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Abstract—Progress in the affective computing field has led
to the creation of affect-aware games that aim to adapt to
the emotions experienced by the players. In this paper we
focus on affect recognition in virtual reality (VR) gaming,
a problem that to the best of our knowledge has not yet
been sufficiently explored. We aim to answer two research
questions: (i) Is it possible to reliably capture and recognize
the affective state of a person based on EMG sensors placed
on their lower arms, while they interact with the virtual
environment? and (ii) Is EMG signal from one arm sufficient
for detecting affect? We conducted a study in which 8 people
were playing a set of VR games with two EMG sensors placed
on their arms. We analysed the EMG signals and extracted a
number of features to infer the affective states of the players.
Our experimental results show that the EMG measures from
left and right arms provide sufficient information to detect
emotions experienced by a player of a VR game. Our results
also show that classifying a DWT-db1 signal with Support
Vector Machine (SVM) yields F1=0.91 for predicting low/high
arousal and F1=0.85 for predicting positive/negative valence
when using just the left-arm EMG signal. To the best of our
knowledge, this is the first work that uses EMG data from
arm movements as a single source of affective information
and addresses affect recognition in VR gaming.

1. Introduction

Electromyogram (EMG) measures the electrical activity
that takes place in the muscles. Over the past hundred years,
EMG signal has been researched and applied to many differ-
ent problems. EMG-based control relies on the existence of
patterns in the way muscles activate for a particular action
and the detection of those patterns to infer what action was
performed.

Recently, EMG-based device control has been gaining
popularity. For example, Hernandez et al. showed that it
is possible to control a prosthetic system using an EMG
signal that is connected directly to the skin [6]. Another
popular application of EMG is gesture recognition. Zhang
et al. showed that it is possible to make use of EMG and
accelerometer data to classify which gesture a person makes
and use that gesture to control a video game [21]. Using
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EMG data, it is also possible to detect a wider set of actions
and distinguish between different types of grips [9].

In all of the above-mentioned research, the overall ap-
proach is similar - i.e., an action is performed, a sensor
collects the signals representing this action, the signals get
filtered discarding some information, and the patterns get
detected to be attributed to the actions performed. However,
we argue that the discarded data can be effectively used
for analysing the affect expressed and creating adaptation
in gaming (see [8] for a review on affective gaming).

Recent advancements in technology led to the devel-
opment of fully functional VR games. Their potential is
enormous - two of the Virtual Reality headsets, Oculus Rift
and HTC Vive, have already found their way to homes
of thousands of people and VR gaming is already being
explored for education, training and therapy. In this paper,
we hypothesise that EMG data obtained from the lower arms
controlling the VR environment can be effectively used to
analyse and recognise the player’s affect in terms of valence
and arousal. We aim to answer two research questions: (i)
Is it possible to reliably capture and recognise the affective
state of a person based on EMG sensors placed on their
lower arms, while they interact with the virtual environment?
and (ii) Is EMG signal from one arm sufficient for detecting
affect, or do we need to use multiple sensors?

We conducted a study in which 8 people were playing a
set of VR games with two EMG sensors placed on their
arms. The participants were then asked to provide self-
reported arousal and valence annotations using the scheme
originally developed by Thyer [18], and further adapted
by Grekow and Ras [5]. We analysed the recorded EMG
signals and extracted a number of features to infer the
affective states of the players. Our results show that the
EMG measures from left and right arms provide sufficient
information to detect emotions experienced by a player of
a Virtual Reality game. Our results also show that classi-
fying a DWT-db! signal with SVM-RBF yields F1=0.91
for predicting low/high arousal and F1=0.85 for predicting
positive/negative valence when using just the left-arm EMG
signal.

The rest of the paper is structured as follows. Section 2
discusses the related work in the field. It is followed by
Section 3, which outlines the motivation and describes the



methodology adopted. Section 4 describes the feature ex-
traction process while Section 5 presents the classification
experiments conducted and the results obtained. Section 6
analyses and discusses the findings and Section 7 concludes
the paper.

2. Related Work

One of the early attempts of using EMG to classify
emotions was performed by Fridlund et al. [4]. They used
EMG to capture the emotional response to images shown
to a person. Benedek and Hazlett used facial EMG to
perform a real-time evaluation of software design [1]. In
their study, the users attempted to use the system, while
their reactions were collected and classified as either posi-
tive or negative. Wagner et al. compared different methods
for emotion classification using a combination of signals
[20]. The work was further extended by Cheng and Liu
to include EMG [2]. It was shown that back-propagation
based neural network improved by Levenberg-Marquardt
performs much better than Support Vector Machine (SVM)
as was presented originally by Kim et al. [10]. Overall,
EMG is most commonly processed using Discrete Wavelet
Transforms (DWT) as, was done in the works of Cheng
and Liu [2], and Kakoty and Hazarika [9]. Further analysis
of different wavelets for DWT and their performance for
EMG analysis was presented by Phinyomark et al. [13].
Similarly to the choice of wavelets, different features were
also analysed in order to understand how much information
these features can capture about the signal and when one
should use one feature over another [15].

The rise in popularity of VR is associated with a very
engaging and realistic experience provided by the virtual
reality equipment. The realism was captured in the work of
Slater et al. [23] who observed the physiological response
to the presence of virtual reality characters. The power of
that realism was also recognised by the medical research
community. For example, Opdyke et al. showed that one can
actually treat the fear of heights using VR [24]. Similarly,
Welch et al. have shown that it is possible to build models
of social interaction to study autism [22]. They presented
a system where a number of sensors were used to capture
the affective state of a child during the interaction with a
virtual character. Similarly to the research by Slater et al.,
their system utilised multiple physiological sensors [23].

However, all of the above-mentioned systems use a
number of complex and expensive sensors. In this work, we
hypothesise that affective response in virtual reality gaming
can be captured using a single sensor which is relatively
cheap and is available in the consumer market. The creation
of affect recognition systems built upon such cheap and
widely available sensors could positively impact various
areas such as social welfare, and improve the effect of
platforms such as ‘VR for Good’!.

1. Accessible at: https://www.oculus.com/vr-for-good/

Figure 1. One of the participants interacting with the VR environment
during the pilot study.

3. The Study

3.1. Motivation and Pilot Study

Our motivation for focusing on the EMG data was two-
fold. Firstly, in a VR setting the face of the player is mostly
occluded due to the headset they wear. Therefore, although
the face is considered to be the most obvious and reliable
source of affective information, it is not yet possible to
utilise it for behaviour analysis in VR settings. Secondly,
in current VR settings, virtually all of the interaction with
games happens through the use of controllers and hand
movements. As the amount of possible interactions is limited
to just a number of buttons and hand movements, we believe
that it is possible to reliably capture the patterns in muscle
activations corresponding to states of change.

With these motivations, we designed a study to answer
the two research questions we set out to explore (as de-
scribed in Section) 1. Before we proceeded with the actual
study, we ran a pilot study (see Figure 1) to explore a
number of issues inherent to what we wanted to investigate,
e.g., exploring how the EMG sensors could best be used,
choosing a number of games that would capture a wide
range of emotions in the time that the game was played,
and finding the most convenient way for the participants
to report on their emotions. Two people participated in our
pilot study.

The data collected during the pilot study illustrated the
need for using two Myo armbands per player to collect data
from both arms. There were two reasons for this. First, one
of the pilot study participants was left-handed, whereas the
other one was right-handed, resulting in potential discrepan-
cies in collected signals. Second, some games mostly made
use of just one main hand (e.g. Google Earth), whereas
others required the use of both hands simultaneously (e.g.
Fruit Ninja VR). Using only one armband would not capture
the richness of such information. However, it should be
noted that we could not find a way of correctly using two
Myo armbands connected to the same computer with the 0.9



Thalmic Myo Software Development Kit (SDK)?. Instead,
two computers were used for data collection, with software
set-up in such a way to start the data collection at the same
time.

We tried multiple configurations for obtaining data anno-
tation. Initially, we asked one participant to play a game for
a duration of 30, 60 and 90 seconds and annotate the affect
they experienced during the game. However, the participant
reported that he/she could not recall the emotions they
experienced during the game, and when they could recall
the emotion they would struggle to tell when exactly they
felt a particular emotion. Due to these reasons, we decided to
record the gameplay and the speech of the player to present
it to them during the post-gaming annotation phase.

3.2. The Chosen VR Games

The game choice was driven by the desire to find games
that could induce a wide variety of emotions in a short time
period. For this reason we chose to use the following games:
1) Eggs time® - The game is very engaging, but at the same
time has multiple graphics bugs, which cause the users to
experience a range of negative and positive emotions; 2)
Google Earth* - The game has quite confusing controls that
can cause a range of negative emotions; 3) Spell Fighter’
- The game was specifically chosen, as it is practically
impossible to play it without speech input and in the game
it is possible to get attacked by a mannequin, without any
ability to defend. The game was therefore chosen to induce
a variety of negative emotions; 4) Museum of Fine Arts® -
The game presents participants with a range of artwork and
was chosen to induce a range of calm-positive and calm-
negative emotions; 5) Fruit Ninja' - The game is very easy
to play in terms of controls and is very engaging.

In order to find the appropriate time for a game round,
we investigated how long it takes for a player to get into
the game and start generating emotionally rich EMG data.
We ended up with a time period of 60 seconds, as this was
the duration that participants believed they had experienced
a rich range of emotions.

3.3. Sensors and Measures

For the VR gaming, as can be seen in the Figure 1, HTC
Vive headset® was used. The configuration was default and
games were accessed through the Steam VR marketplace’.

In the updated Myo SDK a new interface was introduced
that gives developers an ability to stream raw EMG data
from the Myo armband [11]. Each armband provides the
following sensor data: 8 EMG channels, gyroscope and

. Accessible at https://developer.thalmic.com/

. Accessible at http://store.steampowered.com/app/531990/
. Accessible at http://store.steampowered.com/app/348250/
. Accessible at http://store.steampowered.com/app/455440/
. Accessible at http://store.steampowered.com/app/515020/
. Accessible at http://store.steampowered.com/app/486780/
. Accessible at https://www.vive.com/uk/

. Accessible at http://store.steampowered.com/steamvr
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orientation. Data is streamed at a frequency of 200Hz for
EMG channels and of 5S0Hz for gyroscope and orientation.
Unfortunately, those sampling rates are default and can not
be changed. We have decided to only use EMG for the
emotion classification task. As we set the time for a game
round to be 60 seconds, this resulted in 60 % 200 = 12000
samples per player, each with 8 EMG channels per arm.

3.4. Data Collection and Annotation

8 participants (4 female and 4 male) with different
cultural and educational backgrounds volunteered to partic-
ipate. The participants also came from different educational
backgrounds and different English proficiency levels (from
intermediate to native speakers). The participants were in-
formed about the experiment, its goals, safety procedures
and their rights with a verbal introduction and through a
signed consent form. Participants were given time to get
themselves familiar with both the Myo armbands and the VR
headset. Participants were also introduced to the meaning
of arousal and valence. Prior to the collection phase the
participants were given time to freely play the games to
get used to the controls. Once the experiment was over, the
logic behind the game choice was explained to reassure that
there is nothing wrong with them feeling confused/annoyed
at particular points in time.

In order to remove bias between game rounds, a break of
at least one minute was taken. Running a single game round
took around one minute with about 20 seconds preparation,
followed by about 10 minutes discussion about the emotions
felt, averaging out to about 1 hour 10 minutes time overall
per participant. In total, we obtained 8 x 5 x 60 = 2400
EMG-seconds from 8 participants. As we were collecting
data from both arms, this provided us with a total of 4800
EMG-seconds with around 200 EMG samples per second.
The participants were asked to provide one label for arousal
and one label for valance, for every second of the gameplay.

For the purpose of emotion reporting it was necessary
to pick an emotion model that would be simple enough
for non-professional labelers to describe their feelings but
at the same time flexible enough to allow participants to
express a whole range of emotions. When designing the
experiment, we expected that there is going to be a strong
positive bias, as most people had no interaction with Virtual
Reality-based gaming before the study. For these reasons, an
Arousal-Valence scheme over the continuous space in the
range of [—1,1] was chosen. This scheme with continuous
values allowed participants to express the extent to which
a particular emotion was experienced. Discrete schemes,
similar to the one used by Cheng and Liu were considered
but were dismissed due to the limitations they impose [2].

In order to help participants describe their affective state,
a printed out copy of the scheme was provided to them. This
scheme is based on the original one developed by Thyer
[18], but further adapted by Grekow and Ras [5] for emotion
recognition in music. We have further adapted it by adding
more labels around the Arousal-Valence space to make it



Figure 2. Histogram of collected labels for Arousal and Valence. Blue-
valence, Green-arousal. X-axes present the value, Y-axes - the frequency
of appearance.
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Figure 3. The annotation scheme used.

easier for participants to describe their feelings. The adapted
scheme is illustrated in Figure 3.

The collected label distribution is presented in Figure 2.
As can be seen from the figure, the data collected is unbal-
anced and there is a strong bias towards positive emotions.
Classification of such data would result in low accuracy and
high misrepresentation. In order to mitigate this issue, we
will analyse the classification results after the commonly
used under- and over- sampling techniques are applied to
the data. These techniques are discussed in Section 5.

4. Feature extraction

While exploring the use of EMG in biomechanics De
Luca [3] outlined that the relationship between actual and
reported muscle contraction force is nonrigid due to multiple
factors'?. Such claims were further explored in the review by
Sousa and Tavares [17]. Not only the signal is reported to be
different for each individual, but it changes within the same

10. For example, electrode configuration, fibre type or signal crosstalk.
For the full list see Figure 1 in De Luca [3].

individual over time, and therefore absolute values of the
signals are not representative in group comparisons. In order
to allow for comparison between different individuals and
different muscles, there is a need to standardise the signal.
To do this, isometric and dynamic normalisation methods
are reported to be the most appropriate ones [17]. Kakoty
and Hazarika used mean normalisation to process EMG
to classify the gestures [9]. Shrirao et al. used the Root
Mean Square normalisation for classification of the EMG
data to predict the joint angle [16]. For the purpose of this
work, we decided to make use of Root Mean Square (RMS)
normalisation.

Due to the historic popularity of EMG, many different
features were considered for classification, both individually
and in groups. These different features were considered in
time, frequency and time-frequency domains. Time domain
features are based on EMG signal amplitude. Tkach et al.
presented a review of different features that are extracted
from EMG signal and are used for pattern recognition
[19]. They used features utilised by Hudgins et al. [7]:
Mean Absolute Value, Mean Absolute Value Slope, Zero
Crossings, Slope sign changes, Waveform Length, combined
with autoregressive, cepstral coefficients, Willison amplitude
and sample entropy. In frequency domain, power spectrum,
mean and median of signal frequencies and frequency ratio
are used. Lastly, in time-frequency domain, only short-time
Fourier transform, wavelet transform and wavelet packet
transforms are used.

Kakoty and Hazarika claimed that out of all domains,
the time-frequency domain is the most suited for EMG
signal analysis [9]. The reason is that the wavelet transforms
capture frequency resolution really well for low frequencies
and time resolution for high frequencies. In EMG signals
high-frequency components are rare and last for a very
limited period of time, whereas low frequency persists for
much longer. Additionally, they argued that approximations
calculated by the discrete wavelet transform, although re-
duce the size of the signal, still contain sufficient information
for analysis and feature extraction.

For the reasons outlined above, we decided to make use
of the following features on the DWT approximation of the
original signal: 1) Mean absolute value; 2) Mean absolute
value slope; 3) Original signal zero crossing; 4) Original
signal slope sign changes; 5) Waveform length; 6) Variance;
7) Root Mean Square; 8) Waveform Length; 9) Standard
deviation of the amplitude of the signal. For mathematical
definitions of the features outlined above please refer to the
review published by Phinyomark et al. [12].

The choice of mother wavelets for initial signal approxi-
mation was based on the follow-up research by Phinyomark
et al. [13]. According to their research, for decomposition
and de-noising (Type I and Type III in classification) coif5,
dbl, biorl.1 and rbiol.l1 should be used. Originally we
wanted to use all of these wavelets, however, we discovered
that dbl, biorl.1 and rbiol.l resulted in very similar clas-
sification accuracy whereas coif5 showed relatively smaller
accuracy. Therefore, in this paper, we present the results of
DWT based on dbl.



TABLE 1. SVM CLASSIFICATION RESULTS FOR LOW/HIGH AROUSAL AND NEGATIVE/POSITIVE VALENCE. THE RESULTS PRESENTED ARE AVERAGE

F1 VALUES WITH SUBJECT-INDEPENDENT CROSS-VALIDATION OVER ALL 8 SUBJECTS (ALL) AND OVER 7 OUT OF 8 SUBJECTS (7/8).

Sampling Left Right
Arousal Valence Arousal Valence
All 7/8 All 7/8 All 7/8 All 718
None 0.86 £0.16 0.91 £0.06 0.83 £0.07 0.84 £0.07 0.86 £0.16 0.91 £0.06 0.83 £0.08 0.84 £0.08
CNN 0.86 £0.16 0.91 £0.06 0.82 £ 0.06 0.83 £0.06 0.85+£0.16 0.90 £ 0.06 0.81 £0.07 0.82 £0.07
SMOTE 0.84 £0.15 0.89 +0.06 0.80 £ 0.06 0.81 £0.06 0.83£0.14 0.88 £ 0.06 0.80 £ 0.06 0.81 £0.06
SMOTE+CNN | 0.86 +£0.16 | 0.91+0.06 | 0.83+0.08 | 0.85+0.07 | 0.86+0.16 | 0.914+0.06 | 0.83+0.08 | 0.84 +0.08

5. Emotion Classification

As the majority of the affective computing research
using EMG focused on the prediction/classification of four
classes, for comparison purposes we also decided to ap-
proach the problem as a four-class classification problem
using RBF-based Support Vector Machine with C' = 1
implemented in sklearn'' python framework. Alongside, we
used one under/oversampling technique to mitigate the bias
presented in the data implemented in the imbalanced-learn
python framework. The techniques are used to mitigate the
biased nature of data discussed previously.

Table 1 presents the classification results for the col-
lected data in terms of average F1 values calculated with
leave-one-subject-out (LOSO) cross-validation. The table
presents the classification results for original data along with
the data that is over-sampled with SMOTE [25] and under-
sampled with Condensed Nearest Neighbor [26]. SMOTE
generates synthetic examples while operating in the feature
space. In particular, it takes each minority class sample and
introduces a synthetic sample in the region between a given
number of nearest samples from the same minority class.
Those synthetic neighbours are generated by computing the
difference between the features of the samples and randomly
picking a number and adding it to the feature vector. It adds
a random point in the region in-between already existing
feature vectors.

Condensed Nearest Neighbours (CNN) is an under-
sampling technique presented by Hart to mitigate the storage
constraints of the nearest neighbours classifiers [26]. The
technique focuses on picking out a subset of samples from
the original set of samples in such a way that the subset
provides sufficient information to classify the points in the
original set that are not present in the subset.

6. Analysis and Discussion

Table 1 shows the SVM classification results for
low/high arousal and negative/positive valence. for the
whole dataset, along with the results obtained for a reduced
subset. The latter is presented to explain the high standard
deviation that can be seen in the classification results of
both left and right arms. The subset excludes one of the
participants who during the annotation phase stated that
he/she was too tired to reflect on the experienced affect
during the game and provided the same annotations for

11. See http://scikit-learn.org/stable/

both arousal and valence. By excluding the data of this
participant, one could see a much smaller standard deviation
for the F1 measure.

As it can be seen from the table, when using the original
dataset, both arousal and valence can be classified with high
accuracy (F1=0.85), which further increases when the subset
is used (F1=0.91). This suggests that even with unbalanced
data we were able to fairly reliably recover the affective state
of a person playing VR games. To explore how the lack of
balance in the data has further affected the classification
results, we calculated F1 values from over- and under-
sampled data by reporting on the following: 1) CCN of
the data; 2) SMOTE of the data; and 3) first SMOTE of the
data followed by the CNN. As it can be seen from Table
1, for CNN the F1 values are very similar to those of the
original dataset but decrease slightly for both left and right
arms. This is due to the fact that CNN omits some of the
data, that could later be of use for the SVM classifier. A
more interesting trend has been observed for the data after
SMOTE. There is a slight drop in the F1 value, suggesting
that the problem is not the undersampled class, but rather the
oversampled class that suffers from misclassification due to
an increased confidence in prediction of the samples on the
boundary between the classes. Finally, similarly to Chawla
et al. we oversampled the original data with SMOTE and
then undersampled it [25]. The authors found that such a
procedure results in a more generalised classifier. In our
SMOTE+CNN case, we can see that the obtained F1 value
is the same, except for the valence reported for the left arm.
There we can see a slightly higher standard deviation in the
case of the whole dataset, and a slightly better F1 value for
the subset.

As we have hypothesised, if the misclassification is due
to the high variation within the majority class, there is
indeed a need for more data. Finally, we could see very
similar accuracies for both left and right arms, suggesting
that one source of EMG could be sufficient for effective
emotion recognition in VR gaming. To make sure that
we were not classifying game-specific emotional responses,
we ran an additional experiment with leave-one-game-out
evaluation, which yielded very similar results to the ones
presented in Table 1.

7. Conclusions and Future Work

Our results showed that the EMG measures from both
(lower) arms provide sufficient information to detect emo-
tions experienced by a player of a Virtual Reality game.



Although not in a VR setting, Cheng and Liu reported on
emotion recognition from surface EMG in [2] using Back-
propagation Neural Network. The recognition accuracy they
reported was as follows: 67% for joy, 83.33% for anger,
83.33% for sadness and 67% for pleasure, with an overall
recognition accuracy of 75%. Our results showed that it is
possible to obtain comparable and even higher classifica-
tion accuracy when using lower arm EMG. We obtained
F1=0.91 for the classification of arousal and F1=0.85 for
the classification of valence, in both left and right arms.
Furthermore, we found that data from both left and right
arms result in comparable classification accuracy, suggesting
that a single sensor is sufficient to detect affect experienced
during VR gaming. Although this result is surprising it could
be explained by the fact that all of the games required the
participants to keep the hands active during the gameplay.
To the best of our knowledge, this is the first work that uses
EMG data from arm movement as a single source of infor-
mation and addresses affect recognition in Virtual Reality
gaming. However, to make firm conclusions an additional
study should explore the generalizability and effectiveness
of the technique described here, with a higher number of
participants.

The development of a virtual reality affective game,
which would change its difficulty in response to the affect
experienced by the players, is one of the avenues we would
like to explore as an extension of the work presented in
this paper.
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