
1A Lent Algorithms
Supervision 1: Complexity and Sorting Algorithms

Hayk Saribekyan

February 12, 2018

1 Introduction

In this supervision we will discuss Chapter 2 from the lecture notes. That
includes the notion of computational complexity and its analysis and sorting
algorithms.

In real life you will almost never need to implement a sorting algorithm from
scratch as all modern programming languages have very efficient implementa-
tions. However, the knowing how each algorithm works greatly helps in writing
efficient programs because not all sorting algorithms perform equally well on all
data sets. Additionally, most sorting algorithms wonderfully demonstrate few
algorithm design options and algorithm analysis.

2 Supervision

For this supervision, work on the problems up until 3.13 from the examples
sheet for lecture 1-10. Previous years’ lecture notes have exercises within the
text, which may help you understand the material better in the beginning.

3 Bonus

• Problem 3.2: make a guess and then implement all three algorithms and
compare their runtime. Remember that the input should be random. Any
surprises?

• Problem 3.10i: can you show that you cannot do better than n− 1 com-
parisons?

• Problem 3.10i asks you to find minimum of a given sequence. That can
be done using n − 1 comparisons. If you want to find both the min and
max of a sequence, you can do it in 2(n− 1) comparisons using the same
algorithm. Can you find the min and the max of a sequence using ≈ 3n/2
comparisons?

1



3.1 From online judges

Below is a list of problems you may want to try on online judges. Remember, the
point of these is learning algorithms and not coding. Coding is just for testing
your ideas. If you have convinced yourself that you know and can implement
the algorithm, but you are having trouble getting started with coding, move on.
Later on (e.g. during the break) when you have better coding skills or more
time, you can come back and try them.

• Bubble sort: http://codeforces.com/contest/53/problem/D

This is a very good starting point for online judges. See if you can imple-
ment bubble sort and get Pass on CodeForces.

• Modified version of stable sort: http://www.spoj.com/problems/ADAUSORT/.

Problem 3-11 asks you to implement quick sort. How can you change the
input data (not the algorithm) to solve this problem?

• Another sorting problem: http://www.spoj.com/problems/AMR10G/.

Since we are learning sorting algorithms, do not use standard sorting func-
tions provided by the programming language you are using. Implement
yourself.

Notice, in this problem N ≤ 20000 and there are T ≤ 30 tests. If you use
an O(N2) algorithm then your implementation will need approximately
T ·N2 = 1.2 · 1010 steps, which is too many. So you need to implement an
O(N logN) sorting algorithm.

Notice that each problem has a Time Limit - the duration your implemen-
tation is allowed to run for. Generally, think that 0.5 · 109 steps take 1
second. So the above bubble-sort algorithm would take 24 sections, many
times more than the time limit.

2

http://codeforces.com/contest/53/problem/D
http://www.spoj.com/problems/ADAUSORT/
http://www.spoj.com/problems/AMR10G/

	Introduction
	Supervision
	Bonus
	From online judges


