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Affective Robots

Healthcare Service

Elderly care Companion

m:m UNIVERSITY OF
“§ CAMBRIDGE

Need for Adaptation

Equipped with
Learning Models

Extend learning with Adapt to different user

Interact and adapt. .
other users. demographics.
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Traditional Approaches vs. Continual Learning

Traditional Approaches Continual Learning

* Models trained in isolation on benchmark * Agents acquire and integrate knowledge
datasets. incrementally about changing

» Large datasets enable generalisation across environments.
contexts. * Data only made available sequentially.

* Training data might be very different from * Highly sensitive towards changing data
application scenarios. conditions.

* Generalisation comes at the cost of learning * Adaptations in learning to avoid forgetting.

individual differences. . CL Problem Formulation:

* Cumbersome to retrain and update models. New Data Task Updated Experience
ob :,L ' {
A7 (b, ey My _a,t) — (ha, M)
b t N

Model Experience Improved Model

>~ UNIVERSITY OF

T. Lesort et al., “Continual learning for robotics: Definition, frame- work, learning strategies, opportunitiesand challenges,”

C AM B Rl D G E Information Fusion, vol. 58, pp. 52-68, 2020.

Continual Learning for Affective Robotics

User (C,):
Age: 30-40
Gender: Female
Personality: Extrovert

User (C,):
Age: 60-70
Gender: Female
Personality: Introvert
Condition: Arthritis

Context (T)): ‘
Snilainans Ui Rasin NI NI Context (T,):
Objective: Home_Assist A K Environment: Care_Home
’ . Objective: Care_Assist
Task (t): R r
Task: Engagement A ® . Task (t,):
1 ' Task: Medicine Reminder
‘NC r ‘ NC,
' '
User (C,): : — 4 .
Age: 38 \ I 4 User (C,):
Gender: Female s ’ - 10-
Personality: Introvert N v ég:.dl?: 1Mzale

Condition: Knee Injury Personality: Extrovert

Context (T ):

Environment: Care_Indoor
Objective: Care_Assist

Task (t):
Task: Boosting Mood

Context (T ) :

Environment: Study Ream
Objective: Learn_Assist

Task (t,):
Task: Quiz

Ni: New Instances
NC: New Cancepts
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Challenges and Recommendations

Gathering Person-specific Data

Why? How?

+ Interactions are the only * Conduct introductory
source of data. interaction rounds
enable collecting
+ Initial interactions additional data.
impacted due to slow
learning. » Use a generative model to
simulate additional
* User specific data person-specific data for
unavailable before any augmenting learning.
interaction.

UNIVERSITY OF
CAMBRIDGE

Challenges and Recommendations

Obtaining Ground Truth

Why? How?

* Human affect is subjective. Learn Normative Baselines
« Contextually neutral
* Ground truth changes interactions provide a
with users and contexts. baseline for measuring

human behaviour.

* Unsupervised learning
may be intractable in Learn Semantic Associations

real-time. * Group users based on
person-specific attributes
to speed up learning.

UNIVERSITY OF
CAMBRIDGE
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Challenges and Recommendations

Learning without Task Boundaries

Why? How?

¢ Human interactions are Learn Contextual Attributions
fluid and toggle between * Context-aware
contexts. embeddings enable
distinguishing between
* Robots need robust and task boundaries.

quick context-switching.
» Context attributes (e.g.

* Contextual attributions environment) facilitate
required for learning may context-switching.
overlap.

UNIVERSITY OF
CAMBRIDGE

Conclusion

* Real-world interactions are complex and
unpredictable

+ Affective Robots need to adapt on-the-fly
* personalisation and behaviour adaptation

» Continual Learning enables perpetual evolution
of robot capabilities

UNIVERSITY OF
CAMBRIDGE
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Learning Social Appropriateness of Robot
Actions

Jonas Tjomsland?, Sinan Kalkan2, and Hatice Gunes!
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2 Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
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Social Appropriateness of Domestic Actions

Should | start
vacuuming
now??

17
Use of Space in Social Interactions
e T

a) Circular arrangement b) Vis-a-vis arrangement ) L-arrangement d) Side-by-side arrangement

concentric zones around each individual

associated to different kinds of interaction Free standing conversations (F-formations)

Source: Vinciarelli, Pantic, and Bourlard 2009 Source: http://profs.sci.univr.it/~cristanm/ssp/
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Synthetic Dataset Generation

[ Feature | Variable type ] Range | R - Robot
Operating within circle Int 0orl H= e
Radius of action circle Float 0.5 —3 :::.[il
Operating in the direction of an arrow Int Oorl o
Number of humans Int 0—+9
Number of children Int 0—2 i \@Aﬁ
Distance to closet child Float 04—6 & 9
Number of animals Int Oorl
Distance to animal Float 04 —6
Number of people in a group Int 25
Group radius Float 0.50 — 1
Distance to group Float 0—6
Robot within group? Int Oorl
Robot facing group? Int Oorl
Distance to 3 closest humans 3 x Float 03—=5
Direction robot to 3 closest humans 3 x Float 0.0 = 360.0
Direction closest human to robot Float 0.0 — 360.0
Robot facing 3 closest humans? 3 x Int 0or |
3 closest humans facing robot? 3 x Int Oorl
Number of people sofa Int 0—2
Playing music? Int Oorl
Total number of agents in scene Int 1—11

19

Synthetic Data Generation

——
v e
PO ]

Someone on the sofa

Group

Animal

Robot

An example scene of the simulated living room environment.

20
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Vacuum cleaning

Carry warm food

—

Carry drinks

Y

Carry small objects

ar

Robot Actions

Within a circle

Mopping the floor

o
%

Carry cold food

Carry big objects

—

Cleaning (Picking up
stuff)

In the direction of an arrow
Vacuum cleaning Mopping the floor

£

O e

Carry warm food Carry cold food

Carry drinks Carry big objects
Y —

Carry small objects Starting conversation

a0

21

Dataset Annotation

Do you see any children or animals in the scene?

Please indicate the appropriateness

v Very
inappropriate  "N2PPropriate  Neutral - Approprate

Carry cold food

Carry drinks

Carry small objects (plates,
toys)

Carry big objects (tables,
chairs)

Starting conversation

Briefly describe the reasons for the social appropriateness ratings you
gave (- 1 sentence).

appropriate

The task as shown to the annotators on the crowd-sourcing platform.

22
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[ ] (]
Appropriateness w.r.t. Distance
4.0
o
0
=
w) 2
@ 3.5 Mopping the floor
2 L e e - s - old food, Carry drinks
Lr; " 8=t =277 el oA Carry warm food,Vacuum cleaning
'g. 30| ‘ o ; L & _» Carry big objects (tables, chairs)
= N B i e
8‘_ i Starting conversation
< % o
o -
?ﬂ //’ "/ Intimate space
a 25 SeT - A A
5 A S Personal space
2 L —"{/ ~ Social space
3 ,/' Public space
20
0.4 14 24 3.4 4.4 5.4
Distance from robot to closest human [m]

23

Appropriateness w.r.t Orientation

)
= 55 @ Starting conversation
»n | T i
g R e
= o0 ; Il Cary small obiec
2 TTwemteeecel TS Carry drink
&8 30 S — arry drinks,
a ™ Carry warm food
o
B
=3 et
L
o & g™ ‘5‘-._
D : WS o
::::: b 18 :
?:? ®~.. . g Mopping the floor
v “~~., Vacuum cleaning
< 20 Carry big objects (tables, chairs)

H - Human

T
(R} (R R-Robot

No facing Human facing Robot facing  Both facing
Facing directions between robot & closest human

o%s
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Visual Examples

Action: Vacuum cleaning Mopping the floor Carry warm food Carry cold food Carry drinks Carry small objects Carry big objects Cleaning
Actual label: 4.36 4.29 3.29 321 3.14 4.21 4.29 4.43

25

Continual Learning

Baseline | BNN Before training Trained on 1 task

Weight distribution similar at initialisation ~ * Learning rate based on weight uncertainty

2-tasks model | BNN-2CL

16-tasks model | BNN-16CL

Ebrahimi, Sayna, et al. "Uncertainty-guided Continual Learning with Bayesian P ; High variance - Highlearning rate

Neural Networks.“ ICLR 2019 ~——* ! Low variance - Low learning rate

26
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Results

18

16

14

12

10

Loss on test set
Loss on test set

=o— Task:
—o— Task:
=8~ Task:
== Task:
—e— Task:
—a— Task:

215

: 16

 — —— )~

Last trained task

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Last trained task

9

10
11
12
13
14

16 task model: RMSE 0.63 (on test set)

27
Testing
Action: Vacuum cleaning Mopping the floor Carry warm food Carry cold food Carry drinks Carry small objects Carry big objects Cleaning
Actual label: 1.57 1.57 2.50 3.00 3.07 2.79 1.64 243
BNN: 1.51 1.35 3.37 3.45 3.68 3.24 1.83 263
BNN-2CL: 1.07 1.16 3.46 2.67 3.89 2.99 1.91 2.04
BNN-16CL: 1.36 2.37 3.06 3.03 2.98 3.27 1.67 2.30
28
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Conclusions & Future Work

https://mars.nasa.gov/resources/25689/perseverance-is-roving-on-mars/

29
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Domain-incremental Continual Learning for Mitigating
Bias in Facial Expression and Action Unit Recognition

.

Ozgur Kara Nikhil Churamani Hatice Gunes
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Investigating Bias and Fairness in Facial
Expression Recognition

Tian Xu?, Jennifer Whitel, Sinan Kalkan2, and Hatice Gunes?!

1 Department of Computer Science and Technology, University of Cambridge, Cambridge, UK

2 Department of Computer Engineering, Middle East Technical University, Ankara, Turkey

2020 ChaLearn Looking at People workshop ECCV: Fair Face Recognition and Analysis
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BIAS IN VISION-BASED Al MODELS

* Dataset bias
 Algorithmic bias

use of Al for job applications

gender classification error rate by skin color

=. 1.7% 1.1% 3.3% 0% 23.2% 25.0%

11.9% 9.7% 8.2% 13.9% 32.4% 46.5%

51% 7.4% 8.2% 8.3% 33.3% 46.8%

Buolamwini & Gebru FAT* 2018, Slides from Joy Buolamwini
https://web.br.de/interaktiv/ki-bewerbung/en/

33

FAIRNESS IN EXPRESSION RECOGNITION

* Baseline approach
* Fairness through awareness
* Fairness through unawareness

Model: 18-Layer Residual Network (ResNet-18)

ResNet-18

| ol o
— JRLGL I AL 1L LTI o 5| Expression
o 8‘ Classification
le} |

T. Xu, J. White, S. Kalkan & H. Gunes, “Investigating bias andfairness in facial expression recognition,” in Computer Vision ~ECCV 2020 Workshops, pp. 506-523.

Task: Expression Classification

Loss Function: Cross Entropy

Image x;

34
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* Fairness through awareness

ResNet-18

>

* The Attribute-aware Approach 3 l
Q |
* Sensitive information as input g—' »»»»»»»»»»
Gender— |
Race —
Age —

Si

-
~

0000000000000) M

N

~

fo
Ie}
fe}
0
le}
Ie}
Q
Is}
te}
te}
te}

2 _(GG0066000600

hsS
2
<

©oD

Feature |
Representation

FAIRNESS IN EXPRESSION RECOGNITION

Expression

a
=
°
lassificati
E Classification

T. Xu, J. White, S. Kalkan & H. Gunes, “Investigating bias andfairness in facial expression recognition,” in Computer Vision ~-ECCV 2020 Workshops, pp. 506-523.

35
* Fairness through unawarenessy, gl
+ The Disentangle Approach oo 18 & (e
esiNet- (o} —
* Primary branch is for expression b o (4——‘Ge_nder'
classifiZation P o "J \l I : %C—lamﬁcmnj
R 0 v || Gende
« Parallel branches éﬁ N
= lo}
¢ Confusion S g Clasls)‘i?"lcceation
* Classification S &)'  Race
Feat & Clasé?f%gation
e Repreefe]rll{gtion g Co#l‘lg)gibjl ]
[1] Kusner, Matt J., et al. "Counterfactual fairness." 2017
36
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* RAF-DB!

* Gender: Male, Female

expression recognition in the wild.” 2017.

DATASET

* Expression: Surprise, Fear, Disgust, Happy, Sad, Anger and Neutral

* Race: Caucasian, African- American, Asian
» Age:0-3,4-19,20-39,40-69,70+ .

11, Shan, et al. “Reliable crowdsourcing and deep locality-preserving learning for

Surprised
1619 (10.55%) L

[ -
Disgusted
(&

Fearful
877 (5.72%)

355 (2.31%)

Happy

\ 5957 (38.84%) J

' Angry
N 867 (5.65%) J

37

Original

DATA AUGMENTATION

rotated

cropped

mirrored histogram
equalization

T. Xu, J. White, S. Kalkan & H. Gunes, “Investigating bias andfairness in facial expression recognition,” in Computer Vision ~-ECCV 2020 Workshops, pp. 506-523

38
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B
EVALUATION METRICS

e Accuracy
* The fraction of the predictions that the model predicted correctly

e Fairness
* Indicates whether a classifier is fair to the sensitive attributes

* Equal opportunity: the classifier should ideally provide similar results
(e.g. accuracy) across different demographic groups

Acc. of demog. group A Acc. of demog. group N
Fairness Measure = min g- 8roup . kit x 100%

Acc. of Dominant group Acc. of Dominant group

T. Xu, J. White, S. Kalkan & H. Gunes, “Investigating bias andfairness in facial expression recognition,” in Computer Vision ~-ECCV 2020 Workshops, pp. 506-523.

39

B
EXPERIMENTS: ATTRIBUTE-WISE ACCURACY

e The dataset is biased Without Augmentation With Augr.nentation
% Samples . Attri- . ‘ Attri- .
Baseline| aware |Disentangl/Baseline| aware [Disentangl|

e The disentangled Male | 43.7% 65.3 67.4 62.5 72.3 73.7 74.2
approach with Female | 56.3% 63.5 64.9 61.0 4.1 74.1 74.4
. Cau | 77.4% 65.9 68.3 63.4 74.7 74.9 75.6
aug;:nentaﬂon AA 7.1% 68.1 62.8 58.4 6.3 76.3 76.6
achieves the best Asian | 15.5% | 60.0 | 59.8 544 | 678 | 69.9 70.4
accuracy 0-3 | 5.5% | 63.6 59.9 56.7 80.2 71.9 65.0
4-19 | 16.4% 59.8 58.8 57.0 61.1 63.7 69.9
20-39 | 87.5% 65.9 68.2 62.9 74.9 15.8 76.4
40-69 | 17.4% 65.0 63.4 60.1 3.8 74.4 72.1
70+ 3.2% 51.3 53.6 51.6 60.8 54.3 62.2

Mean class-wise accuracy broken down by attribute labels

40
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B
EXPERIMENTS: FAIRNESS VALUES

* The attribute-aware and
the disentangled

A % Without Augmentation With Augmentation
approaches with ° . . , . . .
. [ Baseline |Attri-aware| Disentangl | Baseline |Attri-aware| Disentangl
augmentation mitigate
: Gender| 97.3 96.3 97.5 97.6 99.5 99.7
bias ==
. s Race 88.1 87.5 85.8 88.8 91.6 91.9
» Effect is mild if the
distribution across Age 77.7 78.6 82.1 75.8 71.6 81.4
(sub)groups is even G-R 76.7 82.2 83.0 74.8 85.3 87.7

Fairness Measure broken down by attribute labels
* The disentangled approach

is the best one for
mitigating demographic
bias

41
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Towards Fair Affective Robotics: Continual Learning for
Mitigating Bias in Facial Expression and Action Unit
Recognition

Ozgur Kara Nikhil Churamani Hatice Gunes

https://arxiv.org/abs/2103.09233

42
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CONTINUAL LEARNING FOR FAIRNESS?

- Lifelong and incremental learning has o
the potential for g s l
bust inst biased attribut - B
* roobusiness agalinst blaseaq attrioutes (43

+ balancing learning across different N 4

domains
* leading to developing fairer models

43

CONTINUAL LEARNING

Task: Classifying facial
- Domain incremental expressions

learning' Attribute: Gender
Domains: Male & Female

+ Input data distribution Splits: Each split has

changes or shifts, but samples from one domain
Training: Model
encounters one split ata
time and learns
incrementally
Evaluation: Model is
evaluated on each split
after training

¢ the task to be learnt
does not change

44
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NON-CL BASED APPROACHES
g_’ Expression
e Recognition
\ I N e
- gL el | s
| AN Confusion
Conv Blocks l N j il : [
Bk ke e g Gender
(a) Baseline - Offline Training — e
T —. § Classification
o Race
& Confusion
HIELE | x M classifier :
i — B d) The Disentangled Approach
' %% %@% SI El “ : domain, M: class @ ¢ PP
Conv Blocks
(b) Domain Disciminative Classifier et
N s
S0 .
Gy = (i) (i)
Ly3)=-5 3 gy, log g,
DT DOT-DRT I g™ mussvena
Conv Blocks
(¢) Domain Independent Classifier
45
Egatstlc e Adds quadratic penalty on the
Weight difference between the parameters
Consolidation for the old and new tasks using a Memory «  Enables importance weight
(EWC) probabilistic perspective Aware estimation on an unsupervised held-
Svnapses out dataset, hence capable of user-
” specific data adaptation
* A modification is applied to EWC (MAS)
where instead of many quadratic
terms, a single quadratic penalty +  While training for a new task, each
is applied in an online fashion Naive mini-batch is constructed by an equal
Rehearsal amount of new data and the rehearsal
NR data
Synaptic * Adds importance value to parameters ( )
Intelli of the network, more important
ntelligence parameters change less
(SD
46
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FAIRNESS MEASURE

* Accuracy & Fairness metrics for model comparisons x: input
+ Fairness defined as equal opportunity [1] y: ground truth label vector
* quantifies the largest score gap among different ¥: predicted label vector
domains f: calculating score with given parameters
(Accuracy)

F= mm(f(y Y, 50, ) f(bi'y‘ Sn: X) s: sensitive attribute
fFy.dx)" 7 f(§.y.dx) d: dominant attribute

| Bk Asian | White | Larino | Faimess JECSRERETRERERIEEEAT

Method1  0.659  0.720 0.771 0.764 0.855
Method2  0.767  0.779 0.788 0.762 0.967

Blue shows the maximum accuracy value

Fairness = Green / Blue => largest gap
Example: Accuracy and fairness comparison for two methods evaluated on race attribute

[1] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity insupervised learning,” inAd in neural i i i 2016, pp. 3315-3323.

47
- Evaluated fairness on two datasets for gender and race attributes
* with and without data augmentation
+ A Res-Net based CNN architecture for all models
* except for Disentangled Approach
-+ All experiments are repeated 3 times and results are averaged
~15K facial images e o — — AL.u A AU L) A A0 . 41 subjects performing 8 different tasks
Labelled for : Surprise, Fear, ’dm.- ini . 12 most frequent Action Units (AU)
Disgust, Happiness, Sadness,
Anger, Neutral Gender and race attributes
Gendor and race attributes A2 AL AULS A7 Male - Female / Black —- White - Latino - Asian
bkl
African American— Asian
RAF-DB BP4D
48
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B
EXP 1: FACIAL EXPRESSION RECOGNITION

» Fairness scores across Gender and Race for the RAF-DB Dataset

| W/O Data-Augmentation | W/ Data-Augmentation

Method
| Gender | Race | Gender ‘ Race
Baseline 0.834 0.943 0.816 0.937
Offline 0.944 0.925 0.954 0.974

Non-CL-based Bias Mitigation Methods
DDC [44] 0.968 0.985 0.961 0.976
DIC [44] 0.938 0.989 0.962 0.965
SS [15] 0.955 0.961 0.954 0.975
DA [45] 0.975 0.858 [0.997] 0.919
Continual Learning Methods
EWC [23] 0.972 0.987 0.983 0.990
EWC-Online [39] 0.970 0.987 0.974 0.990
| SI[47 0.990 0.996 0.999 0.996 |

MAS 2] [0.980] [0.990] 0.990 [0.994]
NR [22] 0.928 0.974 0.923 0.974

49

B
EXP 2: FACIAL AU DETECTION

« Fairness scores across Gender and Race for the BP4D Dataset

| W/O Data-Augmentation | W/ Data-Augmentation

Method
| Gender | Race | Gender ‘ Race
Baseline 0.962 0.855 0.941 0.858
Offline 0.984 0.878 [0.994] 0.901
Non-CL-based Bias Mitigation Approaches
DDC [44] [0.990] 0.920 0.991 0.924
DIC [44] 0.979 0.925 0.985 0.922
SS [15] 0.977 0.920 0.983 0919
| DA [45] 0.994 [0.954] 0.995 [0.962) |
Continual Learning Approaches
EWC [23] 0.981 0.949 0.992 0.943
EWC-Online [39] | 0.976 0.937 [0.994] 0.957
SI [47] 0.986 0.946 0.965 0.954
MAS [2] 0.966 0.920 0.967 0.909
| NR [22] 0.983 0.966 0.954 0.974 |

50
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B
CONCLUSIONS & FUTURE WORK

- Proposed the novel usage of continual learning for developing
fairer models

- Highlighted how CL methods can help mitigate bias
* CL methods can balance learning across different domains

* CL methods outperform non-CL based approaches w.r.t fairness
metric utilised

- Future work
+ will focus on incorporating CL-based FER systems for long-term HRI
with users from different demographics
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HRI’21 Workshop on
Lifelong Learning and Personalization in Long-Term Human-Robot
Interaction (LEAP-HRI)

https://leap-hri.github.io/
Lifelong Learning and Personalization in Long-Term Human-
Robot Interaction (LEAP-HRI)
When: March 8, 2021. 8am-12pm Mountain Standard Time (MST) (Morning session)

Where: Virtual, a5 part of the 16th ACM/IEEE International Conference on Human-Robot
Interaction (HRI 2021)

Register for HRI 2021 here!
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