increased R, “fetch-
at-most-once” effect starts playing a bigger role, since
there is a higher chance the a particular user is geared
towards the same popular file multiple times. Second,
adding more users in the system, U , increases views per
videos (shifting the plot in the x-axis). However, the
overall shape of the graph does not change, indicating
that the U has little impact in the tail truncation. Fi-
nally, increasing both R and U (from U = 2000, R = 10
to U = 10000, R = 50), the tail shape changes in a sim-
ilar way as when R increases. Note that larger R and U
values represents the case where new users are added to
the system and old users make more and more requests
(thus R increases). This intuitively captures what hap-
pens in the real UGC systems. In fact, our trace also

shows similar trends. Figure 5 shows the popularity
distribution of Sci, over a short and long-term win-
dow. Having a long-term window represents large R
and U values. The plot of popularity during one day
(i.e., small R) exhibits a clear power-law decay, while
for longer terms, the distribution exhibits a truncated
tail as in Figure 4(a).
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Figure 5: Tail shape over different time-windows

Another factor that can greatly impact the shape of
a distribution is the number of videos, V . Figure 4(b)
shows the same simulation results, repeating for a smaller
number of videos (V = 100). If V is small, “fetch-at-
most-once” effect becomes amplified since there is only
a small number of videos to choose from. This results
in a highly truncated tail, as shown in Figure 4(b) for
the case of U = 2000, R = 50. We can also empirically
verify this from our plots of YouTube and Daum data.
Let us revisit the plots in Figures 3(a) and (b). We ob-
serve that the tail cutoff is much more pronounced for
categories with smaller number of videos, such as Sci
in the case of YouTube and Food in the case of Daum.

So far, we focused on the popularity distribution of
popular content and showed, via numerical simulations
and empirical validation, that the tail truncation is af-
fected by both the average requests per users and the
number of videos in a category. Next, we move on to
the non-popular portion of the distribution.

3.3 Studying The Long Tail
Anderson, in his book [10], asserted that there ex-
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ist huge opportunities in the unlimited number of non-
popular items, or so he calls this the economics of “the
Long Tail.” Here we will investigate the Long Tail op-
portunities in UGC services. In particular, the follow-
ing questions are of our interest: what is the underlying
distribution of non-popular items, what shapes the dis-
tribution in one way or another, and how much benefit
the Long Tail can bring for UGC services.

Let us look into the distribution of the non-popular
content. We use a plot of video ranks against views,
where unpopular videos are put at the tail. This repre-
sentation, suggested by Zipf, has been used to observe
Zipf’s law. Figure 6(a) shows such empirical plot of Sci
videos, on a log-log scale. The figure shows a Zipf-like
waist (a straight line in a log-log plot) with a truncated
tail. When we perform goodness-of-fit test with several
distributions, the truncated tail fits best with Zipf with
an exponential cutoff, as clearly shown in the figure.
Log-normal is the second best fit.

However, as stressed before, it is hard to decide whether
it is a Zipf distribution modulated by a removable bot-
tleneck, or it is just a natural log-normal distribution.
Identifying the true nature of the distribution is hugely
important because it can affect strategies for market-
ing, target advertising, recommendation, and search en-
gines. In the following, we list the potential causes for
the truncated tail and discuss how they apply to our
scenario:

• Natural shape of UGC is truncated: User-generated
content, by definition, varies widely in its qual-
ity. One may argue that the natural shape of the
popularity distribution of UGC is truncated, since
significant fraction of videos in UGC are produced
for small audiences (e.g., family members), as op-
posed to professionally generated content, which
is produced for much wider audiences. For most
of the UGC categories we examined, goodness-of-
fit suggests Zipf with an exponential cutoff as the
best-fit, rather than a log-normal. However, it is
unlikely that such this distribution captures the
natural user behavior. Zipf (so as power-law) is
scale-free in nature, while exponential is a distri-
bution that is scaled or limited in size. Therefore
the two will rarely appear coherently and natu-
rally as a single mechanism. Rather, a more likely
scenario is that the underlying mechanism is Zipf,
but a bottleneck in the system truncates the tail.

• Sampled publishing (pre-filters): The plot of Net-
flix in Figure 1 shows a sharp decay in the tail.
This can be explained by sampling bias. Even
though NetFlix provides an enormous online cat-
alog of DVDs world-wide, their videos are a set of
movies that are sampled from all the movies ever
made; only a small portion of movies world-wide

are made into DVD titles. In UGC services, pub-
lishes post videos sampled from the video pool in
their possession. However, they may only upload
those that they consider most interesting. The fol-
lowing process explains how such pre-filtering af-
fects the shape of a distribution: Consider a com-
plete list of N videos, whose popularity distribu-
tion follows Zipf. Then let us remove h videos from
the set, such that the probability of a video re-
moved is proportional to the inverse order of their
ranks. The remaining N−h videos will have trun-
cated tail.

• Information filtering (post-filters): Search or rec-
ommendation engines typically return a small num-
ber of hits, compared with the total number of
items that are indexed as relevant [15, 33]. The
impact of these post-filters has been extensively
analyzed by Fortunato et al. [20], where they show
post-filters yield truncated distributions. If we
assume that UGC too is truncated in the non-
popular items due to post-filters, then older videos
should have more pronounced truncation than the
younger ones (as older videos have been exposed
longer to the filtering effect). Indeed, we are able
to observe this from our trace. Figure 6(b) shows
the popularity distributions of Sci videos of differ-
ent ages. Videos aged 1 day are clearly less trun-
cated in tail than older ones. The graphs for older
videos show: popular items gaining more views;
the slop at the waist becoming steeper; and the
tail becoming more truncated. This reinforces the
case for post-filtering, where top videos are more
likely to be favored in the way they are presented
to the users, and this impact gets amplified as
time passes, since non-popular videos will rarely
be brought to user’s attention.

The above discussion reflects an important observa-
tion, since it suggests that the truncated Long Tail
represents a latent demand that could potentially be
brought forward with adequate recommendation and
search engines, better tagging techniques, and the ease
of video posting. If Zipf is the natural shape and the
truncated tail is due to some removable bottlenecks
(e.g., filtering), then in the system with no bottleneck,
the videos in the truncated region would gain deserved
views, offering the better chances to discover rare niche
videos to users and potential business opportunities to
the company. We estimate the benefit from the removal
of the bottleneck of system. The estimation is defined
as the ratio of aggregated additional views against the
existing total views. Table 3 shows the measured bene-
fits for the four UGC video categories. We also present
the number of videos that may benefit. YouTube Ent
and Sci show great opportunities in the Long Tail eco-
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Figure 6: Ranks versus views plot for YouTube Sci videos.

nomics (42-45% potential improvement), due to the large
number of videos that can benefit. While in Daum
Travel and Food, the benefit is reduced due to a small
number of videos that benefit. When the number of
videos is small, the inefficiencies of the system (due to
filtering effects) are smaller since information can be
found easier.

Table 3: Potential gain from the Long Tail in terms of

additional views and the number of beneficiary videos

Ent Sci Travel Food
Gain 45%(1.2M) 42%(240K) 4%(5K) 14%(400)

4. POPULARITY EVOLUTION OF UGC
As opposed to standard VoD systems where the con-

tent popularity fluctuation is rather predictable (via
strategic marketing campaigns of movies), UGC video
popularity can be ephemeral and have a much more
unpredictable behavior. Similarly, as opposed to the
early days of TV when most people watched the same
program at the same time, such temporal correlation is
much more diluted in UGC. Videos come and go all the
time, and the viewing patterns also fluctuate based on
how people get directed to such content, through RSS
feeds, web reviews, blogs, e-mail or other recommen-
dation networks. To better understand this temporal
focus, in this section, we analyze the UGC video pop-
ularity evolution over time. Our analysis is conducted
from two different angles. We first analyze whether re-
quests concentrate on young or old videos. Then we in-
vestigate how fast or slow popularity changes for videos
of different age, and further test if the future popularity
of a video can be predicted. For the analysis, we use
daily trace of YouTube Sci videos.

4.1 Popularity Distribution Versus Age
To examine the age distribution of requested videos,

we first group videos by age (binned every five days) and
count the total volume of requests for each age group.
Figure 7 displays the maximum, median, and the av-
erage requests per age group. We only consider videos

that are requested at least once during the trace period.
The vertical axis is in log-scale. For very young videos
(e.g., newer than 1 month), we observe slight increase in
the average requests, which indicates viewers are mildly
more interested in new videos, than the rest. However,
this trend is not very pronounced, when we examine the
plot of maximum requests. Some old videos too receive
significant requests. In fact, our trace shows massive
80% of videos requested on a given day are older than 1
month and this traffic accounts to 72% of total requests.
The plot becomes noisy for age groups older than 1
year, due to small number of videos. In summary, if
we exclude the very new videos, user’s preference seems
relatively insensitive to video’s age.
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Figure 7: Distribution of request volume across

video’s age, based on Sci daily trace.

While user’s interests is video-age insensitive in a
gross scale, most of the top requests on a given day seem
to target on recent videos in Figure 7. To further ver-
ify this, we look into the age distribution of top twenty
most requested videos. Figure 8 shows the result for a
different time-window of a day, a week, a month, and all
time. For each plot, we used two snapshots, taken the
corresponding periods apart, and ranked videos based
on the increase in their views. For the plot of “all time”,
we assume the initial views of videos are zero. Over a
one day period, roughly 50% of the top twenty videos
are recent. However, as the time-window increases, the
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median age shifts towards older videos. This suggests
ephemeral popularity of young videos. To better un-
derstand its effect, in the next section, we discuss the
video popularity evolution over time.
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Figure 8: Age distribution of top 20 videos

4.2 Temporal Focus
We now continue our discussion on the video pop-

ularity and investigate how the popularity of individ-
ual UGC videos evolve over time, how fast or slow it
changes, and whether the future popularity of a video
can be predicted.

4.2.1 Probability of Videos Being Watched Over Time

When a video is posted, it has zero views; gradually
videos will gain views over time. To capture this trend
in UGC videos, in Figure 9, we show the percentage
of videos aged ≤ X days having ≤ V views. We pro-
vide several view points by considering a range of V
values from 0 to 10,000. The graph shows that after a
day, 90% of videos are watched at least once, and 40%
are watched over 10 times. After a longer period of
time, more videos gain views, as expected. One notice-
able trend in the graph is the consistent deeps at cer-
tain times (e.g. 1 day, 1 month, 1 year). These points
seem to coincide with the time classification made by
YouTube in their video categorization. From this plot,
we can see that the slope of the graph seems to decay
as time passes. Noting the log-scale in the horizontal
axis, this indicates the probability of a given video to
be requested decreases sharply over time. In fact, if we
consider the case of V = 10, the probability that a give
file gets more than 10 requests over the the duration
of first 24 hours, 6 days, 3 weeks, and 11 months, is
0.43, 0.18, 0.17, and 0.14, respectively. This indicates
that videos are more likely to get most of their requests
soon after they are posted. Conversely, if a video did
not get enough requests during its first days, then, it is
unlikely that they will get many requests in the future.
Based on these observations, we will next test if it is
possible to predict a video’s future popularity.

4.2.2 Predicting Near-Future Popularity

The ability to predict future popularity is immensely
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Figure 9: Probability of videos being watched over

time, based on YouTube Sci trace

useful in many ways, because the service providers may
pre-populate these videos within multiple proxies or
caches and the content owners may use this fast feed-
back to better manage their contents (e.g., production
companies releasing trailers to predict popularity). We
now explore the possibility of using early views records
in predicting near-future popularity. We compare the
first few days’ video views with those after some pe-
riod of time (i.e., 5, 7, and 90 days). Table 4 shows
the correlation coefficient of views for combinations of
snapshots. We also present the number of videos used
for sampling. Our results show that second day record
gives a more accurate estimation than using the first
day’s records, in fact, at a relatively high accuracy (cor-
relation coefficient above 0.8). This is due to the time
it takes for videos to be known and start ramping up
the popularity curve. Using the third day record im-
proves the prediction accuracy, yet, only marginally.
The result also shows a high correlation with the second
day record even for more distant future popularity (e.g.
three months afterwards).

Table 4: Correlation coefficient of video views in

two snapshots (Number of videos analyzed)

Age (x0) x0+5 days old 7 days old 90 days old
1 day old 0.5885 (7221) 0.8776 (3394) 0.5561 (11884)

2 days old 0.9665 (5185) 0.8793 (3394) 0.8425 (11215)
3 days old 0.9367 (3394) 0.9367 (3394) 0.8525 (9816)

4.2.3 Popularity Shifts

Now we examine how easy or hard it is for new and
old videos to become very popular as a function of their
age. To observe this, we will first look at how the video
rank changes against the video age. In Figure 10(a),
we use two snapshots from our 6-day trace, taken at
day zero and day 5, and consider only those videos that
appear on both of the snapshots. We group videos by
their age (bin in units of ten days) and plot the change
in ranks (i.e., ∆rank) over age. For each age group, we
plot the maximum, top 99 percentile, average, and the
minimum change in ∆rank. The vertical axis ranges
from -4059 to 235132, which indicates that some videos
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decreased in their rank by 4059 during the trace period,
while some jumped up 235132 ranks.
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Figure 10: Changes in ranking and popularity

We make several observations from Figure 10(a). First,
young videos can change many rank positions very fast,
while old videos have a much smaller rank fluctuation,
indicating a more stable ranking classification for old
videos. Still, some of the old videos also increased their
ranks dramatically. This could indicate that old videos
are able to ramp up the popularity ladder and become
popular after a long time, e.g., due to the Long Tail
effects and good recommendation engines. However, it
is hard to conclude this from Figure 10(a) since a few
requests may also result in major rank changes. We will
revisit this issue at the end of this section.

The gap between the maximum and the top 99 per-
centile lines reflects that only a few young videos (e.g.,
less than 1%) make large rank changes, indicating that
only a very small percentage of the young videos make it
to the top popular list while the rest have much smaller
ranking changes. We also see a consistent minimum
∆rank line at nearly -4000 across all age group. A de-
tailed look at those videos reveals that those videos did
not receive any request during the trace period, how-
ever their ranking was pushed back as other videos got
at least one request. This shows that unpopular videos
that do not receive any request will die in the ranking
chart at a rate of 2000 positions per day.

As discussed before, when it comes to identifying ma-
jor shifts in the popularity distribution, considering the
actual change in views or ranks is not enough. Videos
can get many requests but make a minor rank change,

and vice versa; a large rank change could be due to a
very few requests (e.g. from zero to five requests). To
identify videos that made dramatic rank changes as well
as received large number of requests, we propose using
the product of (∆rank · ∆views) as in Figure 10(b).
The vertical axis is in log scale. Now we observe more
drastic popularity shifts for young videos; barely no sin-
gle old video received a significant number of requests to
make major upward shift in the popularity distribution.
In short, revival-of-the-dead effect, where old videos are
suddenly brought up to the top of the chart, does not
seem to happen strongly in our trace.

5. EFFICIENT UGC SYSTEM DESIGN
With the increasing popularity of UGC, YouTube

alone is estimated to carry astonishing 60% of all videos
online, serving daily 100 million distinct videos [6]. This
corresponds to, in our estimation, a massive 50 - 200
Gb/s of server loads as well as access bandwidth on
a traditional server-client model. Accordingly network
operators are reporting a rise in overall Web traffic and
a rise in HTTP video streaming as a second aspect [7].
In this section, we provide insights on the potential for
more efficient UCG system designs in terms of caching
and Peer-to-Peer (P2P) techniques.

5.1 Better Use of Caching
Caching stores redundant copies of a file near the

end user and has been proven to be extremely effec-
tive in many Web applications. Several factors affect
the caching efficiency: the cache size, the number of
users and videos, the correlation of requests, the shifts
in popularity, and so on. In this section, we will hy-
pothesize a global cache system for YouTube and assess
its efficiency using our 6-day daily trace. Our interest
is at investigating the cache performance, under mas-
sive new uploads and dynamic popularity evolution. We
consider the following three simple caching schemes:

1. A static finite cache, where at day zero the cache
is filled with long-term popular videos. The cache
content is not altered during the trace period.

2. A dynamic infinite cache, where at day zero the
cache is populated with all videos ever requested
in Sci category, and thereafter stores any other
videos requested during the trace period.

3. A hybrid finite cache, which works like the static
cache, but where there is an extra cache portion
that stores the daily most popular videos.

We populate the static cache with long-term popu-
lar videos accounting 90% of total traffic in the Pareto
Principle. This corresponds to 16% of videos in Sci.
Dynamic infinite cache simply stores all the videos ever
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requested. In hybrid finite cache, the cache is first pop-
ulated with the top 16% of Sci videos, then the cache
also allocates a small extra space to store the daily top
10,000 videos. We perform a trace-driven simulation to
assess the cache performance in terms of the required
cache size and the cache miss ratio. To do this, we
replay the 6-day trace under our three cache scenarios
and calculate the average the hit and miss ratios over
multiple days. We simply use the number of videos
cached as the cache size, because the video length and
the encoding rate do not vary much across files. Ta-
ble 5 summarizes the cache performance. The results
indicate that about 40% of the videos are requested new
each day. However, the volume of requests accounted
for such videos is very small and they only account for
about 20% of the requests. In fact, we see that a sim-
ple static cache that stores the top long-term popular
files uses 84% less space than a dynamic infinite cache
solution, at the cost of only 23% extra missed volume.
We should also mention that, by adapting to changes
in daily requests, a hybrid cache improves the cache
efficiency about 10%, compared to the static cache.

Table 5: Synthetic cache efficiency

Type Size # Missed videos Missed volume
Static 41,456 115,002 (48.8%) 5,093,832 (26.7%)

Dynamic 256,647 4,683 (1.9%) 648,376 (3.4%)
Hybrid 51,456 94,893 (40.3%) 3,271,649 (17.1%)

5.2 Potential for P2P
In this section we explore the potential benefits of

a P2P technique in UGC distribution. In a P2P sys-
tem, users (or peers) share videos they watched for a
certain period of time. A new user may fetch videos
from other peers who are concurrently online and have
the content of interest, rather than fetching from the
server. Inherently, P2P system is effective only when
there are enough number of online peers sharing content
– this is called a torrent. Here we investigate the po-
tential benefits a P2P technique can bring to YouTube.
However unlike the existing network environment where
P2P has shown great efficiency [21], massive scale of
videos, small-sized content, and the ephemeral popu-
larity makes it unclear if P2P will be as effective in
UGC. Therefore we first assess the feasibility of a P2P in
UGC by examining how many files can benefit via P2P
approach. We then perform a trace-driven analysis to
measure how much server workload can be saved using
P2P, compared to the traditional server-client model.

We commence by estimating the inter-arrival times
of requests. Our trace provides granularity of requests
up to a day and it shows that daily requests of indi-
vidual video varies across the monitored period. We
exploit this daily granularity and assume that requests
within a single day are exponentially distributed *in

time. Within a day, the inter-arrival time of requests
has a mean of 1

λ , where λ is the intensity of requests
(i.e., the number of requests made that day). This inter-
arrival time will be shortly used to calculate the number
of concurrent users online. Figure 11 shows the CDF
of the average inter-arrival times per video. We ob-
serve that over a quarter of videos are requested more
frequent than every 10 minute.
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Figure 11: Inter-arrival times of requests

Next we calculate the number of concurrent users per
video (e.g., torrent size). The torrent size depends on
the duration and the frequency of users in the P2P sys-
tem. The system time of a user is important because
the P2P sharing may happen only when the user is on-
line. We consider the following four cases of P2P system
time: 1) length of the video user is watching, 2) duration
of time user spends on YouTube, 3) one hour, and 4)
one day. In the first case, users share videos only when
they are watching them. In the second case, users will
share videos while they are using YouTube. According
to Nielsen/NetRatings [13], the average time spent by
a user at YouTube is currently 28 minutes. We hence
assume users may share videos for 28 minutes in our
second case. In the last two cases, we consider users
sharing videos even when they are no longer in the sys-
tem. We mention that this may become a reality in
the future (e.g., users equipped with always-on set-top
boxes that run P2P).

Then for a given P2P system time of a user, t, and the
inter-arrival time of requests, 1

λ , the expected number
of concurrent users is λ

t . Note that this value can be less
than 1, indicating that there are times within that day
with no users watching the video. We only consider P2P
approach only when λ

t is greater than one (i.e., more
than one user watched a video). When λ

t ≤ 1, we sim-
ply apply traditional server-client model. Figure 12(a)
shows the CDF of the average concurrent users over the
monitoring period per video. We observe that for most
of the cases the expected number of concurrent users,
λ
t , is less than 1, indicating that only few videos will
benefit from P2P. However, when users share videos for
a longer period of time (e.g, 1 day), P2P may assist 60%
of videos with at least 10 current users all the time.

While the number of files that can benefit from P2P
come out relatively small, this does not necessarily mean
P2P is inefficient for UGC. As we have seen from the
previous sections, UGC requests are highly skewed and
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Figure 12: Potentials of a P2P system

temporal. Therefore, we investigate the benefits of P2P
by comparing the estimated server workload between
traditional client-server and P2P-assisted distribution
approaches. In a client-server model, each request is di-
rectly served by the server. While in the P2P-assisted
model, peers will participate in streaming only when
there are concurrent users. As a measure of server work-
load, we use the total length of the streamed content.
Figure 12(b) compares the server workload based on
trace-driven analysis. Our results show that the poten-
tial of P2P is actually very large. The server workload
is reduced by 41% even when users share only videos
while they are watching. When users share videos for
one day, the server workload reduces by tremendous
98.7%, compared to a client-server approach.

6. ALIASING AND ILLEGAL UPLOADS
Content aliasing and illegal uploads are critical prob-

lems of today’s UGC systems, since they can hamper
the efficiency of UGC systems as well as cause costly
lawsuits. In this section, we study the prevalence of
content duplication and illegal uploads in UGC, and
their impact in various system’s characteristics.

6.1 Content Aliasing
Traditional VoD services offer differently encoded ver-

sions of the same video, typically to support diverse
downward streaming bandwidths. In UGC, there often
exist multiple identical or very similar copies for a sin-
gle popular event. We call this group of videos, aliases,
and this new phenomenon content aliasing. Multiple
copies of video for a single event dilute the popular-
ity of the corresponding event, as the number of views
is distributed over multiple copies. This has a direct
impact on the design of recommendation and ranking

systems, as it is no longer straightforward to track the
popularity of an event from a single view count nor
present users with unique videos, instead of numerous
identical copies.

To estimate the prevalence of aliases, we have con-
ducted the following experiment. We first sample 216
videos from the top 10, 000 videos of YouTube Ent cat-
egory. Then we ask our 51 volunteers to view a few
videos and read the title and description. After viewing
some from our sample set, volunteers search YouTube
using keywords of their choice and flag any video they
deem pertaining to the same event as aliases3 Our vol-
unteers have identified 1, 224 aliases for 184 videos out
of original 216. Most videos have 1 to 4 aliases, while
the maximum number of aliases is 89. Out of all videos
that pertain to the same event, we call the video with
the earliest upload time original.
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Figure 13: Sum of all views of the original and

aliases versus views of original videos

Figure 13 shows the sum of views from all aliases and
the original video against the number of views of the
original videos. For a few videos, the sum of views from
aliases grows more than two orders of magnitude than
the views of the original. This clearly demonstrates
the popularity dilution effect of content aliasing. Undi-
luted and augmented by the views of aliases, the original
video could have been ranked much higher.
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Figure 14: Number of aliases against age differences

Next, we analyze the time intervals between aliases.
We plot the age differences between the original video
3We have created a webpage http://beta.kaist.ac.kr for
volunteers to view the video along with the description, and
then search for content aliases in YouTube.
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and its aliases in Figure 15 (the bin size is 5 days). A
large number of aliases are uploaded on the same day
as the original video or within a week. To examine how
the number of views has changed, we plot the views of
aliases normalized against that of the original against
the age difference in Figure 15. One conspicuous point
represents an alias that showed up more than 200 days
later than the original and received almost 1000 times
more views. This particular video was originally listed
in the Music category, and later posted on the Comedy
category with much more views. We find it rather sur-
prising to see so many aliases still appear 100 or more
days after the original video. As we dig deeper into
those aliases that have 10 times or more views than the
original and 100 days or more older. They are found
to belong to different categories from the original and
have been cross-posted over multiple categories. These
aliases could be a potential reason for the flattened pop-
ularity tail. We leave further investigation behind this
delayed popularity for future work.

Those aliases that turn up 100 days later with much
fewer views are likely to serve personal archiving pur-
poses. The Pearson correlation coefficient of the plot
in Figure 15 is 0.004. It signifies little correlation or
no decrease in the number of views over time. With a
good number of aliases older than 100 and more views,
we discern no clear trend in the aliases and their views
over time.

Finally, we check for the existence of heavy alias up-
loaders. Suspecting their strong motivation for online
popularity, we have wondered if they could post aliases
of already popular videos. Our data, however, shows
that over 80% of all aliases are by one-time uploaders
and the maximum number of aliases by one uploader is
15.

6.2 Illegal Uploads
UGCs derived from copyrighted contents raise a seri-

ous legal dilemma for UGC service providers. In a sense,
aliases can be considered to a great extent as a form of
“video spam.” A recent study from Vidmeter [25] sug-
gests that nearly 10 percent of videos in YouTube are
uploaded without the permission of the content owner.

Vidmeter’s report cover only the top ranked UGCs. We
augment Vidmeter’s work by looking not only at the top
ranked videos, but all in Ent.

We get the list of all videos at two different times, and
compare the two lists. The discrepancy represents the
deleted videos. When we follow the links to the deleted
videos, YouTube offers a notice about the reason behind
deletion. Possible reasons are: removed by users, terms
of use violation, copyright claim, and restricted access.
From the the first set of videos (1, 687, 506), the number
of all deleted videos are 6, 843 (0.4%). Only about 5%
of deleted videos have violated the copyright law, which
is a far smaller number than Vidmeter’s.

7. RELATED WORK
We have already incorporated many of the references

that closely relate to our work in the previous sections
of the paper. As this work covers a broad spectrum of
topics from popularity analysis to web caching and p2p
streaming, we next briefly summarize related works.

Large-scale video on-demand streaming (or VoD) ser-
vices have become popular in recent days, while UGC
services have grown explosively. Among the numerous
UGC sites, YouTube, MSN, Google Video, and Yahoo!
Video are the notable ones. Due to relatively short
history of UGC, little work has been done on the char-
acteristics of UGC or comparisons to traditional VoD
systems. One of the first related work on video popu-
larity is that of Griwodz et al. using the video rental
records [22]. Recently, Yu et al. [36] presented an in-
depth analysis of access patterns and user behaviors in
a centralized VoD system. Newman [34] carried out a
good comprehensive study of power law distributions.
He examined several examples of power-law: web hits,
copies of books sold, telephone calls, etc. Also a pa-
per by Alderson et al. develops an interesting and rich
theory for scale-free networks [29].

The idea of P2P streaming has been extensively ex-
plored in recent works in the context of patch updates,
VoD, etc [14, 21, 24, 26]. Most of existing work about
P2P VoD [17,24] systems was concentrated on the pro-
tocol design under various topological constraints and
the analysis of simulation results. Our study consid-
ers the potential for P2P delivery in large scale UGC
systems, which have unique characteristics in terms of
user consumption patterns and video popularity distri-
bution.

8. CONCLUSIONS
In this paper we have presented an extensive data-

driven analysis on the popularity distribution, popular-
ity evolution, and content duplication of user-generated
video contents. To the best of our knowledge, this work
is the first major stab at understanding the explosive
growth of UGC and its implications on underlying in-
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frastructures.
We have studied the nature of the user behavior and

identified the key elements that shape the popularity
distribution (e.g. what shapes the Long-Tail, alters
the skewness of popularity, or breaks the power-law be-
havior for very popular contents). Our results indicate
that information filtering factors are the likely cause for
reducing niche content popularity, which if leveraged,
could increase the total views by as much as 45%.

We have studied different UGC cache designs, and
showed that simple policies that cache the most popular
contents can offload server traffic by as much as 50%.
Similarly, we have also demonstrate that a distribution
system based on a P2P system can have great benefits,
despite the diversity of requests and short video length.

Finally, we have tackled the impact of content aliasing
and illegal uploads, which could hamper the future suc-
cess of UGC services. Content aliasing is widely spread
practise and has much impact on video ranking. Ille-
gal uploads are more common amongst highly ranked
videos. We believe that our work answers very critical
and pressing questions, and lies the basis for the design
of future UGC systems.
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