Buzztraq: Predicting geographical access patterns of social cascades using social networks

Nishanth Sastry
University of Cambridge

Eiko Yoneki
University of Cambridge

Jon Crowcroft
University of Cambridge

ABSTRACT
Web 2.0 sites have made networked sharing of user-generated content increasingly popular. Serving rich-media content with strict delivery constraints requires a distribution infrastructure. Traditional caching and distribution algorithms are optimised for globally popular content and will not be efficient for user-generated content that often show a long-tailed popularity distribution. New algorithms are needed.

This paper shows that information encoded in social subgraphs can be used to predict access patterns which may be partly driven by viral information dissemination, termed as a social cascade. Specifically, knowledge about the number and location of friends of previous users is used to generate hints that enable placing replicas closer to future accesses.

1. INTRODUCTION
The popularity of requests for content is frequently found to follow a long-tail distribution. For example, Yu et al. [11] find that the top 10% of the videos in a video-on-demand system account for approximately 60% of accesses, and the rest of the videos (the 90% in the tail) account for 40%. This popularity pattern can make server provisioning difficult, especially for rich-media content such as streaming video, which have relatively strict delivery constraints. The problem becomes especially severe with the recent proliferation of rich-media User-Generated Content (UGC) such as YouTube videos, whose popularity can vary dynamically, and often dramatically [3].

While global replication via content delivery networks (CDNs) is efficient for the most popular content, the majority of UGCs in the long tail are accessed too rarely for global replication to be practical. For instance, YouTube only uses CDNs for the most popular videos [5]. However, the UGC objects in the tail collectively account for a sizeable fraction of accesses.

The goal of this paper is to help mitigate the difficulty of serving the long-tail of UGC. Given a history of previous accesses, we wish to predict the geographies of the next few accesses, so that replicas may be intelligently provisioned to minimise future access times.

Knowledge of a UGC can spread in two ways; broadcast highlights or viral propagation. The first happens when the UGC object is featured or highlighted on a central index page. Examples include being featured on the home page of the hosting sites (such as the featured videos list on YouTube); being promoted on an external social bookmarking site (e.g. if slashdotted, or featured on Digg, Reddit, Del.icio.us “hotlists”, etc.); or ranking high on a google search. To rank high, UGCs have to be popular according to the indexing algorithm used. Such high-visibility UGCs will likely be accessed many times and from all over the world, and are best served by replicating globally via CDNs.

The second possible means of propagation is by word-of-mouth, by sharing explicitly with a group of friends. This can either happen on an online social network, or out-of-band, through emails, or face-to-face conversation. This kind of viral propagation has been termed as a social cascade and is considered to be an important reason for UGC information dissemination [4].

This paper shows that social subgraphs collected by social networking sites are an important resource for systems that seek to deliver UGC being transmitted by social cascades. The links between friends explicitly captures the means of propagation for social cascades. Furthermore, many social networking sites include approximate geography information. Information about the friends of previous users and their geographical affiliations is used to predict the geographical access patterns of future users.

Social cascade is first modeled as an epidemic. Information about the UGC is treated as a contagion that spreads from the current user to all friend nodes declared in their social network. Future accesses originate
exclusively from friends of previous users. This baseline case studies how social cascade spreads across geographies.

A strawman implementation is then proposed, to handle a diverse mixture of random accesses and social cascade-based accesses for a UGC. A user request from a region where the provider has a replica is counted as a local access, which is cheap. A user request from a region where there is no local replica is counted as a remote access, which is costlier. The goal of the UGC provider is to minimise the cost of access by choosing the geographic regions in which to place a fixed number of replicas of the UGC.

Two replica placement strategies are considered. The first, location based placement, uses the geographical location of recent users\(^1\) to place replicas. The second strategy, which we call social cascade prediction, places replicas in regions where the social cascade “epidemic” is densest, as determined by the average number of friends who have accessed the UGC.

These strategies are evaluated in the specific case where the UGC provider is allowed to place a fixed number, \(k\), of replicas. Thus, the location based placement strategy amounts to placing the replicas in the top \(k\) regions ranked by number of recent users. Social cascade prediction ranks regions by the number of friends of previous users and places replicas in the top \(k\) regions.

Our main result is that social cascade prediction can greatly decrease the cost of user access. The cost decrease is greatest when the cascade is responsible for most requests. Costs also decrease when cascades are responsible for fewer requests than random accesses. Based on this, we have built a prototype system, Buzztraq, that provides hints for replica placement by using social cascade prediction.

Intuitively, Buzztraq works by exploiting the presence of a social cascade component. Social cascade makes the geographies of user requests non-random. location based placement predicts that future requests will come from the same geographies as those of past requests. If instead, the requests shift to a new region, it is slower to react – until enough requests come from the new region to displace one of the old top-\(k\) replicas are not moved.

In contrast, social cascade prediction starts counting friends of previous users who are in the new region even before a request originates from the region. Furthermore, the number of local friends of users grows faster than the actual number of users from the new region. Thus, Buzztraq’s strategy is faster to shift replicas and incurs fewer remote accesses, making its costs cheaper.

The paper proceeds as follows. Section 2 describes two replica placement strategies. Section 3 discusses how Buzztraq obtains the declared social links and geographic affiliations. Section 4 discusses the mechanics of Buzztraq and two possible strategies for replica placement. Section 5 shows that using social network information to place replicas greatly reduces the cost of access. Section 6 discusses related work. Section 7 discusses some limitations. Section 8 discusses our next research steps and concludes.

2. SOCIAL CASCADE AS AN EPIDEMIC

When users access a UGC object influenced by their friends, it can be modeled as if infected by such friend’s opinion. We envision that many ideas, messages, and products could be spread rapidly through our population as social epidemics.

A recent example is the use of the hashtag “uksnow”\(^2\) on Twitter messages sent across the UK on Feb 2, 2009. Although there was no prior agreement on using this string, it quickly spread amongst twitter users, and became the most popular hashtag. At its height, between 3pm and 5pm, nearly 2000 twitter posts used the tag, making it the most popular hashtag of the day.

This section investigates how epidemics spread. We take an empirical approach, using friend lists from an online social network (details in Sec. 5.1) to emulate a social epidemic. We select a single user as an initial infectious user and propagate the infection process to his/her friends. This process is repeated over several rounds, with infection spreading from the initial seed to nodes \(n\) hops away.

Fig. 1 shows two possible geographic distributions of infected users. Fig. 1(a) depicts a rapidly shifting epidemic. The infected population and the regional spread of the users change from the third round (left) to the fifth round (right) over the geographic location. On the other hand, Fig. 1(b) shows the infection can also proceed without much change in geographic locations. The history of past locations can trivially predict the future when the epidemic is localised. The rest of the paper discusses how to predict regions of future infection when the epidemic is shifting.

3. INPUTS TO BUZZTRAQ

Buzztraq takes users’ declared social links and geographic affiliations and produces hints on where to place replicas. This section discusses how Buzztraq obtains the declared social links and geographic affiliations.

3.1 Social network information

Buzztraq needs the declared social links of users. Previously this information was confined to social networking sites. New APIs such as Facebook Connect\(^3\) and

\(^1\)This can be determined from the IP address block of the user. Commercial CDNs may employ similar strategies [9].

\(^2\)http://www.hashtags.org/tag/uksnow

\(^3\)http://developers.facebook.com/connect.php
(a) Shifting cascade symptom: regions of infections shifting over rounds

(b) Stable growth of cascade: Infection regions stay the same over rounds

Figure 1: Geographical nature of social cascades

MySpace Data Availability\(^4\) are starting to make this data available to external web sites.

These new APIs allow a user to login to external web sites using their identity on the corresponding social network. The external web site is authorised to retrieve and add related information about the user. Buzztraq uses the Facebook Platform API to retrieve each user’s friends, and their publicly available affiliation information. This is processed to obtain approximate geographic affiliations of the user and the user’s friends.

3.2 Obtaining geographic information

We attempt to deduce a geographic location for each affiliation of a user using Google’s geocoding API\(^5\). Sec. 5.1 shows that the affiliations of the users are largely geographical in nature. The geocoding API translated 71.3% of user affiliation strings into latitude-longitude coordinates.

The final goal is to design a replica placement policy. For that, geographic decisions must be made. Locations are treated as points and are clustered using the k-means algorithm [8]. To decide cluster membership, Vincenty’s formula is used to calculate geodesic distances between points [10].

The clusters define fixed regions across the world, and the UGC provider can place replicas in any of the identified regions. The primary output from Buzztraq is hints on which regions should have local replicas of a given UGC or UGC-collection, identified by a content-id.

Although social networks typically contain information about users’ current geographic locations, this is not the right granularity for our purpose. The geographical spread of a user’s influence is not limited to their current location. Often, information about new objects may be forwarded by out-of-band channels such as emails to old friends in the user’s previous locations. In practice, we also find that the current location information is not entered by a vast majority of users. Therefore, we use all the declared affiliations of the user in predicting the location of next access.

By giving equal weight to all locations, we are ignoring the complexities involved in word-of-mouth propagation, and may end up introducing false positives. For instance, depending on the nature of the content, a user may be much more likely to transmit a given UGC to only a subset of her affiliations/communities.

One mitigating factor is that Buzztraq hints are restricted to regions of the world. If the geographic affiliations of a user all belong to a single region, then the

\(^4\)http://developer.myspace.com/community/myspace/dataAvailability.aspx

\(^5\)http://code.google.com/apis/maps/documentation/geocoding/index.html
h rights. Furthermore, to the extent that the user has more friends in the geographic region where she is most likely to spread a social cascade, Buzztraq hints will still be correct.

4. PREDICTING FUTURE ACCESSES

Buzztraq allows the UGC provider to specify a single UGC or a collection of related content by a content-id. It keeps note of users accessing content identified by each content-id. Using information about these users’ friends and affiliations, hints are generated on where to place replicas of the content. We discuss this in the context of a possible UGC provider architecture.

4.1 A basic UGC provider model

Although the basic concepts underlying Buzztraq do not rely on any specific UGC provider architecture, for purposes of exposition, we use the following model.

We assume that users first log in at a central site and are redirected to one of a fixed number of replica sites to access the requested rich media UGC. Redirection to a replica site local to the user is considered to be preferable. For instance, this may enable better delay and jitter guarantees.

The central site runs Buzztraq, which obtains the user’s declared friends and geographical affiliations as detailed in Sec. 3. After each user access, Buzztraq uses this information to predict the top-\(k\) regions from which future accesses to the requested UGC are likely to originate. The UGC provider can use these hints to decide where to locate each UGC. Specifically, in our evaluation, we look at the case where each UGC is placed in a fixed number of replicas.

Buzztraq predictions are to be treated as hints for replica placement. Although hints are generated after each user access, the UGC provider is not required to reconfigure replica locations after each hint. This is not critical since the set of top-\(k\) regions is not expected to change frequently.

There may be regimes where it is practical to reconfigure replicas after each access. Consider a provider architecture where each regional replica contains all the UGCs hosted by the provider, but only those most likely to be accessed are kept in main memory. Buzztraq hints are then used to decide which \(k\) replicas will keep a given UGC in main memory. Changing this set is less expensive than shipping the UGC over the network, and could potentially be done after each user access.

4.2 Generating replica placement hints

Without social network links, the best a UGC provider can do is location based placement. This strategy keeps per-region histories of user accesses and places replicas in regions which have historically contributed the maximum number of users. Typically, only one region can be found, by reverse-mapping the IP address block of the user to a geography/ISP. The evaluation below uses the social network affiliation information and updates the UGC provider’s history for the all the regions the user is affiliated with.

Buzztraq uses an alternate strategy, social cascade prediction, which predicts the next accesses by taking social cascade into account. If user accesses are being driven by word-of-mouth propagation, we expect that some of the future accesses will be made by friends of previous users. Thus, our strategy is to place the replicas in the top-\(k\) regions where the number of potential future users, as measured by the number of friends of previous users, is highest.

Unlike location based placement, which only counts the number of previous users, social cascade prediction additionally attributes non-local friends to their appropriate regions as potential future users.

If the cumulative number of friends of previous users ranks a new region in the top-\(k\), Buzztraq predicts that more accesses will originate from this region, owing to social cascade. Location based placement will not rank this new region in the top-\(k\) until the new region generates enough requests to displace one of the previous top-\(k\). During this transition period, location based placement will cause non-local replica access for users from the new region, leading to higher costs.

If a user’s friends are local to her region, then both social cascade prediction and location based placement will recommend placing replicas in the same regions.

The approach of counting friends of previous users is similar to the concept of the reproductive number \(R\) in epidemiology, which measures the average number of secondary cases caused by each case of an infectious disease [2]. If \(R > 1\), then the infection will be sustained in the region. In this language, we are counting the number of potential secondary user accesses that could be caused by a previous infected user. Buzztraq’s output of top-\(k\) regions gives the regions where the intensity of infection is highest. Since new hints are generated after each user access, we count the current intensity of infection and do not normalise to determine whether the infection will be sustained.

5. EVALUATION

This section evaluates the relative costs of location based placement and social cascade replication using a synthetic workload. Social links and geographical affiliations are derived from a small subset of Facebook users. We generate a workload with user requests coming as a mixture of social cascade and random accesses, and compare the relative costs of the two different strategies for replica placement. The simulations find that social cascade prediction can help place replicas closer, on average, than location based placement.
5.1 User characteristics

Users for our workload are drawn from 20,740 facebook profiles from the Harvard network with profile IDs < 36,000. There are 2.1 million links between them, with a mean degree of 63 and a maximum degree 911.

The users have 1,660 distinct affiliations, of which 1,181 could be mapped to geographic locations, all over the globe. Using k-means clustering, we classified these into 10 regions. Our algorithm found separate clusters for North Africa, South and Central Africa, Europe and the Middle East, Australia and the Far East, South America, and the Indian Sub-continent. Predictably, there were multiple (4) regions within the United States.

5.2 Workload

Evaluation is driven by a simple workload. It is not intended to capture the all the complexities of user request arrivals. User accesses from across the globe are assumed to arrive at the central site in some serialisable fashion. Only the sequence of requests matters; there is no notion of real time. We also assume that user accesses are generated either by a social cascade or by a random process. Additionally, each user performs at most one access.

The main goal of the workload is to have a tunable amount of social cascade-based user accesses. User requests are assumed to arrive because of social cascade with probability p_s, or as a result of a random access, with probability $(1 - p_s)$. Thus, with probability p_s, the next user is chosen to be a friend of a previous user; with probability $1 - p_s$, the next user is a random user. We incorporate a notion of recency in the social cascade process – only friends of the last TTL users are chosen for non-random accesses.

Given this workload, the UGC provider has to place replicas so that access cost is minimised. If the provider has a replica in the region of the next user, it is deemed to be a local access; otherwise it is a remote access. The cumulative cost is measured by a cost function which is arbitrarily defined so that a remote access is $c_r = 20$ times costlier than a local access. The provider’s goal is to minimise the total cost of all user accesses. Note that any value of $c_r > 1$ will capture the relative difference in the long term costs of two replica placement strategies. Using larger c_r allows us to see the difference after fewer simulated user requests.

The UGC provider is allowed a fixed number of replicas ($k = 3$ in our experiments), and there are 10 regions in the world where the replicas can be placed. The replica placement strategy basically amounts to a strategy of choosing the top regions predicted for future accesses. The UGC provider is allowed to reconfigure its replicas after each user access.

Users in our dataset contain more declared affiliations for places within the United States, than any other country. Thus a safe strategy would be to concentrate all replicas in US regions. However, note that USA also contains four regions. By restricting the number of allowed replicas to three, any placement strategy is forced to choose at least one US region to serve remotely. This counteracts any geographical bias inherent in our data set and brings out the relative difference in the costs of the two strategies.

5.3 Relative cost of social cascade prediction

In effect, location based placement uses the history of previous accesses to predict future accesses. Social cascade prediction uses the history of social cascades (i.e. how many friends of a visitor also visited the site). Thus, social cascade prediction should be expected to work better if there is a strong social cascade component driving the user accesses.

![Figure 2: Cost comparison of social cascade prediction to location based placement. $p_s = 0.5$. When cost ratio is less than 1, social cascade prediction is cheaper.](image)

To verify this, we simulate the same workload (with $p_s = 0.5$) on two UGCs which are placed using following social cascade prediction and location based strategies, respectively. In both cases, we measure the cumulative cost of serving the first n requests, as n increases.

If the UGC provider is able to serve more users local to regions where it has placed replicas, its cost is lower. Fig 2 plots the result. The x-axis shows n and the y-axis plots the ratio of the cumulative costs of serving the first n requests using the social cascade prediction strategy to the cumulative costs using location based placement. Initially, when there is no discernable social cascade, location based placement outperforms. However, as the number of accesses increases, social cascade prediction becomes the more efficient strategy.

Fig 3 examines the relative efficiency of the two strategies for different values of p_s, the probability that the next user accesses because of a social cascade. A sequence of 100 requests is performed, and the relative...
cumulative cost of serving the last ten requests is measured, for different values of p_s. The cost ratio remains less than 1 (i.e. social cascade prediction is cheaper) for all the p_s values we measure. As the probability of a social cascade choice increases, the cost ratio drops, showing that the social cascade prediction does detect the underlying process generating the user inputs.

![Figure 3: Average cost ratio for different values of p_s. As p_s, the probability that social cascade drives user access, increases, Buzztraq's strategy becomes more efficient](image)

6. RELATED WORK

Buzztraq is motivated by a recent result [4] confirming anecdotal evidence that social cascades are an important factor in information spreading about UGCs, specifically photos on Flickr.

We emphasise that this system is intended mainly for the long-tail of UGCs that are not popular globally. For globally popular content, commercial CDNs such as Akamai\(^6\) can be a better fit. On the other hand, Akamai and other CDNs use DNS resolution to direct users to the nearest replica [1]. This can be incorporated into our system as a useful complementary behaviour.

The expected utility of Buzztraq hints depend on the collective popularity of long-tail content. In one study [11], the 90% of the videos that comprise the tail account for 40% of accesses, whereas another [3] reports that the tail 90% accounts for around 20% of the views, at least in the limited datasets studied. Buzztraq will clearly be more useful in the former case.

The system attaches a geographic profile to users by utilising geographic affiliations on their online social network profile. We believe this is a novel application. Several previous systems, including online advertisement systems have previously tracked users, but most of them use the IP address of the user to glean geography. One illustrative example is Cluster Maps\(^7\), which pinpoints visitors to blogs and draws a world map showing visitor locations.

7. DISCUSSION

Recent studies have demonstrated that social cascades are an important means by which information about certain kinds of User-Generated Content (UGC) is propagated. We show how to use this property and mitigate the cost of storing and serving the long-tail of UGC objects that are not (yet) popular enough to cache worldwide, using standard mechanisms such as CDNs. Any content that is disseminated virally can potentially benefit from social cascade prediction; it is not specific to serving user-generated content.

Social cascade prediction predicts the geographic location of social cascades by utilising friendship and geographic information in social networks. Lacking accurate and complete geographic affiliation records in current online social networks, we use users' network affiliations and attach geographic locations to them. Success naturally depends on accuracy of geocoding systems - while the current crop of geocoding APIs are very good at parsing, there are limitations. (e.g. MIT, BYU etc were parsed to latitude-longitude coordinates, but SUNY Buffalo Graduate Center proved to be too complex). Also, we are conflating geographical closeness between server replica and user, with good network connectivity. This may not necessarily be a correct assumption in all cases.

Furthermore, we are using the logical OR of a user’s affiliations on Facebook. On the one hand, this is beneficial because it captures information not in the social network about means for social cascade (e.g. a user might spread information to someone not on their Facebook profile but in their geographical affiliation region). On the other hand, we could end up introducing noise – For instance, old and inaccurate affiliations, might cause our system to predict the next few accesses from a foreign location, when it is not called for.

Even with the above caveats, we believe that our strawman implementation of Buzztraq, is the beginning of a system that can efficiently handle the long-tail of UGC that is not yet popular for expensive worldwide delivery by CDNs.

8. CONCLUSION AND FUTURE WORK

We conclude by emphasizing that identifying the geographical locations of potential next users is only half the problem. The other half of the problem is actually provisioning a server or servers such that the service time is minimised. This is a complex problem in itself, and this paper does not address all the details. Instead, we simplify the problem and find the best regions in the globe in which to place a given number of replicas.

Furthermore, this paper only considered placement

\(^6\)http://www.akamai.com

\(^7\)http://www.clustrmaps.com
strategies. In other words, social cascade prediction has been used to answer the question of where to place a UGC. This works well when the UGC is being replicated on spare storage available at the replicas using spare bandwidth that the UGC provider is already contractually obligated to consume. Our next steps to a more complete system will require resolving the question of which UGCs to replicate when replicas have limited storage and bandwidth, as well as possible strategies for the replicated videos replacing other videos at the replica site.

Finally, our early prototype captures social cascades using a very simple model. Considerably more sophisticated models have been proposed [6, 7]. Incorporating these could lead to better geographical access pattern predictions with Buzztraq.

9. ACKNOWLEDGEMENTS

We thank Joe Bonneau and Jonathan Anderson for providing us the data from facebook users. We also thank Steve Hand, Derek Murray, and our shepherd Tao Stein, for valuable suggestions and discussions that helped improve and clarify earlier drafts. This research is funded in part by the EU grants for the Haggle project, IST-4-027918, and the SOCIALNETS project, 217141, and a St. John’s Benefactor’s Scholarship to NS.

10. REFERENCES

