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Abstract— Social Robotics and Human-Robot Interaction
(HRI) research relies on different Affective Computing (AC)
solutions for sensing, perceiving and understanding human af-
fective behaviour during interactions. This may include utilising
off-the-shelf affect perception models that are pre-trained on
popular affect recognition benchmarks and directly applied
to situated interactions. However, the conditions in situated
human-robot interactions differ significantly from the training
data and settings of these models. Thus, there is a need to
deepen our understanding of how AC solutions can be best
leveraged, customised and applied for situated HRI. This paper,
while critiquing the existing practices, presents four critical
lessons to be noted by the hitchhiker when applying AC for
HRI research. These lessons conclude that: (i) The six basic
emotions categories are not always relevant in situated interac-
tions, (ii) Affect recognition accuracy (%) improvement as the
sole goal is inappropriate for situated interactions, (iii) Affect
recognition may not generalise across contexts, and (iv) Affect
recognition alone is insufficient for adaptation and personali-
sation. By describing the background and the context for each
lesson, and demonstrating how these lessons have been compiled
from the various studies of the authors, this paper aims to
enable the hitchhiker to successfully leverage AC solutions for
advancing HRI research.

I. INTRODUCTION & BACKGROUND

Social Robotics has emerged as an inherently multi-
disciplinary field bringing together research efforts from
Affective Computing (AC), Social Signal Processing (SSP),
Computer Vision (CV), Machine Learning (ML) and Human-
Robot Interaction (HRI). Yet, there is a need to develop
affect sensing, perception and understanding methodologies
targeted specifically to facilitate social robotics applica-
tions. To avoid re-inventing the wheel, researchers within
the Human-Computer Interaction (HCI), HRI and Social
Robotics fields often, and rightly so, utilise available off-the-
shelf sensing or perception tools from other domains (such
as face and gesture recognition) directly for their in-house
studies, datasets and evaluations. However, these practices
hinder progress leading to a lack of novel and domain-
specific (affect) sensing, learning and adaptation algorithms.
Furthermore, it impedes measures for reproducibility [1] due
to a lack of purposeful, naturalistic and publicly available
(affect) models, datasets and metrics, which are vital for
comparative evaluation and gathering insights to push the
field forward towards real-world adoption.

Recent research discussions1 around situated affective
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1Discussions following a keynote address at the 3rd Workshop on
Applied Multimodal Affect Recognition (AMAR), International Conference
on Pattern Recognition (ICPR) 2022.

computing have emphasised understanding the role of AC
research, especially in situated interactions, and in realising
social and affective interactions with robots. It is essential to
appreciate what does not work when undertaking situated
AC research and what lessons we can learn from these
failures. Furthermore, linking these lessons to HRI research2,
it is critical to understand how advances in affect sensing,
perception and understanding influence how individuals in-
teract with social robots. The aim of this paper, thus, is
to provide the hitchhiker with a guide for leveraging AC
for HRI research, based on the critical lessons learnt, both
from successes and failures, grounded in and distilled from a
broader set of AC research studies we have conducted under
situated interaction settings. Such a guide aims to inform the
HRI community, especially the hitchhikers starting their HRI
research journey, what to be aware of when applying AC
tools for HRI research. Similar recommendations have been
compiled and shared as advice to aspiring experimenters on
child-robot interaction in the wild [2].

This paper discusses four critical lessons learnt from ap-
plying AC tools for HRI research, especially for situated in-
teractions, compiled from the various studies of the authors.
For each lesson, along with the background understanding,
a detailed account is provided of the context under which
the lesson is learnt, with explanations and insights gathered,
linking it to an HRI context. These lessons are:
Lesson 1: The six basic emotion [3] categories (happiness,

sadness, surprise, fear, anger and disgust) are not
always relevant in situated interactions;

Lesson 2: Affect recognition accuracy (%) improvement
as the sole goal is inappropriate for situated
interaction settings;

Lesson 3: Affect recognition may not generalise well across
contexts (e.g., user, task, etc. - using the defini-
tion of context in [4]);

Lesson 4: Affect recognition alone is insufficient for adap-
tation and personalisation.

The overall pipeline (with the different stages) of AC for
HRI implementations is illustrated in Fig. 1. Lesson 1 (Sec-
tion II) relates to how the user data acquired during the inter-
actions are annotated or labelled, while Lesson 2 (Section III)
relates to the robot’s perception of the user. Lesson 3 (Sec-
tion IV) corresponds to robot learning and Lesson 4 (Sec-
tion V) corresponds to the robot’s adaptation and actions.

2Discussions following workshop keynote addresses at IEEE Int’l Con-
ference on Robot & Human Interactive Communication (RO-MAN’22),
and the AAAI Fall Symposium on Artificial Intelligence for Human-Robot
Interaction 2022.
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Fig. 1: The Pipeline for Affective Computing for Human-Robot Interaction implementations with marked stages of
Perception, Learning, and Adaptation & Action.

Section VI summarises the contributions of this paper as well
as reflects upon the need for a critical review of existing AC
solutions of affective HRI studies.

II. LESSON 1: SIX BASIC EMOTION CATEGORIES ARE
NOT ALWAYS RELEVANT

A. Background

Within the pipeline of creating an automatic affect recog-
niser, this lesson relates to the aspect of affect annotations
and labels (see Data & Labels under Fig. 1: Perception).
When researchers purchase or acquire commercial social
robots, these robots come with black-box perception capa-
bilities, one of which is usually proudly claimed to enable
‘automatic emotion recognition’ for the robot. For instance,
one of the features listed for Pepper Robot is ‘recognising
emotions on your face’3. In such robotic platforms, this
means the recognition of the six basic emotion categories,
namely, (neutral+) happiness, sadness, surprise, fear, anger
and disgust [3]. However, this works only partially and under
posed expression settings when operating in lab environ-
ments with little-to-no variation in lighting settings [5]. Real-
world interactions are much more complex, resulting in the
robot struggling to accurately capture individual expressions,
as demonstrated via interactive public demonstrations [6].
But even then, it is important to evaluate and understand
what such categorization of user affective behaviour means
for situated human-robot interactions.

B. Context

Much of AC research employs ML-based automatic affect
recognition models trained and benchmarked on publicly
available datasets, acquired outside of situated interaction
settings. For example, most CV models undertaking the
task of Facial Expression Recognition (FER) are trained on
static images crawled from the internet, with cropped facial
regions where the situational context information has been

3https://www.gwsrobotics.com/why-pepper-robot

removed, with crowdsourced labels mostly corresponding to
the aforementioned six basic emotion categories [7]. As soon
as these models are embedded in robotic systems for realistic
applications including tutoring and learning, assistance with
rehabilitation or physical and mental health, these models
cannot cope with the variation and noise in the input data
that they have not encountered in their training. This results
in FER often failing in situated human-robot interactions,
making the robots’ sensing and perception of human affect
unreliable at the least [8].

Beyond automatic recognition, the six basic emotion cat-
egories are widely used in various HRI studies, even when
these labels do not seem relevant for real-world contexts.
One recent example investigating emotion perception using
the basic emotion categories is an HRI-based rehabilitation
scenario, as this is expected to improve the experience of
patients [9]. In this study, a robotic arm is used to investigate
whether and how it can communicate an emotional state
through movements and whether people can attribute these
movements to the intended emotional state. It found that
happiness was identified well, but not sadness and anger.
However, going beyond these findings, it is important to
understand ‘What does it mean for a robotic arm to display
anger?’. Also, ‘How useful are basic emotion categories for
rehabilitation robotics?’ and ‘What implications does this
have for HRI, in general?’.

C. Lesson & Insights

A critical evaluation of the questions posed above requires
a deeper and fundamental understanding of the situational
and contextual attributes that determine human behaviour
during interactions. One needs to go beyond the six basic
emotion categories [10] and start exploring other affect and
emotion models and instruments, while also considering how
to use these contemporary models throughout the entire
pipeline of study design, data acquisition, data annotation,
and training and evaluation of ML models. In doing so,
it is essential to start with fundamental questions, such as



‘Which emotion or affect model is best suited to represent
human behaviour and how do we decide this?’ Additionally,
it is also important to consider ‘Whether we are taking into
account situational or contextual aspects?’.

Two contemporary instruments that can be used, instead of
the six basic categories of emotions, are the Self-Assessment
Manikin (SAM) [11], [12] and the Geneva Emotion Wheel
(GEW) [13]. SAM is a picture-based questionnaire to inde-
pendently evaluate the affect dimensions of arousal (activa-
tion), valence (pleasure) and dominance (sense of control),
and it can be used for subjective assessment of partici-
pant/user affective responses [12]. The GEW, on the other
hand, has been proposed as ‘a theoretically derived and
empirically tested instrument to measure emotional reactions
to objects, events, and situations’ [13]. The participant/user
can indicate the emotion they experienced by choosing a
single emotion with the corresponding intensity or a blend of
multiple emotions (out of 20 emotion families). Robotics and
HRI researchers have started to successfully use SAM and
GEW in their works, for example, to evaluate patients’ emo-
tions induced by a robotic hand rehabilitation platform [14],
to classify the expression of emotion on robots [15] and to
measure perceived affect in HRI [16].

In the context of dyadic human-human interactions vs.
human-agent interactions, Song et al. [17] report that facial
reaction prediction and personality recognition performance
for ML models are better for human-human interaction data.
This finding indeed has implications for HRI research and
brings forth further questions that, as a community, we would
need to investigate. These include, but are not limited to,
‘Do we display affect differently in HRI?’, and ‘Do we need
different affect or emotion models for HRI that capture both
qualitative and quantitative aspects of human as well as
robot behaviours?’. In order to answer these questions, a
promising direction is to take a data-driven approach, similar
to the pioneering study by Jam et al. [18] that aims at
developing a data-driven categorical taxonomy of emotional
expressions in real-world HRI.

III. LESSON 2: AFFECT RECOGNITION ACCURACY (%)
IMPROVEMENT AS THE SOLE GOAL IS INAPPROPRIATE

A. Background

Within the pipeline of creating an automatic affect recog-
niser, this lesson relates to the aspect of affect sensing
(see Performance Evaluation under Fig. 1). The majority
of the work towards automatic affect recognition focuses
on achieving results that are considered ‘excellent’ or ‘very
good’ in terms of the evaluation metric used. For many
researchers ‘success’ is then equivalent to either obtaining
a recognition accuracy of >= 75% on a dataset that perhaps
other researchers have not yet worked or published on, or
improving the state-of-the-art (SOTA) recognition accuracy
by >= 2 − 3% on a benchmark that others have widely
reported on to be able to claim that their method is ‘better’
than the current SOTA results. However, benchmark datasets,
even the ones that claim to be obtained in-the-wild, are
usually stripped of context. Such datasets, for instance,

Fig. 2: Illustrating the differences in participants’ left hand
when playing the ‘Memory Break’ game in Virtual Reality
(VR) at Level 1 - Easy (left) vs. Level 3 - Hard (right).

contain static facial images or even videos of people without
much interaction taking place. When we move away from
recognising affect on such in-the-wild but idealised bench-
mark datasets to actual interaction studies with humans, we
are faced with a much higher level of complexity.

B. Context

To exemplify how relying on affect recognition accu-
racy (%) improvements may be unimportant and insufficient
in HRI context, we look at ‘Gamified Cognitive Training’,
as an example, as it relates to one of our study [19]
undertaken in 2016 − 2017. This study investigated how
the affect dimensions of arousal and valence were linked
to Working Memory (WM) performance of 30 participants
when playing a custom video game, ‘Memory Break’, on
Desktop vs. in Virtual Reality (VR), in two separate sessions,
one for each interaction mode. Both game modes were
designed to have three difficulty levels to evoke different
levels of arousal while maintaining the same memory load.
The WM capacity baseline of participants were measured
using relevant measures while the participants self-reported
their affective states and completed the Game Experience
Questionnaire (GEQ) [20]. Our analyses showed an improve-
ment in participants’ WM performance when playing in VR
mode, with a significant effect in those with a low WM
capacity. Significantly higher levels of valence and arousal
were self-reported when playing the VR version of the game.

To sense the participants’ affective states, a heart-rate sen-
sor was attached to their chest recording their heart activity
and an Electromyography (EMG) armband was placed on the
forearm that was used for interacting with the game environ-
ment. However, we had missed one important factor. As seen
in Fig. 2, when the difficulty level of the game increased to
‘hard’ (Level 3), the tension was clearly observable on their
hand that was resting on their lap. Post-study, we observed
this to be the trend for all participants. Unfortunately, that
hand did not have any sensor placed on it to measure
the tension manifested, which meant we missed crucial
information that could aid the recognition of participants’
arousal and valence. Despite extracting features from other



Fig. 3: Predictions of (deep) ML models trained on publicly available facial expression, facial affect and facial Action Unit
(AU) datasets when used on data acquired under work-like settings and tasks.

sensors and experimenting with various ML techniques for
classifying arousal and valence, the recognition results did
not look promising. Ultimately, accuracy (%) improvement in
this context was unimportant because we were not measuring
and analysing the most relevant signals. The reliability of
off-the-shelf affect sensing solutions may also be a concern
in situated interactions, potentially resulting in poor model
accuracy [21]. Thus, it is important to look beyond model
accuracy in situated interactions.

C. Lesson & Insights

The lesson that can be learnt from the ‘Gamified Cognitive
Training’ study (and other relevant ones) is that accuracy or
accuracy improvements (%) as the sole goal or objective are
inappropriate and insufficient, especially when we are not
reliably capturing and analysing the most relevant signals
and cues. Expressly, undertaking human studies in situated
interactions, where we aim to sense affect, requires several
pilot study iterations, until we are sure about where to place
the different sensors, measuring the right signals and cues
related to the affect displayed, and ascertain the reliability of
the off-the-shelf models and other tools used. In other words,
we should study the expressions and display of affect before
we sense them. This is mainly due to two reasons. Firstly,
in the human-machine interaction context, humans shape
machine behaviour and vice-versa [21], [22]. This often
results in the emergence of new human behaviour, unforeseen
in the original study or interface design. Secondly, when
analysing affect and emotions, there is, at times, non-verbal
and emotional leakage. At times, inner feelings of a person
might be revealed or expressed more intensely in a certain
modality or channel [23], [24] (usually the less dominant
one), which might be different from the one observers focus
on, for example, controlling what is being said while ex-
pressing differently through nonverbal behaviour. In light of
these, in situated interactions where we aim to measure and
analyse socio-emotional behaviours, we need to reflect on
critical questions such as ‘Are we placing the sensors in the
right places?’, ’Are we measuring the most relevant signals?’
and ’Are the tools used to sense the signals, reliable?’.

With these aspects in mind, a possible direction for HRI
research can be to adopt rich multi-modal sensing, not

necessarily to improve accuracy, but also to ensure that
different aspects of user affect and behaviour manifestations
are captured and investigated. This is particularly important
for emerging research areas that cannot simply rely on
previous research findings. For instance, mental wellbeing
evaluation in children via child-robot interactions [25] re-
quires an investigation of different aspects of child multi-
modal behaviour (questionnaire responses, free-from speech
content, nonverbal head, face or audio behaviours and phys-
iological reactions), going beyond what children report or
say. However, it is important to note that not many social
robots are equipped with high-resolution sensing or have the
capabilities to enable such rich multi-modal perception. A
possible solution may be to create ‘hacks’, for example, by
3D printing and additional sensor placement (see [26] on how
a 3D printed headset is used with high-resolution cameras).

IV. LESSON 3: AFFECT RECOGNITION MAY NOT
GENERALISE WELL ACROSS CONTEXTS

A. Background

Openly available facial affect datasets used for training
FER models generally contain displays of young and middle-
aged adults. Facial affect data from sensitive user groups
such as children, adolescents, and older adults are relatively
less accessible due to various challenges including ethical
and privacy concerns. This imbalance in data causes these
models to not generalise well on other user groups such
as the elderly [27] or children [28] and, in turn, results in
biased algorithms for facial affect analysis and prediction. In
addition to encoding demographic bias, currently available
facial expression datasets are also biased towards certain
affect labels such as ‘neutral’, ‘anger’ and ‘happiness’,
compared to other affective states such as ‘annoyance’ [29].
Thus, models trained on most common benchmark datasets
for facial affect recognition are: (i) more accurate for young
and middle-aged adults; and (ii) mostly predicting affect in
terms of basic emotion categories; despite the fact that this
might not fit well the application context [29].

B. Context

To appreciate the challenges relating to applying gener-
alised affect recognition models, it is important to consider



how these models may perform with under-represented (in
traditional affect perception benchmarks) populations. In
this context, the EU Horizon 2020 WorkingAge4 project is
aimed at studying and promoting healthy habits in working
environments, focusing on people aged over 45. By gathering
a better understanding of wellbeing at work and of factors
that may inhibit or deteriorate prolonged employment, it
created an integrated digital solution, the WorkingAge of
Wellbeing (WAOW) Tool, to support workers’ wellbeing in
three types of working environments: office, teleworking, and
manufacturing. Within the WAOW Tool pipeline of creating
an automatic system that analyses worker psycho-social
conditions, worker physical conditions and the working envi-
ronment, and personalises via appropriate recommendations,
customisable by the user [30], this lesson relates to the aspect
of affect sensing and recognition (see Fig. 1: Perception).

As part of the WorkingAge project, we first introduced
a multi-site data collection protocol for acquiring human
behavioural data under simulated working conditions with
three work-like tasks: the N-back task, the video conference
task and the operation game. With this, we acquired the first
human working facial behaviour dataset called WorkingAge
DB [31] which was collected across four different sites
in Europe. Implementing (deep) ML models (e.g., ResNet-
50), trained on publicly available facial expression (e.g.,
RAF-DB [32]), facial affect (e.g., AffectNet [33]) and facial
AU (e.g., BP4D [34]) datasets, and applying these models
on facial data acquired under work-like settings and tasks,
results in evaluations similar to those illustrated in Fig. 3. It
can be clearly seen that such models have no knowledge
about context, and provide labels such as ‘surprise’ and
‘negative valence’ when the person is focused on the task.

Having seen these results, we decided to train ML models
specifically with the data acquired in work-like settings.
Thus, we implemented and compared a set of (deep) ML
methods using the facial data from WorkingAge DB for
automatic prediction of worker periodical facial affect while
also investigating how task type, recording site, gender, and
feature representations affected model performance [31]. Our
results showed that worker affect can be inferred from their
facial behaviours using data acquired in work-like settings,
and models pre-trained on naturalistic datasets are useful
for prediction but are insufficient on their own. Context,
specifically the task type and task setting, influenced the
affect recognition performance.

C. Lesson & Insights

HCI and HRI studies are prone to adopting off-the-shelf
affect recognition toolkits, that are pre-trained on publicly
available benchmark datasets, as means to an end, for the
quick modelling of user affective behaviour. For instance, in
the HRI context, Mathur et al. [35] investigated how to model
user empathy elicited by a robot storyteller. For this, they
employed an open-source off-the-shelf toolkit (OpenFace
2.2.0 [36]) that is widely used by various researchers within

4https://www.workingage.eu/

the AC, HRI and HCI communities. OpenFace enables
the extraction of eye gaze directions, the presence (and
intensity) of 17 facial AUs, facial landmarks and head pose
coordinates, amongst other features. However, as we learnt
from the WorkingAge study [31], for facial affect recognition
in specific contexts such as work-like settings, we cannot
simply rely on generic off-the-shelf toolkits. Such models
are ignorant of context and will not generalise well to real-
world settings where many factors (such as ethnic or cultural
background, gender, age, and the task, amongst others)
influence human expressivity and nonverbal behaviour.

Thus, when analysing human affective behaviour using
off-the-shelf toolkits and models, several critical questions
need to be considered. These include, but are not limited to:
‘How well are we taking into account the contextual aspects
of the interaction?’, and ‘Are we considering person-specific
aspects impacting the interacitons?’. To address these ques-
tions, we need to focus on personalisation rather than gen-
eralisation, considering person-specific aspects when mod-
elling user affective behaviour. For example, [37] presents a
personalised learning companion that uses children’s verbal
and nonverbal affective cues to modulate their engagement
levels. Facial features extracted using the off-the-shelf Affdex
toolkit [38] are used for arousal prediction which, in turn,
defines state space features for an Reinforcement Learning
(RL)-based personalisation algorithm. More recently, in [39]
we introduced and adapted the Continual Learning (CL)
paradigm for Affective Robotics where a robot acquires
and integrates knowledge incrementally about changing data
conditions, and showed how it can be utilised in practice for
adaptive HRI [40]. Furthermore, the series of LEAP-HRI5

workshops, that we have been co-organizing since 2021,
also emphasised the need to move away from generalisation
and focus more on lifelong learning and personalisation,
particularly when it comes to long-term HRI where novelty
effect is no longer present [41].

Additionally, we also need to consider other relevant
questions such as ‘Are we investigating for whom the trained
models work well, and why?’, ‘How do these models work
for specific user groups like children and elderly?’, and
‘How to ensure that predictions from these models are
not biased?’. To date, there are many publicly available
benchmarks for expression and affect recognition, however,
none of these datasets have been acquired considering a
fair distribution across the human population. Recent studies
on a number of publicly available benchmark datasets such
as RAF-DB [32] and CelebA [42] have shown that ML
models for FER trained on such datasets are biased [43].
Despite several bias mitigation strategies [28], [43], [44] for
addressing bias in the AC context (see [29] for a review),
how bias in affect prediction models impacts HRI and user
experience, engagement and trust, and how to achieve fairer
affective robotics remain open research problems that need
multi-disciplinary community efforts at the level of datasets,
annotations, benchmarking and reproducibility.

5https://leap-hri.github.io/



V. LESSON 4: AFFECT RECOGNITION ALONE IS
INSUFFICIENT FOR ADAPTATION AND PERSONALISATION

A. Background

Within the pipeline for creating an automatic affect recog-
niser, this lesson relates to the aspect of adaptation (see
Fig. 1: Adaptation & Action). Affect recognition is only one
of the affective cognitive architecture modules for achieving
emotionally intelligent autonomous robots that are capable
of perception, learning, action, adaptation, and even an-
ticipation [45]. One of the most common techniques for
robot learning and adaptation is learning with the human-in-
the-loop, or Interactive Reinforcement Learning (IRL), that
focuses on sensing and incorporating user interactive (verbal,
social and affective) feedback [46]–[52]. IRL with explicit
feedback can be challenging as humans tend to provide more
positive than negative feedback, at times ignoring the robots’
mistakes. With progressing interactions, the frequency of
human feedback may decrease [53]. Therefore, using implicit
feedback, such as facial affect, can be more effective as
the human “teacher” will be less conscious of providing the
feedback and will be less likely to suffer from feedback fa-
tigue [49]. Studies on IRL demonstrate the growing potential
of sensing and utilising implicit human behavioural cues for
training robots through natural interactions and shaping their
behaviour in real-time. But ‘is adaptation based on affect
sufficient and does it always improve HRI experience?’

B. Context

For naturalistic HRI, especially facilitating social interac-
tions, it is imperative that robots are able to sense and adapt
towards human behaviour, not only regarding individual
responses as feedback on their actions but also as motivation
for learning context-appropriate behaviours [52]. In this
context, in [51], we explored learning socially appropriate
Robo-waiter behaviours through real-time user feedback.
This feedback was driven by either an implicit reward
(calculated by observing participants’ facial affect) or an
explicit reward (incorporating their verbal responses). First,
a dataset was acquired with crowd-sourced labels to learn
appropriate approach behaviours for a robo-waiter based
on its positioning and movement. This dataset was then
used to pre-train an RL agent which, later, was extended
under IRL settings to include implicit and explicit rewards,
allowing for real-time adaptation from user social feedback.
The approach was evaluated using a within-subjects HRI
study with 21 participants with the results showing that both
the explicit and implicit feedback mechanisms enabled an
adaptive robo-waiter that was rated as more enjoyable and
sociable compared to the robot implementing the pre-trained
model or using a random control policy. The adaptive robo-
waiter also rendered more appropriate positioning relative to
the participants. Additionally, adaptability ratings showed the
explicit feedback condition as the most preferred condition
with the robot being rated significantly higher in terms of
understanding and adapting to what the participant said.
These results clearly show that for task-based interactions

(as in the robo-waiter context), adaptation based on affect
alone is insufficient, and we do need to take into account
explicit, task-related user feedback. Combining explicit and
implicit feedback to shape the reward function, although not
explored in this study, has the potential to further improve
user interaction experience.

C. Lesson & Insights

The creation of closed-loop affective robots that can
undertake successful social interactions with humans requires
that these robots keep learning in a lifelong manner and
continually adapt towards user behaviour and their affective
states [39]. Traditional ML approaches do not scale well to
the dynamics of such real-world interactions because they
assume stationarity in data conditions and distributions, but
real-world contexts change continuously. Also, training data
and learning objectives relevant to HRI may change rapidly.

In [39], we provide guidelines on how to utilise Continual
Learning (CL) for personalised affect perception and context-
appropriate behavioural learning for affective robotics. These
guidelines enable CL-based personalisation in the context
of robotic wellbeing coaching in [40], where a user study is
conducted with 20 participants comparing static and scripted
interactions with using affect-based adaptation without and
with continual personalisation. The results showed that
participants indicate a clear preference for a robotic coach
with continual personalisation capabilities, with significant
improvements observed in the robot’s anthropomorphism,
animacy and likeability ratings. Additionally, the robot is
also rated as significantly better at understanding how the
participants felt during the interactions.

Although affective adaptation is a desirable capability for
social robots, we need to bear in mind that it may not
always work, and at times may even hinder interactions. For
example, Kennedy et al. [54] investigated the effect of a
social robot tutoring strategy, with and without social and
adaptive behaviours, in the context of children learning about
prime numbers. Their results showed no significant learning
outcome for children interacting with a robot using social
and adaptive behaviours in addition to the teaching strategy.
Therefore researchers should be cautious about the specific
context they have at hand when deciding to apply social and
adaptive behaviours to a robot, and whether these interactions
are longitudinal or one-off. Gao et al. [55] also investigated
the effects of robot behaviour personalisation on user’s task
performance in the context of robot-supported learning. They
utilised RL for personalisation, enabling a robot tutor to
select verbal supportive behaviours to maximise the user’s
task progress and positive reactions. Their results showed
that participants were more efficient at solving logic puzzles
and preferred a robot that exhibits more varied behaviours
compared to a robot that personalises its behaviour by
converging on a specific one over time. Overall, adaptation
and personalisation based on affective or social behaviours
needs further investigation, to gather insights on the impact
of the context and the nature of the interaction (e.g., task-
based vs. free-flow).



TABLE I: Four Critical Lessons with the Reflective Questions the hitchhiker needs to probe when applying Affective
Computing (AC) solutions for Human-Robot Interaction (HRI) research under situated interaction settings.

Lesson Reflective Questions

Lesson 1: The six basic emotion categories are not always
relevant in situated interactions.

1) How is individual affective behaviour manifested?
2) Which affect model can best represent an individual’s affective states?

Lesson 2: Affect recognition accuracy (%) improvement as
the sole goal is inappropriate for situated interactions.

1) Are we placing the sensors in the right places?
2) Are we measuring the most relevant signals?
3) How can we interpret model performance in view of users’ interaction experiences?

Lesson 3: Affect recognition may not generalise (well)
across contexts.

1) Are we taking into account contextual and person-specific aspects?
2) Are we investigating for whom the trained models work well, and why?
3) How do model predictions work for specific user groups like children and elderly?
4) Are there any strategies in place to mitigate prediction bias in models?

Lesson 4: Affect recognition alone is insufficient for adap-
tation and personalisation.

1) Can the users’ responses be summarised only using their affective behaviour?
2) Does the user provide additional feedback that may be helpful for robot learning?
3) Is personalisation required and/or appropriate for the context of the interaction?

VI. SUMMARY AND CONCLUSION

This paper, reflecting upon the pitfalls and limitations
of current AC solutions for situated HRI, presents four
critical lessons for the hitchhiker starting their HRI research
journey (see Table I). These lessons, compiled from and
learnt through the various studies of the authors, as well
as existing literature, aim to distill key challenges that need
the focus and attention of the HRI community. Specifically
critiquing the use of AC solutions for sensing, perceiving
and understanding user affective behaviour in situated inter-
actions, these lessons highlight the challenges and limitations
of existing methodologies and how the hitchhiker needs to
be cautious of utilising off-the-shelf solutions, designed only
for a generalised application that may not be appropriate and
efficient for situated interactions. For each lesson, we present
a detailed account of the background and motivation for why
it is relevant and provide contextual understanding of how
it relates to pitfalls, in practice, when applying off-the-shelf
AC solutions directly for situated HRI studies. Furthermore,
we also summarise our learning from these experiences and
highlight key considerations for the hitchhiker to bear in
mind. Our proposition, with this paper, is for the hitchhiker
to reflect upon and probe specific questions, pertaining to
each lesson, before designing HRI studies that depend upon
an affective evaluation of user behaviour. Furthermore, we
also aim to encourage other affective computing and human-
robot interaction researchers to contribute to the scientific
community at large by critically analysing and reflecting
upon ‘what does not work and why?’ in HRI studies, and
sharing their perspectives for everyone’s benefit. Such a
reflection and consideration will no doubt contribute to more
successful and fruitful implementations of AC solutions in
situated interaction studies, creating a new bridge for HRI.
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