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Automatic Prediction of Impressions in Time
and across Varying Context: Personality,

Attractiveness and Likeability
Oya Çeliktutan and Hatice Gunes

Abstract—In this paper, we propose a novel multimodal framework for automatically predicting the impressions of extroversion,

agreeableness, conscientiousness, neuroticism, openness, attractiveness and likeability continuously in time and across varying

situational contexts. Differently from the existing works, we obtain visual-only and audio-only annotations continuously in time for the

same set of subjects, for the first time in the literature, and compare them to their audio-visual annotations. We propose a time-

continuous prediction approach that learns the temporal relationships rather than treating each time instant separately. Our

experiments show that the best prediction results are obtained when regression models are learned from audio-visual annotations and

visual cues, and from audio-visual annotations and visual cues combined with audio cues at the decision level. Continuously generated

annotations have the potential to provide insight into better understanding which impressions can be formed and predicted more

dynamically, varying with situational context, and which ones appear to be more static and stable over time.

Index Terms—Interpersonal perception, personality, attractiveness, likeability, time-continuous prediction
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1 INTRODUCTION

THIS paper focuses on automatic prediction of impres-
sions, namely, inferences about traits and characteristics

of people based on their observable behaviours. Impres-
sions are an integral part of our lives - we constantly make
everyday decisions and long-term plans ranging from whom
we will sit next to on a bus journey to whom we are going to be
friends with, based on our judgements arising from social
interactions.

Interpersonal perception have been widely investigated
along various aspects over the past decades. Kenny [1] con-
ceptualised the process of forming an impression of another
as integration of separate information sources (e.g., physical
appearance, behaviour) and personal interpretations into an
unitary judgement, and proposed a mathematical model
called PERSON. There has been a general agreement that
while in the initial phase of impression formation the physi-
cal appearance (e.g., stereotype) is the primary source of
information, the target’s behaviours (e.g., personality)
become more salient with information gathered over
time [1], [2]. Researchers have examined the differences in
how people form impressions in person versus by just
watching someone as a passive observer, and reported that
the passive means of making impressions were as accurate
as meeting someone in person [2].

The target person is viewed differently when evaluated
in different contexts, i.e., if the perceiver observes the target

in a new context, there might be a change in the perceiver’s
impression [1]. It was also found that the correlation
between impressions and self-assessments increases with
the number and variety of targets’ behavioural contexts
observed by the perceiver [3]. Research in [1], [3], [4], [5]
suggested that even thin slices (short durations) lead to con-
sensus among different observers, and even complete
strangers can make valid personality judgements after
watching a short video of a person. Carney et al. [5] investi-
gated the minimum sufficient conditions under which peo-
ple make a trait inference, which was reported to be as
small as 5 s for neuroticism and openness.

While impression formation has been a hot area of
research in psychology, recent years have brought interest
in computational models for perception of personality [6],
and perception of human beauty, attractiveness and like-
ability [7]. Understanding these perception mechanisms is
useful in many applications such as recruiter and candidate
matching, person and romantic partner matching, adapting
marketing messages based on the users’ profiles, and is also
essential in improving user experience and engagement in
human-computer interaction [8].

This paper focuses on human-virtual agent interactions
from the SEMAINE corpus [9] and presents an automatic
personality prediction approach by assessing and mathe-
matically modelling how impressions fluctuate with time.
We ask external observers to make personality judgements
while simultaneously watching/listening to a clip of a par-
ticipant. Participants interact with three distinct virtual
agents, each enforcing a different situational context. Differ-
ently from the existing works, we obtain visual-only and
audio-only annotations continuously in time and across
these varying situational contexts, for the same set of sub-
jects, for the first time in the computer science literature,
and compare them to the audio-visual annotations. We
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employ a time-series regression method in conjunction
with multimodal features for automatically predicting the
impressions of agreeableness, openness, neuroticism, conscien-
tiousness, extroversion, engagement, facial attractiveness, vocal
attractiveness and likeability continuously in time. The pro-
posed time-continuous prediction approach yields superior
prediction results when trained with audio-visual annota-
tions as compared to when trained with visual-only/audio-
only annotations, which indicates personality perception
is modelled better in the presence of more information.
Our results also show that situational context is important
for personality prediction, i.e., overall, better results are
obtained for cheerful and friendly agent context.

Although modelling the dynamics of expressions and
affect has been extensively studied in the literature [10], [11],
to the best of our knowledge, time-continuous prediction of
impressions has not been addressed yet. The SEMAINE sys-
tem [9] is a representative system that analyses the nonverbal
behaviours and affective states of the users interacting with a
virtual agent and allows the virtual agent to react accord-
ingly for maintaining the flow of the conversation. However,
our aim is to understand the personality of the user in the
course of the interaction. The proposed time-continuous
approach enables automatic personality prediction in real-
time as demonstrated in [12], [13], which is able to publish/
sendmessages to a synthesis module for system adaptation.

2 PSYCHOLOGY BACKGROUND

Personality is crucial to understanding human behaviours.
Therefore, there exists a significant body of psychology liter-
ature on personality research. The traditional approach to
describe personality is the trait theory that focuses on the
measurement of general patterns of behaviours, thoughts
and emotions, which are relatively stable over time and
across situational contexts [14]. The Big Five Model is cur-
rently the dominant paradigm in personality research
which defines traits along five broad dimensions: extroversion
(assertive, outgoing, energetic, friendly, socially active),
neuroticism (having tendency to negative emotions such as
anxiety, depression or anger), openness (having tendency to
changing experience, adventure, new ideas), agreeableness
(cooperative, compliant, trustworthy) and conscientiousness
(self-disciplined, organized, reliable, consistent). Although
the general agreement has been that people show behaviou-
ral stability, a number of studies [15], [16] have demonstrated
that there exists a substantial intra-person variability over
short periods of time. This dynamic perspective has moti-
vated researchers to develop the concept of personality states
[15], [16] that can be regarded as short-term manifestations
of traits. States represent how a person deviates from her or
his typical way of acting (i.e., stable traits) at a givenmoment.

Research focusing on the impression formation has
predominantly focused on the Big Five personality traits
and examined each trait separately. Kenny [17] proposed
a mathematical model, the so-called Weighted Average
Model (WAM), and examined the impact of different
factors in the level of consensus among multiple observ-
ers. In [1], Kenny reparametrised WAM into PERSON
model, which comprises six factors of Personality, Error,
Residual, Stereotype, Opinion and Norm. For example,

stereotype is associated with the shared assumptions
based on physical appearance.

Kenny [1] indicated that the external observers’ impres-
sions become more reliable when each observes a series of
acts from the same target. In otherwords, personality impres-
sions can change from one single act to another, but the accu-
racy increases with the number of observed acts (context).
Borkenau et al. [3] also found that observers’ accuracy in
judging targets’ personality increased with the variety of
behavioural contexts. They recorded and judged each target
across 15 behavioural contexts ranging from introducing one-
self to telling a joke, from talking about hobbies to singing a
song. While all traits seem to be inferred well from various
behavioural contexts, inference of openness relates to more
ability-demanding behaviours such as pantomime task.

Manyworks reported that impressions can be formed very
quickly based on very little information (a few seconds only).
In [18], Borkenau and Liebler asked external observers to
view a 90 s-length-video of a target reading a text. They com-
pared the agreement among the observers in two conditions:
audio-visual video and visual-only (muted) video. While, for
the Big Five personality traits, no significant difference has
been found, audio information, especially verbal content, has
been found to bemore prominent in judging the target’s intel-
ligence. They found that the correlation between the impres-
sions regarding different personality traits were higher in the
presence of less information (i.e., visual-only video).

Carney et al. [5] examined the accuracy of personality
judgements in varying exposure times (5, 20, 45, 60 and
300 s-slices of video) and temporal location of the slice within
the video. In particular, they recorded 5 minutes-length vid-
eos of dyadic interactions and extracted slices (ranging from
5 s to 60 s) from three different temporal locations, i.e., begin-
ning, middle and end of the video. Each target, engaged in
an unstructured conversation, was assessed in 13 conditions
(4 exposure times� 3 slice locationsþ 300 s). The experimen-
tal results showed that, for extroversion and agreeableness, the
exposure time and accuracy were found to be positively cor-
related, however there was no statically significant correla-
tion found for neuroticism, openness and conscientiousness. The
accuracy was also observed to be lower when the slices were
extracted from the beginning of the video.

Ambady et al. [4] examined the role of personality, gen-
der and nonverbal skills in zero-acquaintance situations
from the perspective of both the observer and the target.
They confirmed that extroverted people provide the others
with the necessary cues for accurate interpretation, while
less sociable people tend to be more accurate judges.
Lorenzo et al. [19] also reported that physically attractive
people tend to be more accurately judged by others. Physi-
cally attractive individuals are expected to be more sociable,
friendly and intelligent than less attractive individuals. This
renders them more desirable to be judged and easy to
understand, which increases the positivity and the accuracy
of personality impressions.

Willis and Todorov [20] also investigated impressions
regarding attractiveness and likeability as well as trustwor-
thiness, competence and aggressiveness. The minimum suffi-
cient condition under which people make a trait inference
based on facial appearance was reported to be as small as
a tenth of a second (0.1 s). They reported that increasing
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the exposure time from 0.1 s to 0.5 s yielded more subjec-
tively satisfying impressions and more confidence in judge-
ments, while increasing from 0.5 s to 1 s only enabled more
confidence as the observers’ impressions were already
anchored on the initial inference.Moreover, increasing expo-
sure time also provided relatively differentiated impres-
sions, i.e., the impressions regarding different traits were
found to be less correlated.

3 ENGINEERING BACKGROUND

Although making accurate personality judgements requires
socio-cognitive skills, recently developed computational
models can also make valid judgements. Youyou et al. [8]
showed that computers’ judgements of people’s personalities
based on their Facebook profiles are more accurate and valid
than judgementsmade by their close friends or families.

There are two strategies coupled with two main prob-
lems in automatic personality analysis [6], which are per-
sonality recognition (prediction of actual personality) and
personality perception (prediction of personality impres-
sions). This paper focuses on personality perception, but we
briefly mention the personality recognition trends at the
end of this section.

In automatic personality perception, most of the existing
methods focused on a subset or all dimensions of the Big
Five Model [21], [22], [23]. There are also a number of stud-
ies that took into account the dimensions of likeability [24],
[25], [26], and physical attractiveness [24], [26] and correla-
tion between these dimensions and the Big Five [26].

When developing automatic analysers, a key challenge is
how to generate reliable annotation that is also referred to
as ground truth. Similar to psychology, external observers
are asked to view a video of the person and rate the person
along the Big Five personality dimensions based on thin
slices of behaviour ranging from 10 s to several minutes.
The rating is usually scaled in seven levels between
“strongly disagree” and “strongly agree” (i.e., 7-point
Likert scale). However, employing observers to carry out
this tedious task is a problem per se. A number of research-
ers [27], [28] obtained manual annotations through the
Amazon Mechanical Turk (MTurk) service. Typically, sev-
eral folds of independent ratings are run since there is
rarely a full agreement between the raters.

In the engineering domain, unlike the psychology
domain, little attention has been paid to the impression
changes in time and across different contexts. More recently,
methods that focus on temporal variability [29] and different
situational contexts [26] have emerged. A number of works
have also investigated situational factors and time course in
the context of personality recognition. Batrinca et al. [30]
studied personality recognition across collaborative tasks.
Participants instructed by an agent was asked to perform a
task on the computer screen where alternately the agent had
four different levels of collaboration, from agreeable, stable
to less likely to compromise, neurotic. In [31], Pianesi dis-
cussed the need for exploring personality states and building
computational models that treat the stable traits as a combi-
nation of states changing in time. A number of works [29],
[32] adopted the concept of personality states and investi-
gated how tomodel and classify them automatically.

3.1 Related Work

Increasing interest in personality computing has brought
about various approaches for automatic analysis. These
approaches have been extensively reviewed in a recent sur-
vey paper [6]. Here we present an overview of the existing
personality perception methods based on the input feature
modality utilised, focusing particularly on the audio and
vision modalities.

3.1.1 Unimodal Methods

Vision-based methods. Researchers have extensively exploited
visual and vocal cues to extract both low-level and high-
level features. Among these, [24], [26], [33] focused on the
facial cues. Rojas et al. [24] modelled how one is perceived
as extroverted, attractive, likeable, dominant, trustworthy,
etc. based on still face images. Two low-level features were
proposed to represent the face: holistic and structural.
Holistic features were extracted from appearance informa-
tion such as eigenfaces and Histogram of Gradient (HoG),
while geometric features were extracted based on the spatial
locations of the fiducial facial points (e.g., pairwise distance
between points, the spatial relationship between each point
and the mean face). Experimental results showed that a reli-
able prediction (e.g., extroverted versus introverted) was
achieved by the holistic representation, in particular HoG,
for the traits of dominance, threatening and mean.

Joshi et al. [26] investigated varied situational contexts
using human-virtual agent interaction videos from the
SEMAINE corpus [9]. External observers assessed the per-
sonality of a subject in each interaction that lasted for 14 sec-
onds by providing a score between 1 and 10 for the whole
clip. The raters were asked to consider the Big Five traits as
well as participants’ likeability, facial and vocal attractive-
ness, and engagement within the interaction based on
visual-only displays. Only facial cues were extracted using
the pyramids of HoG that counts the gradient orientations
both in the whole face and in the localized portions. Mean
and standard deviation of the histograms accumulated
from all frames were fed into SVMs for regression. The pre-
diction results showed that situational context strongly
affects the raters’ impressions along the Big Five dimen-
sions, but the perception of attractiveness and likeability
does not really change.

High-level features were taken into account by Biel et al.
[33] on videos from Youtube, the so-called “video blogs”, and
annotations generated through a crowd-sourcing service sim-
ilar to [22], [27]. They detected facial expression of emotions
(e.g., anger, happiness, fear, sad) on a frame-by-frame basis
and extracted emotion activity cues from sequences either by
thresholding or by using a HMM-based method. These fea-
tures were then fed into SVMs for predicting the five traits.
Aran and Gaticia-Perez [23] used Motion Energy Images
(MEIs) in a cross-domain learning framework. MEIs from
Youtube video blogs [27] were employed to train Rigde
Regression and SVR classifiers, and the trained classifiers
were tested on small group meeting data for recognizing the
trait of extroversion.

Audio-based methods. Speaking style (prosody, intonation,
speaking rate) is widely represented by low-level features
such as signal energy, Mel-frequency cepstral coefficients
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(MFCC), pitch, and formants. Other commonly used features
are the number of turn takings, speaking time and speaking
length. In a prominent work, Mohammadi and Vinciarelli
[34] utilised Praat tool to extract prosodic features (pitch,
energy etc.) and the length of voiced/unvoiced segments
as well as statistical features (maximum, minimum, mean,
relative entropy). These features were used in conjunction
with Logistic Regression and SVM to classify traits in
speech clips from the SSPNet Speaker Personality Corpus.
The experimental results demonstrated that extroversion
and conscientiousness were best learned automatically using
vocal cues.

3.1.2 Multimodal Methods

Recent methods are characterised by a wide range of mul-
timodal features employed for automatic analysis. In a
small group meeting scenario, Aran and Gaticia-Perez [35]
used a set of multimodal features including speaking turn,
pitch, energy, head and body activity, MEIs and social
attention features. Although they obtained the ratings for
one minute segments, namely for thin slices only, they
extracted the cues both from the whole video and thin sli-
ces, and mapped these cues onto the ratings. While thin sli-
ces yielded the highest accuracy for extroversion, openness
was better modelled by longer time scales. Similar features
were used in [27] and [22] with Youtube video blogs. In
[27], Biel et al. made use of speaking activity, prosodic fea-
tures, looking activity (distance to camera, looking at the
camera while speaking) and visual activity (MEIs). In their
latter work [22], they exploited verbal content, both singly
and jointly, with the same set of features as well as facial
expression activity features [33]. On average, they achieved
better results with verbal features.

Srivastava et al. [36] were interested in predicting per-
sonality of the movie characters. Clips extracted from mov-
ies (e.g., Titanic, The Prestige) were rated using a
questionnaire. Each clip was represented by audio features
(speaking activity, acoustic features), vision based semantic
features (six basic emotions) and lexical features (number of
words in the dialogue, content – negative or positive – of
the dialogue). They proposed a two-tier approach for pre-
diction by firstly mapping the extracted features onto the
questionnaire responses using sparse and low-rank trans-
formation (SLoT) and then computing the personality scores
from predicted questionnaire responses. Better results were
obtained with visual and audio features compared to lexical
features. In both stages, fusing the three types of features
provided an improvement over the prediction performance.

The studies presented in [29] and [32] are inspired by
the work of Fleeson [15], [16]. Staiano et al. [29] addressed
the prediction of personality states in four different meet-
ing scenarios using the Mission Survival corpus [37].
Audio-visual recordings were divided into 5-minute long
clips. Each clip was interpreted as a personality state anno-
tated along the Big Five dimensions using a 10-item ques-
tionnaire. They asked external observers to rate the clips
where only the participant under analysis was visible to
raters, and the other participants were available through
the audio channel. For predicting personality states, they
used audio (pitch, amplitude, mean energy, spectral
entropy etc.) and video features (social attention features,

in particular, attention given, attention received based on
the head pose and eye gaze). They modelled the transition
from one state to another (e.g., low extroversion to high
extroversion or vice versa) by Hidden Markov Models
(HMM) and also classified personality state at a given time
frame using Naive Bayes and SVMs. The comparative
results showed that, to model extroversion, HMM would be
a better choice compared to the non-sequential approaches,
while for the remaining four dimensions Naive Bayes and
SVMs worked better.

3.2 Overview of Our Work

The block diagram of the proposed approach is shown in
Fig. 1. In this paper, based on the findings in [1], [3], [5],
[20], we hypothesise that impressions of personality,
attractiveness and likeability exhibit variability across dif-
ferent situational contexts and over time. We create an
interaction dataset from the available audio-visual record-
ings of the SEMAINE corpus [9]. We call this dataset
the MAPTRAITS Dataset. This dataset consists of 30 clips
of 10 subjects interacting with three SEMAINE agents.
We propose a novel approach to personality perception
modelling and collect a rich set of annotations in terms
of personality, attractiveness and likeability as well as the
modality of the observed data by asking the raters to
provide their impressions continuously in time under

Fig. 1. The overview of the proposed approach for time-continuous pre-
diction of impressions of personality, attractiveness and likeability.
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three conditions separately, i.e., visual-only, audio-only and
audio-visual. We focus on the dimensions of agreeableness
(AG), openness (OP), neuroticism (NE), conscientiousness (CO),
extroversion (EX), facial attractiveness (FA), vocal attractiveness
(VA), and likeability (LI). In addition to the Big Five personal-
ity traits, facial attractiveness describes how attractive the per-
son appears based on the face, vocal attractiveness describes
how attractive the person appears based on the voice
and likeability describes how likeable one finds the person in
the given context.

The data used in this paper is similar to the work in [26]
that also uses the human-virtual agent interactions from the
SEMAINE corpus [9]. Joshi et al. [26] is simillar to [29] in that
multiple clips of the same target personwere considered, but
each clip was annotated using a Likert scale. However, in
this paper, we examine the temporal variability of personal-
ity impressions by developing time-continuous assessment.
Rather than obtaining a single rating for thewhole clip, raters
continuously record their annotations for the aforemen-
tioned dimensions as the clip of the target subject plays.

For feature extraction, we take into account a multitude
of features from visual and audio cues. We then utilise a
time-series regression approach to model the temporal rela-
tionships between the continuously generated annotations
and extracted features. We further apply decision-level
fusion to combine the outputs of the audio and the visual
regression models and compare the prediction results when
regression models are trained using different modality
labels, i.e., labels generated from visual-only, audio-only
and audio-visual annotations. We also use the continuously
generated annotations to examine which dimensions can be
perceived and predicted more dynamically, varying with
situational context, and which ones appear to be more static
and stable over time.

4 DATA, ANNOTATION AND ANALYSIS

This section presents the process of creating clips, collecting
annotations, generating ground-truth data and statistical
analyses of the annotations.

4.1 Data

SEMAINE Corpus [9] provides a rich collection of people
interacting with virtual agents in a naturalistic scenario. We
took into account 10 different subjects. Each subject interacts
with three Sensitive Artificial Listener (SAL) agents,
namely, Poppy, Obadiah and Spike, resulting in 30 video
recordings. To reduce the burden on the raters, we short-
ened and segmented each recording (approximately 5
minutes-long) into a 60 s clip containing several instances of
turn taking. The 60 s length was found to be sufficiently
long to capture personality impression changes and was
reasonable for obtaining effective annotations. In [5], it was
also indicated that 60 s yielded the optimal ratio between
obtaining accurate impressions and slice length.

Each SAL agent has a specific character and accordingly
exhibits stable behaviours driven by emotions. Poppy is
always cheerful and positive, Spike is always angry and
aggressive andObadiah is always sad and miserable. The sit-
uational context created by each agent brings about a differ-
ent behavioural act that may change over time.

4.2 Annotation

We conducted the annotation by designing and using an
in-house tool [38] that functions similarly to GTrace [39].
The annotation tool requires the rater to scroll a bar
between a range of values from 1 to 100 as the recording
plays, but without pressing constantly, and stores the rat-
ing values at every pre-set time interval (please refer to
Section 2.2 of [40] for more information). Each annotation
resulted in a 60 s-rating-trajectory that is a sequence of val-
ues (between 1 and 100) showing how the impressions
change as a function of time.

The clips were rated with respect to the Big Five person-
ality traits, attractiveness and likeability by 21 paid raters -
aged between 23 and 53 years (mean ¼ 29) from different
ethnic backgrounds. For each of the Big Five personality
traits, the raters judged the target with respect to four adjec-
tives selected from [41]. We asked the raters to indicate how
much they agree or disagree with the provided adjectives
regarding the target person, and for each clip a rater anno-
tated one dimension at a time. Additionally, we asked the
raters to scroll the bar as the clip plays, when they think
that their impressions change. Apart from these, we did not
give any particular instructions to the raters.

To investigatewhat kind of information source (e.g., voice,
speaking tone, appearance, gestures) plays an important role
in the perception, the annotations were collected under three
conditions: visual-only, audio-only and audio-visual.

Visual-Only Annotation (VO). In visual-only annotation,
only the visual channel was available to the raters (audio
tracks were removed). Since annotation along one dimen-
sion (30 video clips at once) takes approximately 45 minutes
per rater, we also divided the dimensions into two separate
groups: i) agreeableness, openness, likeability, neuroticism, and
conscientiousness; and ii) extroversion, facial attractiveness, neu-
roticism, and conscientiousness. We nevertheless asked both
of the groups to annotate conscientiousness and neuroticism
as these have been found to be the most challenging dimen-
sions to understand and annotate by the raters. A total of 16
raters (nine females, seven males) annotated 30 video clips
with respect to the seven dimensions (Big Five+2), which
resulted in 7-10 annotations per clip, per dimension.

Audio-Only Annotation (AO). Contrary to visual-only
annotation, the focus of this annotation task was only the
audio channel (human subjects were not visible to the
raters). A total of six raters (two females and four males)
were divided into two groups and each group was asked
to annotate the speech clips with respect to a subset of
dimensions among the Big Five traits, vocal attractiveness
and likeability. This yielded three annotations for each clip,
for each dimension.

Audio-Visual Annotation (AV). Audio-visual annotation
complements the annotation conditions mentioned above
in that raters annotated the video clips taking into account
both visual and vocal cues for all eight dimensions (Big
Five+3). To obtain unbiased assessments, we employed
five raters different from the visual-only and the audio-
only rater pool and selected four raters out of the visual-
only rater pool, provided that they performed annotation
along the unseen portion of the dimensions. A total of nine
raters (four females, five males) assessed all clips, resulting
in five annotations per clip, per dimension.

ÇELIKTUTAN AND GUNES: AUTOMATIC PREDICTION OF IMPRESSIONS IN TIME AND ACROSS VARYING CONTEXT: PERSONALITY,... 5
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100 ms to capture the slightest changes in the impres-
sions [20]. We defined the intervals as 65 ms and 50 ms
for visual-only and audio-visual/audio-only annotations,
respectively, where the different time intervals were indeed
the requirement of the annotation tool. Representative rating
trajectories are illustrated in Fig. 2a for the agreeableness
dimension, for one clip in three annotation conditions. One
can observe that audio-visual/audio-only annotations
yielded smooth trajectories over time, hence consensus
among many raters is more obvious. However visual-only
raters seem to hardly agree, yet some of the judgements
show similar trends.

4.3 Analysis of Annotations

This section provides detailed analyses of the time-continuous
annotations in terms of consensus among the raters, changes
over time, impact of situational context and correlation
between the dimensions.

4.3.1 Consensus Among the Annotators

A key challenge in designing intelligent user interfaces is
establishing a reliable ground truth from multiple raters.
Especially, in the case of continuous ratings, this has proven
to be extremely difficult due to missing data, and variations
in the speed and style of the raters, e.g., time lags may occur
in responding to the conveyed cues or internal rating scales
can drastically differ among the raters. In the literature, a
common approach is to extract raters’ trends, in other
words, to compare two ratings in relative terms rather than
in absolute terms, e.g., whether there has been a rise, fall or
level stretch [42].

Prior to any analysis, we apply z-score normalization to
mitigate the effects of different internal rating scales where
each annotation is normalized with respect to its mean and
standard deviation. Correlation-based approaches such as
Cronbach’s a coefficient have been widely used to measure
the degree of agreement among multiple raters (i.e., inter-
rater agreement or consensus) in the literature. However, it
is not straightforward to use these approaches in the case
of time-varying data. Dynamic Time Warping (DTW) not
only permits comparison by a shifting operation, but also
incorporates warping operations such as insertion and
deletion. Therefore we apply DTW to align two rating tra-
jectories. The DTW algorithm searches for the best corre-
spondence between two trajectories that minimizes the
sum of cumulative distances. In our experiments, we set
the locality constraint to 2 s.

After each annotation pair is aligned using DTW, we mea-
sure the agreement in terms of Pearson’s correlation and
Cronbach’s alpha. We also eliminate the outliers by using the
following strategy. Assumewe haveK annotations per clip, i.
e, fy1; . . . ; yKg. We first compute the pairwise correlations
between each annotation yi and the remaining K � 1 annota-
tions, fyjgj6¼i. If only the mean of its pairwise correlations is

greater than a threshold, we take into account yi when com-
puting the ground-truth for the corresponding clip.We set the
threshold such that at least three reliable raters are considered
per video clip. The average number of selected raters is 7.5 (std
= 1.4, min = 3, max = 11) and 4.4 (std = 0.6, min = 3, max = 5)
per clip per dimension for the visual-only condition and for
the audio-visual condition, respectively. Note that there are
only three raters per speech clip in the audio-only condition,
we therefore took into account all of the annotations.

Fig. 2. (a) Continuous agreeableness annotations in time provided for one clip under three different annotation conditions: visual-only (left), audio-
only (middle) and audio-visual (right). Red dashed line illustrates the mean trajectory of the time-continuous annotations (i.e., ground truth). (b) Distri-
bution of within-class variance values per dimension for three annotation conditions as a box-and-whisker plot: visual-only (left), audio-only (middle)
and audio-visual (right).
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In Table 1, we tabulated the degree of agreement among
the selected raters with respect to each dimension under
three conditions. Each value in the parenthesis indicates the
inter-agreement before eliminating the outliers. One can
observe that this approach yielded a significant increase in
the level of consensus both in visual-only and audio-visual
conditions. After the annotation task took place, we asked
each rater which trait was difficult to judge. The visual-only
raters mostly agreed that conscientiousness was the most dif-
ficult one. Our analysis also validates this comment as we
obtained the lowest consensus for conscientiousness in
visual-only modality. While the visual-only raters also
found agreeableness and openness challenging, the audio-only
and audio-visual raters reported that they generally felt
confident in their observations.

Once the reliable raters were determined, we generated
the ground truth by evaluating the mean of the selected rat-
ing trajectories per video/speech clip. The mean trajectory
(the red dashed line) amounts to the ground-truth as illus-
trated in Fig. 2a.

4.3.2 Variation in the Impressions

In order to examine the variation in the impressions formed
by the observers in time, we considered the generated
ground-truths (mean trajectories) and presented the within-
clip variance (i.e., their variances over time per clip) across
different annotation conditions for each dimension in
Fig. 2b. Average of the within-class variances over all dimen-
sions are found to be higher for audio-only annotation
(s2

av ¼ 0:50) and for audio-visual annotation (s2
av ¼ 0:58) as

compared to visual-only annotation (s2
av ¼ 0:37).

The raters of the audio-visual condition mostly agreed
that conscientiousness and openness have a static characteristic
as they claimed that, once they made their decision, their
impressions hardly changed for the rest of the clip. On the
other hand, extroversion is found to be dynamic by all raters.
Fig. 2b is in line with the raters’ feedback because within-
class variance for conscientiousness is lower and more com-
pact in visual-only annotation and in audio-only condition
as compared to the other dimensions. The other dimensions
that have low within-class variation are neuroticism in

visual-only annotation and vocal attractiveness in audio-only
annotation, which are also less likely to vary in absolute val-
ues over time.

4.3.3 The Effect of Situational Context

We also examined the effect of different situational context,
namely, interaction with each virtual agent (Poppy, Obadiah
and Spike), on the raters’ impressions. Fig. 3 shows a histo-
gram of the correlations between each rater’s annotations
for three context (agents) for all target subjects with respect
to agreeableness, extroversion, facial attractiveness, conscien-
tiousness, openness and likeability. We computed the correla-
tions between the annotations of the same subject’s three
clips separately for each rater, where in each clip the sub-
ject interacts with a different virtual agent. Namely, we
presented the correlations between the annotations for Oba-
diah and Poppy, Obadiah and Spike, and Poppy and Spike,
and observed how each rater’s impressions change from
one interaction clip to another (e.g., from Obadiah to Poppy).
For conscientiousness, openness and likeability the correlations
are centred around larger values and their extent is small.
On the other hand, they are centred at smaller values and
spanned over a larger range of values for agreeableness,
extroversion and facial attractiveness. This confirms that the
raters’ impressions differ depending on the human-virtual
agent interaction context and the dimension assessed. We
observed similar trends in visual-only and audio-only
annotations as well, especially, for the impressions along
openness and likeability in the visual-only annotation.

4.3.4 Correlation between the Dimensions

In this experiment, we investigated whether there are any
relationships between the different dimensions.Wemeasured
the correlation between the annotations along pairs of dimen-
sions using the same approach introduced in Section 4.3.1.
We present the significant correlations in Table 2. One can
observe that facial attractiveness and likeability are highly corre-
lated with each other as well as with agreeableness,
openness and extroversion. This can be explained by the “Halo
Effect” [43], i.e., the raters tend to assign good attributes to the
person they like or find attractive. Especially, likeability shows
high positive correlation with agreeableness. Among the Big
Five dimensions, agreeableness, extroversion and openness are

TABLE 1
Measure of Agreement among the Selected Raters in Terms of
Mean Pearson’s Correlation (r) and Mean Cronbach’s Alpha (a)

across Different Modalities

Visual-only Audio-only Audio-visual

r a r a r a

AG 0.47(0.40) 0.85(0.81)� 0.27 0.01 0.47(0.30) 0.70(0.48){

CO 0.38(0.17) 0.79(0.61)� 0.24 0.22 0.56(0.35) 0.77(0.47)�

EX 0.46(0.39) 0.85(0.81)� 0.47 0.64{ 0.53(0.43) 0.78(0.62)�

NE 0.44(0.35) 0.87(0.82)� 0.41 0.30 0.49(0.18) 0.75(0.21)�

OP 0.42(0.27) 0.80(0.70)� 0.35 0.12 0.56(0.22) 0.71(0.10)�

FA 0.45(0.28) 0.82(0.70)� - - 0.43(0.26) 0.68(0.42){

VA - - 0.20 0.17 0.63(0.36) 0.85(0.56)�

LI 0.46(0.36) 0.84(0.70)� 0.05 0.05 0.50(0.19) 0.72(0.31)�

The values in the parentheses indicate the level of consensus before eliminating
the outliers. While � indicates good internal consistency (0:7 � a < 0:9), {

indicates acceptable values (0:6 � a < 0:7). AG: Agreeableness, CO: Consci-
entiousness, EX: Extroversion, NE: Neuroticism, OP: Openness, FA: Facial
Attractiveness, VA: Vocal Attractiveness, LI: Likeability.

Fig. 3. Mean correlations for all subject’s annotations per dimension
(audio-visual condition). Correlations between multiple annotations differ
across different subjects and different agents.
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the ones that are highly correlated with each other. Unlike
what was reported in [18], we could not observe any signifi-
cant differences in the correlations between the dimensions
across visual-only and audio-only/audio-visual conditions.
Similar patterns of correlation seem to occur regardless of the
annotation condition.

5 FEATURE EXTRACTION

In the literature, a multitude of features have been proposed
and used for describing and measuring human behaviour.
For visual cues, we are motivated by approaches for recog-
nising face/head gestures [44] and for predicting affective
states [45] in video sequences. In particular, we captured
the face/head and body movements considering both spa-
tial and spatio-temporal appearance features (e.g., Zernike
moments, gradient and optical flow) and geometric features
(e.g., spatio-temporal configuration of facial landmark
points). In addition to visual cues, we represented the audio
cues using the well-known features such as short-term aver-
age energy and Mel-Frequency Cepstral Coefficients.

5.1 Visual Features

We first detected and tracked 49 landmark points per frame
using the face landmarking tool developed by Xiong and De
la Torre [46]. It applies Supervised Descent Method for non-
linear least squares problems and Scale Invariant Feature
Transform (SIFT) features for face alignment. For feature
extraction, we only considered a subset of landmarks that
play a prominent role in identifying face gestures. This sub-
set consists of 21 landmark points including eye corners, eye-
brow corners, eye lids, nostril andmouth corners.We further
used the tracked landmark points to capture face, head and
body movements. In the following subsections, we describe
the details of the visual features extracted under three cate-
gories: appearance, geometric and hybrid features.

5.1.1 Appearance Features

We considered two types of appearance features, for
describing the face activity and the body activity.

Face Activity. We used the tracked landmark points to
determine a rectangle enclosing the face, to crop faces based
on these rectangles, and to align the faces based on the coor-
dinates of the eye centers using affine transformation. The
cropped and aligned faces were resized such that each face

has the size of 128� 128. For each frame, we computed the
histograms of Quantised Local Zernike Moments (QLZM)
[47]. We first calculated and quantised a set of Zernike
Moments in the neighbourhood of each pixel of an input face
image where each ZM describes local appearance variation
at a unique scale and orientation, and formed a QLZM
image. The QLZM image was then divided into subregions
with respect to two grids, an inner partition and an outer par-
tition. The double partition aims to mitigate the errors due to
face alignment. A position-dependent histogram was com-
puted for each subregion, and each face was represented by
concatenating these local histograms. In our experiments, we
partitioned the face by applying a 5� 5 outer grid and a
4� 4 inner grid, and considered two ZMs that yield a 16-bin
histogram. This resulted in a 656-length feature vector per
face (or frame) and a 656� T feature matrix per clip, where
T is the number of frames in a clip.

Body Activity. The coordinated movement between head
and shoulders, and postural changes form a rich source of
information for understanding human behaviour. To cap-
ture these bodily cues, we detected and tracked the box
enclosing the upper body over T frames. We used the off-
the-shelf Calvin upper detector [48] to determine the candi-
date boxes enclosing the upper body. Calvin upper body
detector [48] searches for upper bodies within an image by
using a sliding window based on the deformable part based
models [49], where each part is described by HoG and classi-
fied using SVMs. As in [48], we refined the upper body boxes
by combining them with the face detection using the land-
mark locations. We encoded the dynamics of the upper body
by extracting and collecting pyramids of HoGs [50] over T
frames. The pyramid of HoGs [50] extends the classical
HoG [51] by a hierarchical spatial representation. First, a
HoG is computed for the whole image which is then divided
into four non-overlapping blocks. At each level, it recur-
sively divides the blocks into sub-blocks, each arranged in
a 2� 2 grid, and computes HoG for each block. The final
representation is obtained by concatenating the position-
dependent HoGs from different levels. In our experiments,
we considered 8-bin orientation histograms in a one-level
pyramid. This resulted in a 40-length feature vector per
frame and a 40� T featurematrix per clip.

5.1.2 Geometric Features

We extracted two types of geometric features based on the
time trajectory and the spatial configuration of the landmark
points. Each landmark point generates a motion pattern in
space and in time that can be used to simultaneously cap-
ture eye/eyebrow/mouth movements (e.g., eye blinking,
eye raising, smiling) and head movements (e.g., head nod-
ding, shaking). To model these motion patterns, we used
the spatial and temporal relative distances between the
landmark points as proposed in [11], [44]. First, the 21 land-
marks points tracked over T frames were stored into a
42� T trajectory matrix where each column corresponds to
the x and y coordinates of the landmark points. To render
the landmark point trajectories independent from their
initial position, we took into account the relative displace-
ments of the landmark points with respect to the first frame
by subtracting the first column of the trajectory matrix
from every column. Secondly, we computed 11 distance

TABLE 2
Significant Correlations among the Dimensions in the

Visual-Only Condition (VO), in the Audio-Only Condition (AO)
and in the Audio-Visual Condition (AV)

Visual-Only Agreeableness-Openness
Agreeableness-Likeability
Facial Attractiveness-Likeability

0.42
0.44
0.42

Audio-Only Agreeableness-Likeability
Extroversion-Likeability
Extroversion-Openness
Openness-Likeability

0.41
0.43
0.40
0.46

Audio-Visual Agreeableness-Openness
Conscientiousness-Vocal Attractiveness
Facial Attractiveness-Likeability

0.44
0.57
0.40

All correlations found to be significant (p < 0:05). The value in bold repre-
sents strong positive relationship (�p < 0:01).
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measures between pairs and groups of landmark points and
accumulated these distances over T frames into a 11� T
distance matrix in order to capture the eye/eyebrow, mouth
and head movements from one frame to another. For exam-
ple, eye/eyebrow actions such as eye blinking, eyebrow
raising and head movements such as forward/backward
movement, and head yaw can be described in terms of the
relationships between eyelid centres, eye/eyebrow corners,
and mouth shape. Speaking activity can be inferred by the
configuration of the mouth landmark points. The pairwise
distances between the landmark points are not scale invari-
ant, therefore we normalized the distances with respect to
the inter-ocular distance (distance between the inner eye
corners) in each frame.

5.1.3 Hybrid Features

As an alternative descriptor for face activity, we combined
local appearance and motion information around the facial
landmark points. More explicitly, we computed Histogram
of Gradient and Histogram of Optical Flow (HoF) in the
spatio-temporal neighbourhood of the landmark points and
concatenated these histograms into a single feature vector
(HoGF). Extension of HoG and HoF to the temporal domain
results in a position dependent histogram [52]. The local
neighbourhood of a detected point is divided into a grid
withM �M �N (i.e., 3� 3� 2) spatio-temporal blocks. For
each block, 4-bin gradient and 5-bin optical flow histograms
are computed and concatenated into a 162-length feature
vector. We calculated HoGF values for left/right eye centers
and mouth centers at two spatial levels, i.e., we considered

two spatial scale parameters, s2 ¼ 4; 8, and set the temporal

scale parameter to 2, t2 ¼ 2. This resulted in 972-length fea-
ture vector per frame and, by accumulating over T frames, a
972� T feature matrix per clip. Rather than a hand-crafted
representation, these features provide a unified representa-
tion for the local information of the facial parts (e.g., eyes,
mouth) both in the space and the time domain.

5.2 Audio Features

Mel Frequency Cepstral Coefficents (MFCCs) and short-
time average energy (STAE) are essential features in auto-
matic speech and speaker recognition, and their viability
has been frequently demonstrated for affect analysis [11]
and personality trait analysis [6]. MFCCs can be interpreted
as a speech signature. We extracted the MFCC features by
using the Praat tool [53] that has been widely used in auto-
matic affect recognition. In our study, we applied a 40 ms-
long window with a time step of 20 ms. We selected 12
MFCC features and, based on the selected MFCC features,
computed delta MFCC and autocorrelation MFCC features

as follows. Let MFCCnðiÞ be the nth MFCC coefficient of the
time segment i, delta MFCC features are calculated as
DMFCCnðiÞ ¼ DMFCCnðiÞ � DMFCCnðiþ 1Þ and autocorre-

lation MFCC features as ACMFCCl
nðiÞ ¼ 1

L

PiþL
jþi ðMFCCnðjÞ �

MFCCnðjþ lÞÞ where L and l are the correlation window
length and the correlation lag, respectively. In addition to
MFCC features, we computed the short-time average energy.
We set the length of time window to 40 ms in our experi-
ments. In total, this resulted in 37 audio features per frame
and, for T frames, a 37� T featurematrix per audio clip.

6 AUTOMATIC PREDICTION

We employed the extracted visual and audio features (Sec-
tion 5) to train a separate regression model for each dimen-
sion. We modelled the time-continuous nature of the audio-
visual behavioural data and inferred the rating trajectory
using Bidirectional Long Short-Term Memory Networks
(BLSTM) [54] that have been widely used for time-series
prediction in automatic speech recognition [55], emotion
classification [56] and continuous affect prediction [11].

6.1 Unimodal Prediction

We employed Bidirectional Long Short-Term Memory Net-
works (BLSTM) [54] to establish a relationship between a tar-
get rating trajectory (e.g., each has a size of 1� T ) and the
input features extracted from the whole clip (e.g., each has
a size of d� T ). Long Short-Term Memory Networks
(LSTM) [57], [58] are an extension of Recurrent Neural Net-
works (RNN) that are well able to deal with sequential pat-
terns. Unlike traditional artificial neural networks, RNNs
include self-connected hidden layers that allow mapping
from the current time instant to the output by taking into
account preceding inputs (past) and also the succeeding
inputs (future). The term bidirectional indicates reaching
both directions (past and future) that is achieved by two sep-
arate hidden layers scanning the input sequences forward
and backward. One drawback of RNNs is the vanishing gra-
dient problem [59], [60] - the back-propagated error decays
or blows up exponentially in time, which restricts the extent
of access to past and future inputs. LSTM was specifically
developed to remedy such shortcomings of RNNs.

An LSTM hidden layer (memory blocks), consists of one
or more recurrently connected cells whose activation is con-
trolled by three multiplicative gates, i.e., the input gate, for-
get gate and output gate. These gates enable the cells to store
and access the past and future inputs over longer time scales.
While the forget gate controls the recurrent connection of the
cell, the input and output gates control the input and output
of the cell. As long as the input gate is closed, the new inputs
will not be transferred to the activation of the cell. Similarly,
the activation of the cell can be made available to the rest
of the network by opening the output gate. The network
structure representing Bidirectional LSTM (BLSTM) emp-
loyed in this work is provided in Fig. 1 (see Unimodal pre-
diction: BLSTM). The advantage of BLSTM is that its hidden
layers are designed to encode the sequential relationship
over longer time scales and its structure allows to take into
preceding inputs (past) and the succeeding inputs (future)
when predicting the current output [61].

In Section 5, we introduced six feature types, namely,
visual QLZM, HoGF, configuration, trajectory, PHoG and
MFCC+STAE. In our experiments, we used these features to
train unimodal regression models using both unimodal
labels (visual-only/audio-only) and multimodal labels
(audio-visual). More explicitly, unimodal prediction with
unimodal labels learned a separate regression model for
unimodal features and unimodal labels by modelling the
relationship between visual features and visual-only labels,
and between audio features and audio-only labels.Unimodal
prediction with multimodal labels learned a separate regression
model for unimodal features and multimodal labels by
modelling the relationship between visual features and

ÇELIKTUTAN AND GUNES: AUTOMATIC PREDICTION OF IMPRESSIONS IN TIME AND ACROSS VARYING CONTEXT: PERSONALITY,... 9
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audio-visual labels, and between audio features and audio-
visual labels.

6.2 Multimodal Prediction

Multimodal prediction, in our case, is based on decision-
level fusion, and it combines visual features and audio fea-
tures at the decision level. Most of the methods in the litera-
ture (e.g., [27], [35], [62]) pooled visual and audio features
and fed them into one classifier or regressor (i.e., feature-
level fusion). We opted for decision level fusion as the fea-
tures from different modalities have different representa-
tions yet decisions all have similar representation. This
renders the decision-level fusion more applicable and
straightforward than feature-level fusion in our case. As
shown in Fig. 1 (see Multimodal Prediction), we combined
the predictions from each unimodal regression model into a
matrix which was then fed into the BLSTM for the final pre-
diction. Our approach can also be interpreted as a hierarchi-
cal regression in that, at the first step, each feature type is
treated separately, and at the second step, the individual
predictions from different models are fused.

In our experiments, we combined each type of the visual
features with the audio features at the decision level (e.g.,
HoGF and MFCC+STAE, PHoG and MFCC+STAE, etc.).
More explicitly, we fused the unimodal prediction outputs
and mapped them onto the multimodal labels.

7 EXPERIMENTS AND RESULTS

In this section, we examined prediction results with respect
to the role of annotation conditions, features, decision-level
fusion and situational contexts for automatic prediction.

7.1 Experimental Setup and Evaluation Metrics

Prior to any analysis, we applied feature normalisation so
that the range of feature values were rescaled to ½�1; 1�. We
learned the optimum parameters for BLSTM by using the
leave-one-subject-out cross validation strategy, where in each
fold we used 27 clips for training and validation, and the
remaining three clips for testing. We used the same training

parameters as proposed in [11], i.e., we used a network with

one hidden layer and set the learning rate to 10�4. The opti-
mum momentum parameter for each dimension was
selected from the range of values (½0:5; 0:9�).

We used two metrics for experimental evaluation and
performance comparison of the methods introduced in Sec-
tion 6, namely, coefficient of determination (R2) and mean

square error (MSE). R2 measures how well the learned
model fits the unseen samples and yields a value between 0
and 1 where larger values indicate better fit. MSE gives the
average of the squared errors. Since we applied z-score nor-
malization when generating the ground-truth, MSE values
can vary between 0 and 4. These metrics are widely used for
prediction and are described in detail in [40].

7.2 Prediction Results

Experimental results for the proposed regression approaches
described in Section 6 are given in Tables 3 and 4.We consid-
ered the best result to be the prediction yielding the maxi-
mum coefficient of determination (R2) and the minimum
error (MSE). Looking at Tables 3 and 4, all dimensions have
been successfully predicted using the proposed time-series

regression approach (R2 > 2 and MSE < 0:6) with the
exception of extroversion and facial attractiveness. This result is
especially surprising for extroversion as this trait has been
the easiest trait to recognise/predict in the literature. We
further examined the prediction results with respect to the
role of different labels (visual/audio-only versus audio-
visual), features in predicting each dimension and the contri-
bution of the decision-level fusion.

7.2.1 The Role of Different Labels and Features

Unimodal labels versus Multimodal labels. Table 3 compares
two unimodal prediction approaches, namely, unimodal
prediction with unimodal labels and unimodal prediction
with multimodal labels, with respect to each feature type.
One can observe that the proposed time-series regression
approach yielded superior prediction results when trained
with audio-visual labels (R2

av ¼ 0:22 with PHoG features)
as compared to when trained with visual-only/audio-only

TABLE 3
Unimodal Prediction Results

Unimodal Prediction with Unimodal Labels Unimodal Prediction with Multimodal Labels

AG CO EX NE OP AT LI av AG CO EX NE OP AT LI av

Face
QLZM R2

MSE
0.05
0.48

0.08
0.42

0.04
0.47

0.05
0.41

0.05
0.45

0.08
0.43

0.06
0.47

0.06
0.45

0.18
0.51

0.33
0.49

0.06
0.68

0.23
0.49

0.11
0.75

0.08
0.54

0.18
0.55

0.17
0.57

HoGF R2

MSE
0.08
0.48

0.07
0.38

0.13
0.44

0.13
0.34

0.05
0.47

0.13
0.37

0.13
0.45

0.10
0.42

0.22
0.53

0.41
0.38

0.07
0.62

0.20
0.57

0.23
0.75

0.14
0.45

0.19
0.60

0.21
0.56

Face
& Head

Trajec. R2

MSE
0.04
0.44

0.02
0.31

0.04
0.40

0.12
0.41

0.04
0.45

0.08
0.36

0.12
0.39

0.06
0.39

0.21
0.50

0.30
0.43

0.08
0.65

0.20
0.47

0.23
0.61

0.08
0.45

0.17
0.62

0.18
0.53

Config. R2

MSE
0.10
0.38

0.05
0.31

0.09
0.36

0.09
0.40

0.02
0.39

0.06
0.38

0.10
0.41

0.07
0.38

0.23
0.47

0.33
0.44

0.07
0.55

0.20
0.45

0.13
0.71

0.16
0.41

0.25
0.45

0.20
0.50

Body
PHoG R2

MSE
0.07
0.46

0.07
0.35

0.02
0.44

0.17
0.30

0.07
0.39

0.16
0.32

0.14
0.39

0.10
0.38

0.19
0.60

0.39
0.39

0.10
0.69

0.26
0.45

0.25
0.59

0.14
0.43

0.22
0.50

0.22
0.52

Audio MFCC+
STAE

R2

MSE
0.09
0.44

0.06
0.49

0.12
0.59

0.05
0.67

0.09
0.63

0.07
0.43

0.14
0.54

0.09
0.54

0.10
0.51

0.27
0.47

0.05
0.61

0.17
0.45

0.19
0.56

0.31
0.47

0.21
0.52

0.18
0.51

The best prediction results per dimension are highlighted in bold for unimodal prediction with unimodal labels and unimodal prediction with multimodal labels.
AG: Agreeableness, CO: Conscientiousness, EX: Extroversion, NE: Neuroticism, OP: Openness, AT (visual-only): Facial Attractiveness, AT (audio-only): Vocal
Attractiveness, LI: Likeability, av: average over all dimensions.
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labels (R2
av ¼ 0:10 with PHoG features). Personality percep-

tion was modelled better in the presence of more informa-
tion. Learning with audio-visual labels especially benefited
the prediction of conscientiousness and openness. Raters
emphasized that these dimensions were very difficult to
annotate without audio. As expected, the prediction results
significantly improved for conscientiousness and openness up

to R2
CO ¼ 0:41 and R2

OP ¼ 0:25, respectively, while we

obtained R2 values lower than 0:1 with visual-only labels.
On the other hand, for extroversion, mapping visual features
onto visual-only labels yielded slightly better results

(R2
EX ¼ 0:13 with HoGF features) as compared to audio-

visual labels (R2
EX ¼ 0:10 with PHoG features). None of

the dimensions were successfully modelled using audio
features (MFCC+STAE) and audio-only labels except

for extroversion and likeability (R2
EX ¼ 0:12 and R2

LI ¼ 0:14).
This might be due to the fact that we had less number of
raters in the audio-only annotation than in the visual-only
and the audio-visual annotations and therefore lower level
agreement was obtained between raters. Table 1 also vali-
dates this - all Crobach’s alpha values are found to be lower
than 0:6 in the audio-only annotation with the exception
of extroversion dimension.

Features. Taking into consideration the results of unimodal
predictionwithmultimodal labels in Table 3, PHoG body fea-
tures (R2

av ¼ 0:22 andMSEav ¼ 0:52) work best in general for

time-continuous prediction where HoGF (R2
av ¼ 0:21 and

MSEav ¼ 0:56) and configuration (R2
av ¼ 0:20 and MSEav ¼

0:50) are among the face features that can be considered as a
runner-up. QLZM face features yielded the worst prediction

results (R2
av ¼ 0:17 and MSEav ¼ 0:57), which might be due

to the fact that QLZM requires a preprocessing stage where
the faces are aligned and cropped based on the location of the
eye centres. This method is simple but prone to localisation
errors. Any misalignment might cause deteriorations in pre-
diction accuracy for the time-series regression which relies on
learning the temporal dependencies between frames rather
than treating each frame separately.

While PHoG body features worked better for the predic-
tion of neuroticism, openness and extroversion, the best predic-
tion for facial attractiveness and likeability was achieved using
the configuration of landmark points. This finding confirms
what has been reported in the related literature on facial
beauty analysis [63], [64] and facial attractiveness analysis [65]
- facial proportions and features extracted based on geome-
try play an important role in assessing attractiveness. Consci-
entiousness was best predicted by facial cues (HoGF) where

R2
CO ¼ 0:41 andMSECO ¼ 0:38. This result may be due to the

fact that the raters might have focused on the face activity
changes rather than focusing on the global appearance
changes (body cues). Another important relationship was
observed between audio features and audio-visual labels

for vocal attractivenesswhereR2
AT ¼ 0:31 andMSEAT ¼ 0:47.

7.2.2 Impact of Decision-Level Fusion

In Table 4, we only present three pairwise combinations that
yielded the maximum coefficient of determination (R2) and
the minimum error (MSE) among all possible combinations
of features.We compare themwith the best results of unimo-
dal prediction with multimodal labels in Table 3, which are

given in Table 4 as well. Combining configuration or PHoG
features with audio features is found to be the best solution
for predicting conscientiousness, neuroticism and likeability. In
general, prediction results are slightly improved when con-
figuration features are combined with audio features at the

decision level (R2
av ¼ 0:24 and MSEav ¼ 0:51). However,

only for openness and extroversion, unimodal prediction
approach works better as compared to multimodal predic-
tion. This might be due to the fact that visual cues that are
conveyed and perceived in the course of impression forma-
tion play amore dominant role in predicting extroversion.

7.2.3 Effect of Situational Context

We also investigated the effect of different situational con-
text, namely, interaction with the three different virtual
agents (Poppy, Obadiah and Spike), on the automatic predic-
tion results. Fig. 4 illustrates the automatic prediction
results with respect to each virtual agent in terms of R2. For
this analysis, we took into account the multimodal predic-
tion results with configuration features and audio features

in Table 4, which provided the highest R2
av ¼ 0:24 and the

lowest MSEav ¼ 0:51. In general, a better relationship
between the automatic prediction and the situational con-
text was established for Poppy. This shows that people dis-
play more visible and observable cues when interacting
with Poppy and then Obadiah, but are less expressive in their
behaviours when interacting with Spike. Interactions with
Poppy and Obadiah are more prominent especially for the
likeability dimension.

8 DISCUSSION AND CONCLUSIONS

This paper proposed a novel multimodal framework for
automatically predicting the impressions of agreeableness,
openness, neuroticism, conscientiousness, extroversion, facial
attractiveness, vocal attractiveness and likeability continuously
in time. We aimed at exploring the variability in impres-
sions across different communication channels (i.e., visual-
only, audio-only and audio-visual) and across different situ-
ational contexts.

Conclusions. Our work contributes to the existing litera-
ture of personality computing in multiple ways. We
obtained continuous annotations where external observers
watched or listened to clips of an individual subject and
provided their impressions of a given dimension as the clip

TABLE 4
Multimodal Prediction Results

AG CO EX NE OP LI av

Unimodal
Prediction

R2

MSE
0.23
0.47

0.41
0.38

0.10
0.69

0.26
0.45

0.25
0.59

0.25
0.45

0.22
0.52

HoGF +
MFCC+STAE

R2

MSE
0.17
0.54

0.44
0.35

0.05
0.76

0.16
0.49

0.18
0.64

0.19
0.55

0.20
0.55

Config. +
MFCC+STAE

R2

MSE
0.24
0.49

0.39
0.42

0.04
0.69

0.32
0.39

0.15
0.61

0.28
0.44

0.24
0.51

PHoG +
MFCC+STAE

R2

MSE
0.17
0.49

0.50
0.34

0.06
0.76

0.26
0.48

0.23
0.57

0.23
0.51

0.24
0.52

The best prediction results per dimension are highlighted in bold. AG: Agree-
ableness, CO: Conscientiousness, EX: Extroversion, NE: Neuroticism, OP:
Openness, LI: Likeability, av: average over all dimensions.
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played. We collected multiple annotations under varying
situational context for each subject separately as well as
under different observed modalities. At the next level, we
developed a dynamic framework for predicting the impres-
sions. We first extracted a set of visual and audio features to
represent each clip and then mapped these features onto
the continuous annotations using a time-series regression
method (BLSTM). Our experimental results demonstrated
that multimodal regression is well capable of modelling the
extracted features and the audio-visual labels for all dimen-
sions except for extroversion and facial attractiveness. We also
performed decision-level fusion by combining individual
regression outputs obtained from visual and audio features
and further improved the prediction of conscientiousness,
neuroticism and likeability. We show that varying situational
context causes the manifestation of different facets of peo-
ple’s personality. In order to obtain a complete assessment
of the observed individual’s behaviour and personality, one
needs to have in hand multiple displays of the observed
subject from audio and visual channels together.

Situational context affects both the raters’ perceptions and
the automatic predictions. The correlation between the rate-
rs’ multiple annotations for the same subject in Fig. 3
revealed that the raters’ impressions do not change as much
as for conscientiousness, openness and likeability as compared
to those for agreeableness, extroversion and facial attractiveness
from one context to another. Our automatic prediction
results also support this phenomenon as, in Table 3, we
obtained lower prediction performance for extroversion and
facial attractiveness compared to conscientiousness, openness
and likeability. The analysis with respect to the virtual agents
(Fig. 4) showed that a better relationship between automatic
prediction and situational context was established for Poppy
and for Obadiahwith the audio-visual labels. This confirmed
that subjects interacting with Poppy and Obadiah were per-
ceived as more active and expressive, however their cues
were more subtle when interacting with Spike. Similarly,
Batrinca et al. in [30] obtained relatively better personality
recognition performance in one of the collaborative contexts.
Kalimeri et al. [32] also confirmed the role of social context
(i.e., e-mail) in understanding extroversion and conscientious-
ness, while for the other dimensions (agreeableness, neuroti-
cism, openness) such an evidence was not found.

In the literature, the only temporal modelling attempt
was proposed by Staiano et al. [29]. Their experimental
results showed that extroversion was better modelled using
HMMs rather than a non-sequential technique. Our experi-
mental results instead showed that, in general, time-
continuous prediction is better suited for the dimensions
of agreeableness, conscientiousness, neuroticism, openness, vocal
attractiveness and likeability.

Note that most of the results published in the literature are
not directly comparable to one another, as the annotation pro-
cedure, the data used and the performance evaluationmetrics
employed are all different. Although the data partition proto-
col is different, we compare our prediction results with the
baseline results made available as part of the MAPTRAITS
2014 Challenge [40] (CORav ¼ 0:17 and MSEav ¼ 0:59) as
well as the best 6-fold cross validation results on the training
set provided by Kaya and Salah in [66] (CORav ¼ 0:17 and
MSEav ¼ 0:45). In our work, we used BLSTM to map the
visual and audio features onto the audio-visual labels and
combined them at the decision-level. This seems to be a prom-
ising approach for time-continuous prediction of observers’
impressions as we obtained CORav ¼ 0:31 andMSEav ¼ 0:51
over all dimensions.

The proposed approach predicted conscientiousness
(R2

CO ¼ 0:50) best using decision-level fusion. The other
dimensions predicted with high accuracy were neuroticism

and vocal attractiveness (R2
NE ¼ 0:32 andR2

VO ¼ 0:31) and also

large R2 values were obtained for agreeableness, openness and

likeability (R2
AG ¼ 0:24, R2

OP ¼ 0:25 and R2
LI ¼ 0:28). Biel and

Gatica-Perez presented their personality prediction results

in terms of R2 in [27]. Although we calculated R2 metric dif-

ferently from [27], i.e.,R2 was calculated per clip and then an
average was taken over all of the 30 clips, we compared our
results with the results provided in [27] to get an idea on the
overall performance of the proposed time-continuous per-
sonality prediction approach. In contrast to our results,
in [27], fusing visual and audio cues was found to be the best

approach in predicting extroversion (R2
EX ¼ 0:41). However,

R2 values obtained were lower than 0:20 for the rest of the
dimensions.

Limitations. Despite the notable contribution of the pro-
posed approach, collecting annotations in a time-continuous
manner by employing raters is a very tedious task. We had a
limited number of raters due to this reason, which resulted
in unbalanced annotations across visual-only, audio-only
and audio-visual annotations. Having less raters for audio-
only annotation and for audio-visual annotation was due to
the fact that the raters reported the annotation with audio to
be much easier as compared to the visual-only annotation.
In general, they felt more confident about their judgements
both in the audio-only annotation and in the audio-visual
annotation. However, Table 1 shows that the agreement
among audio-only raters was found to be significantly
lower. This might be the main reason that the proposed
approach performed poorly in learning the relationships
between audio features and audio-only labels (see unimodal
prediction results in Table 3).

Our experimental data is rich in terms of annotation
conditions, the number and type of dimensions, however
there is a limited number of subjects and clips due to the

Fig. 4. Multimodal prediction results in terms of R2 with respect to the
three agents (Poppy, Obadiah and Spike). AG: Agreeableness, CO:
Conscientiousness, EX: Extroversion, NE: Neuroticism, OP: Openness,
LI: Likeability.
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challenges in collecting time-continuous annotations. There-
fore there might be a possibility of overfitting, especially,
when high-dimensional features were used. Our expecta-
tion was to obtain better prediction results with QLZM
and HoGF features, however, these features performed
slightly poorly as compared to the features that have lower
dimensionality.

Although extroversion has been frequently reported to
be the easiest dimension to recognise or predict, the time-
continuous prediction approach cannot model this dimen-
sion accurately. Extroversion has been found to be dynamic
and fluctuating over time by all raters. Fig. 3 also shows that
extroversion, facial attractiveness and agreeableness dimensions
differ more from one context to another. Taking into consid-
eration the results of unimodal prediction with multimodal
labels in Table 3, the worst prediction results were obtained
for extroversion (R2

EX ¼ 0:10) and facial attractiveness (R2
FA ¼

0:16), respectively. Due to the limited number of clips, our
approach might not be able to capture high-frequency
changes over time as well as differences across varying con-
texts for extroversion and facial attractiveness.

Future Work. Crowd-sourcing platforms have been
widely used to obtain large number of data annotated
simultaneously in shorter durations of time. Therefore, as a
next step, we plan to increase the number of clips and raters
using crowd-sourcing techniques. Another promising
research direction would be investigating the impact of dif-
ferent time slices (20 s, 30 s, 45 s etc.) on the prediction tasks,
as proposed in [5].
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