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Abstract— Creating and sustaining closed-loop dynamic and
social interactions with humans require robots to continually
adapt towards their users’ behaviours, their affective states
and moods while keeping them engaged in the task they
are performing. Analysing, understanding and appropriately
responding to human nonverbal behaviour and affective states
are the central objectives of affective robotics research. Con-
ventional machine learning approaches do not scale well to the
dynamic nature of such real-world interactions as they require
samples from stationary data distributions. The real-world is
not stationary, it changes continuously. In such contexts, the
training data and learning objectives may also change rapidly.
Continual Learning (CL), by design, is able to address this
very problem by learning incrementally. In this paper, we
argue that CL is an essential paradigm for creating fully
adaptive affective robots (why). To support this argument, we
first provide an introduction to CL approaches and what they
can offer for various dynamic (interactive) situations (what). We
then formulate guidelines for the affective robotics community
on how to utilise CL for perception and behaviour learning with
adaptation (how). For each case, we reformulate the problem as
a CL problem and outline a corresponding CL-based solution.
We conclude the paper by highlighting the potential challenges
to be faced and by providing specific recommendations on how
to utilise CL for affective robotics.
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I. INTRODUCTION

With advances in Artificial Intelligence (AI) and Human-
Robot Interaction (HRI), intelligent robotic systems are be-
coming ubiquitous in human life. Moving beyond assisting
in industrial tasks that require high precision and accuracy,
these robots are now becoming an integral part of our daily
lives in the form of assistants, tutors and even companions [1]
capable of sensing their users and supporting them through
social interactions, with the ultimate goal of fostering their
cognitive and socio-emotional well-being. Understanding
human socio-emotional signals to enhance HRI, forms the
central focus of affective robotics research [2], [3], which
is a challenging research topic [4], [5] still in its infancy.
These skills are important for robots to provide physical and
social support to human users and to engage in and sustain
long-term interactions with them in a variety of application
domains that require human–robot interaction, including
healthcare, education, entertainment, amongst others.

The main challenge for affective robotics is understanding
the underlying mechanisms of human behaviour in real
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life situations and how to model these mechanisms for
the embodiment of naturalistic, human-inspired behaviours
in robots. Addressing this challenge successfully requires
an understanding of the essential components of social
interaction, including nonverbal behavioural cues such as
interpersonal distance, body position and posture, arm and
hand gestures, head and facial gestures, gaze, silences, vocal
outbursts, and their dynamics [6]. To create truly intelligent
social robots, these cues need to be interpreted to form
an understanding of higher-level phenomena including first-
impressions, social roles, interpersonal relationships, focus
of attention, synchrony, affective states and emotions [7],
personality and engagement, and in turn, manifest optimal
behaviours to express these through robotic platforms in
an appropriate and timely manner [8], [9]. To add to this
challenge, social robots are expected to be sensitive to
individual differences (due to culture, gender or personal-
ity, among other factors) in how humans manifest socio-
emotional behaviours, offering a naturalistic and engaging
interaction experience personalised to each user [10], [11].

Although the current (deep) learning-based approaches
provide high performance on affect recognition and classi-
fication benchmarks (see, e.g., [12]–[14] for an overview),
they are not able to translate this performance to real-world
situations where robots need to dynamically interact with
different users. The development cycle for most learning-
based approaches follows a fixed transition from first be-
ing trained in isolation on a ‘large enough’ dataset with
high variability and then being applied to different real-
world applications. With the majority of the existing affect
datasets capturing relatively controlled expressions recorded
in fixed settings, generalisation to real-world scenarios be-
comes problematic [15]. Even when evaluating affect in-
the-wild [16], these models follow a similar development
cycle, with limited adaptability in their application towards
capturing differences in individual expressions [17]–[19].

Affective robotics needs to adopt socio-emotional percep-
tion models that not only generalise to real-world application
scenarios but also personalise towards individual users and
adapt to their context (for example, user and task attributes,
and the environment as illustrated in Fig. 1). Additionally,
they also require learning mechanisms that can adapt to
dynamic interaction contexts, in complex real-world situ-
ations. Conventional Machine Learning (ML) focuses on
modelling a static data distribution, with all the data for a
task available a priori, making these approaches unsuitable or
at the least, inefficient in real-world interactions where data
distributions shift with each user or task. Continual Learning
(CL) research [20], [21] aims to address this very problem
of long-term adaptability in agents, enabling them to learn
with incrementally acquired data as they interact with their
environment. Although commonly applied to learn objects
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Fig. 1. Robot adapting its Perception (left; (a), (c)) and Behaviour (right; (b), (d)) interacting with users under varying contexts. User (Cu) and
context-based (Ti) attributes personalise robot learning in tasks (ti). NI updates enable user-specific adaptation; NC updates enable generalisation.

or task-based learning [21], [22], the learning principles of
CL can be applied to affective robotics, learning to perceive
users’ socio-emotional behaviours and states over repeated
interactions [18], [19], [23] as well as to generate appropriate
behaviours [24]. This can be helpful for affective robots not
only to understand present responses but also to predict the
future socio-emotional behaviours of their users.

In light of the above, we argue that CL is an essential
paradigm for creating fully adaptive affective robots (why).
To support this argument, we first introduce CL as a learning
paradigm, providing a general outline of CL approaches and
their learning settings (what). We then re-formulate person-
alisation and learning context-driven interaction behaviour
in affective robotics as a CL problem. Finally, we present
guidelines for developing CL solutions for affective robotics,
discussing the potential challenges as well as opportunities
that lie ahead and how CL can offer solutions to these (how).

This paper complements the discussion put forth in other
survey articles that effectively summarise CL literature for
neural networks [21] and robotics [22] research, respectively.
We add to this discussion by providing specific recommenda-
tions for adopting CL for affective robotics research, cross-
fertilising insights from affective computing, robotics and
human-robot interaction fields.

II. THE CONTINUAL LEARNING PARADIGM

A. Definition
The ability of agents to continually learn and adapt

throughout their lifetime, acquiring new information while
retaining the previously learnt knowledge, is termed as
Lifelong or Continual Learning (CL) [20], [21]. This is
particularly beneficial for agents that interact with uncertain
and changing environments, for example, environments that
include interactions with humans.

In CL problems, observations (X × Y ) are assumed to
follow an infinite sequence of unknown distributions, D =
{D1, . . . , DN}. At timestep i, the agent obtains a training set
Tri following distribution Di to learn a task with label t in
the form of a prediction function: h∗(x, t). Lesort et al. [22]
formulate a CL algorithm ACL

i that learns a general (target)
prediction model h∗ as follows:

∀Di ∈ D, ACL
i : 〈hi−1, T ri,Mi−1, ti〉 −→ 〈hi,Mi〉, (1)

where hi is the current model hypothesis, Mi is the memory
storing previous training samples up to time-step i; ti is the
task label; Tri is the training set of examples eij = 〈xi

j , y
i
j〉

with j ∈ [1 . . . ,m] drawn from the current data distribution
Di. For each Tri, ACL

i adapts its model hypothesis acquiring
this new information (hi−1 −→ hi), at the same time, updating
its memory to represent past learning (Mi−1 −→ Mi). We
adopt and update these notations to reformulate affective
robotics challenges as CL problems (see Section III).

B. Why Continual Learning?
A major challenge faced by conventional ML models,

whether shallow or deep, is their applicability to real-world
interactions. Given the unpredictability of the real-world,
these models constantly encounter novel information and
tasks, requiring them to adapt their learning. However, they
are not able to integrate this new information on-the-fly
without retraining (partially or from scratch). As the agent
acquires data incrementally (and sequentially as in the case
of online CL settings [25]) through interactions with the
environment, adapting to such dynamic conditions becomes
computationally intractable for conventional ML models.

Any adaptation or learning is achieved at the cost of
previous knowledge being forgotten or ‘overwritten’ [26],
leading to catastrophic forgetting [27]. Gradient-based ML
paradigms, in particular, rely on the assumption that training
samples are independently and identically drawn (i.i.d.) from
a training set. This assumption is violated in real-world
conditions [28] where data is available only incrementally.
As the model learns new tasks, its performance on previously
learnt tasks progressively deteriorates [29]. Conventional ML
models may also experience capacity saturation, where, as
the agent acquires more information, and adapts to this new
knowledge, its overall capacity to represent and preserve
knowledge saturates [30]. This can result from the complex-
ity of the model not being enough to retain information or
the learnt feature representations not sufficient to distinguish
between the learnt tasks [31].

C. An Overview of Existing Approaches
Although CL approaches may also employ deep neural

architectures, they are designed to equip agents with learn-



ing capabilities that acquire and integrate new information
without interfering with previously learnt knowledge (see
e.g. [20], [21] for a review). This is achieved by regulating
model updates, storing and replaying already seen informa-
tion to simulate i.i.d. conditions or dynamically expanding
the models to compensate for new information. CL ap-
proaches can be summarised under four categories based on
the strategy employed for balancing novel vs. past learning.

1) Regularisation-based Approaches: Regularisation is a
family of techniques for learning models to guard against
over-fitting. For CL, regularisation can reduce destructive
interference, preventing newly learnt tasks from ‘overwrit-
ing’ previous information. This is achieved by either freezing
parts of the model that correspond to learnt information [32]
and updating only newly added parameters [33], penalising
weight-updates that deteriorate performance on previously
learnt tasks [34], or prioritising weight-updates for different
parameters given their relevance to different tasks [30], [35].
Constraining weight-updates of the model (or parts of it),
preserves prior knowledge, avoiding catastrophic changes to
learnt parameters.

2) Rehearsal-based Approaches: To mitigate forgetting
in incremental learning, a straightforward approach can be
to physically store the encountered data in memory and
regularly replay it (known as rehearsal), interleaved with
new samples [36]. This replicates offline i.i.d. settings as
the model is trained on mixed batches of data consisting of
samples from all the classes (or tasks). Although this works
when the number of tasks is small [37], it does not scale well
as the number of tasks increases. In case of high-dimensional
data (e.g., images) with a large number of classes, physically
storing and replaying training samples becomes computa-
tionally intractable. A generative or probabilistic model may
be used to learn data statistics to draw pseudo-samples [38]
from the memory (known as pseudo-rehearsal), reducing the
cost of these models significantly [28], [39], [40]. Yet, as
the number of tasks increases, it becomes harder to train the
generative/probabilistic models to represent all the tasks.

3) Dynamic Architectures: As the complexity of the data
and tasks increases, models trained with the previously
described approaches are not able to scale up. This is
due to capacity saturation - i.e., due to weights frozen
from previously learnt tasks or memory-exhaustion from
storing samples for rehearsal [30]. To alleviate this problem,
additional neural resources can be allocated to extend the
capacity, either by expanding trainable parameters [41] or
allowing the architecture itself to grow [42] to account for
the increased complexity. Starting with a relatively simple
architecture, the model is extended by allocating additional
neurons [42]–[45] or network layers [32], [46], [47] as
and when required. This growth can be regulated using the
model’s performance on previously learnt tasks, its neural
activation in response to data samples or the contribution of
existing parameters towards solving new tasks. Despite the
additional overhead of adding new neural resources, these
models are shown to work well in mitigating catastrophic
forgetting, enabling continual learning of information [21].

4) Neuro-inspired Approaches: An enhanced understand-
ing of Complementary Learning Systems (CLS) [27] in the

human brain has inspired a new approach for CL [21], [48].
This approach implements learning over multiple memory
models, each of which adapts to learning at different stages,
alleviating catastrophic forgetting. While an episodic memory
is employed to realise active learning of novel experiences
for the agent, a semantic memory responds to long-term
retention of information by slowly replaying episodic ex-
periences. This replay of experiences is facilitated by gen-
erative or probabilistic models [19], [40], [49], [50] that
transfer experiences between the different memories using
pseudo-rehearsal. Other CLS-based approaches employ self-
organising neural models for encoding sensory experiences
in the memory [31], [37], [42]. These models regulate levels
of neural-growth based on the capability of the model to
integrate new information and retain previous knowledge.

D. Learning Types

As CL models aim to incrementally integrate continuous
sequences of new data samples while preserving previous
knowledge, this can result in three main learning types based
on the nature and availability of sequential data [51].
(1) New Instances (NI): The model receives samples from
all the tasks in the very first instance, and all incoming data
samples adhere to these seen tasks or concepts. The model
does not learn a new task but instead learns variation in the
data distribution for already learnt tasks.
(2) New Concepts (NC): For each sequential batch, the model
receives samples only from a new task or concept and is
evaluated on its ability to learn this new task while still
maintaining its performance on the previously learnt tasks.
(3) New Instances and Concepts (NIC): The model not only
receives more samples for already learnt tasks but also needs
to learn new tasks, with each sequential batch of input (that
is, a combination of NI and NC).

E. Model Evaluation

The dynamic nature of the CL paradigm requires different
evaluation strategies from those used for conventional ML
models [22] measuring how well the model adapts to changes
and can cope with the challenges outlined in Section II-
B. These evaluations focus on answering questions such as:
How much each task contributes to learning a new task (as
opposed to learning that new task from scratch)? Or how
much the performance of a previously learnt task [26] wors-
ens? This relates to assessing the model’s ability to retain the
previously learnt information and transfer experience to new
learning as much as possible. And what is the accuracy of
the model on all the data observed so far? This is interpreted
relative to the accuracy of the corresponding conventional
model trained with all the observed data.

III. CONTINUAL LEARNING FOR AFFECTIVE ROBOTS

For robots to effectively interact with humans, it is impor-
tant that they proactively participate in the human affective
loop [2]. This requires them to not only perceive and analyse
human socio-emotional behaviours across sensory modalities
but also learn to respond in a manner conforming to the
context and the evolution of the interaction [9]. This is
particularly beneficial when using robots in interventions



with sensitive user groups such as providing care for the
elderly and assisting children in learning [52], [53].

Consequently, the desiderata from affective robots (as
exemplified in Fig. 1) include (i) perception models that are
robust to real-world interaction settings [16] while being sen-
sitive to each individual’s socio-emotional behaviours [18],
[19], [54], and (ii) generation of context-specific behaviour
attributing both the users’ behaviour as well as the interaction
settings [8], [55]. As robots acquire data about their envi-
ronment incrementally and sequentially by interacting with
different users, they need to be able to learn and integrate
this information on-the-fly. Hence, we argue that adopting
CL as a learning paradigm, in particular using online CL
methodologies [25], is crucial for affective robotics and HRI
research. The ability to balance novel vs. past learning gives
CL models an advantage over conventional ML solutions.
With this in mind, in this section, we adapt the theoretical
definition of CL algorithms (see Section II-A) to formulate
personalised affect perception and context-specific behaviour
generation in affective robots as CL problems.

A. Personalised Affect Perception

Personalisation in this context is the ability of an agent
to adapt to the socio-emotional behaviour of a user during
interactions (see Fig. 1). This requires the agent to adapt its
perception model with each user, accounting for individual
differences in nonverbal behaviour and expression [17], [19].
This adaptation needs to adhere to both at individual level
for learning to be sensitive towards the individual behaviour
of a user and across individuals for generalising its learning
to interact with different users.
Continual Learning Formulation: We formulate person-
alised affect perception (PCL) as a CL problem, adapting
Eq. 1 to depict the requirements from affective robotics.
Following such a formulation not only allows for perception
models to adapt to individual users but also enable generali-
sation to novel experiences in changing interaction settings.
PCL can be formalised as follows:

∀u ∈ U ,∀i ∈ I, PCL
u,i : 〈hi−1, T ri,Mi−1, Cu, ti〉 −→ 〈hi,Mi〉,

(2)
where hi is the current affect perception model and Mi

is the memory storing previously seen training samples up
to interaction state i. ti represents the current expression
recognition task label (for example, expression category)
summarising the affective state of user u, Cu is the set of
user-specific attributes (for example, user preferences, con-
textual attributions or personality-specific traits) that may be
known, and Tri is the current training data (for example, face
images or speech signals) obtained during the interaction.
Continual Learning Scenarios: Throughout an interaction,
a robot may either observe multiple samples for the same
expression/social signal (type NI) or observe a user under
different socio-emotional contexts (type NC) requiring its
perception model to not only be robust to the variation in
expressiveness for a learnt expression but also learn different
expressions of the user. As a robot interacts with multiple
users, this individual-level learning (PCL

u,i ) is aggregated
across multiple users resulting in the overall perception

model (PCL) for the robot. This aggregation can be achieved
by maintaining several individual models that can be loaded
upon identifying the user [18] or by learning semantic rep-
resentations that aggregate robot’s knowledge to generalise
learning [19], [56].
Existing approaches: Most personalised affect percep-
tion approaches focus on contextual attributions for each
user [53], perform selective weighting of subject-specific
data [17], or apply unsupervised clustering of person-specific
feature representations [56] to adapt to individual users.
Despite their success on benchmark evaluations, they suffer
from the same problems as conventional ML algorithms (see
Section II-B), as data is only acquired during interactions.
CL principles of learning with incrementally acquired data
have been applied in some studies for personalised affect
perception either focusing on learning individual affective
memories [18] or applying CLS-based learning [19], adapt-
ing with each user. Building memory representations (Mi) as
they acquire more data, these can personalise towards each
user by remembering past interactions (by rehearsal) while
using this memory as an influence on the learning of novel
expressions (ti). Yet, they do not take into account user-
specific contextual attributes (Cu) that can improve learning.

B. Context-specific Robot Behaviour Generation

Recent works on learning robot behaviour generation
investigate the role of affect for modulation in Reinforcement
Learning (RL) algorithms, either as an intrinsic motiva-
tion [24] to drive robot learning or as an evaluation of human
affective behaviour [57] to learn optimal interaction policies.
As learning dynamics are dependent on the environment
and how the agent dynamically interacts with it, most RL
formulations can be directly compared to CL settings [22].
This can be seen in most of the popular RL algorithms that
either implement the use of external memory (replay buffer)
to store and rehearse previously seen examples [58], [59],
consolidate knowledge using multiple agents in parallel [60]
or constrain shifts in learning [61] to improve learning
across different tasks. Yet, these require a lot of training
data to yield good results which may not be possible while
interacting with humans. Interactive RL (IRL) techniques,
with the human in the loop [62]–[64], offer potent solutions
for embedding such dynamic real-time adaptation in robots.
Receiving feedback directly from the user speeds up conver-
gence, boosting learning in the model.

Thus, we propose that complementing aspects of IRL
and CL should be combined. That is, learning with human
feedback combined with knowledge rehearsal and distillation
to control shifts in learning can prove useful for affective
robots. Approaching learning interaction-driven behaviour
in HRI from a CL perspective can enable robots to learn
context or task-specific behaviours from their experiences
with different users (see Fig. 1).
Continual Learning Formulation: Following Eq. 1, we
formalise behavioural learning (BCL

u,i ) as a CL problem
where the agent learns optimal interaction behaviour in an
interaction state i while interacting with a particular user u:

∀u ∈ U , ∀i ∈ I, BCL
u,i : 〈hi−1, T ri,Mi−1, Cu, Ti, ti〉 −→ 〈hi,Mi〉,

(3)



where hi is the current behaviour learning model for the
robot (for example, an RL model) and Mi is the memory or
experience buffer storing past interaction samples up to the
current state i in the overall interaction I, ti is the current
task of the robot in interaction state i for which it needs
to learn the optimal response, Cu is the set of user-specific
contextual attributes that can influence robot behaviour, Ti

are the task-specific contextual attributes derived from the
environment or the rules that govern the entire interaction.
Tri is the current training data acquired by the robot, for
example, affective feedback from the user, robot’s state in
its environment or the sensory evaluations resulting from its
perception model PCL, during its interaction with user u.
Continual Learning Scenarios: Learning to interact with
different users under a similar context may constitute
instance-level (type NI) adaptation where the robot becomes
robust to the variation in human behaviour under similar
contextual settings, learning how to respond to them. The
same robot, however, might need to interact with users
under different contexts or learn to perform different tasks,
requiring concept-level (type NC) adaptation. The proposed
formulation, using Cu and Ti allows for adaptation to these
scenarios by providing the relevant contextual information.
Existing approaches: Most behaviour generation ap-
proaches focus on generating robot emotional expressions
[55] as back-channels to support conversational HRI [65].
Only a few focus on learning task-oriented behaviours [66]
during interactions and these are limited to generating rela-
tively low-level atomic behaviours such as verbal utterances
or atomic body gestures. High-level behaviours, such as
context-dependent interaction switching, are mostly handled
by expert planners. CL has the potential to enable robots
to learn dynamic interaction behaviours both at an atomic
level [22] and at context-level. This can be achieved by first
learning to extract state representations from robot perception
(using PCL

u ) and then, learning behaviour policies forming
contextualised task-representations (using Ti) that enable
robots to handle complex interaction scenarios.

IV. OPPORTUNITIES AND CHALLENGES

A. Opportunities
To enable social robots to become human companions,

they need to be equipped with continually adapting per-
ception and behaviour models that can cater to the chang-
ing dynamics of real-world interactions. Placing robots in
household settings would mean that there cannot be broad
assumptions made about user demographics or HRI contexts
governing interactions. For example, the same robot may be
required to care for the elderly, assist adults in day-to-day
chores as well as be a learning companion for the young (see
Fig. 1). CL offers a learning paradigm that is very suitable for
such affective robotics applications. Equipped with state-of-
the-art CL-based learning models, right out of the box, such
robots will be able to adapt and learn with each user, while
continuously improving their socio-emotional intelligence.

B. Challenges
There are fundamental challenges that need to be ad-

dressed for a successful application of CL for affective

robotics. These might arise from how the robot gathers
and manages data, obtains ground truth evaluations for
user-specific socio-emotional behaviour or learns context-
specific task representations. Below we discuss some of these
challenges in detail:

1) Gathering Person-specific Data: As the only source of
data for the robot is interactions with a user, it might require
a lot of interactions before the model can successfully adapt,
negatively impacting the initial user experience. Adversarial
training [67] can be used as a mitigation strategy as it
enables simulation of person-specific data [19], [68], [69]
allowing the robot to imagine interactions with a user [19]
and learn from such imagined contact [70]. However, even
such models need large amounts of training data before
reasonable person-specific samples can be generated.

2) Obtaining Ground Truth Data: Affective interactions
can be highly subjective. Obtaining ground truth for the data
sequentially through interactions is challenging and varies
from user-to-user. Many CL approaches have looked at this
problem from an object recognition point-of-view (see [22],
[25] for a review) and tackled it by using self-supervision
mechanisms driven by curiosity or novelty detection to aid
learning. Alternatively, unsupervised clustering of informa-
tion and applying Hebbian-like learning [18], [19] can help
improve the robustness of the model. However, there is a
need for more established approaches taking inspiration from
findings from human interaction studies.

3) Multi-Task Learning without Task Boundaries: Real-
world human interactions are fluid and may toggle between
different contexts. CL approaches deal with such sudden
context shifts rather robustly by sensing and adapting to
changing data distributions arising from different tasks [22],
[30]. Yet, in affective HRI, this may not be as straightforward
as the change may be too subtle or the contextual attributions
of different tasks may overlap, without clear and distinct task
boundaries. Hence, affective robots need stronger context-
awareness to learn different context-dependent task repre-
sentations [71], at the same time.

4) Robot Hardware and Memory: Integrating dynamic
adaptation in robots requires the robot to not only store
the gathered data in memory but also run comprehensive
computations to update its learning. Despite technological
advancements that make computation cheaper, robots are still
configured with relatively ‘light-weight’ hardware capabili-
ties. Most CL approaches that focus on realising online learn-
ing capabilities in agents [25] reduce the memory foot-print
of the models by computationally modelling inherent data
statistics using a generative or probabilistic model (known
as pseudo-rehearsal), making a trade-off between the on-
board storage and computational resources. More recently,
with several cloud-based services (for example, Robotics as a
Service (RaaS) platforms such as Amazon AWS RoboMaker)
providing a host of solutions, some of the computation and
memory load can be offset over the cloud, facilitating real-
time adaptation in the models. Yet, latency-ridden cloud-
based computations in complex interaction scenarios can
negatively impact the HRI experience.



TABLE I
RECOMMENDATIONS FOR AFFECTIVE ROBOTICS

Recommendation Why is this important and needed? How can this be achieved?

Acquire
person-specific

data

Adapting learning models to individual prefer-
ences requires large amounts of data that can only
be sourced through interactions with users.

(1) Conduct introductory HRI rounds to enable the
robot to collect additional data about the user. (2)
Leverage adversarial learning to train a generative
model to simulate additional person-specific data.

Obtain normative
baselines

The robot needs to know the behavioural norm
for each user against which deviations can be
observed. Deviations help identify shifts in user
socio-emotional behaviours and infer changes in
interaction context.

(1) Conduct interactions under contextually inert
(neutral) situations during introduction rounds. (2)
Use the (subtle) deviations from this baseline,
given the interaction context, to analyse shifts.

Extract semantic
associations

Adapting the learning for a large number of users
is computationally intractable. Learning models
will get saturated, not able to remember previous
information or learn with new individuals.

(1) Form user groupings, using person-specific
attributes (Cu in Eq. 2-3) to learn group-based
adaptations. (2) Use unsupervised data clustering
to facilitate learning semantic groupings of users.

Learn contextual
affordances

Interactions are driven by context and humans
switch between contexts without clear boundaries.
Contextual attributions may not always be implicit
and need to be learnt separately

(1) Learn context-aware embeddings to distin-
guish between task boundaries. (2) Use contextual
affordances (e.g. Ti in Eq. 3) to facilitate smooth
switching between affective HRI contexts.

Balance memory
with computation

The memory-computation trade-off needs to be
considered w.r.t the application domain. Adding
more memory facilitates rehearsal of past knowl-
edge, while additional computation power im-
proves adaptation to novel experiences.

(1) Use generative models for pseudo-rehearsal
to reduce model’s memory foot-print. (2) Offload
part of the computation/memory load to Robotics
as a Service (RaaS)-based solutions to balance old
vs. novel learning.

Allow controlled
forgetting

When learning is continuous, redundant infor-
mation in the memory/model, is not released,
hindering learning capacity of the model.

(1) Utilise forgetting mechanisms (inspired by bi-
ological organisms) on unused memory locations
or parts of the model, to learn new knowledge.

Use multiple
performance

metrics

Benchmark evaluations from conventional ML
and CL perspectives are needed for reproducibility
and fairness guarantees, and to evaluate model’s
robustness to dynamic shifts in data distributions.

(1) Report CL performance metrics (Section II-
E), along with the classification metrics of F-
measure and AUC-ROC scores or reward-function
dynamics for behaviour learning.

V. RECOMMENDATIONS AND CONCLUDING REMARKS

In this paper, we have argued that CL is an essential
paradigm for affective robotics. We discussed the why, what
and how of this argument and provided a CL formulation for
personalised affect perception and context-specific robot be-
haviour generation. From these, we distilled a set of concrete
recommendations in Table. I across several dimensions that
are crucial to consider when integrating CL into affective
robotics - ranging from data to scalability to a large number
of users and a long lifespan, as well as memory with respect
to computing limitations, and benchmarking and evaluation.

It is our genuine hope that these discussions, formulations
and recommendations will create a stepping stone for social
robotics and HRI studies that consider taking a CL approach
to building fully autonomous and adaptive robots that are
purposeful and engaging in their interactions with their
human users.

REFERENCES

[1] E. van Oost et al., “Towards a Sociological Understanding of Robots as
Companions,” in Human-Robot Personal Relationships, M. H. Lamers
et al., Eds. Springer Berlin Heidelberg, 2011, pp. 11–18.

[2] A. Paiva et al., “Emotion Modelling for Social Robots,” The Oxford
Handbook of Affective Computing, pp. 296–308, 2014.

[3] T. Fong et al., “A survey of socially interactive robots,” Robotics and
Autonomous Systems, vol. 42, no. 3-4, pp. 143–166, Mar. 2003.

[4] C. Breazeal, “Emotion and Sociable Humanoid Robots,” International
Journal of Human-Computer Studies, pp. 119–155, 2003.

[5] L. Bishop et al., “Social robots: The influence of human and
robot characteristics on acceptance,” Paladyn, Journal of Behavioral
Robotics, vol. 10, no. 1, pp. 346 – 358, 2019.

[6] H. Gunes et al., “Emotion representation, analysis and synthesis in
continuous space: A survey,” in Face and Gesture 2011, pp. 827–834.

[7] K. Scherer, “Emotion,” in Introduction to social psychology: A Euro-
pean perspective. Blackwell Oxford, 2000, pp. 151–191.

[8] R. Kirby et al., “Affective social robots,” Robotics and Autonomous
Systems, vol. 58, no. 3, pp. 322–332, 2010.

[9] K. Dautenhahn, “Robots we like to live with?! - a developmental
perspective on a personalized, life-long robot companion,” in IEEE
International Workshop on Robot and Human Interactive Communi-
cation (Ro-Man), Sept 2004, pp. 17–22.

[10] M. K. Lee et al., “Personalization in HRI: A longitudinal field
experiment,” in ACM/IEEE International Conference on Human-Robot
Interaction (HRI), 2012, pp. 319–326.

[11] M. Dziergwa et al., “Long-Term Cohabitation with a Social Robot:
A Case Study of the Influence of Human Attachment Patterns,” IJSR,
vol. 10, no. 1, pp. 163–176, Jan 2018.

[12] S. Poria et al., “A review of affective computing: From unimodal
analysis to multimodal fusion,” Information Fusion, vol. 37, pp. 98–
125, 2017.

[13] C. A. Corneanu et al., “Survey on rgb, 3d, thermal, and multimodal
approaches for facial expression recognition: History, trends, and
affect-related applications,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 8, pp. 1548–1568, Aug 2016.

[14] S. Li et al., “Deep facial expression recognition: A survey,” IEEE
Transactions on Affective Computing, March 2020.

[15] M. F. Valstar et al., “Spontaneous vs. posed facial behavior: Automatic
analysis of brow actions,” in Proceedings of the International Confer-
ence on Multimodal Interfaces (ICMI). ACM, 2006, pp. 162–170.

[16] S. Zafeiriou et al., “Aff-wild: Valence and arousal ’in-the-wild’ chal-
lenge,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), July 2017, pp. 1980–1987.



[17] W. Chu et al., “Selective transfer machine for personalized facial
expression analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 3, pp. 529–545, March 2017.

[18] P. Barros et al., “A Personalized Affective Memory Model for Im-
proving Emotion Recognition,” in Proceedings of the International
Conference on Machine Learning. PMLR, Jun 2019, pp. 485–494.

[19] N. Churamani et al., “CLIFER: Continual Learning with Imagination
for Facial Expression Recognition,” in Proceedings of the 15th IEEE
International Conference on Automatic Face and Gesture Recognition
(FG), 2020, pp. 693–699.

[20] S. Thrun et al., “Lifelong Robot Learning,” Robotics and Autonomous
Systems, vol. 15, no. 1, pp. 25 – 46, 1995, the Biology and Technology
of Intelligent Autonomous Agents.

[21] G. Parisi et al., “Continual Lifelong Learning with Neural Networks:
A review,” Neural Networks, vol. 113, pp. 54–71, 2019.

[22] T. Lesort et al., “Continual learning for robotics: Definition, frame-
work, learning strategies, opportunities and challenges,” Information
Fusion, vol. 58, pp. 52–68, 2020.

[23] J. Gideon et al., “Progressive Neural Networks for Transfer Learning
in Emotion Recognition,” in Proc. Interspeech, 2017, pp. 1098–1102.

[24] T. M. Moerland et al., “Emotion in reinforcement learning agents and
robots: a survey,” Machine Learning, vol. 107, no. 2, pp. 443–480,
Feb 2018.

[25] G. I. Parisi et al., “Online continual learning on sequences,” in Recent
Trends in Learning From Data. Springer International Publishing,
2020, pp. 197–221.

[26] D. Lopez-Paz et al., “Gradient episodic memory for continual learn-
ing,” in Proceedings of the International Conference on Neural Infor-
mation Processing Systems, ser. NIPS’17. USA: Curran Associates
Inc., 2017, pp. 6470–6479.

[27] M. McCloskey et al., “Catastrophic interference in connectionist net-
works: The sequential learning problem,” ser. Psychology of Learning
and Motivation. Academic Press, 1989, vol. 24, pp. 109–165.

[28] A. Seff et al., “Continual learning in generative adversarial nets,”
CoRR, vol. abs/1705.08395, 2017.

[29] R. Kemker et al., “Measuring Catastrophic Forgetting in Neural
Networks,” in 32nd AAAI Conference on Artificial Intelligence, 2018.

[30] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” Proceedings of the National Academy of Sciences, vol. 114,
no. 13, pp. 3521–3526, 2017.

[31] G. I. Parisi et al., “Lifelong learning of spatiotemporal representations
with dual-memory recurrent self-organization,” Frontiers in Neuro-
robotics, vol. 12, p. 78, 2018.

[32] C. Fernando et al., “Pathnet: Evolution channels gradient descent in
super neural networks,” CoRR, vol. abs/1701.08734, 2017.

[33] A. S. Razavian et al., “CNN Features Off-the-Shelf: An Astounding
Baseline for Recognition,” in IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2014, pp. 512–519.

[34] Z. Li et al., “Learning without forgetting,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–
2947, Dec 2018.

[35] F. Zenke et al., “Continual learning through synaptic intelligence,” in
Proceedings of the International Conference on Machine Learning,
ser. ICML’17, vol. 70. JMLR, 2017, pp. 3987–3995.

[36] A. Robins, “Catastrophic forgetting in neural networks: the role of
rehearsal mechanisms,” in Proc. The 1st New Zealand International
Two-Stream Conference on Artificial Neural Networks and Expert
Systems, Nov 1993, pp. 65–68.

[37] A. Gepperth et al., “A bio-inspired incremental learning architecture
for applied perceptual problems,” Cognitive Computation, vol. 8, no. 5,
pp. 924–934, Oct 2016.

[38] A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,”
Connection Science, vol. 7, no. 2, pp. 123–146, 1995.

[39] C. Wu et al., “Memory Replay GANs: Learning to Generate Images
from New Categories Without Forgetting,” in Proceedings of the
International Conference on Neural Information Processing Systems,
ser. NIPS’18. USA: Curran Associates Inc., 2018, pp. 5966–5976.

[40] H. Shin et al., “Continual Learning with Deep Generative Replay,”
in Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 2017, pp. 2990–2999.

[41] T. J. Draelos et al., “Neurogenesis deep learning: Extending deep net-
works to accommodate new classes,” in International Joint Conference
on Neural Networks (IJCNN). IEEE, May 2017, pp. 526–533.

[42] G. I. Parisi et al., “Lifelong learning of human actions with deep neural
network self-organization,” Neural Networks, vol. 96, no. Supplement
C, pp. 137–149, 2017.

[43] G. Zhou et al., “Online incremental feature learning with denoising au-
toencoders,” in Proceedings of the Fifteenth International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, vol. 22. PMLR, 21–23 Apr 2012, pp. 1453–1461.

[44] J. L. Part et al., “Incremental online learning of objects for robots
operating in real environments,” in 2017 Joint IEEE International
Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), Sep. 2017, pp. 304–310.
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