
1A Lent Algorithms
Supervision 4: Data Structures, Graphs

Hayk Saribekyan

May 3, 2018

When you are asked to describe an algorithm, also analyse its time and space complexity. Men-
tion how you would implement the solution if there are subtle details e.g. order of computation in
a tabulation method of DP.

This supervision will have two parts. We will finish data structures and move to the next chapter
of the course: graph algorithms.

This example sheet is a hybrid of lecturers’ problems and mine. Because of that it is slightly
longer than I expected but all the problems are quite important to understand. I do not expect
you to solve and write down precise solutions to everything, but make sure to read all the problems
and write ideas if you have any. You can go back to them during revision or when you have time
later.

Focus on the concepts that you have most trouble with rather than writing down solutions to
problems that are easy for you.

1 Refresher (Data Structures)

1. Given an arithmetic sequence as a string that is composed of positive integers, basic operations
+,−, ∗ and parentheses. Describe an algorithm that converts the expression to post-fix nota-
tion. For example, For example (2 + 3) * 4 + 5 becomes 2 3 + 4 * 5 +. Notice that in
this notation there is no need to think about operator priority or parentheses! For simplicity,
you can assume that the sequence is valid and that the numbers are single digit only.

Hint: The parentheses problem from supervision 3 is somewhat related to this.

Note: You cannot use the eval method of Python or its equivalent in another language. The
goal is to implement the eval.

2. Show how to compute the number of valid sequences of parentheses of length n? For example,
if n = 4 there are only two such sequences: ()() and (()).

3. Given a one directional linked list. Using only constant memory print the stored values in
reverse order.

4. How would you do an in-order traversal of a BST using constant memory? Notice, that the
recursive implementation we have seen uses Ω(height) memory (why?).

1

2 Data Structures Continued

Some problems are from the lecturer’s notes1 (Robert Harle). The ones marked with * are out of
the curriculum and are for you to grasp the concepts better and see how they can be used in real
life.

1. Example 7.1

2. Given m sorted lists, each of length n. Explain how to compute their merge efficiently.

3. Example 7.3. Write down a hash function you could use in this case.

4. * In the previous problem we use a hash table to determine correctly spelled words. Tries2

are a beautiful data structure that could be used in such problems. Explain when you would
prefer tries over hash tables and vice-versa.

5. * Given two strings a and b, determine if a is a contiguous substring of b. This problem is
actually quite relevant in bioinformatics (a and b are gene sequences). There are beautiful
and efficient algorithms to do this3, but one can do it using hashes as well.

Let the length of a be n and the length of b be m. If hash(a) = hash(b[i..i+ n)) then we can
be quite confident that a appears in b. This means, we have to compute hi = hash(b[i..i+n))
for all i = 0..m − n. Computing hi by itself clearly takes Θ(n) time simple computation of
h1, h2, . . . , hm−n could take Ω(nm) time.

Can you come up with a function hash for which, computing a single instance of hash(a) still
takes Θ(n) time, but computing the set of all h1, . . . , hm−n can be done in O(m + n) time?

Hint: You have to use the fact that the substrings of b corresponding to hi and hi+1 are
almost the same (differ by a character at each end).

3 Graphs

Some problems are from the lecturer’s notes4 (Damon Wischik). The ones marked with * are out
of the curriculum and are for you to grasp the concepts better and see how they can be used in real
life.

1. Example 1.

2. This is perhaps the most important question in the whole example sheet.

Suppose we run a DFS from source s on a connected graph G (every vertex is reachable from
every other one). Each vertex v 6= s is visited from its “parent” pv. The subgraph of G
composed from edges (v, pv) forms a tree, which we will call a DFS-tree. s is the root of the
tree.

The lecture notes implement dfs: an iterative version of DFS using a stack by just taking the
BFS implementation and replacing the queue with a stack. There is also an implementation
dfs recurse.

1http://www.cl.cam.ac.uk/teaching/1718/Algorithms/2018-examples-rkh.pdf
2https://en.wikipedia.org/wiki/Trie
3Knuth-Morris-Pratt, look up in Wikipedia.
4http://www.cl.cam.ac.uk/teaching/1718/Algorithms/ex5.pdf

2

http://www.cl.cam.ac.uk/teaching/1718/Algorithms/2018-examples-rkh.pdf
https://en.wikipedia.org/wiki/Trie
http://www.cl.cam.ac.uk/teaching/1718/Algorithms/ex5.pdf

• Draw the two DFS-trees of the graph below that result from running both versions of
DFS.

Start from a tree containing just a single node s (root). Every time a vertex u becomes
visited, add u to the the tree connected it to the vertex v it is visited from.

• Compare these two trees. In particular, consider the edges that are not included outside
in the DFS-trees.

The tree Trecurse that results from dfs recurse should have the following property: for
every edge (u, v) that is not in Trecurse, either u is an ancestor of v or vice-versa. This
is a crucial property of a DFS-tree!

Does this property hold for the tree Tstack of the function dfs?

• Fix the dfs function to make sure that Tstack satisfies the property of a DFS-tree. This
is not an implementation detail. This is a major and embarrassing mistake in the dfs

code that is unfortunately made in the lecture notes, in Wikipedia and in some renowned
textbooks.

Note: Example 5 from the sheet is asking you to do the same thing as this problem without
realising that by doing so you fix an incorrect implementation.

Note 2: Of course, it’s a convention what we call a DFS-tree. The dfs from the lecture note
does indeed traverse the graph, but this is not the only reason why we might want to use
the DFS algorithm. The DFS-tree is used in many problems5 hence it is “correct” and is the
“convention”. I do not know an example of a problem where the tree from the dfs is useful.

3. Explain why Dijkstra’s algorithm is just a generalisation of BFS.

4. Consider a graph G, where each edge has a weight of either 1 or 2. Modify the BFS algorithm
to find the shortest paths from a source vertex s to all other vertices.

Note: Plain BFS does not work in this case and Dijkstra’s algorithm is too general. Your
algorithm has to trade the generality of Dijkstra with speed.

5. * Example 4.

6. State the invariant that holds in Dijkstra’s algorithm and prove the correctness of the algo-
rithm.

7. Suppose a graph G has edges with negative weight. Let the minimum of those weights be
w0 < 0. Consider the modified graph G′, that consists of the same edges but the weights are

5e.g.https://en.wikipedia.org/wiki/Lowest_common_ancestor

3

e.g. https://en.wikipedia.org/wiki/Lowest_common_ancestor

different: for an edge e, w′(e) = w(e) − w0 ≥ 0, where w′ and w are the weights of edges of
G′ and G respectively. Since G′ has edges with non-negative weights, can we use Dijkstra’s
algorithm in G′ and find the shortest paths in G?

8. We can implement Dijkstra’s algorithm in O(|E| log |V |) time using priority queues (e.g.
heaps). Using Fibonacci heaps we can improve it to O(|V | log |V |, however that is quite
complicated.

Modify (actually simplify) Dijkstra’s algorithm so that it runs in O(|V |2) time. Notice that
if |E| is close to |V |2 this algorithm is faster.

4 Implementation

Implementations are critical to sharpen your understanding of graph algorithms. I would suggest
that you work on these during the break if you do not have time now.

1. Solve this problem using tries (see problem 2.4 above)

http://www.spoj.com/problems/PHONELST/.

2. The following problem is quite challenging but shows a nice combination of two things we
have learnt so far: hashing and binary search. It is related to problem 2.5 above.

http://www.spoj.com/problems/LPS/

Hint: Suppose you have a function pal exists(k) that returns true iff the input string
contains a palindrome of length k. Suppose it runs in O(n) time where n is the length of
the string. Then, you can do a binary search on the length of the palindrome, because if
pal exists(k) == true then pal exists(k - 2) == true as well. Thus, your algorithm
will run in O(n log n) time. Notice that you need to consider palindromes of even and odd
lengths separately.

The question now is, how to implement such a function. You can uses rolling hashes for that6.

3. Sharpen your graph algorithms skills

http://www.spoj.com/problems/EZDIJKST/

6https://en.wikipedia.org/wiki/Rolling_hash

4

http://www.spoj.com/problems/PHONELST/
http://www.spoj.com/problems/LPS/
http://www.spoj.com/problems/EZDIJKST/
https://en.wikipedia.org/wiki/Rolling_hash

	Refresher (Data Structures)
	Data Structures Continued
	Graphs
	Implementation

