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Re: other AdvML things

e Attacks on compressed models
e Crypto-inspired certifiable detection schemes
® Attacks on reinforcement learning

e Attacks on point cloud models



Re: other things

® Technical surveillance work

o  Hearing your touch: A new acoustic side channel on smartphones (2019)
o  Hey Alexa what did | just type? Decoding smartphone sounds with a voice assistant (2020)
O ... more to come very soon ...

e Understanding cybercrime over the internet

o  Towards Automatic Discovery of Cybercrime Supply Chains (2019)
o Turning Up the Dial: the Evolution of a Cybercrime Market Through Set-up, Stable, and Covid-19 Eras (2020)
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Machine Learning

® Machine learning is everywhere
® \We operate based on data, not formal rules
® There’s a lot of non-determinism

e Itissuddenly hard to define Security

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT I THE ANSLERS ARE RONG? )

JUST STIR THE PILE DNTIL
THEY START (OOKING RIGHT.

https://xked.com/1838/




Computer Security in context of Machine Learning

Class: bird . Class: automobile
Confidence: 0.9659422039985657 Difference Confidence: 0.8248467445373535

e Adversarial examples exist for all models
® A large taxonomy of attackers

® Attacks are scalable because of transferability



Machine Learning in context of Computer Security

ML is a part of a larger pipeline

As secure as the weakest component
Clear threat model

Safety and Security policies and cases
Existence of trusted components

Well defined environment

1 IMAGINATION ¢

A CRYPTO NERD'S

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
CLOSTER To CRACK \T-

NO GooD! IT'S
uo% -BIT RSA\

EVIL PIRN
\S FOILED! ™

| ACTUALLY HAPPEN:

WHAT WOULD

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE TELlS U5 THE. PASSWORD.

GOT IT,

@W




Machine Learning in context of Computer Security

£ gr/MachineLearning Posted by u/ProGamerGov 9 days ago eh

671 3 & g % A
[D] Possible malware found hidden inside images from the ImageNet
dataset
Discussion

I think I've discovered r
http://imagenet.stanfor |

The following URLs shov

http://www. learnanil
http://www. pixelbird
http://www. pixelbird

But when I posted my fi
find. I assumed this me:
Microsoft the files sayini
indeed malicious. The IF
numerous times in the |

Vulnerability Details : CVE-2018-8825

Google TensorFlow 1.7 and below is affected by: Buffer Overflow. The impact is: execute arbitrary code (local).
Publish Date : 2019-04-23 Last Update Date : 2019-04-25

Collapse All Expand All

Search Twitter

Select Select&Copy Scroll To + Comments External Links

Search YouTube Search Goegle

- CVSS Scores & Vulnerability Types

CVSS Score

Confidentiality Impact
Integrity Impact

Availability Impact
Access Complexity
Authentication

Gained Access

PN R I R oL e Ry’ T ¢

TensorFlow models are programs

6.8 TensorFlow's runtime system interprets and executes programs.
rtial (There is considerab programs that TensorFlow executes. TensorFlow programs are er

' (Modification of som geparately in checkpoints.
attacker can affect is limite

Partial (There is reduced pe At runtime, TensorFlow executes the computation graph using th

(The access condit may change depending on the parameters provided. TensorFlow
Not required (Authenticatio TensorFlow may read and write files, send and receive data over:
None performed with the permissions of the TensorFlow process. Allov

S o DY - Sl P A R ar Y



Machine Learning in context of Computer Security

Safety looks at average case, Security considers worst case

What is a worst case for an ML component?



Availability

Ensuring timely and reliable access to and use of information.
(NIST Special Publication 800-12)



Availability

Benign Data

Sponge Examples
- oy

A

Increased latency

Over-heating and over-consumption of energy



Energy Gap

The amount of energy consumed by one inference pass (i.e. a
forward pass in a neural network) depends primarily on:

e The overall number of arithmetic operations required to
process the inputs;

e The number of memory accesses e.g. to the GPU DRAM.



Hypothesis 1: Data Sparsity

Optimisations exploit runtime data sparsity to increase efficiency.
® Zero-skipping multiplications;

® Encoding DRAM traffic to reduce the off-chip bandwidth
requirement.



Hypothesis 2: Computation Dimensions

Modern networks have a computational dimension

® Alarge number of NLP models are auto-regressive e.g. RNNs
and GPT2

e Adaptive input dimensions to help performance e.g. GPT2 uses
Byte Pair Encoding

® ML components are a part of loop



Hypothesis 2: Computation Dimensions for GPT2

Auto-regressiveness adds an unbounded loop

Algorithm 1: Translation Transformer NLP pipeline

Result: y

4 O(ltin)

Tyin = TOKenize(x);

Ytouts = 0;

~L O(lein)

Tein = ENncode (z+in);

aL O(ltin X lein X ltout X leout)

while Y., has no end of sentence token do
~L O(leout)

Yeout = ENCOde (Ytout);

4 O(lein X leout)

Yeout = Model.Inference(zein, Yeout, Yrouts);
1 O(leout);

Yrout = DECOAE(Yeout);

Yrouts-2dd(Yrout);

end

3 & O(liour);

y = Detokenize(ytouts)

-
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Hypothesis 2: Computation Dimensions for GPT2

Encoding adds variable 1/O representation

Benign with 4 tokens for input of size 16:
Athazagoraphobia => ath, az, agor, aphobia

1 error with 7 tokens for input of size 16:
Athazagoraphpbia => ath, az, agor, aph, p, bi, a

Malicious with 16 tokens for input of size 16:

A/h/z/g/r/o/o/if =>A, [, h [,z /8. /,n e, lip /L0,



Multiple ways to search for Sponge examples

Interactive Sponge consruction

Evolve a pool of best Measure energy or .
- Overconsuming ener
sponges over fime latency of a response g enengy

i iy /
=0 . e
‘_—_—_di_;@ %

Overheating underlying hardware

Evolving best samples according
to energy or latency

Loy

NLP cv

Random mutation availa bility

avail tation ¢—
exploi tation

avail nation




White-box attack performance with NLP benchmarks

GPU Energy [m]]

ASIC Energy [m]]

GPU Time [mS]

Input size Natural Random Sponge Natural Random Sponge Natural Random Sponge
15 4287.24 13485.49 38106.98 510.84 1008.59 2454.89 0.04 0.07 0.20
1.00x 3.15x 8.89x 1.00x 1.97x 4.81x 1.00x 2.02x 5.51x
WSC 30 4945.47 36984.44 79786.57 573.78 2319.05 5012.75 0.04 0.20 0.46
1.00x 7.48x 16.13x 1.00x 4.04x 8.74x 1.00x 4.89x 11.04x
50 6002.68 81017.01 159925.23 716.96 5093.42 10192.41 0.05 0.46 0.93
1.00x 13.50x 26.64x 1.00x 7.10x 14.22x 1.00x 10.16x 20.56x
WMT14/16 with [64]
En—Fr 15 9492.30 25772.89 40975.78 1793.84 4961.56 8494.36 0.10 0.24 0.37
1.00x 2.72x 4.32x 1.00x 2.77x 4.74x 1.00x 2.51x 3.89x
En—D. 15 8573.59 13293.51 |238677.16 1571.59 2476.18 48446.29 0.09 0.13 2.09
e 1.00x 1.55x | 27.84x 1.00x 1.58x | 30.83x || 1.00x 1.46x | 24.18x
WMTI18 with [65]
En—De 15 28393.97 3849396 |874862.97 1624.05 2318.50 49617.68 0.27 0.33 7.25
1.00x 1.36x 30.81x 1.00x 1.43x 30.55x 1.00x 1.20x 26.49x
WMTI19 with [69]
En—R 15 33181.43  91513.13 |876941.24 1897.19 5380.20 47931.11 0.31 0.77 7.19
n—riu 1.00x 2.76x 26.43x 1.00x 2.84x 25.26 % 1.00x 2.46x 22.85x




White-box attack performance for CV tasks

Timegp, [s]  Costysic [mJ] | Costysic ratio post-ReLLU Density Density Max Density

L-BFGS-B Sponge __ 0.011 164.727 0.863 0.619 0.885
Sponge 0.016 160.887 0.843 0.562 0.868

ResNet-50 Natural 0.017 160.562 0.842 0.572 0.867 0.998
Random 0.017 155.820 0.817 0.483 0.845
L-BFGS-B Sponge  0.033 152.595 0.783 0.571 0.826
Sponge 0.029 149.564 0.767 0.540 0.814

DenseNet-121 Natural 0.033 147.227 0.755 0.523 0.804 0.829
Random 0.030 144.365 0.741 0.487 0.792
L-BFGS-B Sponge  0.011 87.511 0.844 0.692 0.890
. Sponge 0.010 84.513 0.815 0.645 0.868

MobileNet v2 Natural 0.011 85.075 0.821 0.646 0.873 0.996
Raridom 0.011 80.805 0.779 0.567 0.844

Energy is reported in millijoules. GA was ran for 100
epochs with a pool size of 100.



Interactive Black-box attack performance against WMT16 En—Fr
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(b) GPU Time
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Epoch

(c) ASIC Energy

Attack works equally as well optimising energy and latency.



Microsoft Azure

Latency [s]

O NWRAULO N

GA observed latency

+ —— max(run 0)
1+ —— max(run 1)
1 —— max(run 2)
1+ —— max(run 3)
1 —— baseline

0 10 20 30 40 50
Epoch

(a) Requesting server measured

Latency [s]

O N WA ULIO N OOV

Azure reported latency

4+ —— max(run 0)
1 —— max(run 1)
1 —— max(run 2)
H— max{run 3)
1 —— baseline

0 10 20 30 40 50
Epoch

(b) Azure reported

Baseline is at 1ms. Attack performs consistently with multiple
restarts and the performance is not specific to the throttling of the



Conclusions [1 / 3]

® Itis possible to attack model availability at inference time in both
White and Black-box settings

e Attack can target hardware optimisations
o For some CV tasks we fully negated benefits from acceleration

e Attacks can target algorithmic complexity
o For some NLP tasks we managed to get up to x30 energy
consumption and x27 time



Conclusions [2 / 3]

® Pipeline complexity matters
® Machine learning is as secure as its weakest component
e Underlying platform is exploitable

® Average case is very different from worst case scenario



Manipulating SGD with Data Ordering Attacks
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A few notes

e A different definition of Availability
o slowing down model training
o resetting training progress

e Attacker observes data passing by in batches

o Can change order of data
® In the first epoch attacker is learning the dataset
e Attack starts at epoch number two

e Whitebox attacker has access to the model
e Blackbox attacker has no access to the model
e No knowledge of the data for both



SGD on average

e Stochastic gradient descent (SGD)

Works well on average

\

N N
E[VL;, (0)] =|> P(ix =) VLi(0)|= % Y VLi(0) = VL(0).

e Actually Depends heavily on data order

Data order dependant

Oni1 =01 —gVLE1(01) = nVIa(82) — - —nVEiNON) /

N
— 91 —nZVfLJ(Hl) —|—772

J=1

Z Z VVij(01)lek(91) + O(N°n?)

g=1 k<)




Blackbox attack pipeline

Adv. Batcher

Datapoint Loss-Ordered
Losses Batches

Random © 0 oe © o e
Batcher @0 oe ®e oe
Randomly-Sampled Adversarially-Ordered
Training Data Batches Training Data Batches

Training
Data



Attack taxonomy

® Loss-based ordering

Random order

Low-high order

Oscillations inward

HMEEaean -faaEea

High-low order

Oscillations outward

e BRRR taxonomy

Normal random batching Batch reordering or intra batch mixing

CHCEECECEECE? 22 o

Batch reshuffling or inter batch mixing

Inter/Intra batch replacement or replacing batches/datapoints

I 2

{
= 910 d1.m




Integrity attacks

Performance is

CIFAR-10 CIFAR-100
Train Test Train Test
Attack Batch size Loss Accuracy Loss Accuracy Accuracy A || Loss Accuracy Loss Accuracy Accuracy A r e atl r e d u C e d
Baseline g y
32 0.13 95.51 0.42 90.51 —0.0% || 0.00 99.96 2.00 75.56 —0.0% n . n n
None 64 0.09 96.97 0.41 90.65 —0.0% || 0.00 99.96 2.30 74.05 f t t
128 0.07 97.77 0.56 89.76 —0.0% || 0.00 99.98 1.84 74, eve I co e s
Batch reorder - Of batCh eS a re
32 0.02 99.37 2.09 78.65 —11.86%f|| 0.00 100.00 | 5.24 53.05 —22.51%
Oscillation outward 64 0.01 99.86 2.39 78.47 —12.18%f|| 0.00 100.00 | 4.53 55.91 —18.14% d
128 0.01 99.64 227 77.52 —12.24%}| 0.00 100.00 | 3.22 52.13 —22.32% ran om
32 0.01 99.60 2.49 78.18 —12.33%}|| 0.00 100.00 | 5.07 51.78 —23.78%
Oscillation inward 64 0.01 99.81 2.25 79.59 —11.06%f|| 0.00 100.00 | 4.70 55.05 -19.0%
128 0.02 99.39 223 76.13 —13.63%{|| 0.00 100.00 | 3.46 52.66 —21.79%
32 0.02 99.44 2.03 79.65 —10.86%f|| 0.00 100.00 | 5.47 51.48 —24.08%
High Low 64 0.02 99.50 2.39 77.65 —13.00%f|| 0.00 100.00 | 5.39 55.63 —18.42%
128 0.02 99.47 2.80 74.73 —15.03%]|| 0.00 100.00 | 3.36 53.63 —20.82%
32 0.01 99.58 2.33 79.07 —11.43%}| 0.00 100.00 | 4.42 54.04 —21.52%
Low High 64 001 9961 |240 76385 -13.8%f|| 0.00 10000 | 391 5482 ~19.23% If attaCke r can
128 0.01 99.57 1.88 79.82 —9.94%{| 0.00 100.00 | 3.72 49.82 —24.63%
Batch reshuffle S h Ufﬂ e batCh
32 2.26 17.44 1.93 26.13 —64.38%]|| 0.01 99.80 5.01 18.00 —57.56% t t
Oscillation outward 64 2.26 18.86 1.98 26.74 —63.91%f|| 0.38 93.04 451 11.68 —62.37% ' ' I d I
128 2.50 14.02 2.18 20.01 —69.75%f|| 0.66 86.22 4.07 10.66 —63.79% CO n e n S ’ O e S
32 2.13 22.85 1.93 28.94 —61.57%f| 0.01 99.92 4.55 31.38 —44.18% I I I I I l d
Oscillation inward 64 227 17.90 1.99 23.59 —67.06%fJf| 0.02 99.64 5.79 17.37 —56.68% e 0 rlze a n
128 2.53 10.40 2.29 13.49 —76.27%||| 0.54 88.60 4.03 10.92 —63.53% fa i I to e n e ra I ize
32 211 23.39 1.80 31.04 —59.47%||| 0.01 99.69 6.24 21.15 —54.41% g
High Low 64 222 20.57 1.93 27.60 —63.05%f|| 0.05 99.15 5.26 14.05 —60.0%
128 2:51 16.66 2.05 20.85 —68.91%f|| 4.16 7.21 3.86 10.20 —64.25%
32 2479 20.22 1.92 30.09 —60.42%f|| 0.19 96.07 4.06 20.48 —55.08%
Low High 64 2:35 15.98 2.00 22.97 —67.68%f|| 0.09 98.22 4.69 15.39 —58.66%
128 251 10.25 2.32 11.40 —78.36%||| 4.30 5.65 3.81 9.66 —64.79%




Availability attacks
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1 epoch of adversarial
ordering is enough to
cause significant damage
to model accuracy

Can both:
o Slow down
o Reset learning



Batch-order Backdoor (BOB) and poison (BOP)
e Can you use natural data to shape an adversarial gradient update?
Al = —VoL(X;,01)

Or+1 = O + nAb, wh . Pl R
k+1 k + NA0K, where VoL(X;[0k) = Vo L[ X|0k).

/

Natural data Adversarial data

e Enables poisoning of the model, without ever showing adversarial data.

Approximation of a target gradient of Layer 1

cccccccccccccc

Gradient magnitude

ﬂnﬂp “ ,-".ft 14
, !")' \‘nr—_‘" =

(a) Natural image batch (b) Poison datapoint batch



Batch-order Backdoor (BOB) and poison (BOP)

e Attacker optimizes gradient shaping with random sampling

n & p
i Hv@L X1, 01) — ng(Xi,ek)H . st X; € X.
X; )z \
Adversarial data Natural data

® Injects up to 20 BOB batches every 50,000 natural datapoints,

followed by 80 BOB batches
e Up to 30% of the BOB batches are randomly chosen datapoints, 70%+

are controlled by the attacker



Backdoors and poison

Trigger Batch size  Train acc [%]  Test acc [%]  Trigger acc [%] Error with trigger [%]
Baselines
32 88.43 +£7.26 79.60 £ 1.49 10.91 +1.53 30.70 £ 2.26 .
Random natural data 64 95.93+2.11 81.31+2.01 9.78 +1.25 27.38 £1.20 Performance appears to d|ﬁer
128 94.92+2.04 81.69+1.17 10.00 £ 2.26 2791 +141 . I . f th
32 96.87 £2.79 73.284+2.93  99.65 £ 0.22 89.68 +£0.21 based on natura ness o e
Data with trigger perturbation 64 98.12+1.53 79.45+1.39 99.64 +£0.21 89.64 £0.21 trl er-
128 98.67£0.99 80.51+1.10  99.67 4+ 0.40 89.65 £ 0.39 gg

Only reordered natural data

32 88.43+£6.09 78.02+£1.50 33.93 +7.37 40.78 £5.70
9 white lines trigger 64 95.15+£2.65 82.75+0.86  25.02+3.78 33.91 +2.28
128 95.23 +£2.24 8290+ 1.50  21.75+4.49 31.75 + 3.68
32 88.43+£4.85 80.84+£1.20 17.55+3.71 33.64 + 2.83
Blackbox 9 white lines trigger 64 93.59£3.15  82.64+1.64  16.59 +4.80 30.90 + 3.08
128 94.84+£2.24 81.12+£249  16.19£4.01 31.33 £3.73
32 90.93 +£3.81 78.46 £1.04 | 91.03 +12.96 87.08 £2.71
Flag-like trigger 64 96.87 £ 121 82.95+0.72 | 77.10 £ 16.96 82.92 + 3.89
128 95.54+1.88 82.28+1.50 | 69.49 £ 20.66 82.09 £ 3.78
32 86.25+£4.00 80.16+1.91 § 56.31 £ 19.57 78.78 £ 3.51
Blackbox flag-like trigger 64 95.00£2.18 83.41+0.94 | 48.75 £ 23.28 78.11 £ 4.40
128 93.82+£227 81.54+1.94 | 68.07 +£18.55 81.23 £ 3.80 : ;
————s o — — —— (a) Flag-like trigger

/

Some triggers work as well as if the
attacker trained with adversarial data



Conclusions [3 / 3] & Conclusions [2 / 3]

® Pipeline complexity matters
® Machine learning is as secure as its weakest component
e Underlying platform is exploitable

® Average case is very different from worst case scenario



Thank you very much for listening!
Massive kudos to my amazing supervisors and collaborators!

Please do not hesitate to reach out in case there are any questions at
ilia.shumailov@cl.cam.ac.uk

https://arxiv.org/abs/2006.03463
https://arxiv.org/abs/2104.09667
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