
1A Lent Algorithms
Supervision 3: Data structures (queues, trees)

Hayk Saribekyan

February 7, 2019

When you are asked to describe an algorithm, also analyse its time and space complexity. Men-
tion how you would implement the solution.

In this supervision we will concentrate on data structures. We will cover queues, stacks and
search trees. There are also problems from the previous chapter on algorithm design.

This example sheet is longer than I expected but all the problems are quite important to
understand. Also many are just bookwork (e.g. warm up). I do not expect you to solve and write
down precise solutions to everything, so think about the things you struggle with. You can go back
to them during revision or when you have time later.

I would rather see a failed attempt or ideas handed in, than a beautifully written correct solution
of a problem that you found easy. I do not mind if you skip a problem and write “I know how to do
it.” So focus on the concepts that you have most trouble with rather than writing down solutions
to problems that are easy for you.

1 Refresher (Algorithm Design)

This is material from the previous supervision.

1. You are given positions of n mice and n holes on the x axis. A mouse moves from position
x to x ± 1 in 1 minute. Assign each hole to exactly one mouse in a way that minimises the
time it takes the mice to reach their hole. Prove the correctness of your algorithm.

2. You are given a 2 × n board. In how many ways is it possible to cover the board with n
dominoes, if each domino should cover exactly two adjacent cells of the board?

Explain your solution and give an implementation in any language.

3. Given a matrix of integers of size n×m. Each row and column is sorted in ascending order,
from left to right and from top to bottom, correspondingly. Find the location of a given
number x.

Bonus: Prove that no algorithm can solve it faster than in Ω(n) time if n = m.

4. Given an n × n board, where n = 2k. The cell at (i, j) is removed. Describe an algorithm
that will cover the remaining cells of the board with L-shaped tetris pieces. Below is a tiling
for n = 4. The black cell is removed.

1

Hint: n = 2k divides by two very nicely many times! correct

2 Warm-up (Data Structures)

1. (Robert Harle) Discuss the (dis)advantages of linked-list and array based implementations of
queues.

2. (Robert Harle) Consider implementing a stack using an array. When the array is full and a
push() is requested, there are two common strategies to growing the array: increase the array
by a constant number of elements or double the size of the array. Analyse both strategies to
find the amortized costs associated with a push() operation.

3. Using the sequence {10, 85, 15, 70, 20, 60, 30, 50, 65, 80} draw:

(i) the BST tree

(ii) the 2-3-4 tree

(iii) the red-black tree

4. (Robert Harle) The main issue with BSTs is their tendency to become unbalanced. This can
be a particular issue if the input keys have a lot of duplicates (e.g. insert {1, 1, 1, 1, 1, 1, 1}
gives a very unbalanced tree. Suggest a way in which duplicate entries in a BST could be
addressed such as to produce a more balanced result.

3 Examples

1. (Robert Harle) Write a function (in Java/Python/Pseudocode/etc) that tests whether a string
is a palindrome (the same backwards as forwards) using only the standard operations of a
stack.

2. (Robert Harle) A table is a set of key-value pairs (e.g. dictionary in Python, map in Java),
where set(k, v) means to map the key k to value v. Usually there is also a get(k) function,
which returns the corresponding value v.

Write a pseudocode of the set(k, v) function for the linked-list based table. Duplicate elements
are not permitted i.e. set(k, v1) and set(k, v2) operations would result only in one element in
the table with key k with value v2.

3. Given a string of parentheses, brackets and braces e.g. (]{{]])]. Describe an algorithm that
decides whether the given string is a valid. The string above is not whereas [(){[]}] is.

2

4. Explain how to implement a queue using only stacks - no arrays, linked lists or any other
data structures are allowed. Of course, you can use individual variables (e.g. to store sizes
and indices).

We want our queue to be efficient i.e. on average each operation that a queue supports should
take O(1) time. Notice that the naive implementation described below is not efficient.

Naive implementation: To implement a queue q, keep a stack s. When q.push(x) is called,
put the element on top of the stack s i.e. s.push(x). On q.front operations, reverse s into
another stack s’ and return the top element of s’. Then, reverse the stack back into s.

5. Implement a function Node predecessor(Node node) or its equivalent in Python that re-
turns the predecessor of node in BST. You can assume that the class Node has whatever
standard fields a BST would have.

What would you change in the code to fund the successor?

6. Given a BST, write code that prints the elements in the tree in sorted order. Explain how it
is different from heap-sort.

7. Initially you have an empty set S. You receive a stream of queries of two types:

• Insert(x): you should add x to S.

• Range(a, b): return the number of elements in S in the that are in the range [a, b].

You should process all the queries in O(log |S|) time.

4 Implementation (Bonus)

Implementations are critical to sharpen your understanding of data structures.I would suggest that
you work on these during the break if you do not have time now. Once you have implemented a
RB-tree and have fallen in all the traps yourself, you will never make those mistakes again.

In online judges, do not use standard packages provided by your language. Instead implement
the data structures yourself.

1. Many of the covered data structures use a tree-rotation operation to keep the trees balanced.
The rotations are easy to understand but surprisingly hard to implement. Splay trees1 are
possibly the simplest of such trees because they do not keep any other information per node
(e.g. color). All you need to do is few rotations.

Try implementing Splay trees (based on the description from Wikipedia) and make sure they
work. Solve problems from online judges to make sure your implementations are correct.

Petar Velickovic goes into some details of how to do this2.

2. http://www.spoj.com/problems/RMQSQ/

1https://en.wikipedia.org/wiki/Splay_tree
2https://www.cl.cam.ac.uk/~pv273/supervisions/Algorithms/Algs-3.pdf

3

http://www.spoj.com/problems/RMQSQ/
https://en.wikipedia.org/wiki/Splay_tree
https://www.cl.cam.ac.uk/~pv273/supervisions/Algorithms/Algs-3.pdf

	Refresher (Algorithm Design)
	Warm-up (Data Structures)
	Examples
	Implementation

