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Abstract. Facial behaviour forms an important cue for understanding
human affect. While a large number of existing approaches successfully
recognize affect from facial behaviours occurring in daily life, facial be-
haviours displayed in work settings have not been investigated to a great
extent. This paper presents the first study that systematically investi-
gates the influence of spatial and temporal facial behaviours on human
affect recognition in work-like settings. We first introduce a new multi-
site data collection protocol for acquiring human behavioural data under
various simulated working conditions. Then, we propose a deep learning-
based framework that leverages both spatio-temporal facial behavioural
cues and background information for workers’ affect recognition. We con-
duct extensive experiments to evaluate the impact of spatial, temporal
and contextual information for models that learn to recognize affect in
work-like settings. Our experimental results show that (i) workers’ affec-
tive states can be inferred from their facial behaviours; (ii) models pre-
trained on naturalistic datasets prove useful for predicting affect from
facial behaviours in work-like settings; and (iii) task type and task set-
ting influence the affect recognition performance.

1 Introduction

Human affect is a key indicator of various human internal states including mental
well-being [3, 17] and personality [14, 12], as well as people’s working behaviours
[33, 13, 11]. Therefore, accurately understanding employees’ affect in their work-
ing environment would enable managers identify risks for workers’ safety, collect
a history of risk exposures and monitor individuals’ health status, which would
further help employers in shaping organizational attitudes and decisions.

Since facial behaviours are a reliable source for affect recognition and can be
easily recorded in an non-invasive way, a large number of existing approaches
have been devoted to inferring affect from the human face. These approaches
frequently claim that static facial displays, spatio-temporal facial behaviours
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and even the background in a face image can provide useful cues for affect
recognition. Subsequently, existing approaches can be categorized as: static face-
based solutions that infer affect from each static facial display [24, 10, 7], full
frame-based solutions that utilize not only facial display but also background
cues [1], and spatio-temporal solutions that consider facial temporal evolution
of the target face [15, 28, 22, 5].

Although some of these approaches can accurately identify human affect
in both in-lab and naturalistic conditions, none of these works have focused
on analysing affect in working environments. This is largely due to the fact
that there is neither a well-developed protocol for worker facial behaviour data
collection nor a publicly available worker facial behaviour dataset for developing
affect recognition systems in work settings (Problem 1). Since different working
conditions would lead workers to express behaviours in different manners [6, 18,
29], existing approaches that are developed using naturalistic or in-lab facial data
may fail to accurately recognize affect from facial expressions expressed in work
environments (Problem 2). Another key issue is that these approaches mainly
provide affect prediction for a single facial image or video frame. However, in real-
world working conditions, a large number of workers may need to be recorded
and assessed many times a day. Subsequently, the limited computing and disk
resources that are typical for SMEs (small-to-medium scale businesses) would
not always allow making frame-level affect predictions in real time, and storing
these for a high number of workers (Problem 3). More specifically, a common
and realistic requirement for a real-world worker affect recognition system that
could be adopted by SMEs is to predict each worker’s affective state regularly
but for a certain period of time, i.e., providing periodical affect predictions.

In this paper, we aim to address the three problems described above. Firstly,
we introduce a new data collection protocol for acquiring naturalistic human
audio-visual and physiological behavioural signals stimulated under different
work-like conditions, tasks and stress levels. Using this protocol, we acquired the
first human working facial behaviour database called WorkingAge DB, which
is collected in four different sites with participants of different backgrounds
(addressing Problem 1). Then, we benchmark several standard deep learning-
based solutions on the collected WorkingAge DB, providing a set of baseline
results for worker’s periodical facial affect recognition (addressing Problem
2 and Problem 3). We further investigate the influence of the frame-rate on
different models’ periodical facial affect recognition performance with the as-
sumption that SMEs where such a system is to be deployed typically have limited
computational and disk resources, as well as the influence of task type, recording
site, gender, and various feature representations. In summary, the main contri-
butions of this paper are listed as follows:

– We propose an new protocol to acquire human facial behavioural data under
various simulated working conditions together with the self-reported emo-
tion/affect/workload state for each condition.

– Based on the proposed protocol, we collect a facial behaviour dataset in work-
like settings across multiple sites with participants from different cultural
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and language backgrounds. To the best of our knowledge, this is the first
cross-cultural human facial behaviour dataset that is collected under various
simulated working conditions.

– We benchmark several standard deep learning-based video-level behaviour
approaches for worker’s periodical dimensional affect recognition, and specifi-
cally investigate the influence of influence of task type, recording site, gender,
and feature representations on models’ performance. This provides a set of
baselines for future studies that will focus on facial behaviour understand-
ing in work settings. Code access: our code for the experiments is made
available at https://github.com/takuyara/Working-Age-Baselines.

2 A protocol for human facial behaviour data acquisition
in work-like settings

Although many existing face datasets [21, 20, 15, 16, 23, 32] have been annotated
with dimensional affect labels, to the best of our knowledge, none of them has
been collected in a working environment. Moreover, these datasets only provided
static face/frame-level labels without periodical affect labels (labels that reflect
the subject’s affective state for a certain period of time (each clip in this paper)).
As a result, none of them is suitable to be used for the purpose of investigating
the relationship between human facial behaviours and affective states in work-
ing environments. To bridge this research gap, we propose a new protocol for
acquiring human facial behavioural data displayed in various simulated working
conditions, and annotated with self-reported affect labels that reflect workers’
periodical affective states. The details of this protocol is described below.

Sensors setup: The sensor setup of the protocol is illustrated in Fig. 1.
During the recording, the participant sits at a table, where a laptop is placed to
display slides that guide the participant to undertake a number of tasks based on
a pre-defined order. To record visual information (including facial behaviours),
a Logit web camera is placed in front of the participant. Additionally, a GoPro
camera is also placed on the keyboard of the laptop to record facial behaviours
during the Operations Task Game when the participant lowers the head on a
panel to pick up items. Specifically, we build our model based on facial behaviours
recorded by both cameras, i.e., only facial behaviours triggered by the operation
task (explained in following paragraphs) are recorded by the GoPro camera.

Work-like tasks To simulate several working conditions, the proposed pro-
tocol consists of three work-like tasks including the N-back tasks, the video
conference tasks and the operation game (i.e., the Doctor game). Additionally,
we set an Eyes Open and Close task as the first task to acquire the baseline
behaviours of each participant. The details of the four tasks are listed below:

– Eyes Open and Close: this task contains two sub-tasks, (i) Eyes Open:
keeping the eyes open for 1 minute; and (ii) Eyes Closed: keeping the
eyes closed for 1 minute. This task aims to acquire the baseline behaviours
of each participant and help them get familiar with the task and the data
acquisition environment.
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Fig. 1. Hardware settings and example recordings, where the bottom-left figure dis-
plays the participant conducting a sub-task under the ’stressful condition’ and is
recorded by the logit camera. The bottom-right figure displays the participant con-
ducting an operation sub-task and is recorded by the GoPro camera.

– N-back task: this task is a continuous performance task that is commonly
employed to simulate different working memory capacity [9]. In our protocol,
it simulates an office-related activity that does not need intensive physical
work but causes mental strain. This task contains six sub-tasks in the fol-
lowing order: (i) Baseline (NBB): looking at the N-back interface for 1
minute without reacting; (ii) Easy game 1 (NBE01): playing 0-back game
for 2 minutes (typing the number that has just been shown on the screen);
(iii) Hard game 1 (NBH01): playing 2-back game for 2 minutes (typing
the number that has just been shown on the screen two turns ago); (iv)
Hard game 2 (NBH02): playing 2-back game for 2 minutes; (v) Easy
game 2 (NBE02): playing 0-back game for 2 minutes; and (vi) Stressful
hard game (NBS): playing 2-back game for 2 minutes with 85 dB back-
ground noise while a human experimenter is seated in the same room as the
participant.

– Video conference task: this task simulates a teleworking scenario, in
which employees are frequently requested to interact and coordinate with
colleagues who are not physically present. It contains three sub-tasks: (i)
Baseline (WEB): looking at Microsoft Teams screen without reacting; (ii)
Positive emotions (WEP): describing the happiest memory in one’s life to
the human experimenter for 2 minutes via Microsoft Teams video conferenc-
ing application (aiming to stimulate positive emotions); and (iii) Negative
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emotions (WEN): describing the most negative/sad memory in one’s life
to the human experimenter for 2 minutes via Microsoft Teams video con-
ferencing application (aiming to stimulate negative emotions). During both
tasks, if needed, the human experimenter would ask several neutral and fac-
tual questions to keep the participant talking for about 2 minutes.

– Operation task (Doctor Game): this task requires the participant to
use tweezers to pick up objects from a panel, simulating an assembly line
scenario. It contains six sub-tasks: (i) Baseline (DB): looking at the doc-
tor game panel without reacting; (ii) Easy game 1 (DE01): picking up
and removing 5 objects from the panel within 2 minutes; (iii) Hard game
1 (DH01): picking up and removing as many objects as possible from the
panel within 3 minutes; (iv) Easy game 2 (DE02): picking up and remov-
ing 5 objects from the panel within 2 minutes; (v) Hard game 2 (DH02):
picking up and removing as many objects as possible from the panel within
3 minutes; and (vi) Stressful hard game (DS): removing as many objects
as possible from the panel within 3 minutes with 85 dB background noise
while a human experimenter is seated in the same room as the participant.

After finishing each sub-task, the participant is asked to fill in two questionnaires.

Self-reported questionnaires In our protocol, we propose to obtain periodical
emotion and affect annotations from each participant, i.e., sub-task-level emotion
and affect annotations. Specifically, two questionnaires are employed, namely,
Geneva Emotion Wheel (GEW) [25] that measures the intensities of several
categorical emotions of the participant along 5 scales (from low to high), and
Self-Assessment Manikin (SAM) [4] that measures the intensities of three affect
dimensions (arousal, valence and power) from unhappy/calm/controlled (1) to
happy/excited/in-control (9) using a scale of 9.

Data acquisition The study was approved by the relevant Departmental Ethics
Committee. Additional COVID-19 related measures were also put in place prior
to the study. Prior to data acquisition, each participant is provided with an in-
formation sheet and is asked to read and sign a consent form. Following these
procedures, the experimenter explains all the details (e.g., purpose, tasks, ques-
tionnaires, etc.) of the study to the participant. Then, the participant is asked to
enter the room and sit in front of the laptop. The experimenter then leaves the
recording the room and goes to the operations room next door to remotely start
both cameras. The instructions related to each work-like task are displayed to
the participant on the laptop screen. After each main task (N-back, video con-
ference and operation tasks), the participant is instructed to relax for 4 minutes
by listening a calming music. This aims to help the participant to get back to
their baseline / neutral affective and cognitive state, to prevent the positive or
negative emotions caused by the previous tasks from impacting the future tasks.
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3 The WorkingAge Facial Behaviour Dataset

Based on the proposed protocol, we acquired a human facial behaviour dataset in
work-like settings in four different sites located in three countries: the audEER-
ING and RWTH Aachen University in Germany, the University of Cambridge in
United Kingdom, and the BrainSigns in Italy (i.e., they are individually referred
as AUD, RWTH, UCAM and BS in this paper). The collected dataset contains
data from a total of 55 participants, with 7 participants coming from the AUD
site, 16 participants coming from the BS site, 20 participants coming from the
RWTH site, and 12 participants coming from the UCAM site. It contains 935
clips (each clip corresponds to a sub-task, and 17 sub-tasks were recorded for
each participant), where 605 of them are annotated using the proposed protocol
(i.e., participants were not asked to provide self report annotations for NBE01,
NBH01, DB01 and DE01 tasks to reduce their annotation burden. As a result,
these clips were not used for experiments.). Specifically, the videos collected by
Logit camera and GoPro Camera are set as 24 and 30 fps during the recording,
with the frame resolutions of 1280 × 720, and 1920 × 1080, respectively. The
mean value, standard deviation, maximum and minimum values of each anno-
tated sub-task’s duration in our dataset are listed in Table. 1. It is clear that
the participants need longer periods of time to undertake the WEP and WEN
tasks, while DB, DE02 and DS tasks take shorter time to complete.

Sub-task Mean Standard Deviation Maximum Minimum

NBB 73.1 15.9 111.4 25.9
NBE02 91.4 29.8 131.2 26.1
NBH02 93.4 29.8 135.3 29.1
NBS 97.1 27.0 129.9 36.5
WEB 57.8 13.5 81.2 20.8
WEP 136.6 40.2 206.2 49.0
WEN 134.5 35.0 224.0 54.1
DB 61.0 7.2 77.5 38.1
DE02 60.6 41.2 204.2 10.5
DH02 100.3 41.8 185.3 32.4
DS 61.6 39.3 212.1 14.2

Table 1. Statistics of clips’ duration (seconds) in the WorkingAge dataset.

In addition, the distributions of the self-reported arousal and valence labels
(based on the SAM questionnaire) are illustrated in Fig. 2. In this paper, we
further quantize the valence/arousal labels into three classes: positive (scores
7, 8, or 9), neutral (scores 4, 5, or 6) and negative (scores 1, 2, or 3). As we
can see, during the three baseline sub-tasks, participants reported a relatively
high valence (72, 88 and 11 subjects have positive, neutral and negative valence
status) and low arousal value (6, 46 and 119 subjects have positive, neutral and
negative arousal). However, it can be seen that the increasing mental workload
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requirement clearly leads participants to report lower valence (with mean valence
scores of 5.9, 5.8 and 5.7 for DE02, DH02 and DS as well as 6.0, 5.5 and 5.3 for
NBE02, NBH02 and NBS) and higher arousal (with mean arousal scores of 4.4,
4.8 and 5.0 for DE02, DH02 and DS as well as 3.4, 4.0 and 5.2 for NBE02, NBH02
and NBS). We also see that the valence label distributions are quite different for
the three video conference sub-tasks, i.e., most participants reported a relatively
neutral valence status during the baseline condition, while positive and negative
memory-based conversations caused most participants to report corresponding
positive and negative valence values, with mean valence scores of 5.8, 7.1 and
4.0 for WEB, WEP and WEN, respectively.

Fig. 2. The distribution of the self-reported valence intensities for each subtask.

4 Periodical facial affect recognition

Although facial behaviours have been proven to be informative for inferring
human affect under natural or controlled conditions, none of the previous studies
evaluated the feasibility of using workers’ facial behaviours to infer affect in
terms of valence and arousal. In this section, we implement three standard deep
learning-based short video-level modelling approaches to provide a benchmark
for the task of facial affect recognition in work-like settings.
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Baseline 1 Given a short face video, the first baseline starts with generating
frame-level affect predictions for all frames, which are then combined to output
periodical affect prediction. In particular, we individually employed two frame-
level facial analysis models, i.e., a ResNet-50 [8] that is pre-trained for facial
expression recognition (i.e., pre-trained on the the FER 2013 dataset) and a
GraphAU model [19] that is pre-trained for facial action units (AUs) recognition
(i.e., pre-trained on the BP4D dataset [31]). Specifically, we individually use the
latent feature output by the second-last fully connected layer of the ResNet-
50, as well as the 12 AU predictions generated by the GraphAU model, as the
frame-level facial features. Then, we individually apply a multi-layer perceptron
(MLP) on each of them to provide frame-level valence and arousal predictions,
which is trained by re-using the clip-level self-reported valence/arousal scores
as the frame-level label. To obtain periodical (clip-level) affect predictions, we
combine all frame-level predictions of the target clip with the following widely-
used strategies: (i) using the mode prediction of all frame-level predictions as the
periodical affect predictions (i.e., GraphAU(P)-MODE and ResNet(P)-MODE);
(ii) applying a Long-short-term-memory Network (LSTM) to combine all frame-
level predictions (i.e., GraphAU(P)-LSTM and ResNet(P)-LSTM); and (iii) ap-
plying spectral encoding algorithm [26, 27] to produce a spectral heatmap from
all frame-level predictions, which is then fed to a 1D-CNN to generate periodical
affect predictions (i.e., GraphAU(P)-SE and ResNet(P)-SE).

Baseline 2 The second baseline also applies the same two pre-trained mod-
els used in baseline 1 to provide frame-level facial features. Differently from
the baseline 1, we employ three long-term modelling strategies to combine all
frame-level facial features (the latent feature vectors produced by the last FC
layer of the corresponding frame-level model) of the clip as the clip-level (pe-
riodical) affect representation: (i) averaging all frame-level facial features (i.e.,
GraphAU(F)-AVERAGE and ResNet(F)-AVERAGE); (ii) applying LSTM to
process all frame-level facial features (i.e., GraphAU(F)-LSTM and ResNet(F)-
LSTM); and (iii) spectral encoding all frame-level facial features (i.e., GraphAU(F)-
SE and ResNet(F)-SE). These clip-level affect representations are then fed to
either an MLP (for (i)) or 1D-CNN (for (ii) and (iii)) to generate clip-level affect
predictions.

Baseline 3 The third baseline applies a spatio-temporal CNN (Temporal Pyra-
mid Network (TPN) [30]) to process the facial sequence. In particular, we first
divide each clip into several segments, where each consists of 160 frames, and
down-sample each segment to 32 frames. We then feed the cropped face sequence
(32 frames) to TPN for affect classification. If a clip contains multiple segments,
then the clip-level predictions are achieved by averaging all segment-level pre-
dictions.
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5 Experiments

5.1 Experimental setup

Data pre-processing: We re-sampled all video clips to 24 fps to make videos
recorded by different cameras to have the same frame rate. Then, we used Open-
Face 2.0 [2] to crop and align the face from each frame, where frames with failed
or low-confidence face detection are treated as black images.

Training and evaluation protocol: We use the leave-one-site-out valida-
tion protocol for models’ training and evaluation, i.e., at each time, we use all
clips from three sites to train the model, and evaluate the trained model on the
rest one. The final reported results are obtained by averaging validation results
of four folds.

Model settings and training details: There are three main settings for
our baseline models: (i) frame-level feature extraction; (ii) clip-level (periodical)
facial behaviour representation extraction; and (iii) classifiers. Specifically, we
used the output (2048D) of the second-last layer of the ResNet-50 and the 12
predicted action units’ occurrences as the frame-level facial features, respectively.
In terms of the clip-level representation extraction, we used bidirectional LSTM
with one hidden layer, as well as a spectral encoding algorithm with a resolution
of 256 (80 lowest frequencies are selected). Finally, the MLP classifier is set as 3
layers for mode/averaging-based classification while the 1D-CNN is set to have 3
convolution blocks where each consists of a convolution layer, a ReLU activation,
as well as a dropout layer, whose channels and hidden sizes varies depending the
size of the input feature. We used the batch size of 512 and initial learning rate
of 0.001 for all experiments.

Evaluation metrics: Considering that the samples are unbalanced in terms
of arousal and valence label distibution, in this paper we employ the Unweighted
Average Recall (UAR) as the measurement to evaluate different baseline perfor-
mances on facial affect recognition in work-like settings.

5.2 Baseline results of leave-one-site-out cross-validation

Table 2 and Table 3 list the valence and arousal classification UAR results
achieved by all baseline systems for all sub-tasks (the models are trained using all
clips in the training set regardless of the task type). It can be seen that almost
all baselines achieved over the chance-level classification UAR (33.33%), with
the GraphAU(P)-SE system achieving the best valence UAR result (42.31%)
and the ResNet(F)-SE system achieving the best arousal UAR result (41.20%).
Meanwhile, we found that if we only use the mode prediction of all frame-level
predictions, both valence and arousal classification results are clearly worse than
most of other systems, i.e., the two corresponding systems only achieved less than
34% valence and arousal classification accuracy. These results indicate that: (i)
according to Fig. 3, the long-term modelling for either frame-level predictions
or features is a crucial step to achieve more reliable periodical arousal/valence
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Model NBB NBE02 NBH02 NBS DB DE02 DH02 DS WEB WEP WEN Total

GraphAU(P)-SE 0.3814 0.4279 0.4206 0.4691 0.6667 0.4026 0.4611 0.4461 0.5324 0.3280 0.2857 0.4231

GraphAU(P)-LSTM 0.3921 0.4254 0.4444 0.4414 0.6667 0.3898 0.4611 0.4428 0.5139 0.2899 0.3175 0.4209

GraphAU(P)-MODE 0.2918 0.2667 0.3254 0.3241 0.5417 0.2700 0.2019 0.2525 0.3287 0.2899 0.2619 0.3009

GraphAU(F)-SE 0.3584 0.4019 0.4246 0.4784 0.6875 0.3929 0.3963 0.3956 0.4491 0.2984 0.3810 0.3995

GraphAU(F)-LSTM 0.3921 0.4254 0.4444 0.4414 0.6667 0.3898 0.4611 0.4428 0.5139 0.3090 0.2857 0.4153

GraphAU(F)-AVERAGE 0.3685 0.3994 0.3651 0.3951 0.6250 0.3570 0.4500 0.4209 0.4722 0.3640 0.3333 0.3970

ResNet(P)-SE 0.3653 0.4402 0.4243 0.4484 0.7150 0.3796 0.4956 0.3881 0.5207 0.3564 0.3254 0.4226

ResNet(P)-LSTM 0.3847 0.4438 0.4473 0.4444 0.6558 0.3977 0.4974 0.4171 0.5207 0.3023 0.2857 0.4176

ResNet(P)-MODE 0.3153 0.3394 0.3798 0.2897 0.4558 0.2778 0.3465 0.3124 0.3622 0.3504 0.4127 0.3344

ResNet(F)-SE 0.3951 0.4438 0.4473 0.4722 0.6550 0.3750 0.5140 0.4211 0.5393 0.3023 0.2857 0.4225

ResNet(F)-LSTM 0.3847 0.4438 0.4358 0.4444 0.6542 0.3838 0.5140 0.4171 0.5393 0.3023 0.2857 0.4191

ResNet(F)-AVERAGE 0.3847 0.4438 0.4473 0.4444 0.7167 0.3801 0.4974 0.4316 0.5207 0.3023 0.2857 0.4219

TPN 0.3751 0.3740 0.3016 0.2940 0.4785 0.2686 0.2571 0.4002 0.3062 0.2915 0.3379 0.3350

Table 2. The UAR results achieved for worker’s valence recognition, where the name
of each method is formatted as frame level facial feature-long term model, where P and
F represent the frame-level prediction and facial features, respectively. For example,
ResNet(P)-SE denote the system that applies ResNet facial features to make frame-
level affect predictions, and then using spectral encoding algorithm to summarise all
frame-level valence/arousal predictions as the clip-level valence/arousal prediction.

Model NBB NBE02 NBH02 NBS DB DE02 DH02 DS WEB WEP WEN Total

GraphAU(P)-SE 0.5605 0.3417 0.3506 0.4058 0.3464 0.4842 0.4077 0.4118 0.3538 0.4167 0.3801 0.3999

GraphAU(P)-LSTM 0.5474 0.3625 0.3975 0.4058 0.4071 0.3667 0.3310 0.3725 0.3547 0.3774 0.3581 0.3678

GraphAU(P)-MODE 0.5658 0.4319 0.3232 0.2580 0.2389 0.3741 0.3902 0.3081 0.3155 0.4358 0.2327 0.3427

GraphAU(F)-SE 0.5711 0.3819 0.4149 0.4014 0.4224 0.4201 0.3634 0.3880 0.4153 0.4100 0.3973 0.3967

GraphAU(F)-LSTM 0.5474 0.4153 0.4134 0.4058 0.4071 0.3667 0.3310 0.3725 0.3645 0.3774 0.3581 0.3759

GraphAU(F)-AVERAGE 0.5974 0.4042 0.3983 0.4203 0.4309 0.3667 0.3310 0.3725 0.3645 0.3774 0.3581 0.3790

ResNet(P)-SE 0.5244 0.3636 0.3837 0.3610 0.4115 0.3842 0.3860 0.3889 0.3873 0.3988 0.4074 0.3834

ResNet(P)-LSTM 0.5231 0.3206 0.3692 0.3900 0.4122 0.3491 0.3651 0.4074 0.3775 0.4129 0.3454 0.3671

ResNet(P)-MODE 0.4359 0.3011 0.3202 0.3320 0.3118 0.3667 0.3684 0.3519 0.3595 0.4014 0.3639 0.3386

ResNet(F)-SE 0.6346 0.4133 0.3775 0.4295 0.4036 0.4719 0.4106 0.3519 0.4101 0.3775 0.3406 0.4120

ResNet(F)-LSTM 0.5462 0.3925 0.4037 0.4466 0.4029 0.4649 0.4496 0.4021 0.4869 0.3837 0.3285 0.4032

ResNet(F)-AVERAGE 0.5231 0.3945 0.3996 0.3900 0.4122 0.3991 0.4002 0.4074 0.3954 0.3758 0.3639 0.3858

TPN 0.4823 0.4877 0.3543 0.3403 0.3168 0.1935 0.2391 0.2951 0.1807 0.2602 0.3498 0.3182

Table 3. The UAR results achieved for worker’s arousal recognition.

predictions, as simply choosing the mode prediction from all frame-level pre-
dictions or averaging all frame-level features clearly provided the worst results;
(ii) the frame-level facial analysis (AU recognition/facial expression recognition)
models that are pre-trained using the lab-based facial datasets (AU or facial ex-
pression datasets) can still extract human affect-informative facial features from
facial displays triggered by work-like tasks, as their features frequently provide
around 40% UAR for both tasks (the chance-level UAR should be around 33%
for three class classification); and (iii) directly pairing workers’ facial sequences
with clip-level affect labels to train spatio-temporal models does not provide
superior results, which further validates that frame-level facial analysis models
pre-trained on facial datasets acquired in naturalistic settings are beneficial for
facial affect analysis in work-like settings.

5.3 Ablation studies

Task type: Since workers’ facial behaviours are highly correlated with the task
type and task setting, we also specifically investigate which tasks can trigger
most affect-informative facial behaviours in Fig. 4, where we report the average
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Fig. 3. The average valence and arousal UAR results of all baseline models.

UAR results achieved by all baselines for each task. The facial behaviours trig-
gered by four sub-tasks allow the model to achieve over 40% valence recognition
UAR results, which are clearly superior than the results achieved on other sub-
tasks. Therefore, we hypothesize that different subjects display affect in different
intensity (valence) when undertaking different sub-tasks of the same task (even
though their facial behaviour may be similar). Meanwhile, facial behaviours dis-
played during N-back baseline sub-task is very informative for predicting sub-
jects’ arousal, i.e., the arousal UAR result achieved for the baseline sub-tasks
of N-Back has more than 14.76% absolute accuracy improvements over the re-
sults of other sub-tasks. This finding suggests that human facial displays before
conducting the memory task may be reliable for inferring worker’s arousal state.

Validation set AUD BS RWTH UCAM

Valence 0.3715 0.3319 0.3438 0.3337
Arousal 0.3621 0.3385 0.3405 0.3523

Table 4. The results of the four-fold cross-validation results achieved by our best
models (GraphAU(P)-SE for valence, ResNet(P)-SE for arousal).
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Fig. 4. The influence of different tasks on valence and arousal prediction.

Recording site: We also explore the differences in affect classification for differ-
ent sites. Table 4 displays the leave-one-site-out four-fold cross-validation results.
It is clear that the data collected at different sites impact the valence classifica-
tion results, with around 4% UAR difference between the lowest (0.3319 (BS))
and the highest (0.3715 (AUD)). These results indicate that people at differ-
ent sites may display different facial behaviours when expressing valence. On
the other hand, the performance variations for arousal classification are much
smaller, indicating that the relationship between arousal and workers’ facial be-
haviours are more stable as compared to valence.

Gender: We report the gender-dependent worker valence/arousal classification
UAR results using our all baselines, where leave-one-site-out cross validation
is applied to either male or female facial data. Both the valence prediction re-
sults (0.3912 for male, 0.3714 for female and 0.3943 for gender-independent)
and arousal prediction results (0.3711 for male, 0.3588 for female and 0.3878
for gender-independent) indicate that male facial behaviours are more corre-
lated with their affect status. Moreover, it should be noted that the gender-
independent experiment achieved better performance than gender dependent
experiments. This might be caused by that fact that the gender-dependent ex-
periments have less data for model training. In addition, these results might
indicate that females and males do not display large variations when expressing
their affect via facial behaviours in work-like settings, i.e., such small variations
can not compensate the negative impact of the reduced number of training data
on worker affect prediction models.
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Gender Male Female Both

Valence 0.3912 0.3741 0.3943

Arousal 0.3711 0.3588 0.3878
Table 5. The average UAR results achieved for different genders.

Feature representation and long-term modelling: We also specifically
investigate the influence of different model configurations on periodical affect
classification performance. As we can see from Table 6, the backbone that was
pre-trained using naturalistic facial expression dataset achieved slightly better
affect recognition UAR results than the backbone that was pre-trained using a
facial AU dataset, both of which clearly are higher than the chance-level predic-
tion. This means both facial expression and AU-related facial features obtained
from the workers’ faces are correlated with their self-reported affective state.
Then, using facial features as the frame-level representation to construct clip-
level facial behaviour representation is a superior way, as this setting achieved
better UAR results for the recognition of both valence and arousal. We as-
sume this is because frame-level features retain more affect-related facial cues
than frame-level predictions, and thus during long-term modelling, frame-level
feature-based clip-level representations can encode more affect-related temporal
behavioural cues. Finally, simply choosing the mode of all frame-level predic-
tions or the average feature of all frame-level features provided the worst results
among all long-term modelling strategies, while spectral encoding achieved the
best average performance for all baselines. This is because the encoded spectral
representation contains multi-scale clip-level temporal dynamics.

Strategy Valence Arousal

Backbone
GraphAU 0.3928 0.3770
ResNet 0.4064 0.3817

Frame-level feature
Prediction 0.3866 0.3666
Features 0.4126 0.3921

Long-term modelling
SE 0.4169 0.3980

LSTM 0.4182 0.3785
MODE/AVG 0.3635 0.3615

Table 6. The average results of different baseline configurations.

6 Conclusion

In this paper, we presented the first study that systematically investigated the
face-based periodical valence and arousal analysis in work-like settings. More
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specifically, this paper introduced a worker facial behaviour data acquisition
protocol and the first cross-cultural human facial behaviour dataset in work-like
settings. We also provided a set of deep learning-based baselines for face-based
worker affect recognition. The results show that facial behaviours triggered by
different tasks are informative for inferring valence and arousal states, but the
performance is dependant on the task type and task setting. Our future work will
focus on developing more advanced domain-specific loss functions and network
architectures for multi-modal worker affect recognition.
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