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Automatic Analysis of Facial Affect: A Survey of
Registration, Representation, and Recognition

Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro

Abstract—Automatic affect analysis has attracted great interest in various contexts including the recognition of action units and basic
or non-basic emotions. In spite of major efforts, there are several open questions on what the important cues to interpret facial
expressions are and how to encode them. In this paper, we review the progress across a range of affect recognition applications to
shed light on these fundamental questions. We analyse the state-of-the-art solutions by decomposing their pipelines into fundamental
components, namely face registration, representation, dimensionality reduction and recognition. We discuss the role of these
components and highlight the models and new trends that are followed in their design. Moreover, we provide a comprehensive analysis
of facial representations by uncovering their advantages and limitations; we elaborate on the type of information they encode and
discuss how they deal with the key challenges of illumination variations, registration errors, head-pose variations, occlusions, and
identity bias. This survey allows us to identify open issues and to define future directions for designing real-world affect recognition

systems.

Index Terms—Affect sensing and analysis, facial expressions, facial representations, registration, survey

1 INTRODUCTION

THE production, perception and interpretation of facial
expressions have been analysed for a long time across
various disciplines such as biology [32], psychology [38],
neuroscience [40], sociology [164] and computer science
[48]. While the cognitive sciences provide guidance to the
question of what to encode in facial representations, com-
puter vision and machine learning influence how to encode
this information. The appropriate cues to interpret facial
expressions and how to encode them remain open questions
[1]. Ongoing research suggests that the human vision sys-
tem has dedicated mechanisms to perceive facial expres-
sions [18], [139], and focuses on three types of facial
perception: holistic, componential and configural percep-
tion. Holistic perception models the face as a single entity
where parts cannot be isolated. Componential perception
assumes that certain facial features are processed individu-
ally in the human vision system. Configural perception mod-
els the spatial relations among facial components (e.g. left
eye-right eye, mouth-nose). All these perception models
might be used when we perceive expressions [2], [28], [95],
[96], and they are often considered complementary [16],
[165], [183].

Facial representations can be categorised as spatial or
spatio-temporal. Spatial representations encode image
sequences frame-by-frame, whereas spatio-temporal repre-
sentations consider a neighbourhood of frames. Another
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classification is based on the type of information encoded in
space: appearance or shape. Appearance representations
use textural information by considering the intensity values
of the pixels, whereas shape representations ignore texture
and describe shape explicitly.

The main challenges in automatic affect recognition are
head-pose variations, illumination variations, registration
errors, occlusions and identity bias. Spontaneous affective
behaviour often involves head-pose variations, which need to
be modelled before measuring facial expressions. Illumina-
tion variations can be problematic even under constant illu-
mination due to head movements. Registration techniques
usually yield registration errors, which must be dealt with to
ensure the relevance of the representation features. Occlu-
sions may occur due to head or camera movement, or acces-
sories such as scarves or sunglasses. Dealing with identity
bias requires the ability to tell identity-related texture and
shape cues apart from expression-related cues for subject-
independent affect recognition. While being resilient to
these challenges, the features of a representation shall also
enable the detection of subtle expressions.

Advances in the field, and the transition from controlled
to naturalistic settings have been the focus of a number of
survey papers. Zeng et al. [179] focused on automatic affect
recognition using visual and auditory modalities. Gunes
and Schuller [48] highlighted the continuity aspect for affect
recognition both in terms of input and system output. Yet
no survey has analysed systems by isolating their funda-
mental components (see Fig. 1) and discussing how each
component addresses the above-mentioned challenges in
facial affect recognition. Furthermore, there are new trends
and developments that are not discussed in previous survey
papers. Novel classification techniques that aim at capturing
affect-specific dynamics are proposed, validation protocols
with evaluation metrics tailored for affect analysis are pre-
sented and affect recognition competitions are organised.
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Fig. 1. The proposed conceptual framework to be used for the analysis and comparison of facial affect recognition systems. The input is a single
image (I;) for spatial representations or a set of frames (I}") within a temporal window w for spatio-temporal representations. The system output Y; is
discrete if it is obtained through classification or continuous if obtained through regression. The recognition process can incorporate previous

({Yi-1,...,Y:_}) and/or subsequent ({Yi:1, ..., Yiin }) System output(s).

Our in-depth analysis of these developments will expose
open issues and useful practices, and facilitate the design of
real-world affect recognition systems.

In this paper, we break down facial affect recognition
systems into their fundamental components (see Fig. 1):
facial registration, representation, dimensionality reduction
and recognition. We discuss the role of each component in
dealing with the challenges in affect recognition. We ana-
lyse facial representations in detail by discussing their
advantages and limitations, the type of information they
encode, their ability to recognise subtle expressions, their
dimensionality and computational complexity. We further
discuss new classifiers and statistical models that exploit
affect-specific dynamics by modelling the temporal varia-
tion of emotions or expressions, the statistical dependencies
among different facial actions and the influence of person-
specific cues in facial appearance. We review evaluation
procedures and metrics, and analyse the outcome of
recently organised automatic affect recognition competi-
tions. Finally, we discuss open issues and list potential
future directions.

2 AFFECT MODELS AND RECOGNITION

Affect recognition systems aim at recognising the appear-
ance of facial actions or the emotions conveyed by the
actions. The former set of systems usually rely on the Facial
Action Coding System (FACS) [38]. FACS consists of facial
Action Units (AUs), which are codes that describe certain
facial configurations (e.g. AU 12 is lip corner puller). The
production of a facial action has a temporal evolution,
which plays an important role in interpreting emotional dis-
plays [4], [5]. The temporal evolution of an expression is
typically modelled with four temporal segments [38]: neu-
tral, onset, apex and offset. Neutral is the expressionless
phase with no signs of muscular activity. Onset denotes the
period during which muscular contraction begins and
increases in intensity. Apex is a plateau where the intensity
usually reaches a stable level; whereas offset is the phase of
muscular action relaxation. Although the order of these
phases is usually neutral-onset-apex-offset, alternative com-
binations such as multiple-apex actions are also possible
[25]. AUs and temporal segments are well-analysed in psy-
chology and their recognition enables the analysis of

sophisticated emotional states such as pain [82] and helps
distinguishing between genuine and posed behaviour [151].

The systems that recognise emotions consider basic or
non-basic emotions. Basic emotions refer to the affect model
developed by Ekman and his colleagues, who argued that
the production and interpretation of certain expressions are
hard-wired in our brain and are recognised universally (e.g.
[37]). The emotions conveyed by these expressions are mod-
elled with six classes: happiness, sadness, surprise, fear,
anger and disgust. Basic emotions are believed to be limited
in their ability to represent the broad range of everyday
emotions [48]. More recently researchers considered non-
basic emotion recognition using a variety of alternatives for
modelling non-basic emotions. One approach is to define a
limited set of emotion classes (e.g. relief, contempt) [7].
Another approach, which represents a wider range of emo-
tions, is continuous modelling using affect dimensions [48].
The most established affect dimensions are arousal, valence,
power and expectation [48].

The above-listed affect models were evaluated in a num-
ber of affect recognition competitions. The Facial Expression
Recognition (FERA) [156] challenge evaluated AU detection
and discrete emotion classification for four basic emotions
and one non-basic emotion. The Audio/Visual Emotion
Challenges (AVEC) [126], [127], [158] evaluated dimen-
sional affect models. FERA demonstrated the substantial
progress made in subject-dependent emotion recognition
and highlighted open issues in subject-independent emo-
tion recognition; whereas the AVEC challenges highlighted
the limitations of existing techniques when dealing with
spontaneous affective behaviour.

3 FACE REGISTRATION

Face registration is a fundamental step for facial affect rec-
ognition. Depending on the output of the registration pro-
cess, we categorise registration strategies as whole face, part
and point registration.

3.1 Whole Face Registration

The region of interest for most systems is the whole face.
The techniques used to register the whole face can be cate-
gorised as rigid and non-rigid.
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3.1.1 Rigid Registration

Rigid registration is generally performed by detecting facial
landmarks and using their location to compute a global
transformation (e.g. Euclidean, affine) that maps an input
face to a prototypical face. Many systems use the two eye
points (see Table 3) or the eyes and nose or mouth [56], [76].
The transformation can also be computed from more points
(e.g. 60-70 points [26]) using techniques such as Active
Appearance Models (AAM) [26]. Computing the transfor-
mation from more points has two advantages. First, the
transformation becomes less sensitive to the registration
errors of individual landmark points. Second, the transfor-
mation can cope with head-pose variations better, as the
facial geometry is captured more comprehensively.

Alternatively to landmark-based approaches, generic
image registration techniques such as Robust FFT [150] or
Lucas-Kanade approaches [8] can also be used. These tech-
niques are expected to be more accurate when the image of
the given subject exists a priori and is used as template.
Robust FFT is used in such a scenario for sequence registra-
tion—the first frame in the sequence is registered through
landmarks and subsequent frames are registered to the first
frame using Robust FFT [57].

3.1.2 Non-Rigid Registration

While rigid approaches register the face as a whole entity,
non-rigid approaches enable registration locally and can
suppress registration errors due to facial activity. For
instance, an expressive face (e.g. smiling face) can be
warped into a neutral face. Techniques such as AAM are
used for non-rigid registration by performing piece-wise
affine transformations around each landmark [84]. Alterna-
tively, generic techniques such as SIFT-flow [78] can also be
used. The so-called avatar image registration technique
[175] adapts SIFT-flow for facial sequence registration. Ava-
tar image registration addresses identity bias explicitly by
retaining expression-related texture variations and discard-
ing identity-related variations.

3.2 Parts Registration

A number of appearance representations process faces in
terms of parts (e.g. eyes, mouth), and may require the spa-
tial consistency of each part to be ensured explicitly. The
number, size and location of the parts to be registered may
vary (e.g. 2 large [146] or 36 small parts [191]).

Similarly to whole face registration, a technique used fre-
quently for parts registration is AAM—the parts are typi-
cally localised as fixed-size patches around detected
landmarks. Optionally, faces may be warped onto a refer-
ence frontal face model through non-rigid registration
before patches are cropped (e.g. [99], [191]). Alternatively,
techniques that perform part detection to localise each patch
individually can also be used [182].

3.3 Points Registration

Points registration is needed for shape representations, for
which registration involves the localisation of fiducial
points. Similarly to whole and parts registration, AAM is
used widely for points registration. Alternative facial fea-
ture detectors are also used [152], [162]. As localisation
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accuracy is important for shape representations, it is desir-
able to validate the feature detectors across facial expression
variations [152], [162].

Points in a sequence can also be registered by localising
points using a point detector on the first frame and then
tracking them. Valstar and Pantic [154] use a Gabor-based
point localiser [162] and track the points using particle filter
[107].

3.4 Discussion

While some representations (e.g. part-based representa-
tions) are coupled with a certain type of registration only,
others can be used with various registration schemes. For
instance, generic appearance representations such as a
Gabor representation can be used after performing rigid or
non-rigid whole face registration [10], [23] or parts registra-
tion [182]. For such representations, the type of information
encoded by the overall system depends on the registration
strategy employed. More specifically, the registration
decides whether configural information will be retained. A
non-rigid registration that warps faces to a neutral face may
reduce the effect of configural information, or parts registra-
tion of individual facial components (e.g. eyes, nose and
mouth) may neglect configural information completely.

An important decision to be made for registration is how
to deal with head-pose variations. While a number of sys-
tems approach head-pose as a factor that needs to be sup-
pressed in order to analyse facial activity explicitly [10],
[62], [115], others model both facial activity and head-pose
simultaneously, arguing that head-pose variations are part
of affective behaviour [94], [99], [145].

Registration is crucial for analysing spontaneous affec-
tive interactions, which typically involve head-pose varia-
tions. While systems validated on posed data often use
simple whole face registration techniques based on two to
four points, systems validated on spontaneous data rely on
more sophisticated whole face, parts or points registration
techniques (see Table 3).

AAM is a popular choice to perform whole face, parts
or points registration. Although in principle AAM is sub-
ject-independent, in practice its accuracy is higher when
the model of the subject to register exists a priori [46]. A
subject-independent alternative is constrained local model
(CLM) [119]. However the accuracy of CLMs is generally
lower than that of AAMs [23]. The accuracy of both
CLM and AAM decreases significantly in naturalistic
imaging conditions that include partial occlusions, illumi-
nation and head-pose variations [190]. New techniques
achieve higher accuracy in such naturalistic conditions
for subject-independent scenarios [169], [170], [190]—a
comparison among several techniques was recently pre-
sented in [20].

4 SPATIAL REPRESENTATIONS

Spatial representations encode image sequences frame-by-
frame. There exists a variety of appearance representations
that encode low or high-level information (see Table 1).
Low-level information is encoded with low-level histo-
grams, Gabor representations and data-driven representa-
tions such as those using bag-of-words (BoW). Higher level
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TABLE 1
Summary of the Representations Discussed in this Paper
. Tllumination Registration Tdentit Dimensionalit . -
Representation Sensitivity Segnsitivity Bias Y (Vector ler\gth})l Studies ‘ fm. ‘
S [Facial Points Ignores texture — Use neutral baseline| 40 [115] - 132 [82] [59,82,99,115,128] -
LBP LE, RGV, OIN Pooling = 2,478 [132]-5,900 [156] [[56,57,59,94,123,128,132,175,189] | [67]
LPQ LE, RGV, OIN Dooling - 2,048 [57]-25,600 [56] [29,34,56,57,175] [66]
HoG LDCE, RGV, OIN Pooling - 438 [30] - 1,920 [178] [30,103] [160]
~| [Qtz™ LDCE, RGV, OIN Pooling = 656 - 5,008 [121] [121] [121]
£| |Gabor LDCF, RGV, OIN Smooth filters — 165,888 [10] [10,43,63,77,129,145,146,168] | [42]
& 5 [Dense Bow LDCE, RGV, OIN | Pool.(SIFTs&SPM) - 272,800 [135] [T35] [160]
Deep Learning LFT Smooth filters,pooling | Training dependent 9216 [112] [111,112] -
NMF Training dependent| Training dependent | Identity free bases 100-200 [101], [191] [101,188] -
Sparse Cod. Training dependent| Training dependent [ Training dependent 2,705 [87] [27,87] -
D/B SIFT LDCF, RGV, OIN Pooling (SIFTS) = 7,608 [191] [191] =
P/B NMF Training dependent| Training dependent [ Texture subtraction N/A [54] —
S |Geometric Feat. Ignores texture — Use neutral baseline 2,520 [154] [151,154] -
s LBP-TOP LF, RGV, OIN Pooling, TC - 12,744 T185] [52,56,57,72,185,186] [68]
8| [LPQ-TOP LF, RGV, OIN Pooling, TC - 76,800 [56] [56,57] [81]
g S/T Gabor Filt. | LDCF, RGV, OIN Smooth filters, TC - More than 2,000,000 [167] -
& S/T IC Filt. LDCF RGV, OIN Smooth filters, TC - Sim. to S/T Gabor [79] -
S| A[Dynamic Haar | Training dependent| _Training Dep., TC — N/A [172] —
é Similarity Feat. |Training dependent TC Similarity functions N/A [173] -
@ [Free-form Def. - Pooling Use neutral baseline| 1,386 - 2,013 [62] [62] -
Temporal BoW | LDCF, RGV, OIN Pooling (SIFTs) - 387 [136] [136] -

The sensitivity of deep learning methods varies based on the training procedure/data, yet most methods include early layers with local filters and pooling.
S: Shape; A: Appearance; LF: Local Features; RGV: Robust to Global illumination Variation; OIN: Optional Illumination Normalisation (Section 6.1);
LDCEF: Local DC-free Filtering; TC: requires Temporal Consistency; N/A: information Not Available; Im.* Implementation available.

The dimensionality of the representations may vary further depending on representation parameters.

information is encoded using for example non-negative
matrix factorisation (NMF) or sparse coding. There exist
hierarchical representations that consist of cascaded low-
and high-level representation layers. Several appearance
representations are part-based. Shape representations are
less common than appearance representations.

4.1 Shape Representations

The most frequently used shape representation is the facial
points representation, which describes a face by simply
concatenating the z and y coordinates of a number of fidu-
cial points (e.g. 20 [115] or 74 points [85]). When the neu-
tral face image is available, it can be used to reduce
identity bias [85] (see Fig. 2a). This representation reflects
registration errors straightforwardly as it is based on
either raw or differential coordinate values. Illumination
variations are not an issue since the intensity of the pixels
is ignored. However, illumination variations may reduce
the registration accuracy of the points (see Section 3.4).
The dimensionality of the representation is relatively low
(see Table 1). Facial points are particularly useful when
used to complement appearance representations, as done
by the winners of AVEC continuous challenge [99] and
FERA AU challenge [129].

Alternative shape representations are less common. One
can use the distances between facial landmarks rather than
raw coordinates [51]. Another representation computes
descriptors specific to facial components such as distances
and angles that describe the opening/closing of the eyes
and mouth, and groups of points that describe the state of
the cheeks [144].

4.2 Low-Level Histogram Representations

Low-level histogram representations (see Figs. 2b, 2¢, and
2d) first extract local features and encode them in a trans-
formed image, then cluster the local features into uniform

regions and finally pool the features of each region with
local histograms. The representations are obtained by
concatenating all local histograms.

Low-level features are robust to illumination variations
to a degree, as they are extracted from small regions. Also,
they are invariant to global illumination variations (i.e.
gray-scale shifts). Additionally, the histograms can be nor-
malised (e.g. unit-norm normalisation [31]) to increase the
robustness of the overall representation. These representa-
tions are also robust to registration errors as they involve
pooling over histograms (see Section 6.1). Low-level histo-
gram representations are affected negatively by identity
bias, as they favour identity-related cues rather than
expressions [3], [93], [120]. These representations encode
componential information as each histogram describes a
region independently from the others. Also, depending on
registration (see Section 3.4), they may implicitly encode
configural information, since the global topology of local
histograms is retained. Low-level histogram representa-
tions are computationally simple and allow for real-time
operation [121], [132].

Low level representations, particularly local binary pat-
terns (LBP) [3] and local phase quantisation (LPQ) are very
popular. LBP was used by the winner of AVEC word-level
challenge [123] and FERA AU detection challenge [129],
LPQ was used by prominent systems in FERA [175] and
AVEC [29].

An LBP describes local texture variation along a circular
region with an integer [3]. LBP histograms simply count the
LBP integers, and therefore the dimensionality of the repre-
sentation depends on the range of integers. The range of the
most common LBP is [0, 255]. Ahonen et al. [3] showed that
face images can be represented with a 59-element subset of
these patterns (i.e. uniform patterns), which operate like
edge detectors [168].

The LPQ descriptor was proposed for blur insensitive
texture classification through local Fourier transformation
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Fig. 2. Spatial representations. (a) Facial points; (b) LBP histograms; (c)
LPQ histograms; (d) HoG; (e) Gabor-based representation; (f) dense
BoW; (g) GP-NMF; (h) sparse coding; (i) part-based SIFT; (j) part-based
NMF.

[102]. Similarly to an LBP, an LPQ describes a local neigh-
bourhood with an integer ranged in [0,255]. Local histo-
grams simply count LPQ patterns, and the dimensionality
of each histogram is 256 [102].

The histogram of gradients (HoG) approach [31] repre-
sents images by the directions of the edges they contain.
HoG extracts local features by applying gradient operators
across the image and encoding their output in terms of gra-
dient magnitude and angle (see Fig. 2d). First, local magni-
tude-angle histograms are extracted from cells, and then
these local histograms are combined across larger entities
(blocks)—the dimensionality increases when the blocks are
overlapping [31]. HoG was used by a prominent system in
the FERA emotion challenge [30].

Another low-level histogram representation is quantised
local Zernike moments (QLZM), which describes a
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neighbourhood by computing its local Zernike moments
[121]. Each moment coefficient describes the variation at a
unique scale and orientation, and the information conveyed
by different moment coefficients does not overlap [142]. The
QLZM descriptor is obtained by quantising all moment
coefficients into an integer, and the local histograms count
QLZM integers.

Low-level representations can be compared from several
perspectives. LBP and HoG are compared in terms of sensi-
tivity to registration errors and results suggest that LBP his-
tograms are generally less sensitive [45]. LBP and LPQ are
compared in terms of overall affect recognition performance
in a number of studies, and LPQ usually outperforms LBP
[56], [57], [158], [175]. This may be due to the size of the local
description, as LBPs are usually extracted from smaller
regions with 3 pixel diameter [132], whereas LPQs are
extracted from larger regions of 7 x 7 pixels [56], [57]. LBPs
cause loss of information when extracted from larger
regions as they ignore the pixels that remain inside the cir-
cular region. On the contrary, LPQ integers describe the
regions as a whole. QLZMs also describe local regions as a
whole and larger regions such as 7 x 7 proved more useful,
particularly for naturalistic affect recognition [121]. Another
comparison that can be useful for low-level representations
is dimensionality. While the local histograms of LBP and
LPQ representations are relatively higher dimensional (due
to their pattern size), QLZM and HoG can be tuned to
obtain lower-dimensional histograms that proved success-
ful respectively on AVEC data [121] and FERA challenge
data [30].

4.3 Gabor Representation

Another representation based on low-level features is the
Gabor representation, which is used by various systems
including the winner of the FERA AU detection challenge
[771, [168] and AVEC [43].

A Gabor representation is obtained by convolving the
input image with a set of Gabor filters of various scales
and orientations (see Fig. 2e) [64], [166]. Gabor filters
encode componential information, and depending on the
registration scheme, the overall representation may
implicitly convey configural information (see Section
3.4). The high dimensionality of the convolution output
renders a dimensionality reduction step essential. As the
pixels of Gabor-filtered images contain information
related to neighbouring pixels, simple dimensionality
reduction techniques such min, max and mean pooling
can be used. Gabor filters are differential and localised
in space, providing tolerance to illumination variations
to a degree [60], [166]. Similarly to low-level histogram
representations, Gabor representation suffers from iden-
tity bias as it favours identity-related cues rather than
expressions [166]. The representation is robust to regis-
tration errors to an extent as the filters are smooth and
the magnitude of filtered images is robust to small
translation and rotations [45], [64]. Robustness to regis-
tration errors can be increased further via pooling (see
Section 6.1). Gabor filtering is computationally costly
due to convolution with a large number of filters (e.g.
40 [166]).
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4.4 Bag-of-Words Representation

The BoW representation used in affect recognition [135]
describes local neighbourhoods by extracting local features
(i.e. SIFT) densely from fixed locations and then measuring
the similarity of each of these features with a set of features
(i.e. visual words) in a dataset (i.e. visual vocabulary) using
locality constrained linear coding [135]. The representation
inherits the robustness of SIFT features against illumination
variations and small registration errors. The representation
uses spatial pyramid matching [65], a technique that per-
forms histogram pooling and increases the tolerance to regis-
tration errors (see Section 6.1). This matching scheme
encodes componential information at various scales (see
Fig. 2f), and the layer that does not divide the image to subre-
gions conveys holistic information. This representation can
have a very high dimensionality (see Table 1) and therefore,
its generalisation to spontaneous data requires further valida-
tion. Although SIFT descriptors are computationally simple,
the computation of visual words is based on a search on the
visual vocabulary and, depending on the vocabulary size and
search algorithm used, it can be computationally costly. The
training of the vocabulary has also a one-off training cost.

4.5 High-Level Data-Driven Representations

All representations discussed so far describe local texture
(see Figs. 2a, 2b, 2¢, 2d, 2e, and 2f). Implicitly or explicitly,
their features encode the distribution of edges. Recent
approaches aim instead at obtaining data-driven higher-
level representations to encode features that are semanti-
cally interpretable from an affect recognition perspective.
Two methods that generate such representations are NMF
[101], [188] and sparse coding [27], [88], [177]. Alternatively,
various feature learning approaches can also be used [113].

NMF methods decompose a matrix into two non-nega-
tive matrices. The decomposition is not unique and it can be
designed to have various semantic interpretations. One
NMEF-based technique is graph-preserving NMF (GP-NMF)
[188], which decomposes faces into spatially independent
components (ICs) through a spatial sparseness constraint
[50]. The decomposition into independent parts encodes
componential information, and possibly configural informa-
tion (see Fig. 2g and [188]).

Another NMF-based approach is subclass discriminant
NMEF (SD-NMF) [101], which represents an expression with
a multimodal projection (rather than assuming that an
expression is unimodally distributed). Unlike GP-NMF, SD-
NMF does not explicitly enforce decomposition into spa-
tially independent components. The basis images provided
[101] suggest that the information encoded can be holistic,
componential or configural.

NMF creates a number of basis images, and the features
of NMF-based representations are the coefficients of each
basis image (e.g. a1, in Fig. 2g). The method performs
minimisation to compute the coefficients, therefore its
computational complexity varies based on the optimisation
algorithm and the number and size of basis images. Since
NMF relies on training, its tolerance against illumination
variations and registration errors depends on the training
data—the ability of NMF to deal with both issues concur-
rently is limited as NMF is a linear technique [148]. NMEF-
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based representations can deal with identity bias by learn-
ing identity-free basis images (see Fig. 2g). This depends on
the number of identities provided during training as well as
the capability of the technique to deal with the inter-per-
sonal variation. The dimensionality of NMF-based repre-
sentations is low—their performance saturates at less than
100 [188] or 200 features [101].

The theory of sparse coding is based on the idea that any
image is sparse in some domains, that is, a transformation
where most coefficients of the transformed image are zero
can be found [19]. The transformation can be adaptive (e.g.
data-driven) or non-adaptive (e.g. Fourier transform), and is
based on a so-called dictionary [19]. The flexibility of the dic-
tionary definition gives the researchers the freedom to
define dictionaries where the elements of a dictionary are
semantically interpretable. In affect recognition, researchers
defined dictionaries where each dictionary element corre-
sponds to AUs [88] or basic emotions [27]. The representa-
tion is formed by concatenating the coefficients of dictionary
elements. In an AU dictionary, the coefficient with the maxi-
mal value would ideally point to the AU displayed in the
original image (Fig. 2h). The coefficients are computed by
solving an L; minimisation, therefore the computational
complexity depends on the optimisation algorithm and the
size of dictionary. The representation can be designed to be
robust against partial occlusions [27], [177].

An alternative high-level representation paradigm is
learning features for multiple tasks concurrently via multi-
task learning [113]. One method considered the tasks of face
(identity) recognition and facial affect recognition [113] by
deriving two independent feature sets—one for each task.
The independence assumption can reduce the effect of iden-
tity bias, however, it may be a too strong assumption as
identity and facial affect cues are often entangled [183].

4.6 Hierarchical Representations

Low-level representations are robust against illumination
variations and registration errors. On the other hand, high-
level representations can deal with issues such as identity
bias and generate features that are semantically interpret-
able. Hierarchical representations encode information in a
low- to high-level manner. The most well-established para-
digm for hierarchical representations is deep learning [111],
[112]. Hierarchical representations can alternatively be
designed straightforwardly by cascading well-established
low- and high-level representations such as Gabor filters
and sparse representation [27].

Deep learning is a paradigm that learns multi-layered
hierarchical representations from data [111]. The overall
representation generally contains at least two low-level
layers. The first layer convolves the input image with a
number of local filters learnt from the data, and the second
layer aggregates the convolution output through operations
such as pooling [112] (see Section 6.1). Higher-level layers
can be designed for various purposes such as tackling par-
tial occlusions [111]. The filters in low-level layers are usu-
ally smooth filters that compute local difference, therefore
they are robust against illumination and registration errors
to a degree. Pooling operations (e.g. max-pooling [112])
improve robustness to registration errors further (see
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Section 6.1). The computational bottleneck of the represen-
tation is the convolution whose overhead depends on the
size and number of the filters.

4.7 Part-Based Representation

Part-based representations process faces in terms of inde-
pendently registered parts and thereby encode componential
information. They discard configural information explicitly
as they ignore the spatial relations among the registered
parts (see Figs. 2i and 2j). Ignoring the spatial relationships
reduces the sensitivity to head-pose variation. Part-based
representations proved successful in spontaneous affect rec-
ognition tasks (e.g. AU recognition [54], [191] or dimensional
affect recognition) where head-pose variation naturally
occurs.

Although most representations can be used in a part-
based manner, two representations were explicitly defined
so: part-based SIFT [191] and part-based NMF [54].

Part-based SIFT describes facial parts using SIFT descrip-
tors of fixed scale and orientation. The representation inher-
its the tolerance of SIFT features against illumination
variations and registration errors [80]. The dimensionality
of the representation is proportional to the number of SIFT
descriptors. Part-based SIFT is computationally simple as it
only requires the computation of the SIFT descriptors.

Part-based NMF describes facial parts by means of a
sparsity-enforced NMF decomposition [54]. An important
step in this representation is the removal of person-specific
texture details from each patch before the computation of
NMEF. This step enables the representation to reduce iden-
tity bias and place higher emphasis on facial activity (see
Fig. 2j), increasing its potential to deal with subtle expres-
sions. However, texture subtraction may be susceptible to
illumination variation and registration errors. Since the
representation is based on NMF, its sensitivity against these
issues also depends on the training process. The dimension-
ality of the representation is expected to be low as reducing
dimensionality is one of the main motivations behind the
use of NMF [54]. The computational complexity mainly
depends on the complexity of the NMF algorithm as well as
the number of basis matrices and size of each basis matrix.
The part-based NMF representation has been evaluated in
terms of the recognition of subtle expressions and shown to
outperform spatio-temporal representations [54].

4.8 Discussion

The most notable recent trend is moving from shape to
appearance representations and it is mainly due to the low-
level representations. Tables 1 and 3 illustrate the popularity
of low-level representations such as low-level histogram or
Gabor representations. For instance, 18 out of 23 systems
that use spatial representations in Tables 3 and 6 out of all 11
systems in FERA emotion recognition sub-challenge relied
on such representations. The robustness of these representa-
tions against generic image processing issues such as illumi-
nation variation and registration errors as well as their
implementation simplicity had a significant contribution to
their popularity. Yet, identity bias remains as an outstanding
issue for low-level representations. Identity bias can be
reduced in subsequent system layers such as dimensionality
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reduction (see Section 6.2) or recognition (see Section 7.2). In
Section 9.2.1 we discuss potential future directions that can
alleviate identity bias at representation level.

Most representations are sensitive to head-pose varia-
tions, therefore may fail in generalising to spontaneous
affective behaviour. Although part-based representations
reduce the effect of head-pose variations by discarding the
spatial relationships among the parts, the appearance of
each patch is still affected by the head-pose. Conceptually,
high-level representations offer better capabilities for deal-
ing with head-pose variations, yet current high-level repre-
sentations do not address head-pose variations explicitly
and are not tested in naturalistic conditions. In Section 9.2.1
we elaborate further on future directions for dealing with
head-pose variations using high-level representations.

Shape representations are crucial for interpreting facial
actions [89], and they are not exploited to their full potential.
The current state of the art focuses on a small subset of possi-
ble shape representations. Firstly, recently used representa-
tions are point-based. If we adopt the definition of shape
representations as the representations that ignore the inten-
sity value of the pixels, we can see that description through
discrete points is not the only option, as one may develop a
continuous shape representation (e.g. [71], [180]). Secondly,
existing representations are vulnerable to registration errors.
The state of the art overlooks the possibilities of extracting
features that are robust to registration inconsistencies (e.g.
[44], [180]). Although a small number of systems rely on sub-
space analysis which may remedy this issue (e.g. [87], [115]),
most systems rely on absolute or differential point coordi-
nates, which reflect registration errors directly.

A practice that proved particularly useful is using shape
representations in conjunction with appearance representa-
tions, combining various types of configural, holistic and
componential information. This is in accordance with the
behaviour of the human vision system when dealing with
particularly ambiguous facial displays [16], [183] or inter-
preting different types of expressions [2]. Examples are the
system that won the FERA AU sub-challenge, which com-
bined LBP histograms of Gabor images with facial points
[128], and the system that won the AVEC fully continuous
sub-challenge, which combined componential as well as
holistic principal component analysis (PCA) features with
facial points [99].

5 SPATIO-TEMPORAL REPRESENTATIONS

Spatio-temporal representations consider a range of frames
within a temporal window as a single entity, and enable
modelling temporal variation in order to represent subtle
expressions more efficiently. They can discriminate the
expressions that look similar in space (e.g. closing eyes versus
eye blinking [59], [62]), and facilitate the incorporation of
domain knowledge from psychology. This domain knowl-
edge relates the muscular activity with higher level tasks,
such as distinguishing between posed and spontaneous affec-
tive behaviour or recognition of temporal phases (e.g. [151],
[155]). Most representations are appearance representations
(see Table 1). The only shape representation discussed in this
paper is Geometric Features from Tracked Facial Points.
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5.1 Geometric Features from Tracked Facial Points
This representation aims to incorporate the knowledge from
cognitive science to analyse temporal variation and the cor-
responding muscular activity. It has been used for the rec-
ognition of AUs with their temporal phases [154], and the
discrimination of spontaneous versus posed smiles [151]
and brow actions [155].

The representation describes the facial shape and activity
by means of fiducial points [154]. To this end, it uses the
raw location of each point, the length and angle of the lines
obtained by connecting all points pairwise in space, and the
differences obtained by comparing these features with
respect to their value in a neutral face. Some of these fea-
tures describe componential information such as the open-
ing of the mouth, as well as configural information such as
the distance between the corner of the eye and the nose (see
Fig. 3a). Other features aim at capturing temporal variation.
The temporal window is adjusted according to the video
frame rate and the findings of cognitive sciences about neu-
romuscular facial activity [154]. The representation is com-
putationally simple as it relies on simple operations (e.g.
subtraction, angle computation).

The representation is sensitive to registration errors as its
features are mostly extracted from raw or differential point
coordinates. Although the representation describes tempo-
ral variation, it may not capture subtle expressions as it is
extracted from a small number of facial points (e.g. 20 [157])
and depends on accurate point registration. The representa-
tion deals with identity bias by including features that
describe the deviation from the neutral face. Although the
dimensionality of this representation is modest (see Table 1),
it risks overfitting as the features are extracted from a much
lower number of points [154], therefore, an additional
dimensionality reduction scheme is usually applied [154].

5.2 Low-Level Features from Orthogonal Planes
Extracting features from three orthogonal planes (TOP) is a
popular approach towards extending low-level spatial
appearance representations to the spatio-temporal domain
(see Figs. 3b and 3c). This paradigm originally emerged when
extending LBP to LBP-TOP [185]. LBP-TOP is applied for basic
emotion recognition [185], [186] and AU recognition [56], [57].
Following this method, LPQ is extended to LPQ-TOP and
used for AU and temporal segment recognition [56], [57].

As illustrated in Fig. 3b, the TOP paradigm extracts fea-
tures from local spatio-temporal neighbourhoods over the
following three planes: the spatial plane (z-y) similarly to
the regular LBP, the vertical spatio-temporal plane (y-t) and
the horizontal spatio-temporal plane (z-t). Similarly to its
spatial counterpart (see Section 4.2), this representation par-
adigm extracts local histograms over (spatio-temporal) sub-
regions. Therefore, it encodes componential information
and, depending on the type of registration, it may implicitly
provide configural information. In addition to these, the
TOP paradigm encodes temporal variation. For AU recogni-
tion, Jiang et al. [56] showed that the suitable temporal win-
dow can be different for each AU. LBP-TOP and LPQ-TOP
are computationally more complex than their static counter-
parts, however, depending on the size of the spatial and
temporal windows of the LBP- or LPQ-TOP operators, real-
time processing speed can be achieved [57].
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Fig. 3. Spatio-temporal representations. (a) Geometric features from
tracked feature points; (b) LBP-TOP, and the TOP paradigm; (c) LPQ-
TOP; (d) spatio-temporal ICA filtering, the output on an exemplar spatio-
temporal filter; (e) dynamic Haar representation; (f) similarity features
representation; (g) free-form deformation representation, illustration of
free-form deformation; (h) temporal BoW.

LBP-TOP and LPQ-TOP inherit their robustness against
illumination variations from their static counterparts, how-
ever, they are more sensitive to registration errors. They
assume that texture variations are caused only by facial
motion, and therefore they may interpret temporal registra-
tion errors as facial activity. The dimensionality of these
representations is higher than their static counterparts.
While LBP-TOP usually reduces dimensionality by consid-
ering only the uniform patterns (e.g. 177 patterns per histo-
gram [185]), LPQ-TOP lacks such a concept and the size of
possible patterns is larger (i.e. 768 per histogram [56], [57]).
Both representations are expected to be sensitive to identity
bias.

Experiments show that LBP-TOP and LPQ-TOP outper-
form their spatial counterparts, and LPQ-TOP outperforms
LBP-TOP in the task of AU recognition [56].

5.3 Convolution with Smooth Filters

An alternative approach for representing the temporal vari-
ation in texture with low-level features is applying
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convolution with smooth spatio-temporal filters (see
Fig. 3d). Two such approaches are spatio-temporal Gabor
filtering [167] and spatio-temporal independent component
(IC) filtering [79]. Both approaches target explicitly the rec-
ognition of subtle expressions.

Gabor and IC filters are localised in space and time. At
the spatial level, the output of the filtering encodes com-
ponential information. Depending on the registration
strategy, the overall representation may also implicitly
provide configural information (see Section 3.4). The
main difference between the Gabor and IC filters is that
the parameters of Gabor filters are adjusted manually
[167], whereas IC filters are obtained automatically in the
process of unsupervised Independent Component Analy-
sis [79]. Both approaches include filters of various tempo-
ral windows. The sensitivity of these approaches against
illumination variations is expected to be similar that of
the spatial Gabor filters. However, spatio-temporal Gabor
and IC filters are more sensitive to registration errors as
they assume temporal registration consistency among
successive images in a sequence. The computational over-
head of both representations is very high as they involve
three-dimensional convolution with a large number of fil-
ters (e.g. 240 filters [79], [167]). Although the dimensional-
ity of the convolution output is very high (see Table 3),
straightforward pooling strategies such as min, max and
mean pooling [79], [167] can be used.

Gabor and IC representations are used for basic emotion
recognition, however, they are evaluated via an unusual
validation scheme. Unlike most studies that recognise
expressions at the apex phase, these representations aimed
at recognising the expressions at early stages (at onset).
Spatio-temporal Gabor filters outperform their spatial coun-
terparts [167], and IC filters outperform the manually
designed spatio-temporal Gabor filters [79].

5.4 Spatio-Temporal Haar Representations

Two representations that use the well-established Haar fea-
tures [161] for spatio-temporal representation are the
dynamic Haar features [174] and the similarity features
[171], [173]. The former is a straightforward temporal exten-
sion of the Haar features, whereas the latter tailors an over-
all representation scheme for affect recognition.

As illustrated in Fig. 3e, each dynamic Haar feature enc-
odes the temporal variation in an image sequence with a
pattern of binary values, where each binary value is
obtained by thresholding the output of the Haar feature in
the corresponding frame. The temporal window of all fea-
tures is fixed and defined experimentally. The dimension-
ality of the set of all Haar features is very large (e.g.
160,000 [161]). Therefore, an additional feature selection
scheme such as boosting is essential for dimensionality
reduction [171], [173], [174]. The exhaustive set of Haar fea-
tures includes features of various levels of sensitivity
against illumination variations and registration errors (e.g.
smaller features deal better with illumination variations,
but may be more sensitive to registration errors). The sensi-
tivity of the overall representation against such variations
depends on the feature selection algorithm as well as on
the training data.
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The similarity features representation is inspired by the
kernel methods used in machine learning [12], which pre-
dict the output by means of training samples. A single simi-
larity feature over an image sequence is extracted as
follows: 1) A Haar filter is applied on each frame of a given
image sequence, 2) the output of each frame is encoded into
a vector via a similarity function that measures the similar-
ity of the Haar output with the corresponding output of a
set of reference samples (see Fig. 3f), and 3) a histogram that
counts the encoded vectors over the entire sequence is com-
puted. The reference samples that are utilised in the similar-
ity functions are selected to be of different people in order
to reduce identity bias. The size of the histogram is indepen-
dent of the sequence size. The representation is designed to
accommodate various time resolutions. This is achieved by
normalising the histogram with respect to the length of the
sequence. The spatial Haar features can be processed in
real-time [161], therefore, depending on the number of fea-
tures selected and the temporal window, dynamic Haar
representations may also achieve real-time speed.

5.5 Free-Form Deformation Representation

The free-form deformation representation [62] extends free-
form deformation, which is essentially a registration tech-
nique, into a representation that extracts features in the pro-
cess of registration by computing the pixels’ spatial and
temporal displacement (see Fig. 3g). This representation is
used for AU recognition with temporal segments [62].

Unlike approaches that extract features from uniform
subregions, this representation partitions the volumes into
non-uniform subregions through quadtree decomposition
[62]. This partitioning emphasises regions of high facial
activity by allocating to them a larger number of smaller
regions. The representation is obtained by extracting a set of
spatial and spatio-temporal features (e.g. orientation histo-
gram, curl, divergence). These features are extracted inde-
pendently for each subregion, therefore they can be
considered as a form of pooling (see Section 6.1) that ren-
ders the representation robust against small registration
errors. The features encode componential information as
well as temporal variation.

The spatio-temporal representations discussed so far
require temporal registration consistency and rely on exter-
nal registration techniques to satisfy this. The free-form
deformation representation satisfies temporal consistency
with its own intrinsic registration layer—free form deforma-
tion. Yet, free-form deformation assumes that the head-pose
variations of the subject are limited throughout an image
sequence [62]. Also, free-form deformation operates on raw
pixel intensities, therefore illumination variations can be
problematic. Features such as the orientation histogram or
the average motion are robust to registration errors to an
extent. The representation features are computationally
simple, however, free-form deformation is computed
through an iterative process which can keep the representa-
tion from achieving real-time processing speed.

5.6 Temporal Bag-of-Words Representation
The temporal BoW representation is specific to AU detec-
tion [136] and can be best explained by describing how the
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problem is formulated by its authors. Simon et al. [136]
assume that an AU is an event that exists in a given image
sequence. The problem is then formulated as identifying the
boundaries of the existing AU event. The approach was also
generalized for multiple AUs [136].

Temporal BoW represents an arbitrary subset of the
given image sequence with a single histogram which is
computed as follows (see Fig. 3h): 1) Each frame in the sub-
set is represented using the part-based SIFT representation
(see Section 4.7) and compressed with principal component
analysis to obtain a frame-wise vector, 2) each frame-wise
vector is encoded using the BoW paradigm that measures
similarity by means of multiple vectors via soft clustering
[136], and 3) all encoded frame-wise vectors are collected in
a histogram.

The sensitivity of the representation to illumination
variations, registration errors, head-pose variations and
identity bias is similar to the part-based SIFT representa-
tion. Unlike the part-based representation, temporal BoW
does not encode componential information explicitly, as
PCA can create holistic features (see Section 6.3). Unlike
other spatio-temporal representations, the temporal BoW
does not encode temporal variation. The dimensionality
depends on the size of the BoW vocabulary. The compu-
tational complexity of the representation mainly depends
on the search performed on the visual vocabulary, partic-
ularly, the size of the vocabulary and the complexity of
the search algorithm.

5.7 Discussion

The main motivation for spatio-temporal representations is
to encode temporal variation in order to facilitate the recog-
nition of subtle expressions [4]. Most systems used spatio-
temporal representations with relatively simple registration
strategies such as rigid registration based on 2 points (see
Table 3). Relying on such simple registration, however,
defeats the purpose of monitoring temporal variation, as
the texture variation due to registration inconsistencies
may be more evident than the variation due to facial
activity. Although the free-form deformation representation
addresses registration consistency through its own registra-
tion layer, the representation may fail in naturalistic settings
(see Section 5.5).

To address the demands of the spatio-temporal represen-
tations, Jiang et al. [57] detect a bounding box for the facial
region in the first frame, and use this as a reference to regis-
ter subsequent frames via Robust FFT. However, this pipe-
line overlooks two important factors. Firstly, although a
finer registration may be achieved at the spatial level, this
pipeline still maintains a frame-by-frame operation and
does not address temporal consistency. Secondly, the sub-
ject may display large head-pose variations throughout the
sequence, in which cases registration to a frontal face may
result in failure.

The registration demands that are not addressed in the
current literature may have drawn the attention away from
spatio-temporal representations in real world problems. It
appears that in naturalistic settings, spatial representations
have been preferred over spatio-temporal representations.
For instance, none of the FERA, AVEC'11/’12 participants
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relied on spatio-temporal representations. This issue is also
highlighted by the organisers of AVEC [158] who despite
arguing for the spatio-temporal LPQ-TOP representations’
appropriateness, end up using LPQ due to the challenging
registration needs of LPQ-TOP.

An issue ignored by the spatio-temporal representations
that encode temporal variation are the head-pose variations
that occur within the temporal window. The representations
implicitly assume that the main activity displayed within
the temporal window is facial activity, therefore head-pose
variations will be misinterpreted. We discuss potential
future directions that address this issue in Section 9.2.3.

6 DIMENSIONALITY REDUCTION

Dimensionality reduction can be used to address several
affect recognition challenges such as illumination variation,
registration errors and identity bias. Components that
reduce dimensionality may operate across multiple layers,
such as early preprocessing (e.g. downsampling input
image, applying masks) and intrinsic representation layers.
In this section, we group the additional dimensionality
reduction techniques that follow the facial representation
into three classes, namely pooling, feature selection and fea-
ture extraction methods.

6.1 Pooling

Pooling, a paradigm defined specifically for appearance
representations, reduces dimensionality over local blocks of
the representation by describing the features within the
blocks jointly. This description discards the location of adja-
cent features and thereby increases the tolerance against
registration errors. Such functionalities of pooling have a
biological motivation as they mimic parts of mammals’
vision systems [53], [108].

Pooling is usually applied on multiple small neighbour-
hoods across the image. There exists a variety of pooling
techniques, such as binning features over local histograms,
sampling the minimum or maximum value within a neigh-
bourhood or computing the sum or average of the features
across the neighbourhood [13], [14], [69]. Sensitivity to illu-
mination variations is generally addressed by normalising
the output of pooling (e.g. subtracting the local mean [108],
or performing unit-norm normalisation [31]). Although
pooling is mostly applied on the spatial domain, a number
of studies apply pooling on spatio-temporal neighbour-
hoods as well (e.g. [79], [141], [167]).

Pooling is usually considered as an intrinsic layer of the
representation [70]. Representations such as the low-level
histogram representations (see Section 4.2) are defined to be
dependent exclusively on a certain type of pooling (i.e. his-
tograms). For these representations, we consider pooling as
an intrinsic layer and do not list it as an additional
dimensionality reduction component in Table 3. The Gabor
representations (see Section 4.3) and spatio-temporal convo-
lution with smooth filters (see Section 5.3) have been used
with a variety of pooling techniques as well as alternative
dimensionality reduction schemes. For these representa-
tions, we will consider pooling as an additional dimension-
ality reduction component.
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6.2 Feature Selection

Feature selection aims at refining the facial representation
by selecting a subset of its features, and optionally weight-
ing the selected features. This process may be designed to
have a semantic interpretation, such as discovering spatial
[132], [172], [174], [189] or spatio-temporal [62], [186]
regions of interest. Such applications of feature selection
may reduce identity bias, as they are expected to discover
the regions that are informative in terms of expressions
rather than identity. Alternatively, the feature selection
process may be designed to reduce dimensionality in a
rather straightforward manner, without emphasis on
the physical correspondence of the selected features [10],
[56], [154].

Feature selection can be performed with a range of tech-
niques. A simple form is selecting and weighting certain
spatial regions manually [132]. Most systems rely on data-
driven feature selection and the most popular paradigm is
boosting. Boosting refers to a set of generic techniques,
which are designed for prediction (classification/regres-
sion) [41]. Many affect recognisers neglect the prediction
role of boosting techniques and use them only for feature
selection. AdaBoost and GentleBoost [41] are the most
widely employed boosting techniques. In addition to
generic feature selection techniques, approaches tailored to
affect recognition are also developed, for example to learn
informative spatial regions by observing the temporal evo-
lution of expressions [74].

The above-listed methods are supervised. One question
while training supervised feature selectors is how the label
information will be utilised. These techniques select features
according to a two-class separation criterion (positive vs.
negative). However, training datasets often include more
than two classes. A common practice is to learn features
separately for each class and group data as one-versus-rest
(e.g. [56], [62], [74], [132]). Alternatively, features may be
selected to facilitate the separation of all class pairs indepen-
dently, i.e. one-versus-one training. Such feature selection
schemes may be more useful, particularly for discriminating
similar-looking expressions of different classes such as sad-
ness and anger [186].

6.3 Feature Extraction

Feature extraction methods extract novel features (e.g. holis-
tic features) from the initial representations. They map an
input representation onto a lower dimensional space to dis-
cover a latent structure from the representation. This trans-
formation can be non-adaptive or adaptive (learnt from
training data).

The most popular non-adaptive transformation is the
discrete cosine transformation (DCT) whereas the most pop-
ular adaptive transformation is PCA. PCA computes a lin-
ear transformation that aims at extracting decorrelated
features out of possibly correlated features. Under con-
trolled head-pose and imaging conditions, these features
capture the statistical structure of expressions efficiently
[17]. PCA is used by many systems including the winner of
the AVEC continuous challenge [99].

A supervised alternative to the unsupervised PCA is lin-
ear discriminant analysis (LDA). LDA wuses label
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information to learn how to discriminate between differ-
ently labelled representations, and group similarly labelled
representations. LDA can handle more than two classes as it
considers only whether two arbitrary samples have the
same or different labels. Most affect recognition systems
train LDA using multiple classes simultaneously [15], [75],
[100]. Alternative training schemes are also proposed.
Kyperountas et al. [63] proposed a scheme where multiple
LDA models are involved, and each model discriminates
between a pair of classes.

The above-listed linear transformations are often used
with representations that model the whole face [59], [99],
[156]. In such cases, they may render the overall pipeline
susceptible to partial occlusions [147], as these transforma-
tions encode holistic information [114], [149].

Unsupervised [22], [87], [110] or supervised [133], [187]
non-linear feature selection techniques are less popular
than linear techniques. Shan et al. [134] showed that super-
vised techniques are usually more useful than unsupervised
techniques. There is no strong evidence on the superiority of
linear over non-linear feature extraction, or vice versa [134].

6.4 Discussion

The dimensionality of representations is often exploited
to move representations to a higher level by discovering
the spatial or spatio-temporal regions of interest, or
selecting/extracting features that enhance the discrimina-
tion of similar-looking expressions of different emotions.
To these ends, the vast majority of existing systems rely
on generic dimensionality reduction techniques. The opti-
mality of such techniques, however, is being questioned
in the scope of affect recognition, and new trends address
the importance of making use of domain knowledge
explicitly when developing dimensionality reduction
techniques [163], [189].

7 RECOGNITION

While the typical output of affect recognition systems is the
label of an emotion or facial action, recent studies provide
also the intensity of the displayed emotion or facial action
[21], [49], [54], [59], [87], [115], [125], [158]. For AU recogni-
tion, the output can be enhanced significantly by providing
the temporal phase of the displayed AU [62], [154], [157].
Also, to render the output more suitable to spontaneous
behaviour, several studies recognise combinations of AUs
[88], [145] rather than individual AUs as spontaneously dis-
played AUs rarely appear in isolation.

Except from a small number of unsupervised knowl-
edge-driven approaches [73], [104], all affect recognisers use
machine learning techniques. As any machine learning
application, the performance of an affect recognition system
depends on the quality and quantity of training data as well
as the selected machine learning model.

7.1 Data

Labelling data is a challenging and laborious task, particu-
larly for spontaneously displayed expressions and emo-
tions. The annotation of spontaneously displayed emotions
is challenging mainly due to the subjective perception of
emotions [92], which is often addressed by using multiple
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annotators. However, combining multiple annotations is a
challenge of its own [92]. Also, when annotation is carried
out over sequences, there usually exists a delay between the
perception and annotation of the annotator, which needs to
be considered when combining the annotations. Recent
attempts consider these issues and develop statistical meth-
odologies that aim at obtaining reliable labels [92], [98].

Spontaneous AUs require frame-by-frame annotation
by experts, and unlike posed AUs, where the subjects are
instructed to display a particular (usually single) AU, the
annotator has to deal with an unknown facial action
which may be a combination of AUs [145]. A number of
studies addressed the challenges in AU annotation and
developed systems to assist annotators. De la Torre et al.
[33] proposed a system that increases the speed of AU
annotation with temporal phases, mainly by automating
the annotation of onset and offset. Zhang et al. [181]
developed an interactive labelling system that aims at
minimising human intervention and updates itself based
on its own errors.

7.2 Statistical Modeling

Most affect recognition systems rely on generic models such
as SVM (see Table 3). Affect recognition has its own specific
dynamics and recent studies aimed at tailoring statistical
models for affect recognition. The new models address sev-
eral issues such as modelling the temporal variations of
emotions or expressions, personalising existing models,
modelling statistical dependencies between expressions or
utilising domain knowledge by exploiting correlations
among affect dimensions.

Temporality—Modelling the temporal variation of facial
actions or emotions proved useful [97], [154]. Typically used
models are HMMs, which have been combined with SVM
[154] or Boosting [62] to enhance prediction. Also, various
statistical models such as dynamic Bayesian network (DBN)
[145], relevance vector machine (RVM) [97] or conditional
random fields (CRF) [9] are developed to learn temporal
dependencies. Temporal variation is often modelled by sys-
tems that recognise the temporal phases of AUs [62], [154].

Personalisation— Identity cues render the generalisation
of classifiers/regressors challenging. To deal with this, Chu
et al. [24] proposed a method that can be used in conjunc-
tion with available discriminative classifiers such as SVM.
The technique adapts the training data to a test sample by
re-weighting the training samples based on the test subjects’
identity cues.

Statistical expression dependencies— Facial activity is lim-
ited by face configuration and muscular limitations. Some
facial actions cannot be displayed simultaneously, whereas
some tend to co-occur. A number of AU recognition systems
improve performance by exploiting these dependencies
through statistical models such as DBNs [145], [146] or
restricted Boltzmann machines [163].

Correlated affect dimensions—Although ignored by most
dimensional affect recognisers, affect dimensions such as
valence and arousal are intercorrelated [48]. Studies that
extended RVM [97] and CRF [9] showed that modelling
the correlation among affect dimensions may improve
performance.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015

7.3 Discussion

The research efforts on creating affect-specific models (see
Section 7.2) are promising for affect recognition. How-
ever, to enable these models to focus on high-level seman-
tics such as the temporal dependencies among AUs or
inter-correlations between affect dimensions, the repre-
sentations provided to the models must enable generali-
sation—the effects of illumination variations, registration
errors, head-pose variations, occlusions and identity bias
must be eliminated.

One way to provide informative features may be cascad-
ing two statistical models. For instance, the output of multi-
ple SVM [154] or Boosting-based classifiers [62], [145], [146]
may be passed to HMMs [62], [154] or DBNs [145], [146]. In
such approaches, however, the first statistical model still
suffers from challenges such as illumination variations
unless they are addressed explicitly at representation level.

8 VALIDATION

8.1 Datasets

Most affect recognisers are validated on posed datasets,
which differ from naturalistic datasets in terms of illumina-
tion conditions, head-pose variations and nature of expres-
sions (subtle vs. exaggerated [48]).

Table 2 shows an overview of the datasets used to evalu-
ate affect recognition systems. The table lists whether regis-
tration features, baseline representations and results are
provided with the dataset. The CK [61] and MMI [105] data-
sets are widely used posed datasets and include basic emo-
tion as well as AU annotations. The enhanced CK dataset
[146] provided frame-by-frame AU intensity annotations
for the whole CK dataset for 14 AUs and also modified
some of the intensity labels that were provided in CK. The
CK+ dataset [83] extended CK with spontaneous recordings
and novel subjects, annotations and labels (including a non-
basic emotion, contempt). A large part of MMI is annotated
with temporal segments (neutral, onset, apex, offset). MMI
was also extended with new sequences including sequences
with spontaneous affective behaviour [153].

There exist non-posed datasets for several affect recogni-
tion contexts including categorical basic/non-basic emotion
recognition, AU detection, pain detection and dimensional
affect recognition. The GEMEP [7] dataset is collected from
professional actor portrayals, and includes 12 non-basic emo-
tions and 6 basic emotions. A subset of this database was
used in the FERA challenge. Spontaneous AUs can be studied
on the public DISFA [90] dataset as well as the partly public
M3 (formerly RU-FACS) [10] and UNBC-McMaster [84] data-
sets. Frame-by-frame AU intensities are provided with
DISFA and UNBC-McMaster datasets. Automatic pain recog-
nition can be studied on UNBC-McMaster and COPE data-
sets [15]. Dimensional affect is studied on the HUMAINE and
SEMAINE datasets. Baseline for SEMAINE was made avail-
able through the AVEC challenges [126], [127], [158].

A problem studied to a lesser extent in affect recognition
is the analysis of micro-expressions. The spontaneous
micro-expression (SMIC) dataset [72] can potentially be use-
ful for validating the representations’ performance in
detecting subtle expressions and replacing the ad-hoc vali-
dation procedure used for recognising subtle expressions
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TABLE 2
An Overview of the Affect Recognition Datasets
Application and Labels Statistics and Properties Baseline
Dataset Access- BE NBE AU DA #Sub- #Vid- #Im- frame-by- Res- Regis- Rep-
ible jects eos ages  frame  ults trati resen.
labels? on
Posed CK [61] Yes 6+N - J(+T,+I[146]) - 97 486 - - - - -
GEMEP [7] Yes 6+N 12 v - 10 7,000 - - v vV v
ISL Frontal-View  Yes - - vV +T - 10 42 - v - - -
[146]
ISL Multi-View Yes - - vV +T - 8 40 - v - v -
[145]
Multi-PIE [47] Not free 34N 2 - - 100 - 4,200 - - - -
JAFFE [86] Yes 6+N - - - 10 - 213 - - - -
Posed & MMI [105], Yes 6+N - v +T - 75 2,420 484 temp.phas. - - -
Non-posed  [153]
CK+ [83] Yes 6+N 1 - - 123 593 - - v vV -
Non-posed HUMAINE Yes - - - AV 4 23 - v - - -
[91]
SEMAINE [91] Yes 3 10" v AJE/P/V" 150 959 - v v v v
RU-FACS [10] Partly - - v - 100 100 - N/A - - -
DISFA [10] Yes - - vV +I - 27 27 - v v v -
Belfast Yes 6+N Var'l - AV' 256 1,400 - v - - -
Induced [137]
Belfast Yes 4+N 12 - AVS 125 298 - v - - -
Naturalistic [36]
GENKI-4K [143] Yes 2 - - - N/A - 4,000 N/A - - -
UNBC-Mc Partly Pain v+l - 25 200 - v v v -
Master [84]
COPE [15] No - Pain - - 26 - 204 N/A - - -
SMIC [72] Yes 34N Vv - - 16 264 - v ooV -

1See text for details. ''Refer to the original dataset paper for details. These dimensions may be referred to with different names.
BE: Basic emotions; NBE: Non-basic emotions; AU: action units; DA: Dimensional affect;
N: Neutral; +T: Temporal segments; +1: AU intensity; A: Arousal; E: Expectancy; P: Power; V: Valence.

(i.e. recognition at onset, Section 5.3). Ground truth is avail-
able for three emotions, which are clustered from the six
basic emotions: positive (happiness), negative (anger, fear,
disgust and sadness) and surprise.

8.2 Evaluation

Table 3 lists recent affect recognition systems by catego-
rising them in terms of basic emotion, action unit or
non-basic emotion recognition systems. The systems that
are tested in multiple contexts are duplicated for each
context. Unfortunately, the experimental results of differ-
ent systems can be seldom compared against each other
directly, as the experimental configurations of different
studies are often different in terms of validation proce-
dures, the number of test images/videos, subjects or
labels (e.g. number of AUs).

The standard validation protocol is subject independent
cross validation. A widely adopted version is leave-one-
subject-out cross validation, which enables the researchers
to use the maximum data for subject-independent valida-
tion. Another validation practice, which highlights the gen-
eralisation ability of a method further, is cross-database
validation, i.e. training is on one dataset and testing on
another [56], [62], [146], [154].

Basic emotion recognition has mostly been analysed on
posed data, and systems have been evaluated using the
average recognition rate or average area under the curve

metrics. Although the recognition of posed basic emotions
is considered as a solved problem, it is still used for proof of
concept of spatial [135], [188] and spatio-temporal represen-
tations [79], [167], [172], [173], [185] as well as novel statisti-
cal models [115].

AU recognition has been studied both for posed and
spontaneous data. The problem is typically formulated as a
detection problem and approached by training a two-class
(positive vs. negative) statistical model for each AU. In this
setting, results are reported using metrics such as Area
Under the Curve, F;-measure or 2AFC score [56]. A typical
problem encountered when evaluating AU performance is
imbalanced data, which occurs when the positive AU sam-
ples are outnumbered by negative samples, and is particu-
larly problematic for rarely occurring AUs. Jeni et al. [55]
argue that all above-listed AU metrics are affected nega-
tively by this imbalance. They suggest to perform skew nor-
malisation to these scores and provide a software to this
end [55]. Another AU metric is event agreement [106],
which, instead of a frame-by-frame basis, evaluates AUs as
temporal events and measures event detection performance.
This metric is also extended to Event-F; [35] which provides
information on not only whether the event is detected or
not, but also how successfully the boundaries of the event
are identified.

Two well-studied non-basic emotion recognition prob-
lems are dimensional affect recognition and pain
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TABLE 3
Summary of Automatic Affect Recognition Systems
[ [ Reference [ Registration | Representation [ Dim. Reduc. | Model [ Labels [P]S] Performance [ Validation |
Yang et al. [172] '09 R |2p N/A) |ST|Dynamic Haar |FS | AdaBst |AdaBst [8 AUs [V |- [CK auc:0.77 CV 1F
Jiang et al. [56] '13 R |4p ST | LPQ-TOP FS | AdaBst E&;ﬁzﬂ i?rAUs v |V [MMI f£7:0.66, cr: 0.947 CV 10F, XD
Tong et al. [146] 07 R 2p S | Gabor FS [ AdaBst |DBN 14 AUs [V |- [CK tpr:0.87, fpr:0.06, cr:0.93] CV LS, XD
, R 2p, S | Gabor, FS [ AdaBst . .

B"; Tong et al. [145] "10 PO | 28p S | Facial Points |- _ DBN 14 AUs | v |V |CK tpr:0.88, fpr:0.05 CV 8F

o~ . SVM+ 22 AUs

+ | Valstar&Pantic [154] "12 | PO | 20p ST | Geom. Feat. FS | GntBst HMM T v |V |CK f1:0.61, cr:0.92 (16 AUs)| CV LS, XD

c

2 Koelstra et al. [62] '10 R 2-stage ST | Free-form Def. | FS | GntBst I(-;Irll/tlll?\’/slﬁ _ZZFAUS V' |- |CK f1:0.73, cr:0.93 (15 AUs)| CV 10F, XD

5]

‘£ [ Simon et al. [136] "10 PA | AAM ST | Temporal BoW |- - SO-SVM [ 10 AUs [- [v [RU-FACS auc:0.85, f1:0.52 [N/A

< [Zhu ef al. [191] 11 PA | AAM S |P/BSIFT FS | AdaBst SVM 13 AUs |- [v" |[RU-FACS auc:0.74 CV TF

E R |2p, S [Gabor—LBPTT,[- |- ]

Senechal et al. [129] "11 PO |AAM 66p |S | Facial Points |- _ SVM 12 AUs GEMEP f,:0.62 G®FERA
Wu et al. [168] '11 R 2p S | Gabor N/A N/A SVM 12 AUs |[v |- |GEMEP f3:0.58 GFERA
FERA baseline [156] R 2p S |LBP FE |PCA SVM 12 AUs |[v' |- |[GEMEP f;:0.45 ®FERA
Sandbach ef al. [116] 13 | R | AAM S |LBP FS | GntBst MRF 6 AUs |- |v |DISFA cc:0.342, rmse:0.342 [CV LS
Shan ef al. [132] 09 R 2p (man.) |S |[LBP FS | AdaBst SVM 6 Em. v |- |CK ar:95.1%; MMI ar:86.9%| CV 10F, XD
Zhong et al. T189] "12 R 2p N/A) |S [LBP FS | MTSL SVM 6 Em. v - |CK ar:89.9%; MMI ar:73.5%| CV 10F
Zhao et al. [185] 07 R 2p (man.) [ST |LBP-TOP - - SVM 6 Em. v - |CK ar:95.2% CV 2F
Zhao et al. [186] 09 R [2p ST |LBP-TOP FS | AdaBst |SVM 6 Em. v |- |CK ar:93.9% CV 2F

¢ [ Yang ef al. [173] 11 R [2p (N/A) | ST]|Similarity Feat.|FS | AdaBst [AdaBst [6 Em. [V [- [CK tr1:82.6% CV 5F

& [Yang et al. [172] 09 R [2p N/A) [ ST|Dynamic Haar [FS | AdaBst [AdaBst [6 Em. [V [- [CK auc:0.97 CV IF

§ [Wu et al. [167] 10 R [2p (N/A) |ST]|S/T Gabor P | Various [SVM 6 Em. v |- |CK auc:0.98, subtle: 0.79 @® CV 10F

‘£ [Long et al. [79] 12 R [2p N/A) |ST[S/TICA P | Max. SVM 6 Em. v |- |CK auc:0.98, subtle: 0.80 @ CV 10F

& [Jeni et al. [54] "13 PA | CLM S |P/B NMF — — SVM 6 Em. v |- |CK auc:0.99, subtle: 0.86 CV LS

Lﬁ Zhi et al. T188] "11 N/A[N/A S | GP-NMF - - NN 6 Em. v |- [CK ar:94.3% See Paper

‘% [Rudovic ef al. TT15] 12 [PO [ 20p S | Facial Points  [FE [PCA CRF 6 Em. [V [- |CKar per class:86.8% CV 10F

M | Sikka et al. [135] "12 R |2p (N/A) |S |Dense BoW - - SVM 7 Em. v |- |TCK+ ar:95.9% CV LS
Yang et al. [175] '11 NTR | Avatar S |LBP, LPQ - - SVM 5 Em. v |- |TGEMEP-FERA ar:0.84 @FERA
Dahmane et al. [30] '11 |R | 2p S | HoG - - SVM 5 Em. v |- |TGEMEP-FERA ar:0.70 @FERA
FERA baseline [156] R |2p S |LBP FE | PCA SVM 5 Em. v |- [TGEMEP-FERA ar:0.56 @FERA
SMIC baseline [72] N/A| 68p ST | LBP-TOP - — SVM 3Em. |- [V [SMIC ¢r:52.1% CVLS

NR[AAM, S [Pixel Rep., FE [DCT

g Kaltwang et al. [59] '12 | NR | AAM, S |LBP, - - RVR Pain, +I |- [v" |[UNBC-McMaster cc:0.59 CV LS

&~ PO | AAM 66pp | S | Facial Points |- -

§ [AVEC'TI baseline [127] [R [2p S |LBP - — SVM 4QDs |- |v [AVECTI ar:0.48 ®OAVECT]

‘£ [ Glodek ef al. T43] 11 N/A|N/A S | Gabor P | Max SVM 4QDs |- [v |[AVECTI ar:0.51 ®AVEC11

g [ Cruz et al. [29] "11 NTR | Avatar S |[LPQ - - SVM 4QDs |- [v [AVECI ar:0.55 @AVECT1

Lﬂ AVEC'12 baseline [126] | R 2p S |LBP — — SVR 4 CDs - |V |AVEC'12 avg. cc:0.11 GAVEC12

) NR|CLM, S | Pixel Rep., FE |PCA,

M | Nicolle et al. [99] 12 PA | CLM, S | P/B Pixel Rep.,|FE | PCA, SVR 4CDs |- |v |[AVEC'12 avg. cc:0.46 GAVEC'12

§ PO |CLM 66p |S |Facial Points |- |-

Z [Savran ef al. [123] '12 R [2p S |LBP FS | AdaBst  [SVR 4CDs [- |V |AVEC12 avg. cc:0.34 G®AVEC12
AVEC'13 baseline [158] | R 2p S |[LPQ — — SVR Depr. - |v [AVEC'13 rmse:13.61 AVEC'13

TDataset has a non-basic emotion. CK+ has the contempt and FERA has the relaxed label. TTComputes LBP histograms from Gabor-filtered images.
P: validated on Posed data; S: validated on Spontaneous data.
rigid (whole) registration, N'R : non-rigid (whole) registration; PA : parts; PO : points registration. The number of points is provided for relevant
representations, and the detection of points is performed automatically unless stated as being done manually (man.) or unknown (N/A).
S : spatial; ST : spatio-temporal representation.
P : pooling; FS : feature selection; FE : feature extraction.
T+: recognizes Temporal segments of AUs; +I: estimates the Intensity; QD: Quantised affect Dimension(s), CD: Continuous affect Dimension(s).

ar: average recognition rate, fi: F1 measure, trr: total recognition rate, cr: classification rate, auc: area under curve, tpr: true positive rate, fpr: false positive
rate, subtle: recognition rate on onset frames, mse: mean square error, rmse: root mean square error, cc: Pearson’s cross correlation, icc: intra-class correlation.
CV: Cross-Validation; LS: Leave-one-Subject-out; (N)-F: (N)-fold Cross Validation; XD: Cross-Database validation. The rows that include a circled number
(®...®) can be compared fairly to the rows with the same number, as they have have similar experimental setups (e.g. all techniques with 2 are from FERA).

R :

recognition. Table 3 lists a number of studies that partici-
pated in the AVEC challenges. In [127], where affect recogni-
tion has been performed in terms of quantised affect
dimensions, performance has been measured as average rec-
ognition rate on four affect dimensions, whereas [126] and
[158] considered continuous affect recognition and evalu-
ated performance using the Pearson’s correlation—[158]
considered also the recognition of depression and evaluated
performance using the mean absolute error and the root
mean square error.

8.3 Discussion

In spite of the major advances, two validation routines hin-
der further progress. The first one is, validating representa-
tions exclusively on posed data. Solutions suitable for
posed settings are often insufficient for everyday life

settings. The representation that attains the highest perfor-
mance in a posed validation scheme may be attaining the
lowest in a spontaneous scheme, or vice versa [121].

The second issue is that systems are exclusively validated
using sophisticated statistical models (e.g. SVM). These
models became the standard for even relatively trivial prob-
lems such as the recognition of posed expressions using the
apex frame, where simpler classification techniques are
shown to yield very high recognition rates (e.g. above
90 percent [63], [121], [188]). Sophisticated statistical models
may impose strong influences on the overall performance of
the system, to the point that the actual representations’
sheer power is shadowed or their deficiencies are mitigated
by the statistical model employed. As the optimisation of
these statistical models is not straightforward, a fair com-
parison of different systems cannot be guaranteed.
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9 CLOSING REMARKS

In this survey, we analysed facial affect recognition systems
by breaking them down into their fundamental components
and we analysed their potentials and limitations. In this sec-
tion we summarise the progress in the literature and high-
light future directions.

9.1 Summary

The appearance representations that extract local features or
involve local filtering (see Table 1) are robust against illumi-
nation variations to an extent. Moreover, performing illumi-
nation normalisation at pooling (see Section 6.1) can reduce
the effect of illumination further. Illumination variations
can be problematic for high-level representations that are
extracted from raw pixel values. Shape representations are
not affected by illumination as they ignore pixel intensities.
However, (point) registration accuracy can decrease with
illumination variations, thus degrading the performance of
shape representations.

Many appearance representations are robust against reg-
istration errors due to pooling or usage of smooth filters (see
Table 1). Registration errors are problematic for shape rep-
resentations (see Section 4.8). Also, spatio-temporal repre-
sentations that encode temporal variation suffer from
registration errors as they may interpret temporal registra-
tion errors as facial activity (see Section 5.7). We discuss
future directions to tackle registration errors using shape
representations in Section 9.2.1 and spatio-temporal repre-
sentations in Section 9.2.3.

Most representations encode componential features
and deal with occlusions to an extent as the features
extracted from unoccluded regions remain unaffected—a
number of studies measured performance in presence of
occlusions explicitly [27], [52], [94], [188]. Yet, represent-
ing irrelevant information from occluded regions can be
problematic for subsequent steps such as dimensionality
reduction (see Section 6.3). Sparse representations can
address occlusions more explicitly (see Section 4.5).
Another approach can be detecting occluded regions and
removing them from the representation [52]. The detec-
tion of occluded regions can be considered as a form of
feedback, as we will in Section 9.2.2.

Head-pose variations remain mostly unaddressed at repre-
sentation level. Part-based representations or warping the
face to the frontal view (see Section 3.1.1) can address
the problem only partially. One solution can be learning the
relationship between head-pose and expression variation at
recognition level through statistical modelling [145], how-
ever, this approach may impose a large burden on the
recognition process. As we discuss in Section 9.2.1 and
Section 9.2.3, this burden may be reduced by tackling head-
pose variations at representation level.

Identity bias is problematic for the popular low-level rep-
resentations, which are adapted straightforwardly from
face recognition. The importance of addressing identity bias
for these representations became obvious in FERA emotion
challenge, where the winner was the only system that con-
sidered identity bias explicitly through avatar image regis-
tration [175]. Several representations address identity bias
subject to the availability of the neutral face (see Table 1),
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which is a strong assumption for real-life applications.
High-level representations (see Section 4.5) or approaches
such as similarity features (see Section 5.4) are more promis-
ing alternatives, however, these representations are vali-
dated exclusively on frontal and controlled data and
require further validation on naturalistic conditions (see
Section 9.2.1). Identity bias can be tackled further at recogni-
tion level by adding a personalisation component [24] to
discriminative classifiers (see Section 7.2).

9.2 Future Directions
9.2.1 High-Level Representations

High-level representations are promising for dealing with
identity bias and head-pose variation, yet they are not yet
exploited to their full potential.

One future direction is developing novel shape representa-
tion paradigms. The shift towards appearance-based repre-
sentations is mainly due to the registration sensitivity of
shape representations. However, registration sensitivity is
an issue of existing representations rather than shape-based
representation in general. Shape representations deserve
attention for multiple reasons. From a cognitive science per-
spective, they are argued to play an important role in
human vision for the perception of facial expressions [89].
From a computer vision perspective, they are invariant to
illumination variations and less sensitive to identity bias
than appearance representations. Novel shape representa-
tions can describe continuous shape rather than discrete
points (e.g. [71], [180]). Developing representations based
on data-driven approaches such as NMF, sparse coding
[184] or manifold learning [6], [39] is an interesting future
direction.

One way to deal with head-pose variations is to design
high-level representations that learn the appearance varia-
tion caused by head-pose variations using linear or non-
linear feature extraction techniques such as factor analysis
[109], multilinear mapping with tensors [159] or manifold
learning [148]. However, the amount of texture variation
induced by head-pose variations can be too difficult to han-
dle even for such sophisticated methods [148]. Developing
high-level part-based representations is an approach that proved
more successful in other domains such as face recognition
[109]. Once the spatial consistency of spatially distant parts
is ensured through parts registration, modelling the within-
part appearance variation can potentially be simpler with
high-level representations (e.g. see experiment 2 in [109]).

High-level representations are limited in their ability to
deal with multiple issues concurrently [148]. Using hierar-
chical representations that address illumination variations
and registration errors via low-level layers and other issues
via high-level layers (see Section 4.6) stands out as a viable
and biologically plausible [130] approach to address multi-
ple issues concurrently.

Overall, high-level representations can play an important
role in affect recognition, but their design requires a special
care. High-level representations are built upon a theoretical
framework and rely on certain assumptions (e.g. linearity,
orthogonality between identity and expression cues), which
may be unrealistic. Unlike the high-level representations
proposed to date, new representations must be validated on
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naturalistic data to ensure that the validation procedure
does not hide the limitations caused by the assumptions.

9.2.2 Feedback

A feedback mechanism that assesses the reliability of a
representation can pave the way for robust representation
pipelines. Such self-aware representation pipelines would
enable the combination of multiple representations, allow
for alternation among several representations (i.e. when one
representation is not reliable the weight of another one can
be increased), or re-weight the spatial/spatio-temporal
regions of the same representation, which can be useful in
many cases such as presence of occlusions. Alternating
among different cues or spatial regions is plausible from the
cognitive sciences perspective. The human vision system is
known to change the type of facial cues it focuses on, partic-
ularly when dealing with complex facial expressions [16],
[183]. A pipeline that combines two representations was
used by the winner of FERA AU challenge [128] and
assessed the reliability of each representation (i.e. obtained
feedback) by using a different weight for each representa-
tion in a multi-kernel SVM framework.

9.2.3 Temporal Variation

The information provided by temporal variation can help
recognising subtle expressions and distinguishing posed
from naturalistic expressions [4], [25]. Also, the temporal
variation of an expression is affected much less from identity
bias compared to the spatial appearance of the expression.
Yet, these benefits are subject to temporally consistent registra-
tion. Current systems register each frame in a sequence inde-
pendently from neighbouring frames. New registration
techniques which align a neighbourhood of frames by consid-
ering the registration consistency among subsequent frames
can support spatio-temporal representations.

The literature has focused on a narrow subset of spatio-
temporal representation paradigms as most spatio-temporal
representations use low-level local features. The representa-
tions that encode temporal variation (i.e. all except temporal
BoW) are high-dimensional (see Table 1). Also, current rep-
resentations do not consider the head-pose variations that
may occur within the temporal window, and therefore risk
interpreting these variations as facial activity. An interesting
future direction is developing novel spatio-temporal represen-
tation paradigms to extract features from video volumes. For
example, most techniques used for high-level or hierarchical
representations (e.g. NMF, sparse coding, deep learning)
can conceptually be used to develop spatio-temporal repre-
sentations. Such representations can convey semantic infor-
mation and have low dimensionality. One additional
advantage is that head-pose variations in a small temporal
window can be assumed to be limited, therefore high-level
spatio-temporal representations can efficiently learn how to
discriminate between facial activity and pose variations.

9.2.4 Incorporating Depth Information

Most visual affect recognisers still rely on 2D images as
input. The rapid progress in depth-based imaging technol-
ogy is supporting 3D face analysis by overcoming the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015

challenges associated to head-pose and illumination varia-
tions. Moreover, the analysis of depth variations facilitates
the recognition of expressions that might be hardly notice-
able using only 2D appearance [118].

Automatic 3D facial expression analysis methods share
conceptual similarities with those based on 2D analysis. 3D
expression analysers often perform registration using tech-
niques that, similarly to the registration techniques dis-
cussed in this survey, model the face as a collection of facial
landmarks [58], [124]. 3D shape representations compute
features such as the angles and distances between land-
marks [140], which resemble the features of 2D shape repre-
sentations (Section 5.1). In several cases, 3D data are
projected into 2D images, which are then represented using
well-established 2D representations, such as Gabor- [124] or
SIFT-based approaches [11]. Dimensionality reduction tech-
niques, such as Boosting-based methods [124] or LDA [131],
or statistical models, such as SVM [124] or HMM [117], are
commonly employed in 2D and 3D analysis.

A limitation in 3D expression analysis is the lack of data
from naturalistic environments with spontaneous affective
behaviour [118] as existing datasets [122], [138], [176] con-
tain exaggeratedly posed affective behaviour. With exagger-
ated expressions the challenge of identity bias is less
pronounced and subtle expressions may not be well repre-
sented. As we discussed in this survey, the field of 2D
expression analysis has produced validation protocols and
a maturity that facilitate the development of automatic
affect recognition solutions for real-life applications. As the
depth-sensing technology matures, the efforts towards solv-
ing the fundamental problems in spontaneous affect recog-
nition will be of benefit to the researchers working on 3D
facial expression analysis in handling naturalistic affective
interactions.
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