When you are asked to describe an algorithm, also analyse its time and space complexity. Mention how you would implement the solution.

In this supervision we finish data structures and move to graph algorithms.

This example sheet is longer than I expected but all the problems are quite important to understand. Also many are just bookwork (e.g. warm up). I do not expect you to solve and write down precise solutions to everything, so think about the things you struggle with. You can go back to them during revision or when you have time later.

I would rather see a failed attempt or ideas handed in, than a beautifully written correct solution of a problem that you found easy. I do not mind if you skip a problem and write “I know how to do it.” So focus on the concepts that you have most trouble with rather than writing down solutions to problems that are easy for you.

1 Refresher (Data Structures)

1. Show how to compute the number of valid sequences of parentheses of length n? For example, if $n = 4$ there are only two such sequences: $()()$ and $(())$.

2. Given a one directional linked list. Using only constant memory print the stored values in reverse order.

2 Data Structures Continued

Some problems are from the lecturer’s notes\(^1\) (Robert Harle). The ones marked with * are out of the curriculum and are for you to grasp the concepts better, go beyond the material and see how they can be used in real life.

1. (Robert Harle) Show how to delete hash table entries when resolving collisions using:
 i) chaining;
 ii) open addressing.

2. Given m sorted lists, each of length n. Explain how to compute their merge efficiently.

\(^1\)http://www.cl.cam.ac.uk/teaching/1718/Algorithms/2018-examples-rkh.pdf
3. (Robert Harle) How would you use a hash table to create a basic spell checker (i.e. decide whether or not a word is correctly spelt)? For an incorrectly-spelt word, how would you efficiently provide a set of correctly-spelt alternatives?

4. * In the previous problem we use a hash table to determine correctly spelled words. Tries\(^2\) are a beautiful data structure that could be used in such problems. Explain when you would prefer tries over hash tables and vice-versa.

5. * Given two strings \(a\) and \(b\), determine if \(a\) is a contiguous substring of \(b\). This problem is actually quite relevant in bioinformatics \((a\) and \(b\) are gene sequences). There are beautiful and efficient algorithms to do this\(^3\), but one can do it using hashes as well.

Let the length of \(a\) be \(n\) and the length of \(b\) be \(m\). If \(\text{hash}(a) = \text{hash}(b[i..i+n])\) then we can be quite confident that \(a\) appears in \(b\). This means, we have to compute \(h_i = \text{hash}(b[i..i+n])\) for all \(i = 0..m - n\). Computing \(h_i\) by itself clearly takes \(\Theta(n)\) time simple computation of \(h_1, h_2, \ldots, h_{m-n}\) could take \(\Omega(nm)\) time.

Can you come up with a function \(\text{hash}\) for which, computing a single instance of \(\text{hash}(a)\) still takes \(\Theta(n)\) time, but computing the set of all \(h_1, \ldots, h_{m-n}\) can be done in \(O(m + n)\) time?

\textit{Hint}: You have to use the fact that the substrings of \(b\) corresponding to \(h_i\) and \(h_{i+1}\) are almost the same (differ by a character at each end).

3 Graphs

Some problems are from the lecturer’s notes\(^4\) (Damon Wischik). The ones marked with * are out of the curriculum and are for you to grasp the concepts better and see how they can be used in real life.

1. (Damon Wischik) Draw an example of each of the following, or explain why no example exists:

 (i) A directed acyclic graph with 8 vertices and 10 edges;
 (ii) An undirected tree with 8 vertices and 10;
 (iii) A graph without cycles that is not a tree.

2. This is perhaps the most important question in the whole example sheet.

Suppose we run a DFS from source \(s\) on a connected graph \(G\) (every vertex is reachable from every other one). Each vertex \(v \neq s\) is visited from its “parent” \(p_v\). The subgraph of \(G\) composed from edges \((v, p_v)\) forms a tree, which we will call a DFS-tree. \(s\) is the root of the tree.

The lecture notes implement \texttt{dfs}: an iterative version of DFS using a stack by just taking the BFS implementation and replacing the queue with a stack. There is also an implementation \texttt{dfs_recurse}.

- Draw the two DFS-trees of the graph below that result from running both versions of DFS.

\(^2\)https://en.wikipedia.org/wiki/Trie

\(^3\)Knuth-Morris-Pratt, look up in Wikipedia.

\(^4\)http://www.cl.cam.ac.uk/teaching/1718/Algorithms/ex5.pdf
Start from a tree containing just a single node s (root). Every time a vertex u becomes visited, add u to the the tree connected it to the vertex v it is visited from.

- Compare these two trees. In particular, consider the edges that are not included outside in the DFS-trees.

The tree T_{recurse} that results from $\text{dfs}_{\text{recurse}}$ should have the following property: for every edge (u, v) that is not in T_{recurse}, either u is an ancestor of v or vice-versa. This is a crucial property of a DFS-tree!

Does this property hold for the tree T_{stack} of the function dfs?

- Fix the dfs function to make sure that T_{stack} satisfies the property of a DFS-tree. This is not an implementation detail. This is a major and embarrassing mistake in the dfs code that is unfortunately made in the lecture notes, in Wikipedia and in some renowned textbooks.

Note 2: Of course, it’s a convention what we call a DFS-tree. The dfs from the lecture note does indeed traverse the graph, but this is not the only reason why we might want to use the DFS algorithm. The DFS-tree is used in many problems hence it is “correct” and is the “convention”. I do not know an example of a problem where the tree from the dfs is useful.

3. Explain why Dijkstra’s algorithm is just a generalisation of BFS.

4. Consider a graph G, where each edge has a weight of either 1 or 2. Modify the BFS algorithm to find the shortest paths from a source vertex s to all other vertices.

 Note: Plain BFS does not work in this case and Dijkstra’s algorithm is too general. Your algorithm has to trade the generality of Dijkstra with speed.

5. * (Damon Wischik) Consider a graph without edge weights, and write $d(u, v)$ for the length of the shortest path from u to v. The diameter of the graph is defined to be $\max_{u, v \in V} d(u, v)$. Give an efficient algorithm to compute the diameter of an undirected tree, and analyse its running time. [Hint. Use breadth-first search.]

6. State the invariant that holds in Dijkstra’s algorithm and prove the correctness of the algorithm.

7. Suppose a graph G has edges with negative weight. Let the minimum of those weights be $w_0 < 0$. Consider the modified graph G', that consists of the same edges but the weights are different: for an edge e, $w'(e) = w(e) - w_0 \geq 0$, where w' and w are the weights of edges of G' and G respectively. Since G' has edges with non-negative weights, can we use Dijkstra’s algorithm in G' and find the shortest paths in G?

e.g. https://en.wikipedia.org/wiki/Lowest_common_ancestor
8. We can implement Dijkstra’s algorithm in \(O(|E| \log |V|) \) time using priority queues (e.g. heaps). Using Fibonacci heaps we can improve it to \(O(|V| \log |V|) \), however that is quite complicated.

Modify (actually simplify) Dijkstra’s algorithm so that it runs in \(O(|V|^2) \) time. Notice that if \(|E|\) is close to \(|V|^2\) this algorithm is faster.

4 Implementation

Implementations are critical to sharpen your understanding of graph algorithms. I would suggest that you work on these during the break if you do not have time now.

1. Solve this problem using tries (see problem 2.4 above)

2. The following problem is quite challenging but shows a nice combination of two things we have learnt so far: hashing and binary search. It is related to problem 2.5 above.

 http://www.spoj.com/problems/LPS/

 \textit{Hint:} Suppose you have a function \texttt{pal_exists(k)} that returns \texttt{true} iff the input string contains a palindrome of length \(k \). Suppose it runs in \(O(n) \) time where \(n \) is the length of the string. Then, you can do a binary search on the length of the palindrome, because if \texttt{pal_exists(k) == true} then \texttt{pal_exists(k - 2) == true} as well. Thus, your algorithm will run in \(O(n \log n) \) time. Notice that you need to consider palindromes of even and odd lengths separately.

 The question now is, how to implement such a function. You can uses rolling hashes for that6.

3. Sharpen your graph algorithms skills

 http://www.spoj.com/problems/EZDIJKST/

6https://en.wikipedia.org/wiki/Rolling_hash