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Abstract—Research has shown that the way in which an
individual interacts with others contains vital cues for recognising
their real personality traits. The ability to recognise and adapt
to the personality of users is key to developing more intelligent
social robots, especially in real-world scenarios. However, most
methods for personality recognition focus on apparent personality
recognition of individuals in isolated settings. In this work, we
propose the first multi-modal framework for human behaviour
primitives-based automatic real personality recognition in dyadic
interactions. It leverages the use of the spectral representations
of behavioural primitives to exploit the temporal nature of the
data whilst retaining as much vital information pertaining to
personality as possible. We experiment on a range of standard
fusion methods to evaluate their effectiveness at combining
information from multiple modalities and both interactants in a
dyadic interaction. At the multi-subject level, our attention-based
fusion approach using a multimodal transformer enabled with
cross-subject attention was the most successful. The experimental
results show that our approach improved on the previous state-
of-the-art on the UDIVA dataset by up to 46%.

Index Terms—Real personality recognition, Behavioural prim-
itives, Dyadic interaction, Multimodal personality recognition,
Social robotics

I. INTRODUCTION

From our thought patterns to our behaviours, personality
governs various aspects of human experiences and impacts
many areas of human lives. Accurately recognising human
personality would allow better understanding of different
human behaviours and status, e.g. mental health [1]. This
is particularly important to the development of intelligent
social robots as previous works have shown that incorporating
the users’ and robot’s personalities and interpersonal features
affects engagement [2], [3], and perceived enjoyment [4]. A
common way for evaluating personality is through the trait
models which provide a taxonomy of personality traits. One
of the most widely-used model is the ”Big-Five” model [5]
which groups traits into 5 factors; Openness to experience,
Conscientiousness, Extroversion, Agreeableness and Neuroti-
cism. These traits measure aspects of the human personality
that have been shown to remain relatively stable over time
but differ across individuals. They also generalise across age
and gender whilst remaining valid under different methods of
testing [6].
Existing automatic personality computing can be divided into
two categories [7], [8]: (i) predicting the self-reported per-
sonality of an individual (Automatic Personality Recognition
(APR)), where self-reported personality traits are typically
collected through the use of questionnaires where individuals

describe how they see themselves; and (ii) predicting the ap-
parent personality of an individual (Automatic Personality Per-
ception Recognition (APP)), where apparent personality traits
reflects how the individual is perceived by others. Though the
two may be related, they contain different information about
an individual. They are affected by certain biases such as
reputation and self-presentation [9] as an individual is likely
to answer the questions in a way that maintains the image they
wish to portray to others or that they determine to be more
socially desirable [10].
Since previous psychological studies [11]–[14] frequently
show that personality traits can be reflected by human non-
verbal behaviours, most existing personality computing ap-
proaches aim to directly recognise apparent personality traits
from the target subject’s audio [15]–[17], visual [18]–[20] or
audio-visual behaviours [21], [22]. There is evidence suggest-
ing that an individual’s response to certain situations largely
depends on their personalities [23]. For example during dyadic
or small group interactions, the interaction between the per-
sonalities of the individuals involved has an important impact
on the outcome of the interaction style [24]. Despite this,
only a few studies [25]–[30] attempted to explore interaction
behaviours for self-reported personality traits recognition, all
of which are building on raw audio-visual clips. However,
some of these approaches only investigated the target subject’s
behaviours without considering the conversational partner’s
behaviours for personality recognition, while others usually
rely on complex feature-extraction or feature engineering
techniques. Moreover, most of these works fail to capture
emergent behaviours over varying time-scales (multi-scale
temporal dynamics of human behaviours).
Considering that human behaviours especially face-related
behaviours vary based on different demographic factors, recent
studies [31], [32] show that human behaviour primitives such
as facial action units (AUs) [33] can also provide objec-
tive, informative, confidential, and anonymous cues [34] for
various human behaviour understanding tasks. In this paper,
we systematically investigate: (i) the feasibility of applying
various human behaviour primitives to automatic self-reported
personality traits recognition; (ii) a set of standard fusion
strategies for combining audio-visual behaviour primitives for
self-reported personality traits recognition; and (iii) a set of
standard fusion strategies for combining speaker and listener
behavioural cues, and their benefits in recognising subjects’
self-reported personality traits. The main contributions of this
paper are summarised as follows:



• To the best of our knowledge, this is the first study that
applies human behaviour primitives to automatic self-
reported personality traits recognition, which achieved
more than 46% performance improvements over the state-
of-the-art method that directly predicts personality traits
from raw audio-visual data.

• We provide the first study that investigated the effective-
ness of different fusion strategies that combine audio and
visual behaviours of the target subject for self-reported
personality recognition under different dyadic interaction
scenarios (competitive game-play, presentation, story-
telling and collaborative problem-solving).

• We provide the first study that investigated the effective-
ness of different fusion strategies that combine multi-
modal behaviour primitives of the target subject and
the conversational partner for self-reported personality
recognition under different dyadic interaction scenarios.

II. METHODOLOGY

In this section we present our framework for automatic person-
ality recognition in dyadic interactions. The behaviour prim-
itives are automatically extracted using OpenFace 2.0 [35].
The behaviour primitives in addition to the audio modality
are then converted to their spectral representations to capture
multi-scale behavioural cues whilst transforming the videos to
a fixed-length representation with lower dimensionality. We
consider four different fusion strategies to generate video-level
predictions for the target participant. Finally, we propose an
attention-based fusion approach for capturing both multimodal
and multi-subject relationships.

A. Frame-level multi-modal human behaviour primitives ex-
traction

Feature extraction for the visual modality was performed using
the OpenFace 2.0 toolkit [35] which automatically detects the
presence and intensity of 17 different Facial Action Units
(AU), 6 gaze directions per eye, and 6 head pose movements.
We then split these features into the AU, gaze and pose
modalities. We then normalise the values. We choose to use
behaviour primitives as they have been shown to be successful
at capturing vital information relating to an individual’s state
of mind and have demonstrated success when applied to
depression recognition and personality recognition [36] [37]
[1]. Representations are much lower in dimensionality than
raw video data with the primitives used having 35, 8 and
6 dimensions for AU, pose, gaze respectively. The reduced
dimensionality resulted in a reduction in the computational
demand.
For the audio modality, we extract the audio from the video
using FFmpeg, an open-source suite of libraries for handling
video and audio files. We extract the audio signal in stereo
wave form at 44.1kHz per second.

B. Multi-scale behaviour representation generation

A key challenge presented by time-series data is the arbitrary
length of each sample which makes it difficult to use with

Fig. 1: Diagram of preprocessing method used to achieve
spectral representations from raw input (adapted from the
paper by Song et al. [31])

most standard ML models. To overcome this, the data from
each modality is transformed into its spectral representation
through the use of Fourier Transform as presented in the
work by Song et al. [31]. Each time-series is converted to
the frequency domain using the Discrete Fourier Transform
where a fixed frequency resolution R is selected such that
the frequency components will be a multiple of R allowing
k common frequencies to be collected from each signal thus
creating a fixed length representation. The amplitude map is
computed as:

|Fc(w)|/N =
√
Remc (w)2 + Imm

c (w)2/N (1)

while the phase map is computed as:

arg(Fm
c (w) = arctan

Imm
c (w)

Remc (w)
(2)

where Fm
c (w) represents the time-series signal m and w

represents any real number. Remc (w) and Imm
c (w) represent

the real and imaginary part of Fm
c (w).

The amplitude heatmap and phase heatmap are concatenated
to create the representation used as input. Further details can
be found in [31]. By using the spectral representation of the
videos, it becomes possible to create a fixed sized input from
variable length videos whilst still retaining as much important
information related to personality as possible. By doing so,
we are also able to retain important temporal dynamics. The
final spectral representations were in matrix form with 72,
18, 14 and 4 rows for AU, pose, gaze and audio modalities
respectively. We fix k = 80 such that all representations have
80 columns.
Previous methods have addressed temporal relationships be-
tween frames by dividing videos into chunks of a pre-
determined time window. Determining the optimal length of
the time-window is challenging as it may be dependent on
the type of task, dataset and personality trait. Using the
spectral representation mitigates these issues by creating multi-
scale representations that encode the participant’s behaviour
throughout the video. A diagram of our method can be seen
in Figure 1.



C. Multi-modal fusion framework for true personality recog-
nition
We extract frame-level behaviour primitives and audio data
which we then transform into their spectral representations.
We then fuse these representations to generate video-level
descriptions of a target individual. Our proposed framework
is depicted below in Fig. 2. Specifically, we evaluate the
following fusion methods (illustrated in Fig. 3):

• Feature-level fusion: Features are concatenated prior
to training to create a combined input which is fed to
the model. Feature-level fusion, also known as early
fusion, has the advantage of being able to learn low-level
relationships between modalities whilst only requiring
one model [38]. It is the simplest of the fusion models
to implement.

• Decision-level fusion with averaging: Models for each
modality are first trained independently. The individual
predictions are then averaged at the end to produce a sin-
gle set of predictions. Decision-level fusion or late fusion
allows for more flexibility as the different models can
learn individually but ignores the lower-level correlations
between modalities [38].

• Decision-level fusion with a fully-connected layer and
full back propagation: A large ensemble model is
created from individual models for each modality. Each
individual model receives it’s own set of input features
and generates a set of outputs for a single modality. The
outputs from each model are then concatenated and fed
into a final, fully-connected layer. The whole model is
trained end-to-end with back-propagation enabled for the
full network. This allows the model to better learn the
relationships between modalities at a higher-level [39].

• Attention-based fusion: Cross-modal transformers are
used so each modality is able to receive information from
the other modalities. This method includes both cross-
modal attention and self-attention. It learns the low-level
relationships between each pair of modalities and doesn’t
require them to be temporally aligned [40].

For the first three fusion methods, a ResNet-50 is used as
the model. In the case of decision-level fusion, the ensem-
ble model consists of multiple ResNet-50 models with an
additional fully-connected layer. We then use the attention-
based fusion method proposed by Tsai et al. [40] which
uses a Multimodal Transformer(MulT) model composed of
multiple cross-modal transformers. This method extends the
transformer architecture by being able to learn representations
from unaligned multi-modal streams. It is built from stacks
of pairwise and bidirectional cross-modal attention blocks.
Each of the transformers reinforces one modality with the
low-level features of another modality using attention. This
is modelled for each pair of modalities. MulT outperformed
prior methods on a range of multimodal affect recognition
datasets. The implementation is available publicly available on
GitHub1. For multi-subject fusion, we increased the number

1https://github.com/yaohungt/Multimodal-Transformer

of cross-modal transformers, cross-modal attention and self-
attention blocks to 4 to include the audio modality. For each
participant in the interaction, we pass the 4 input features into
the modified MulT model and output the features from the final
projection layer before the final fully connected layer. These
output features are then used as the input to another modified
MulT to introduce cross-subject attention which captures the
relationships between the features of both interactants.

III. EXPERIMENTS

We produce video-level predictions on the personality traits of
an individual using 1) a range of audio-visual cues from the
target individual and 2) a combination of audio-visual cues
from the target individual and the cues from their conversa-
tional partner. Specifically, this paper conducted three sets of
experiments:

1) We evaluate a set of fusion frameworks using the spec-
tral representation of behaviour primitives from only the
target participant;

2) We then improve upon the fusion frameworks and eval-
uate them on the spectral representation of behaviour
primitives from both interlocutors;

3) Finally, we propose and evaluate a task-independent
multimodal framework for personality recognition in
dyadic interactions.

A. Dataset

We carry out our experiments on the multilingual UDIVA
dataset [41]. The UDIVA dataset consists of 90.5 hours of
dyadic interactions with 147 participants. There are in total
188 sessions divided into 4 different tasks: Animals, Ghost,
Lego, and Talk. Each task was designed to elicit certain
behaviours from participants. Participants appear between 1
and 5 videos with an average of 2.5 videos per participant.
For example, the Lego section was designed to foster col-
laboration, whereas the Ghost section was designed to elicit
competitive behaviour. The recordings were captured using
6 cameras, and audio was recorded through a microphone
worn by each participant in addition to a microphone placed
on the table. All recording devices are time-synchronised.
Participants completed questionnaires to provide information
including age, gender, ethnicity, occupation, maximum level
of education, and country of origin which are all included in
the dataset metadata. Scores for each of the Big-5 personality
traits were assessed through standardized questionnaires and
included in the metadata.
The dataset is also multilingual with Spanish being the pre-
dominant language followed by Catalan and English. The
dataset is split into the training, validation and test splits with
116, 18 and 11 sessions respectively. Each split also contains
99, 20 and 15 participants respectively.

B. Training and model settings

For each experiment, we performed an automated bayesian
search on the learning rate and the batch-size. We limited
our automated search to these two hyperparameters as the
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Fig. 2: The proposed framework.

Fig. 3: Diagram depicting a) Feature-level fusion b) Decision-level fusion wit averaging c) Decision-level fusion with a fully-
connected layer and full back propagation d) the MulT model augmented to take all four modalities as input for a single
participant and e) the augmented MulTModel for two participants taking the output features from the final projection layer of
the first MulT model as input

hyperparameter space was too large to search exhaustively.
We bound the batch-size to a range of [5, 30] to balance the
constraints imposed by our GPU capacity with maintaining
training stability. We also bound the learning rate to fall in
the range [1×10−1, 1×10−6] which we obtained from exper-
imentation. We utilised early-stopping to preevent overfitting.

The full ResNet-50 architecture was not always appropriate for
our experiments due to the low dimensionality of the spectral
representations which sometimes led to overfitting. Through
experimentation, we observed it was necessary to reduce the
number of residual blocks to mitigate this. Furthermore, we
found that reducing the width of the first residual block from

64 to 8 helped stabilise the training process. The model is
trained end-to-end and optimised on the video-level MSE
(MSEseq) loss using Adam.

C. Metrics

We evaluate the predictions using the same metrics reported
in USB challenge, namely the mean-squared error loss (MSE)
though we also report the mean absolute error (MAE) to
offer an alternative perspective. Our results reflect the MSE
and MAE loss at both the participant level(part) and video-
sequence level (seq) in addition to the Pearson correlation



coefficient (PCC) all of which are defined below.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3)

MAE =
1

N

N∑
i=1

|yi − ŷi| (4)

We calculate the average MSE over the 5 personality traits
(AMSE) as:

AMSE =
1

N

N∑
j=1

1

5

5∑
i=1

(pi,j − gi,j)
2 (5)

The Pearson correlation coefficient (PCC) is a metric used to
calculate the linear relationship between the variables with a
score in the range[−1, 1] where -1 means a perfect negative
correlation and 1 represents a perfect positive correlation.
A score of 0 means that the two variables are completely
uncorrelated. This metric is useful to understand if there is
any linear correlation between the model’s predictions and the
ground-truth though it ignores scale.The formula for the PCC
between the predictions and ground truths (ρX, Y ) across all
samples in the test set is given by:

ρ(X,Y ) =
cov(X,Y )

σXσY
(6)

where pi,j be the predicted personality trait score and gi,j be
the ground truth for (1 ≤ i ≤ 5) for a sample j. The models
are trained to minimise MSEseq , but are evaluated on both.

IV. RESULTS AND DISCUSSION

First, we report our results obtained from the spectral represen-
tations of the visual features from only the target participant
with the results shown in the supplementary material. We then
evaluate the same four fusion methods combining features
from both interactants with the addition of the audio modality.
The results can be seen in Tables I, III and II. We include the
audio modality as previous works have shown this typically
leads to an improvement in performance.

A. Multimodal fusion
When decision-level fusion was applied to features from the
target participant alone, the Ghost task achieved the lowest
MSEpart for Extroversion with Talk not far behind. The
AMSE decreases significantly (64% in the case of the Animals
task) when decision-level fusion is used. In fact, all fusion
methods lead to an improvement in the AMSE in comparison
to individual modalities. The results for the individual modali-
ties can be found in the supplementary material. The individual
modalities were not very effective indicators, but together are
able to create a more complete picture of the participant’s
behaviour when combined at the decision-level therefore lead-
ing to a much lower error. This implies that the modalities
interact in a non-trivial way that can be better learned through
back-propagation. However the extent of the improvement is
unprecedented in the literature as we have achieved state-of-
the-art on this dataset which we attribute to the effectiveness
of behaviour primitives at capturing behavioural cues.

B. Cross-subject fusion

Cross-subject fusion saw little variation in the performance
across the four tasks. Out of the four fusion methods, our
attention-based fusion approach achieved the lowest validation
MSEseq in 3 of the tasks. Not only does this method have the
advantage of being able to represent complex relationships
between modalities, it is also able to do this with multiple
interactants. This advantage translated into a lower MSEpart.
The worst performing task was Lego, though by a rather small
margin. This was likely due to the increased MSEpart for
Openness. Animals was the most informative for Openness
which was also found in previous works [28] [41]. Ghost
was most informative for Agreeableness and Neuroticism.
The Ghost task is the most likely of the four to elicit the
observable characteristics of Neuroticism as it was designed
to encourage competitive behaviour from the interactants.
Talk was the best performing-task for Conscientiousness and
Extroversion. In the Talk task, each participant is required
to speak continuously for 5 minutes about a subject of their
choice. This correlates with behaviours typically associated
with Extroversion such as longer speaking turns. Furthermore,
the more formal context of a 5 minute speech or presentation
style interaction is likely to have contributed to Extroversion
being more easily discernable amongst the interactants as the
speech of extroverts and introverts has been shown to differ
in a more formal context [42].
Overall, the use of features from both interlocuters led to
notable improvements in performance for 4 of the 5 traits.
The error for Openness actually increased for 3 of the 4 tasks
after we performed cross-subject fusion. The Ghost task was
the only one to see an improvement of approximately 6%
from single-person to multi-person fusion for Openness. It is
unclear why this occurs, but it can be inferred that Openness
does not benefit any further from cross-subject fusion than
it does for multimodal fusion in the framework we propose.
The Talk task also achieved a higher AMSE with cross-subject
fusion. This could be due to the interaction being dominated
by each interactant in turn with less casual interaction meaning
that including the features of the other interlocutor may not
have been of much benefit. This is supported by Openness and
Neuroticsm, the traits more concerned with an indidvidual’s
internal state, suffering the most from cross-subject fusion.
Conscientiousness and Extroversion were the only traits to see
any benefits in this task with around a 4% improvement.
The AMSE was improved by 3.9%, 5.7% and 11.2% for the
Animals, Ghost and Lego tasks respectively. This adds to
the improvements already gained from performing multimodal
fusion.

C. Task-independent cross-subject fusion

We extend the framework to be trained across all four tasks
in the dataset. This allows us to directly compare our results
against similar works that train task-independent models. We
repeat the experiments using features from both interlocutors,
but use the the videos from all the tasks to train a single model.
Our results are shown in Table II.



Animals Ghost Lego Talk
MSE MAE PCC MSE MAE PCC MSE MAE PCC MSE MAE PCC

Feature-level fusion 0.4395 0.5283 0.7837 0.4265 0.5223 0.7936 0.4428 0.5435 0.7826 0.4409 0.5402 0.7818
Decision-level fusion 0.7130 0.6679 0.6616 0.4977 0.5696 0.7507 0.8489 0.7389 0.6858 0.6522 0.6354 0.7556
Attention-based fusion 0.4362 0.5325 0.7879 0.4323 0.5333 0.7893 0.4375 0.5383 0.7887 0.4396 0.5352 0.7851
Decision-level (simple) 1.124 0.8503 0.2355 1.132 0.8505 0.2288 1.107 0.8433 0.2524 1.129 0.8522 0.2182
Test 0.4456 0.5578 0.7504 0.4443 0.5661 0.7432 0.4587 0.5618 0.7501 0.4496 0.5594 0.7518

TABLE I: The validation MSEseq , MAEseq , and PCC achieved using the different fusion methods for each task. The results
for the best performing trait for each task are highlighted in bold.

O C E A N Avg
Baseline [41] 0.744 0.794 0.886 0.653 1.012 0.818
Dyadformer [28] - - - - - 0.722
SMART-SAIR [25] 0.711 0.723 0.867 0.548 0.997 0.769
Gender-wise Bimodal NAS [25] 0.684 0.588 0.830 0.550 0.796 0.690
Task-independent framework (ours) 0.5978 0.3683 0.3262 0.4016 0.5020 0.4392

TABLE II: The AMSE achieved by previous works on the
UDIVA dataset in comparison to the task-independent variant
of the proposed framework

Attention-based fusion was yet again the most successful of
the four fusion methods, closely followed by feature-level
fusion. Feature-level fusion performed better than attention-
based fusion on the Ghost task. We theorise that concatenating
the features from both interactants allowed the model to still
learn the relationships of the features whilst allowing the
model to learn how much weight to apply to features from
the non-target interactant.

V. CONCLUSION

In this work, we propose a novel multimodal framework for
automatic personality recognition in dyadic interactions. We
demonstrated the quantitative and qualitative benefits of using
automatically extracted behaviour primitives over deep-learned
features in addition to using their spectral representations to
capture multi-scale temporal relationships between frames.
We then investigated a set of strategies for multimodal fu-
sion and multi-subject fusion. The single-person task-specific
variant of our proposed framework out-performs the state-of-
the-art on the UDIVA dataset by up to 44%. The addition
of cross-subject fusion increases this to almost 46%. These
results persisted when we extended the framework to be
task-independent as it out-performed the state-of-the-art by
36%. Our most successful fusion approach was a multimodal
transformer architecture enabled with both cross-modal and
cross-subject attention though feature-level fusion achieved a
comparable performance. The low-level interactions between
the features from both interactants captured by feature-level
fusion appeared to be almost as effective for the prediction
of personality traits. This opens up the possibility of our
framework being model-agnostic as feature-level fusion is
a pre-training step which has no dependency on the model
architecture.

A. Limitations and further work

There are several limitations of our proposed framework. We
only experiment with a ResNet-50 and a MulT model as the
core models, it is unclear how this may have contributed to our

O C E A N Avg
Animals Mean value baseline 0.731 0.871 0.988 0.672 1.206 0.894

Palermo et al. [41] 0.737 0.756 0.887 0.58 1.023 0.797
Dyadformer [28] 0.674 1.239 1.448 0.134 0.947 0.888
Single-person fusion (Ours) 0.370 0.500 0.381 0.579 0.427 0.451
Cross-subject fusion (Ours) 0.593 0.373 0.333 0.409 0.461 0.434

Ghost Mean value baseline 0.733 0.887 0.991 0.674 1.220 0.901
Palermo et al. [41] 0.741 0.893 0.844 0.667 1.139 0.857
Dyadformer [28] 0.771 0.691 0.754 0.616 1.029 0.772
Single-person fusion (Ours) 0.650 0.450 0.331 0.456 0.417 0.461
Cross-subject fusion (Ours) 0.614 0.415 0.352 0.387 0.405 0.434

Lego Mean value baseline 0.738 0.871 0.99 0.676 1.204 0.896
Palermo et al. [41] 0.727 0.763 0.826 0.611 1.037 0.793
Dyadformer [28] 0.741 0.635 0.736 0.747 0.908 0.753
Single-person fusion (Ours) 0.411 0.598 0.531 0.447 0.544 0.506
Cross-subject fusion (Ours) 0.601 0.376 0.344 0.413 0.513 0.450

Talk Mean value baseline 0.731 0.872 0.991 0.673 1.211 0.896
Palermo et al. [41] 0.773 0.79 0.869 0.67 0.985 0.817
Dyadformer [28] 0.574 0.504 0.419 0.683 1.135 0.663
Single-person fusion (Ours) 0.423 0.382 0.343 0.404 0.303 0.371
Cross-subject fusion (Ours) 0.595 0.365 0.328 0.405 0.503 0.439

TABLE III: Results for both our single-person method and
our cross-subject method per trait and task. The “Avg” column
represents the average performance over all the traits (AMSE).
We compare our results with the two best performing works
on the dataset that reported task-specific results. Best result
per task and trait are in bold.

results or if our findings will remain consistent with a different
model architecture. Investigating with different models would
be helpful to better understand any dependencies our frame-
work has on the model architecture and if it can be made truly
model-agnostic. We also conduct a rather limited bayesian
search on the hyperparameter space due to computational
constraints. A more extensive search could produce even better
results than the ones we obtained. This work could be extended
to include metadata as a complimentary modality similar to the
approaches in the related works [28] [25] [41] as this has been
shown to improve performance in almost all cases. This work
can further be extended to other datasets on dyadic or group
interactions, particularly datasets of a different context such as
the NoXi dataset [43] and the AMIGOS dataset [44]. Finally,
an evaluation of this framework in the context of human-
robot interaction would serve to understand the improvements
gained by the addition of improved contextual information and
its contribution towards more intelligent interaction in multi-
person scenarios.
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VI. ETHICAL IMPACT STATEMENT

This research was conducted on a dataset of recordings with
human participants containing both video and audio data
in addition to metadata containing personal information. An
ethics review on the dataset was conducted and approved by
the IRB. All participants consented for their data to be used
for research purposes, however our proposed method aims to
provide anonymous but cues to mitigate ethical concerns.

It is to be noted that there was a demographic imbalance
in the dataset with the majority of participants being of a
particular racial group. This could lead to issues of bias in
our method as it is unclear if our results will generalise to
individuals of other racial groups. There may also be biases
encoded in the toolkit we use to extract behavioral primitives
which may be perpetuated in our results. Furthermore, the
labels were generated using self-reported questionnaires which
may be biased due to self-presentation.

Despite the intentions of this work to contribute towards
research with positive societal impact, there are potentially
negative applications of this work. The methods described
could be applied towards surveillance, screening and algo-
rithmic decision-making processes with some unintended con-
sequences including exacerbating social biases. Individuals
may also feel uncomfortable with aspects of their internal
state being perceived and acted on in a way that appears
manipulative or invasive. To mitigate these risks, we use a
dataset in this work which has been limited by the authors
to open-source research applications and can not be used
commercially.
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[2] H. Salam, O. Çeliktutan, I. Hupont, H. Gunes, and M. Chetouani, “Fully
automatic analysis of engagement and its relationship to personality in
human-robot interactions,” IEEE Access, vol. 5, pp. 705–721, 2017.

[3] S. Andrist, B. Mutlu, and A. Tapus, “Look like me: Matching robot
personality via gaze to increase motivation,” in Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing
Systems, ser. CHI ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 3603–3612. [Online]. Available:
https://doi.org/10.1145/2702123.2702592

[4] O. Celiktutan and H. Gunes, “Computational analysis of human-robot
interactions through first-person vision: Personality and interaction ex-
perience,” in 2015 24th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), 2015, pp. 815–820.

[5] R. R. McCrae and O. P. John, “An introduction to the five-factor model
and its applications,” Journal of Personality, vol. 60, no. 2, pp. 175–215,
1992.

[6] R. R. McCrae, “Why i advocate the five-factor model: Joint factor
analyses of the neo-pi with other instruments,” 1989.

[7] A. Vinciarelli and G. Mohammadi, “A survey of personality computing,”
IEEE Transactions on Affective Computing, vol. 5, no. 3, pp. 273–291,
2014.

[8] R. Liao, S. Song, and H. Gunes, “An open-source benchmark of deep
learning models for audio-visual apparent and self-reported personality
recognition,” arXiv preprint arXiv:2210.09138, 2022.

[9] S. T. McAbee and B. S. Connelly, “A multi-rater framework for studying
personality: The trait-reputation-identity model.” Psychological Review,
vol. 123, no. 5, p. 569, 2016.

[10] I. Krumpal, “Determinants of social desirability bias in sensitive surveys:
a literature review,” Quality & quantity, vol. 47, no. 4, pp. 2025–2047,
2013.

[11] P. D. Blanck, R. Rosenthal, M. Vannicelli, and T. D. Lee,
“Therapists’ tone of voice: Descriptive, psychometric, interactional,
and competence analyses,” Journal of Social and Clinical Psychology,
vol. 4, no. 2, pp. 154–178, 1986. [Online]. Available: https:
//doi.org/10.1521/jscp.1986.4.2.154

[12] D. Rutter, I. E. Morley, and J. C. Graham, “Visual interaction in a group
of introverts and extraverts,” European Journal of Social Psychology,
vol. 2, no. 4, pp. 371–384, 1972.

[13] D. C. Funder and C. D. Sneed, “Behavioral manifestations of per-
sonality: An ecological approach to judgmental accuracy.” Journal of
personality and social psychology, vol. 64, no. 3, p. 479, 1993.

[14] T. DeGroot and J. Gooty, “Can nonverbal cues be used to make
meaningful personality attributions in employment interviews?” Journal
of business and psychology, vol. 24, pp. 179–192, 2009.

[15] G. Mohammadi and A. Vinciarelli, “Automatic personality perception:
Prediction of trait attribution based on prosodic features,” IEEE Trans-
actions on Affective Computing, vol. 3, no. 3, pp. 273–284, 2012.

[16] F. Valente, S. Kim, and P. Motlicek, “Annotation and recognition
of personality traits in spoken conversations from the AMI meetings
corpus,” in Proc. Interspeech 2012, 2012, pp. 1183–1186.

[17] N. Madzlan, J. Han, F. Bonin, and N. Campbell, “Towards automatic
recognition of attitudes: Prosodic analysis of video blogs,” Speech
Prosody, Dublin, Ireland, pp. 91–94, 2014.

[18] S. Song, S. Jaiswal, E. Sanchez, G. Tzimiropoulos, L. Shen, and
M. Valstar, “Self-supervised learning of person-specific facial dynamics
for automatic personality recognition,” IEEE Transactions on Affective
Computing, pp. 1–1, 2021.

[19] F. Gürpınar, H. Kaya, and A. A. Salah, “Combining deep facial and
ambient features for first impression estimation,” in Computer Vision–
ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and
15-16, 2016, Proceedings, Part III 14. Springer, 2016, pp. 372–385.

[20] C. Beyan, A. Zunino, M. Shahid, and V. Murino, “Personality traits
classification using deep visual activity-based nonverbal features of key-
dynamic images,” IEEE Transactions on Affective Computing, vol. 12,
no. 4, pp. 1084–1099, 2019.

[21] F. Alam and G. Riccardi, “Predicting personality traits using multimodal
information,” in Proceedings of the 2014 ACM multi media on workshop
on computational personality recognition, 2014, pp. 15–18.

[22] A. Subramaniam, V. Patel, A. Mishra, P. Balasubramanian, and A. Mittal,
“Bi-modal first impressions recognition using temporally ordered deep
audio and stochastic visual features,” in Computer Vision–ECCV 2016
Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16,
2016, Proceedings, Part III 14. Springer, 2016, pp. 337–348.

[23] J. K. Burgoon, L. A. Stern, and L. Dillman, Interpersonal Adaptation:
Dyadic Interaction Patterns. Cambridge University Press, 1995.

[24] R. Cuperman and W. Ickes, “Big five predictors of behavior and percep-
tions in initial dyadic interactions: Personality similarity helps extraverts
and introverts, but hurts ”disagreeables”,” Journal of personality and
social psychology, vol. 97, pp. 667–84, 10 2009.

[25] H. Salam, O. Celiktutan, V. Manoranjan, I. Ismail, and H. Mukherjee,
“Iccv 2021 understanding social behavior in dyadic and small group
interactions challenge,” 2021.

[26] Z. Shao, S. Song, S. Jaiswal, L. Shen, M. Valstar, and H. Gunes,
Personality Recognition by Modelling Person-Specific Cognitive
Processes Using Graph Representation. New York, NY, USA:
Association for Computing Machinery, 2021, p. 357–366. [Online].
Available: https://doi.org/10.1145/3474085.3475460

[27] S. Song, Z. Shao, S. Jaiswal, L. Shen, M. Valstar, and H. Gunes,
“Learning person-specific cognition from facial reactions for automatic
personality recognition,” IEEE Transactions on Affective Computing,
2022.

[28] D. Curto, A. Clapés, J. Selva, S. Smeureanu, J. C. S. J. Junior,
D. Gallardo-Pujol, G. Guilera, D. Leiva, T. B. Moeslund, S. Escalera,
and C. Palmero, “Dyadformer: A multi-modal transformer for long-range
modeling of dyadic interactions,” 2021.

[29] S. Okada, L. S. Nguyen, O. Aran, and D. Gatica-Perez, “Modeling
dyadic and group impressions with intermodal and interperson features,”
ACM Trans. Multimedia Comput. Commun. Appl., vol. 15, no. 1s, jan
2019. [Online]. Available: https://doi.org/10.1145/3265754

[30] W. Mou, H. Gunes, and I. Patras, “Alone versus in-a-group: A
comparative analysis of facial affect recognition,” in Proceedings of

https://doi.org/10.1145/2702123.2702592
https://doi.org/10.1521/jscp.1986.4.2.154
https://doi.org/10.1521/jscp.1986.4.2.154
https://doi.org/10.1145/3474085.3475460
https://doi.org/10.1145/3265754


the 24th ACM International Conference on Multimedia, ser. MM ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
521–525. [Online]. Available: https://doi.org/10.1145/2964284.2967276

[31] S. Song, S. Jaiswal, L. Shen, and M. Valstar, “Spectral representation
of behaviour primitives for depression analysis,” IEEE Transactions on
Affective Computing, pp. 1–1, 2020.

[32] N. I. Abbasi, S. Song, and H. Gunes, “Statistical, spectral and graph rep-
resentations for video-based facial expression recognition in children,” in
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2022, pp. 1725–1729.

[33] P. Ekman, “Facial expression and emotion.” American psychologist,
vol. 48, no. 4, p. 384, 1993.

[34] J. F. Cohn, T. S. Kruez, I. Matthews, Y. Yang, M. H. Nguyen, M. T.
Padilla, F. Zhou, and F. De la Torre, “Detecting depression from facial
actions and vocal prosody,” in 2009 3rd International Conference on
Affective Computing and Intelligent Interaction and Workshops, 2009,
pp. 1–7.

[35] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency, “Openface
2.0: Facial behavior analysis toolkit,” in 2018 13th IEEE International
Conference on Automatic Face Gesture Recognition (FG 2018), 2018,
pp. 59–66.

[36] J. F. Cohn, T. S. Kruez, I. Matthews, Y. Yang, M. H. Nguyen, M. T.
Padilla, F. Zhou, and F. De la Torre, “Detecting depression from facial
actions and vocal prosody,” in 2009 3rd International Conference on
Affective Computing and Intelligent Interaction and Workshops, 2009,
pp. 1–7.

[37] S. Song, S. Jaiswal, L. Shen, and M. Valstar, “Spectral representation
of behaviour primitives for depression analysis,” IEEE Transactions on
Affective Computing, vol. 13, no. 2, pp. 829–844, 2022.

[38] T. Baltrusaitis, C. Ahuja, and L. Morency, “Multimodal machine
learning: A survey and taxonomy,” CoRR, vol. abs/1705.09406, 2017.
[Online]. Available: http://arxiv.org/abs/1705.09406

[39] O. Kampman, E. J. Barezi, D. Bertero, and P. Fung, “Investigating
audio, visual, and text fusion methods for end-to-end automatic
personality prediction,” CoRR, vol. abs/1805.00705, 2018. [Online].
Available: http://arxiv.org/abs/1805.00705

[40] Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and
R. Salakhutdinov, “Multimodal transformer for unaligned multimodal
language sequences,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Florence, Italy: Association for Computational Linguistics, 7 2019.

[41] C. Palmero, J. Selva, S. Smeureanu, J. Junior, A. Clapés,
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