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Abstract— Robotic mental well-being coaches could be used
to help people maintain their well-being, and improve access
to mental healthcare. In coaching, the alliance between the
coach and coachee is important for the success of the prac-
tice. However, this alliance might be negatively affected by
interaction ruptures (e.g., the robot making mistakes and the
user feeling awkward) that still commonly occur in human-
robot interactions. Therefore, robotic coaches should be able
to recognize ruptures occurring during their interactions with
human users to guarantee the success of the well-being prac-
tice. To this aim, we analyse coachee behavioural responses
to interaction ruptures during a robotic positive psychology
coaching practice and how these behavioural cues evolve over
time. We focus our analysis on a dataset we collected in a
previous work, where 26 participants interacted with either a
QTrobot or a Misty II robot at their workplace over 4 weeks. We
undertake a longitudinal analysis of coachees’ multimodal non-
verbal cues (i.e., facial expressions, vocal acoustic features, and
body pose features) to investigate the contribution of individual
modalities for detecting interaction ruptures. Our results show
that coachees: i) displayed facial cues of rupture (e.g, laughing
at the robot) and suspicion more in the first week than in
the last week; ii) talked more and were less silent in the last
week than in the previous weeks; and iii) exhibited a higher
number of hand-over-face gestures (a cue for self-disclosure)
in the last week than in the previous weeks. Our findings
aim to inform the development of AI models for multi-modal
detection of interaction ruptures which can be used to improve
the effectiveness and the success of robotic well-being coaching.

I. INTRODUCTION

The prevalence of mental health issues such as depression
and anxiety has been increasing [1], and COVID-19 has
exacerbated this [2]. One of the World Health Organization’s
[3] main goals is to improve the mental health of individuals
and society at large. This includes the promotion of mental
well-being, the prevention of mental issues, and a higher
number of efforts to increase access to quality mental health
care. However, these objectives are yet to be accomplished
in our society because of the wide gap between those who
require care and those who have access to it. Robotic coaches
could help with alleviating this problem by promoting mental
well-being and providing affordable and easy access to
mental well-being-related practices [4]–[6].

In coaching, the alliance between the coach and coachee
is important for the success of coaching over time [7]. Safran
et al. [8] defined the rupture of the therapeutic alliance as
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the “deterioration in the quality of the relationship between
patient and therapist”. In robotic coaching, such ruptures
can occur when, for example, the robot makes mistakes
during the coaching session which might negatively impact
the alliance and trust perceived by the user towards the
robot, which may lead to an unsuccessful well-being practice.
Recent studies [9], [10] reported the occurrence of interaction
ruptures when deploying robotic coaches in the workplace.
Spitale et al. [9] showed that participants got frustrated when
the robot interrupted them (e.g., when the robot mistakenly
detected that the user’s speech was done when the person
was still talking) or when the robot took a very long time
to respond (e.g., due to issues in internet connectivity).
Axelsson et al. [10] highlighted that the participants expected
the robot to be more interactive and responsive in order to be
perceived as a mindfulness coach. These findings suggest that
a smooth conversation and interaction flow is critical to the
success of a mental well-being practice. However, interaction
ruptures are still known to be very common during human-
robot interactions [11], and they can negatively impact the
user’s trust towards the robot [12]. Furthermore, previous
studies [10], [13], [14] have shown that participants adapt
to the robot behavior over time. For example, Axelsson et
al. [10] showed that over time participants experienced the
robot-led mindfulness practice to be more helpful. Hence,
the first step towards solving the above-mentioned issues
to ultimately help improve the coach-coachee alliance is to
better understand the behavioural responses of the coachees
over time in robotic well-being coaching sessions.

This paper presents a longitudinal analysis of the
coachees’ behavioural responses to interaction ruptures oc-
curring in robotic well-being coaching. The analysis was
conducted on the data acquired in the study reported in [9],
where 26 participants interacted with either a QTrobot or a
Misty II robot over 4 weeks. The robotic well-being coaches
delivered a positive psychology exercise (e.g., savouring,
gratitude) on a weekly basis for about 10 minutes. In
this paper, we focus on understanding how the interaction
ruptures and the coachees’ behavioural responses evolve
over these 4 weeks.

The main contribution of this paper is three-fold:
1) analysing the evolution of coachees’ behaviours across

four weeks to evaluate how coachees adapt to robotic
well-being coaching;

2) identifying the coachees’ behavioural cues of interac-
tion ruptures that can inform the development of AI
models for automatic detection;

3) investigating the contribution of individual modalities



for detecting interaction ruptures to inform the design
of multi-modal AI-driven models.

II. BACKGROUND AND RELATED WORK

A. Coaching and Ruptures in Coaching

Coaching for mental well-being aims to support the
coachee in flourishing in their life [15] (cf. psychological
therapies which aim to treat mental illness). Positive psy-
chology coaching aims to encourage the coachee to focus
on the positive aspects of their life [16], in order to improve
life satisfaction and positive affect [17]. Positive psychol-
ogy practices include, e.g., savouring, where the coachee
is encouraged to recall positive memories and their posi-
tive emotions. One of the aspects important for successful
coaching is the alliance between the coach and coachee
[7]. Difficulties in the coach-coachee relationship has been
found as one of the barriers to the effectiveness of coaching
[18]. Such difficulties may include the coach struggling with
the concepts of coaching, not being sensitive enough, being
vague, being too focused on one area and not being flexible,
and not being involved or supportive in the coaching session
[18]. The relationship between the coach and coachee can
also be negatively impacted if the coachee perceives the
coach as not involved or supportive [18]. Resolving these
issues can help improve the coach-coachee relationship and
alliance.

Interaction ruptures, i.e., difficulties in the coaching dy-
namics during a coaching session, might negatively affect
the coach-coachee relationship. Interaction ruptures might
occur when the coachee perceives the coach to be off in their
responses and the timing of their responses. In such awkward
social interactions (i.e., interactions where ruptures occur),
coachees may feel nervous, confused, embarrassed, uncertain
or self-conscious [19]. Embarrassment can occur when in-
teraction partners do not behave according to a social script,
rules/norms, or roles [19], [20]. Behavioural expressions of
awkwardness in social situations may include smiling and
smile control, laughter, gaze shifting, and fidgeting [19], [20].

B. Robotic Well-being Coaches

The design and investigation of robotic coaches for well-
being have seen an increasing trend [4], [21]–[23]. The
main reason for such an interest is the various advantages
they provide - e.g. physical presence (in comparison to a
mobile app), easily accessible with a consistent behaviour
(as compared to a human coach) [22]. A disadvantage may
be unwanted robot behaviour such as misunderstandings
in the communication (in comparison to a human coach)
[22]. Robotic positive psychology coaches have been tested
with emotional adaptation [24], [25], and deployed with
students [6], [26], [27] and in the workplace [9]. Robotic
mindfulness meditation coaches have been deployed in lab
settings [14], [28], [29], at a wellness centre [30], and at a
public cafe [10]. Robots have also been used to assess the
mental well-being of children [5], [31]. Furthermore, recent
studies have explored the use of robotic mental well-being
coaches over time [9], [10], [32]. Their results showed that

participants undertaking the well-being coaching with the
robot adapt to the robotic coach’s behaviour over time. For
example, Axelsson et al. [10] deployed two robotic well-
being coaches in a public cafe over 4 weeks to deliver
mindfulness sessions. Participants reported getting used to
the robotic coach over time and found it more helpful over
time. However, none of these works have explored how
the interaction ruptures during robotic well-being coaching
affected coachees’ behaviours.

C. Robot Failures and Repair Strategies in HRI

Within the Human-Robot Interaction (HRI) context, inter-
action ruptures can be caused by robot mistakes (i.e., robot
failures), which could jeopardize the well-being coaching.
Many HRI studies have explored robot failures, providing
taxonomies, e.g., [11], [33], and demonstrating that robots
could use different strategies to repair the perceived trust in
the robot [34]. For example, Sebo et al. examined different
trust repair strategies when a robot intentionally broke a
human player’s trust during a game [35]. They found that an
apology was a more effective trust repair strategy than denial.
Esterwood and Robert also examined how a robot’s different
trust repair strategies changed people’s trust in a robot
when it made mistakes during a box sorting task [36], [37],
finding that explanations were the most effective strategy for
repairing trust after multiple violations. Kontogiorgos et al.
examined human non-verbal behaviour reactions to conversa-
tional failures, where the Furhat robot was simulating errors
during a cooking instruction class [38], [39]. They found
that severe errors may decrease users’ trust in the robot [40].
Lindgren examined conversational failures with a robot in a
Wizard-of-Oz study and determined a taxonomy of errors and
potential mitigation strategies based on a thematic analysis
[41]. These works contributed greatly to our understanding of
robot errors, however they did not investigate robot failures
in social interactions, and in particular robot failures during
well-being coaching.

D. Participant Behaviour Analysis in HRI

Interaction ruptures brought on by either the robot or the
human frequently affect interactions between humans and
robots. Past studies analysed human behaviours to recognize
these ruptures. Giuliani et al. [42] investigated the verbal
and non-verbal social signals that humans show when error
situations occur in HRI experiments. Alghowinem et al.
examined how robots could sense participants’ engagement
through non-verbal behaviours during positive psychology
coaching [27]. Data of self-disclosure and non-self-disclosure
was manually annotated, and non-verbal behaviour features
relating to body gestures, acoustic signals and head orien-
tation were extracted. The most salient features (e.g., body
features related to hand-over-face gestures) were then se-
lected based on the Feature Selection Framework. The study
found that non-verbal cues alone (without linguistic features)
can be used to detect self-disclosure. Kontogiorgos et al.
examined non-verbal behavioural cues in relation to pre-
determined conversational breakdowns in human-robot inter-



Fig. 1. Coachee interacting with the Misty II robot. The data was collected
via the Jabra microphone placed on the table, a video camera on the side
of the robot, and a GoPro on a side table to capture the lateral view of the
interaction.

action [39]. These works helped us understand the relevant
factors for investigating users’ non-verbal behaviours during
HRI. However, no past work has investigated the longitudinal
evolution of robot failures together with participants’ multi-
modal behavioural responses. In this paper we focus on this
particular research problem in the context of robotic well-
being coaching.

III. METHODOLOGY

This section describes the methodology for the dataset
collection, the definition of variables for interaction ruptures,
the annotation process, the extraction of behavioural features,
and the longitudinal analysis.

A. Dataset Collection

In our previous study [9], we deployed a robotic positive
psychology coach at a workplace, Cambridge Consultants
Inc., over four weeks. Coachees (n = 26) were Cam-
bridge Consultants Inc.’s employees, and we screened them
to exclude higher levels of anxiety and depression before
the study, in order to recruit healthy coachees. Coachees
interacted with the robot once a week, with the first group
interacting with the child-like QTrobot, and the second group
interacting with the toy-like Misty II robot. The robotic
coaches conducted the following positive psychology exer-
cises, which were adapted from existing interventions: (1)
savouring [43], (2) gratitude [44], (3) accomplishments [44],
and (4) optimism about the future [45]. The robot interaction
was pre-scripted and the follow-up questions that it asked
to the coachees were independent from their responses (the
robot was only able to detect when the coachee stopped
speaking to continue the conversation). During the interac-
tion, we collected video recordings (coachee’s face and a
side view of the interaction) and audio recordings (both the
coachee’s and robot’s speech) using two cameras (a frontal
video camera and a lateral GoPro) and a Jabra microphone
as shown in Figure 1. The study was approved by the Ethics
Committee of the Computer Lab, University of Cambridge.

B. Interaction Ruptures and Expressions of Awkwardness

Repairing interaction ruptures during coaching could help
with maintaining a successful coach-coachee relationship. A
robotic coach should be able to recognize interaction rup-
tures, for example, when a user is expressing awkwardness,

or if the robot has made a mistake, and then it should
attempt to repair these. In order to analyse the occurrence of
interaction ruptures in robotic well-being coaching, we define
the following measures, based on a data-driven approach,
that relies on manual annotation of the videos of the robotic
coaches’ interactions with coachees:
User Awkwardness: The coachee displays behaviours that
express that the interaction is awkward, and they may look
confused, uncertain, distressed or uncomfortable.
Robot Mistake: The robot makes a mistake such as in-
terrupting the coachee, not responding to the coachee, or
responding with an utterance that is not appropriate for what
the coachee has just said.
Interaction Rupture: We define an interaction rupture as
either the presence of user awkwardness or a robot mistake,
or both.

1) Annotation Process: We annotated the videos using
the ELAN1 video annotation tool, as it has been commonly
used in other human behaviour annotation tasks (e.g., in
[46]). We marked instances of user awkwardness and robot
mistakes with binary labels (i.e., 1: present, or 0: absent),
marking the time when the displays of user awkwardness or
robot mistakes start and end. We observed that each coachee
expressed awkwardness differently, therefore the label of
‘presence’ or ‘absence’ was determined by the researcher
following the abovementioned definitions.

2) Measures: We defined three measures as indexes of
an interaction rupture. These measures were defined in order
to examine the behaviours coachees displayed when the
well-being coaching was disrupted and the behaviours they
displayed when the robot made mistakes, together with how
often these two measures co-occurred (i.e. how related they
are). The three measures are defined as follows:

• User Awkwardness Index (UAI): This variable refers
to the percentage of the sum (K) of the j number of
occurrences, within a time interval (tj), during which
a user (u) displayed cues of awkwardness, with respect
to the duration of the whole interaction (T ):

UAIu =

K∑
j=1

(tj)
u

Tu
∗ 100% (1)

• Robot Mistake Index (RMI): This variable refers to
the percentage of the sum (M ) of the j number of
occurrences, within a time interval (tj), during which
the robot made mistakes while interacting with a user
(u), with respect to the duration of the whole interaction
(T ):

RMIu =

M∑
j=1

(tj)
u

Tu
∗ 100% (2)

• Interaction Rupture Index (IRI): This variable refers
to the union of the occurrences of user awkwardness

1https://archive.mpi.nl/tla/elan



(UAI) and robot mistake (RMI) instances during an
interaction with the user (u):

IRIu = UAIu ∨RMIu (3)

C. Behavioural Feature Extraction

We used off-the-shelf state-of-the-art methods to extract
behavioural features from the audio-visual data collected in
the study and this section describes the methods used for
facial, audio, and body feature extraction. We explored facial
and audio features because they were shown to be markers of
robot failures [38], and we investigated the body cues related
to self-touching behaviours or hand-over-face gestures [47]
because these were shown to be a marker for self-disclosure
[27].

1) Facial Features: We processed the video recordings
using the OpenFace 2.2.0 toolkit [48] and extracted the
presence and intensity of the 17 facial action units (AUs)
provided by OpenFace, to measure the facial cues of the
coachees, namely AU1 (inner brow raiser), AU2 (outer brow
raiser), AU4 (brow lowerer), AU5 (upper lid raiser), AU6
(cheek raiser), AU7 (lid tightener), AU9 (nose wrinkler),
AU10 (upper lip raiser), AU12 (lip corner puller), AU14
(dimpler), AU15 (lip corner depressor), AU17 (chin raiser),
AU20 (lip stretcher), AU23 (lip tightener), AU25 (lips
parted), AU26 (jaw drop) and AU45 (blink) resulting in a
total of 34 facial features. We then computed the average,
median and standard deviation of each raw facial feature,
which resulted in a (26x4)x102 facial feature vector.

2) Audio Features: We analysed the audio recordings
using the openSMILE toolbox [49] and we extracted inter-
pretable speech features, namely loudness and pitch. Using
these, we computed other high-level features – such as the
length of the coachees’ silence and speech – by processing
the audio recordings via HuggingFace library2. We diarized
the speech and computed the duration of the voice detected
by the coachee and the robot separately. We then computed
the average and standard deviation of all the speech features,
which resulted in a (26x4)x18 speech feature vector. We
reduced the audio feature set using a PCA which found the
most contributing sound indicators of IRI.

3) Body Features: We processed the video recordings
using the OpenPose toolbox [50] and extracted the 25-2D
body key points to estimate the movement of the torso,
hands, arms, and head. Specifically, we extracted touch-
behaviour-related features by computing the Euclidean dis-
tance between the two hands, and their distances to key
points on the face, chest, and shoulders. We extracted
touch-behaviour related features specifically due to previous
literature reporting these to be relevant for self-disclosure
during robotic coaching [27]. Additionally, we computed the
velocity of touch behaviours by computing the differences
in position in a frame-by-frame manner. We extracted 36
proximity and velocity features for touch behaviours, which
resulted in a (26x4)x36 body feature vector.

2https://huggingface.co/pyannote/speaker-diarization
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Fig. 2. Interaction rupture index (IRI) during the robotic well-being
coaching across the four weeks (W1, W2, W3, and W4), *** p < .0001.

D. Longitudinal Analysis

As our original study was on longitudinal robotic well-
being coaching, we focused our analysis on understand-
ing the evolution of coachees’ behavioural responses over
time. We first checked the normality assumption for our
distribution (conducting Kolmogorov–Smirnov test). Our re-
sults showed that the sample was not normally distributed,
therefore we adopted non-parametric statistical tests for our
analysis.

Given the fact that the subjects interacted with two differ-
ent robots (either QTrobot or Misty II robot), we checked
whether the robot form has an impact on the interaction
ruptures. Our results did not show any statically significant
difference between the robot groups except for week four
where we found that the occurrences of the interaction
ruptures in the group interacting with Misty II were sig-
nificantly (Z = 104, p < .05) higher than in the group
interacting with QTrobot. Qualitative data collected from
participant interviews during the study [9] indicated that
participants found the exercise in week four (optimism about
the future) to be the most challenging. This could have
influenced participants’ behaviours during the robotic well-
being coaching. Participants may also have expressed more
awkward behaviours with the QTrobot due to having higher
expectations because of its human-like form (cf. [9]).

Based on this preliminary analysis, we did not consider
the robot form as a condition for the rest of the analyses in
this paper. We first conducted Friedman tests and the post-
hoc Wilcoxon signed-ranked tests to compare the differences
in coachees’ behavioural responses across the weeks for the
interaction rupture measures (dependent variables). In this
case, the dependent variables were the facial, body, and audio
features while the independent variable was the time (weeks).
We conducted the statistical analysis using the Python library
Stats3.

IV. RESULTS

This section reports the longitudinal evolution of the
interaction ruptures and the coachees’ behavioural responses
to those ruptures, across the four weeks of the study.
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Fig. 3. Facial AU6, AU7, AU10, and AU12 mean differences across four weeks (W1, W2, W3, and W4). **p < .01

A. Longitudinal Evolution of Interaction Ruptures

We conducted Friedman tests for the UAI, RMI, and IRI
measures to evaluate differences in 23 coachees’ interactions
over four weeks. We discarded the data of 3 subjects because
of missing video recordings due to technical errors. The
results showed significant differences for UAI (χ2 = 23.71,
p < .001), RMI (χ2 = 40.56, p < .001), and IRI (χ2 =
33.31, p < .001), see Figure 2. We therefore ran a pair-
wise comparison using Wilcoxon signed-rank tests with a
Bonferroni correction (.05/4). The post-hoc analysis results

TABLE I
POST-HOC ANALYSIS RESULTS FOR THE UAI, RMI, AND IRI

DEPENDENT VARIABLES.

Variable Pair-wise (a, b) Z p Mdn (a) Mdn (b)
UAI (W1, W4) 7 <.001 0.14 0.03
UAI (W2, W4) 34 <.005 0.08 -
UAI (W3, W4) 37 <.005 0.06 -
RMI (W1, W4) 0 <.0001 0.16 0.06
RMI (W2, W4) 4 <.0001 0.13 -
RMI (W3, W4) 21 <.0001 0.10 -
IRI (W1, W4) 0 <.0001 0.20 0.07
IRI (W2, W4) 7 <.0001 0.18 -
IRI (W3, W4) 13 <.0001 0.15 -

are reported in Table I. In summary, the weekly occurrences
of interaction ruptures (IRI) decreased significantly from W1
to W4.

B. Longitudinal Evolution of Coachees’ Behavioural Re-
sponses

1) Facial Cues: To evaluate the differences in facial cues
of coachees over four weeks, we conducted Friedman tests
for the facial AUs extracted. The results showed significant
differences for the mean intensity of AU1, i.e., inner brow
raise (χ2 = 16.98, p < .001), for the mean intensity of
AU2, i.e., outer brow raiser (χ2 = 12.03, p < .01), for the
mean intensity of AU5, i.e., upper lid raiser (χ2 = 17.76,
p < .001), for the mean intensity of AU6, i.e., cheek raiser
(χ2 = 8.63, p < .05), for the mean intensity of AU7, i.e.,
lid tightener (χ2 = 12.55, p < .01), for the mean intensity
of AU10, i.e., upper lip raiser (χ2 = 13.59, p < .01), for
the mean intensity of AU12, i.e., lip corner puller (χ2 =
10.93, p < .05), for the median intensity of AU15, i.e., lip
corner depressor (χ2 = 23.27, p < .0001), and for the mean

3https://docs.scipy.org/doc/scipy/tutorial/stats.html

intensity of AU23, i.e., lip tightener (χ2 = 9.10, p < .05).
We, therefore, ran the pair-wise comparison using Wilcoxon
signed-rank tests with a Bonferroni correction (.05/4) only
for the facial AU features with intensity median levels higher
than 0.5. The post-hoc analysis results are reported in Table

TABLE II
POST-HOC ANALYSIS RESULTS FOR THE FACIAL AUS THAT SHOWED

STASTICALLY SIGNIFICANT DIFFERENCES.

Variable Pair-wise (a, b) Z p Mdn (a) Mdn (b)
AU6 (W1, W2) 53 <.01 0.47 0.39
AU7 (W1, W4) 42 <.01 0.41 0.43
AU10 (W1, W4) 45 <.01 1.59 1.00
AU12 (W1, W4) 41 <.01 0.49 0.02
AU15 (W1, W4) 29 <.01 0.04 0.02
AU15 (W2, W4) 16 <.01 0.06 -
AU15 (W3, W4) 33.5 <.01 0.05 -

II. In summary, the lid tightener (AU7), the upper lip raiser
(AU10), the cheek raiser (AU6) and lip corner puller (AU12)
were displayed significantly less in W4 with respect to W1.

2) Audio Cues: To evaluate the differences in audio cues
of coachees over the four weeks, we conducted Friedman
tests for the audio features extracted (see Figure 4). The
results showed significant differences for the speaking length
(χ2 = 27.21, p < .0001), for the mean of the speaking
length (χ2 = 20.48, p < .001), for the standard deviation of
the speaking length (χ2 = 14.32, p < .01), for the silence
length (χ2 = 29.97, p < .0001), for the mean of the silence
length (χ2 = 34.56, p < .0001), for the mean of the loudness
(χ2 = 33.21, p < .0001), and for the standard deviation of
the loudness (χ2 = 29.14, p < .0001). Again, we run a pair-
wise comparison using Wilcoxon signed-rank tests with a
Bonferroni correction (.05/4). The post-hoc analysis results
are reported in Table III. In summary, coachees spoke for
significantly greater lengths of time in W4, and there was
less number of silent segments, with respect to the previous
weeks.

3) Body Cues: We compared the self-touching and hand-
over-face gestures calculated from the body cues, over four
weeks, by running Friedman tests for the body features
extracted (see Figure 5). The results showed significant
differences for the mean of the distance between keypoints 4
(left hand) and 18 (right side of face) (χ2 = 8.43, p < .05),
for the median of the distance between keypoints 4 and 18
(χ2 = 14.99, p < .01), for the median of the distance
between keypoints 7 (right hand) and 17 (left side of face)
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Fig. 4. Audio feature mean differences across four weeks (W1, W2, W3, and W4). **p < .01, ***p < .001, ****p < .0001
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4-18 joint distance 7-18 joint distance 7-17 joint velocity

Fig. 5. Hand-over-face gesture feature mean differences across four weeks (W1, W2, W3, and W4). *p < .05, **p < .01

TABLE III
POST-HOC ANALYSIS RESULTS FOR THE AUDIO FEATURES THAT

SHOWED STASTICALLY SIGNIFICANT DIFFERENCES, WHERE M
CORRESPENDS TO THE MEAN, AND SD TO THE STANDARD DEVIATION.

Variable Pair-wise Z p Mdn Mdn
(a, b) (a) (b)

Speaking length (W1, W2) 1 <.0001 42.27 86.72
Speaking length (W1, W3) 8 <.0001 - 111.44
Speaking length (W1, W4) 14 <.0001 - 106.14

M Speaking length (W1, W2) 34 <.001 2.43 3.94
M Speaking length (W1, W3) 52 <.01 - 4.36
M Speaking length (W1, W4) 40 <.01 - 5.57
SD Speaking length (W1, W4) 39 <.01 2.45 5.18

Silence length (W1, W3) 23 <.001 186.91 137.76
Silence length (W2, W4) 23 <.01 155.13 199.53
Silence length (W3, W4) 0 <.0001 137.76 -

M Silence length (W1, W3) 3 <.0001 5.10 3.72
M Silence length (W2, W3) 20 <.0001 5.23 -
M Silence length (W2, W4) 48 <.01 - 5.77
M Silence length (W3, W4) 0 <.0001 3.72 -
SD Silence length (W1, W2) 56 <.05 6.60 9.80
SD Silence length (W1, W4) 15 <.0001 - 11.52
SD Silence length (W2, W4) 24 <.01 9.80 -
SD Silence length (W3, W4) 24 <.0001 6.11 -
SD Silence length (W2, W3) 36 <.01 9.80 6.11

M Loudness (W1, W2) 0 <.0001 0.04 0.07
M Loudness (W1, W3) 12 <.0001 - 0.08
M Loudness (W2, W4) 40 <.01 0.07 0.05
M Loudness (W3, W4) 23 <.001 0.08 -
SD Loudness (W1, W2) 0 <.0001 3.37 2.16
SD Loudness (W1, W3) 20 <.0001 - 1.83
SD Loudness (W1, W4) 35 <.001 - 2.07

(χ2 = 8.38, p < .05), for the mean of the distance between
keypoints 7 and 18 (χ2 = 8.43, p < .05), and for the median
of the distance between keypoints 7 and 18 (χ2 = 8.71, p <
.05). Again, we ran a pair-wise comparison using Wilcoxon
signed-rank tests with a Bonferroni correction (.05/4).

The post-hoc analysis results are reported in Table IV. In
summary, coachees displayed significantly more hand-over-
face gestures in W4 with respect to the previous weeks.

TABLE IV
POST-HOC ANALYSIS RESULTS FOR THE BODY FEATURES THAT SHOWED

STASTICALLY SIGNIFICANT DIFFERENCES, WHERE MD REFERS TO THE

MEAN DISTANCE AND MDND REFERS TO MEDIAN DISTANCE.

Variable Pair-wise (a, b) Z p Mdn (a) Mdn (b)
MD 4-18 (W2, W4) 55 <.05 2401.29 1283.92
MD 4-18 (W3, W4) 55 <.05 2448.99 -

MdnD 4-18 (W2, W4) 42 <.01 2556.93 1180.23
MdnD 4-18 (W3, W4) 44 <.05 2518.85 -

MD 7-18 (W3, W4) 48 <.05 1449.41 2579.54
MdnD 7-18 (W2, W4) 56 <.05 2667.50 1220.21

V. DISCUSSION

Our results showed that occurrences of Interaction Rup-
tures (IRI) throughout the study decreased significantly from
week 1 to week 4. IRIs consisted of instances of User
Awkwardness (UAI) and Robot Mistakes (RMI), which were
evaluated from coachee videos by a human annotator (one of
the research team members). Both UAI and RMI decreased
throughout the four weeks.

The computationally extracted behavioural cues of the
coachees reflect this trend. Through facial cues, coachees
express less suspicion (as expressed through the lid tight-
ener AU7, and the upper lip raiser AU10), and less
embarrassment-related laughter cues (as expressed through
the cheek raiser AU6 and lip corner puller AU12 [51]).
While laughter can be an expression of enjoyment [51], in
our observations we noticed that laughter was more often an
expression of being uncomfortable. Additionally, we found
that coachees spoke for greater lengths of time toward week
4, and there were less instances of silence. This indicates that
coachees may have become more comfortable and confident
in speaking to the robotic well-being coach.

Regarding body cues, we found that coachees showed
more self-touch behaviours in week 4, specifically touch-
ing their face and displaying hand-over-face gestures. Such
behaviours have been found to be more present when



b) Coachee A, week 1

d) Coachee B, week 1 f) Coachee B, week 3

c) Coachee A, week 4

e) Coachee B, week 2

a) Coachee A, week 1

Fig. 6. Coachees’ behavioural signals: a) Suspicion expressed through
lid tightener AU7, b) Laughter expressed through cheek raiser AU6 and
lip corner puller AU12, c) Contemplation - where awkwardness behaviour
markers are not present, d) Suspicion expressed through lid tightener AU7
and upper lip raiser AU10, e) Laughter expressed through cheek raiser AU6
and lip corner puller AU16, f) Contemplation expressed through hand-over-
face gesture.

coachees self-disclose during coaching with a robot [27].
Our qualitative results [9] indicated that coachees found the
exercise in week 4 (optimism about the future) to be the
most challenging. The hand-over-face gestures in this week
may be an indicator of coachees thinking more reflectively,
and self-disclosing more. This is supported by the increase
in silence periods in their speech in week 4 (which was
otherwise decreasing from W1 to W2 and W3), as well as the
decrease in loudness in their speech (which was otherwise
increasing throughout the weeks).

This behaviour analysis indicates that overall, coachees
got used to the positive psychology coaching exercises with
the robot, they became more comfortable and confident and
expressed less awkwardness over time. The trend observed
for these behaviours was consistent over time, with the ex-
ception of week 4, where the more challenging exercise was
introduced. This has implications for the order of exercises
to be conducted with a robotic coach. When a robotic well-
being coach is deployed longitudinally, it could be useful
to introduce less challenging exercises first, in order to help
coachees get used to the robot. More challenging exercises
(such as optimism about the future) could be introduced at a
later stage, as users would be already used to the robot and
can focus more on the reflection called for by the exercise.

According to our behaviour observations from the videos
(see Figure 6), in general, coachees expressed less awkward-
ness over time and expressed their thoughts in more detail.
For example, C2 expressed their emotions openly through
a wide range of facial expressions and body gestures. This
coachee’s communication with the robot improved through-
out the sessions since they expressed less awkwardness and
shared their thoughts in more detail. The coachee appeared
to get used to the robot, in particular its slightly delayed
response timing.

There were some notable exceptions where coachees’
behaviour differed from the general trend. According to
our observations, there were instances where the robot’s
mistakes caused coachees to limit their self-disclosure. For
example, C20 did not engage with the robot in weeks 3 and 4
and did not answer its questions. Additionally, C3 appeared

to become more reluctant to self-disclose after the robot’s
interruptions. This reduction in self-disclosures persisted
throughout the four weeks. In contrast, C13 restricted self-
disclosure during the first week, but shared their thoughts in
greater detail over the following three weeks. In particular,
they appeared to be most thoughtful in week four, during
the optimism exercise, which was noted to be the most
challenging. These differences across coachees show that
different coachees express different levels of awkwardness
and discomfort, which the future robotic coaches should be
able to recognize and adapt to. Note that, when interpreting
these results one needs to bear in mind the fact that the
videos were coded by a single annotator. Due to this, we are
unable to report inter-observer agreement levels.

VI. CONCLUSIONS
This study examined the behavioural responses of

coachees to interaction ruptures when interacting with a
robotic well-being coach. We found that throughout the
four weeks of interacting with the robotic coach, inter-
action ruptures decreased. Throughout the study, coachees
displayed a lower number of behavioural cues related to
awkwardness and a higher number of cues related to self-
disclosure. Coachees displayed less facial expressions related
to suspicion (e.g., lid tightener (AU7) and upper lip raiser
(AU10)), increased the duration and the loudness of their
speech, and displayed more hand-over-face gestures related
to self-disclosure. The findings of this work will inform the
development of AI models for the multi-modal detection of
interaction ruptures in well-being coaching, a research topic
that has not been examined to date. Interaction ruptures can
be detrimental to the effectiveness of coaching. Therefore,
future work should focus on not only detection but also
the design of repair strategies for the occurrence of such
ruptures.
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