
1A Lent Algorithms
Supervision 2: Algorithm Design

Hayk Saribekyan

February 7, 2019

Where you are asked to describe an algorithm, also analyse its time and space complexity. Men-
tion how you would implement the solution and give recurrence relations for dynamic programming
algorithms. You should also always prove that your algorithms are correct. This is, in particular,
important for greedy algorithms.

In this supervision we will concentrate on few important approaches for algorithm design: dy-
namic programming and its implementation techniques, greedy algorithms and their proofs, divide
and conquer.

1 Refresher and Warm-up

1. What does the statement “The running time of an algorithm is at least O(n)” mean, if
anything?

Solution This is problem 3.1-3 from CLRS3. The O-notation gives a an upper bound for a
function and the statement is relevant for lower bounds. It does not make any sense. Either
Ω or ’at most’ should be used

2. Show that for any two real a and b > 0

(n + a)b = Θ(nb)

Solution This is problem 3.1-2 from CLRS3.

When n ≥ a, nb ≤ (n + a)b ≤ (2n)b, thus (n + a)b = Θ(nb).

Notice that we cannot use binomial expansion because b is real.

3. Write a pseudocode of a binary search algorithm that finds element x in a sorted array ai in
O(log n) time.

l = 0 ;
r = n − 1 ;
while (l < r) {

m = (l + r) / 2 ;

1

i f (a [m] <= x)
l = m + 1 ;

else
r = m;

}
i f (a [l] == x)

return l ;
else // not found

Pay attention on how l and r are modified. In binary search always think of the base cases
when r − l = 0 or 1.

4. When would you prefer dynamic programming using tabulation vs memoisation and vice
versa? Give an example of a problem, which can be decomposed into smaller instances of
itself but no DP is necessary.

Solution Tabulation (bottom-up) makes sense if all the subproblems have to be calculated
eventually and there is a convenient order (e.g. knapsack). When there is no repetition of
subproblems DP does not make sense.

5. You are playing a game on a map represented by an n × n matrix. You start in the upper
left corner, and your objective is to reach the bottom right corner. At each step, you are only
allowed to go right or down. Each cell contains some amount of coins. Explain the algorithm
you would use to determine the path that will maximise your number of coins.

Below is an example of an optimal path:

1 3 5 3 1
4 2 5 3 4
2 2 2 4 5
4 4 1 5 3
5 1 2 3 1

Credit: this problem is from Petar Velickovic’s notes.

Solution Use DP. Let the matrix be called a. Let dij be the maximum score we achieve for
the submatrix a[0..i, 0..j]. Then

dij = max{di−1,j , di,j−1}+ aij

The answer is in the last element of the d.

2 Examples

1. The Knapsack problem. The hiker has to choose some of the n items to take to a trip in his
knapsack of capacity W pounds. Item i weighs wi pounds and has a value vi.

(a) Describe an algorithm that will maximize the value the hiker can carry.

2

Solution Let di,m be the maximum value we can get with a full backpack of size m
using the first i items. Then, omitting the base cases,

di,m = max{di−1,m; di−1,m−wi
+ vi}

In the first case we assume item i was not used, in the second case we assume it was
used. The answer is maxm=0,...,W dn,m.

(b) Modify your solution for the case when the hiker has infinite supply of each item.

Solution Now, let di,m denote the same thing as before. Then

di,m = max{di−1,m; di,m−wi
+ vi}

Note that here the second term is di,m−wi instead of di−1,m−wi . Questions: why does
the first solution not allow repetitions and this one does?

(c) Give an example, where a simple greedy algorithm that picks items with largest v/w
ratio does not work.

Solution Two items: v1 = 10, w1 = 2, v2 = 12, w2 = 3. The backpacks size is W = 3.
The first item has larger value to weight ratio, but we should pick the second one.

(d) Can you solve the problem using just O(W) additional memory?

Solution Notice that we never need to use more than two rows of d, so we can use two
arrays of size W that will act alternatively as di and di−1.

Question: Can you do the same using only one array of size W? Do (b) first and then
(a).

2. The shoemaker has to complete n orders. Order i takes ti days. For every day of delay of
order i, the shoemaker gets fined si pence. Unfortunately, the shoemaker cannot work on
more than one order a day. Write an algorithm that will help the shoemaker decide the order
in which he should do the jobs so that the total amount of fine is minimised.

If you come up with a simple solution make sure to prove its correctness.

Solution http://algorithmist.com/index.php/UVa_10026

3. Given an array of integers. Implement a divide-and-conquer algorithm that returns the maxi-
mum sum of a contiguous subsequence of the integers. Your algorithm should run in O(n log n)
time or better.

Solution https://en.wikipedia.org/wiki/Maximum_subarray_problem. See the Divide
and Conquer method, which is not the best but is instructive. For the most practical algo-
rithm, look at the other algorithms in Wikipedia.

4. I have n supervisions to schedule. Supervision i starts at time ai and ends at time bi. Help
me find the minimum number of supervisions that I will have to reschedule so that I do not
have any overlapping ones. It would be wonderful if your algorithm could also give me the
list of the supervisions that should be rescheduled!

3

http://algorithmist.com/index.php/UVa_10026
https://en.wikipedia.org/wiki/Maximum_subarray_problem

Solution

A greedy attempt 1: Keep removing the supervision that conflicts with largest number of
other supervisions. Consider the following supervisions: [0, 3]; [2, 5]; [4, 7]; [6, 9]; [8, 11] i.e.
i conflicts with i− 1 and i + 1.

The middle three supervisions each have 2 conflicts, so the greedy algorithm can remove
any of those. Let’s say it removes [4, 7]. In this case, we will still have to reschedule 2 su-
pervisions, making the total number 3. But we could remove just two of the supervisions
and have no conflicts.

Notice that the problem started from the fact that the greedy algorithm could have mul-
tiple ’best local steps’ and then it picked a bad one among those. This is a common way
to find counterexamples to greedy algorithms: think about what would your algorithm
do if it had multiple choices and picked an arbitrary one. Of course, this is not the only
way greedy algorithms fail.

A greedy algorithm (correct): There is, however, a greedy algorithm that works. Assume
that bi−1 < bi. Then it can be proven that we can always keep the first supervision (prove
it). This results in a simple algorithm: (1) keep the first supervision, (2) remove all the
supervisions that overlap with it, (3) repeat.

We need O(n log n) time for sorting and O(n) time for the greedy approach.

A DP solution: Once again assume that bi−1 < bi (we can sort in O(n log n) time). It is
easier to think about the maximum number of supervisions that we can keep, rather
than the minimum number of rescheduled ones. Let dk be the maximum number of the
supervisions that can keep if only the first k were given (ignore supervisions k+1, . . . , n).
We have two options

• Reschedule k: then dk = dk−1.

• Keep k as is: then dk = djk +1, where jk = maxb′
j
<aj

j′ i.e. jk is the last supervision

that ends before k starts.

Thus
dk = max{dk−1, djk + 1}

for j as defined above. The answer is dn (the answer to the original problem is n− dn).

We can find jk using binary search, therefore the algorithm runs in O(n log n) time
overall.

Note: it helps to sort segments on problems such as this one.

5. Given n line segments on an axis described by their endpoints ai and bi. Describe an algorithm
that picks the smallest number of them so that their union covers the interval [0, t].

Solution If a segment [0, x] is covered, then we should pick a segment k with largest bk
given ak ≤ x. As a result we cover the segment [0,max{x, bk}].
To implement this efficiently we can sort the segments according to ai. And do one pass over
the array updating x as we go.

6. A string is called palindrome if it reads the same from both ends e.g. madam. Given a
string of length n. Describe an algorithm that determines the size of its longest palindrome

4

subsequence? The subsequence does not have to be contiguous. Example: if the string is
baobab, then we can remove o and get babab, which is palindrome.

Explain how can we find this subsequence.

Hint: what can you say if the first and last letters of the string are the same. What if they
are different?

Solution Problem source: https://uva.onlinejudge.org/index.php?option=onlinejudge&
page=show_problem&problem=1558.

Let the string be called s and let dij be the length of the longest subpalindrome of the string
s[i . . . j]. There are three cases:

• If si = sj , then dij = di+1,j−1 + 2, because in this case if the best sub-palindrome does
not contain both si and sj , we can modify it to contain without making it shorter.

• Otherwise either si or sj is not in the best sub-palindrome of s[i, . . . , j]. Then dij =
max{di+1,j , di,j−1}.
• The base cases are trivial.

The DP implementation can either use memoisation or fill in a matrix in a diagonal order.

There is another DP solution (found by Scarlet Cox). The longest subpalindrome’s length
is equal to the longest common subsequence of the given string and its reverse. The longest
common subsequence of two strings can be found using DP in O(n2) time. Of course, the
above statement needs proving.

5

https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1558
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1558

	Refresher and Warm-up
	Examples

