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Abstract—In recent years, the affective computing research
community has put ethics at the centre of its research agenda.
However, many of the currently available datasets for affective
computing are ‘small’, making bias and debias analysis challeng-
ing. This paper presents the first work to explore bias analysis and
mitigation of a small temporal multi-modal dataset for mental
well-being by adopting different data augmentation techniques.
This proof-of-concept work’s contributions include: i) introducing
a novel small temporal multi-modal dataset of dyadic interactions
during mental well-being coaching; ii) providing multi-modal and
feature importance analyses evaluated via modelling performance
and fairness metrics across both high and low-level features; and
iii) proposing a simple and effective data augmentation strategy
(MixFeat) to debias the small dataset presented in this paper.
We conduct extensive experiments and analyses to compare
our proposed method against other baseline data augmentation
method across various uni-modal and multi-modal setups. Our
results indicate that, regardless of the dimensionality of the
dataset at hand, the inclusion of a bias analysis section in the
conference papers is viable. This paper is therefore a call to the
community to include a bias analysis section in ACII conference
submissions, similar to the ablation studies conducted in papers
submitted to major machine learning conferences.

Index Terms—dyadic interaction, mental well-being, small
dataset, bias, data augmentation, fairness

I. INTRODUCTION

In recent years, the advancement in machine learning (ML),
the availability of large-scale datasets and the enhancement
in computing have led to the widespread use of machine-
learning prediction systems in our society [1]. However, the
problem of bias in machine-learning based tools and systems
are becoming an increasing source of concern [2]. Such risks
are also present in the field of affective computing as affect
recognition tools are increasingly deployed in a wide range of
high-stakes use-cases ranging from driver drowsiness detection
[3] to mental well-being prediction [4]–[6]. A wide range of
fairness measures and bias mitigation techniques have been
proposed to quantify and mitigate the bias present in machine
learning models [7]–[9]. As existing approaches chiefly focus
on large datasets, they may not be effective for small datasets.
However, most of the datasets currently available for affective
application scenarios are small, i.e., containing just a few
hundred instances of data [10], [11].

∗equal contribution, alphabetical order

We are cognizant of the ACII community’s attempt to be
more ethically oriented as exemplified by the mandatory ethics
impact statement to guard against the potential risks and harms
that could be perpetuated by affect-related technology 1. In
line with this, we hypothesise that bias exists even for small
datasets and we contend that every analysis on small datasets
should have a bias analysis section. Bias in small datasets is
a challenging problem as opposed to larger datasets, we do
not have millions of data to leverage to conduct large-scale
debiasing. In addition, the data collection studies are often
conducted in person, which is time and effort-intensive; hence,
collecting more data is often not an option.

This is a non-trivial challenge for the ACII community.
Figure 1 considers papers that have been published within
the last three editions of ACII Conference (i.e., 2019, 2021,
2022) and illustrates that papers focusing on small datasets
typically represent 30% to 40% of the total papers accepted
for presentation at the main conference track. Based on this,
we consider any dataset that has less than 40 (median) subjects
or 500 (median) samples ‘small’. We excluded papers that
used large benchmark datasets such as AffectNet. This work
presents the first attempt to address the challenge of bias
in small datasets and calls the community to include a bias
analysis section in ACII conference submission regardless of
the dimensionality of the dataset at hand.

It does so by introducing the first work which explores the
problem of bias in a small dataset and investigating different
data augmentation approaches to debias a small temporal
multi-modal mental well-being dataset. Since little is known
about these well-being dyadic interactions, this work investi-
gated further the contribution of each individual modality (i.e.,
face, audio, verbal) and the importance of high and low-level
features for data-driven applications. Hence, the main contri-
butions of this paper are as follow. First, we introduce a novel
small temporal multi-modal dataset of dyadic interactions
between a human coach and 11 coachees over four weeks to
promote mental well-being, which can be used to analyse and
understand the relationship between face, audio, verbal data
and well-being. Second, we provide a thorough multi-modal
analysis and a feature importance analysis evaluated using both
performance and fairness metrics. Third, we propose a simple

1https://acii-conf.net/2022/authors/submission-guidelines/
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Fig. 1. Proportion of small dataset papers accepted at ACII’19-’22.

and effective data augmentation strategy to reduce the bias in
small dataset experimental settings. We compare the proposed
method against a baseline data augmentation approach across
both single and multiple modalities.

II. LITERATURE REVIEW

A. Dyadic Mental Well-being Coaching

The goal of coaching for mental well-being is to assist the
coachee in thriving in their life [12]. Specifically, coaching
aims at increasing the coachee’s optimism, goal-striving, and
general well-being [13]. There exist different coaching to this
aim. For instance, cognitive behavioural coaching emphasises
the connection between thoughts, feelings, and behaviours
[13], while positive psychology-based coaching encourages
the coachee to focus more on the positive aspects of their
life rather than the negative ones [14]. Also, brief-solution
focused therapy (BSFT) has been widely used to encour-
age coachees to pay attention to the solutions rather than
examining problems [15]. Recently, the interest in mental
well-being coaching in the fields of affective computing [10],
human-agent interactions [16], and machine learning [17] has
increased significantly, also due to the pandemic that has
exacerbated the need for mental health care [18]. Since such
tools are mainly data-driven, there is a need for datasets that
include data related to mental well-being coaching. Despite
this, to date a dataset which contains dyadic interactions during
mental well-being coaching has not been introduced.

B. Fairness in Mental Well-being

Though recent attempts at applying ML for the investigation
and understanding of mental health has been promising [19],
[20], there is only a handful of studies which have looked
into bias in mental well-being prediction [21]–[26]. Park et al.
[24] conducted their experiments on data collected in a clinical
setting with a specific focus on post-partum depression. Zanna
et al. [25] conducted their experiments on data collected in
the wild with a specific focus on anxiety prediction. Ryan
et al. [21] proposed three categories of fairness definitions
they deem relevant to mental health. Park et al. [23] analysed
bias across gender in mobile mental health assessment and
proposed an algorithmic impact remover to mitigate unwanted
bias. Bailey and Plumbley [22] attempted to mitigate the
gender bias present in the DAIC-WOZ dataset using data
re-distribution. However, all of the existing works consist of

relatively large datasets (more than 500 samples or more than
40 subjects) which differ from our small dataset setup.

In addition, no investigation has specifically looked into
the problem of bias in the context of a human-human dyadic
mental well-being coaching setup.

C. Data Augmentation for Bias Mitigation
Bias can be mitigated at the pre-processing, in-processing or

post-processing stage [9]. The proposed method falls under the
pre-processing data augmentation category which has proven
to be effective in mitigating bias [27]. There is minimal work
that focus on mitigating bias for a small dataset setup [28]. For
a small dataset problem, [28] leverages on a small annotated
dataset to debias a larger dataset. This is distinct from our work
as it focuses specifically on an item recommendation system.
Existing research has indicated that re-sampling outperforms
reweighting for correcting sampling bias [29]. Given the
above, we propose a simple re-sampling or data augmentation
method based on the mixup method proposed in [30]. Mixup
has proven to be a simple yet highly effective method to
address a range of challenges ranging from robustness [31],
fairness [32] and regularisation [33]. As a result, Mixup has
been frequently used as a benchmark for new data augemen-
tation techniques and there are recent works proposing new
variations of the original method [32], [34], [35].

III. PROBLEM FORMULATION

We study the problem of model fairness using a machine
learning approach, where the goal is to predict a correct
outcome yi ∈ Y from input xi ∈ X based on the available
dataset D for individual i ∈ I . In our setup, yi ∈ Y is
thus the outcome where Y = 1 denotes “high-PA” (i.e., high
positive affect, which is a cue of higher levels of mental well-
being) whereas Y = 0 denotes “low-PA” (i.e., low positive
affect, which is a cue of lower levels mental well-being). The
fairness measures of a model M is then evaluated according
to the sensitive groups of individuals defined by their sensitive
attributes A (e.g., gender and race). In our experiments, both
the sensitive attribute analysed are binary. They belong to the
majority group, e.g.: Arace = 1 if they are White or Arace = 0
if otherwise. Ŷ denotes the predicted class.

A. Fairness Measures
The fairness measures are similar to that in [36] and [25].
• Equal Accuracy (EA), a group-based metric, is used to

compare the group fairness between models. This can be
understood as the accuracy gap between the majority and
the minority group:

EA = |MAE(Ŷ |A = 1)−MAE(Ŷ |A = 0)|, (1)

where MAE represents the Mean Absolute Error (MAE)
of the classification task of each sensitive group.

• Disparate Impact (DI), measures the ratio of positive
outcome (Ŷ = 1) for both the majority and minority
group as represented by the following equation:

DI =
Pr(Ŷ = 1|A = 0)

Pr(Ŷ = 1|A = 1)
(2)



The two measures above represent different aspects of bias.
EA evaluates fairness based on the model’s predictive perfor-
mance measured in terms of accuracy. whereas DI evaluates
fairness based purely on the predicted outcomes Ŷ .

B. Proposed Method: MixFeat
Our proposed methodology (MixFeat) is based on the data

augmentation technique proposed by [30]. Given a dataset of
size N where A represents the audio cue, F represents the
facial cue and V represents the verbal cue, the new training
sample (Ak, Fk, Vk) is therefore generated as follow:

Ak = λA ·Ai + (1− λA) ·Aj

Fk = λF · Fi + (1− λF ) · Fj

Vk = λV · Vi + (1− λV ) · Vj

(3)

where i, j ∈ {1, ...N}, i ̸= j and λA, λF , λV ∼ Beta(0,1).
We use the above method to generate synthetic samples for the
minority group to obtain balanced samples across the sensitive
attributes of race and gender. The intuition behind this method
is that if we generate new samples by mixing up features
from other samples with the same sensitive attribute, the new
samples will inherit the sensitive-attribute specific features.
Thus, this method preserves the relation between the synthetic
samples and supervision signal which gives the algorithm more
samples to learn from without imposing strong assumptions
[30]. Figure 2 outlines the experimental setup and how the
method is integrated into the overall classification pipeline.

IV. DATASET AND METHODS

This section reports the dataset definition and methodology
for detecting well-being in human-human dyadic interactions.

A. The AFAR-BSFP Dataset

TABLE I
GROUND-TRUTH DISTRIBUTION ACROSS DIFFERENT GROUPS.

Gender

Female Male p

Low-PA 23.1± 5.0 30.4± 0.9 0.01
High-PA 40.8± 5.1 37.3± 2.0 0.02

Race

White Non-Cauc p

Low-PA 26.4± 6.3 24.4± 4.7 0.57
High-PA 39.7± 4.6 38.8± 1.3 0.69

We collected a dataset of human-human dyadic interactions
between a human well-being coach and 11 participants over
four weeks. The human well-being coach was instructed
to deliver a Brief-Solution Focused Therapy (BSFT) style
coaching, asking participants to focus on solutions rather than
analysing the problem [15] for about 20 minutes. After each
session, we asked participants to complete the Positive And
Negative Affect Scale (PANAS) [37] to evaluate their positive
and negative affect. The dataset was collected at the Affective
Intelligence and Robotics (AFAR) Lab, and we refer to it as
the AFAR-BSFP DB henceforth.

1) Data Collection: 11 participants were recruited via
email advertising of the University of Cambridge. We con-
ducted the study in a dedicated room (see Figure 2) where a
human well-being coach and one participant were seated in
front of each other. Video recordings were done using two
external cameras, one facing the participant and the other
facing the human coach that can be used for further analysis
(beyond the scope of this paper) on dyadic interactions during
the coaching practice. We collected 44 videos (11 participants
× 4 weeks, 20 mins per session) of dyadic well-being
coaching interactions. 3 out of 44 sessions were excluded due
to technical issues (e.g., corrupted video or audio recordings).

2) Data Annotation: Two human annotators labelled the
gender and race of the participants (with a 100% agreement).
This resulted in 7 participants being labelled as males and
4 as females, and 8 participants being labelled as Whites,
and 3 as non-Whites. For each sensitive group (gender and
race), we report the mean and standard deviation of the
target construct. We used T-test and one-way ANOVA to
examine the differences between the means across the different
groups as reported in Table I, where a statistical significant
difference between gender labels is reported. We evaluated
the participants’ positive affect using the self-report results of
the PANAS questionnaire [37], which has been widely used
by practitioners to identify strengths and concerns in mental
well-being. We computed the positive affect (PA) and negative
affect (NA) sub-scales according to the manual in [37]. We set
the threshold value to 33.3, corresponding to the mean value
for the American population [37], and we then classified the
videos collected into “high-PA” and “low-PA”. This resulted
in 17 videos for the “low-PA” and 26 videos for the “high-PA”
class. Given the small size of the dataset, we decided to limit
our problem to a binary classification problem. The AFAR-
BSFP DB will be made available for research purposes 2 in
the form of feature sets accompanied by the corresponding
labels upon the publication of this work.

B. Self-report Affect Detection Modeling Methodology
1) Dataset Pre-processing: Before extracting the features,

we split the audio and video recordings, and we asked a human
annotator to transcribe the dyadic interactions between the
human coach and the participants manually. The annotator also
took note of the timestamp of the speech so that we were able
to diarize the audio files.

2) Multi-modal Feature Extraction: Given the audio-visual
recordings, we extrapolated multi-modal features as follows.
We extracted the facial features using OpenFace 2.0 [38] –
which represents one of the state-of-the-art tools for extracting
facial features within the ACII community, e.g., in [11] – re-
sulting in the following: eye gaze directions, the intensity and
presence of 17 facial action units (FAUs), facial landmarks,
head pose coordinates, and point-distribution model (PDM)
parameters for facial location, scale, rotation and deformation,
resulting in 709 facial features. We used librosa3 to extract

2AFAR GitHub: https://github.com/Cambridge-AFAR/AFAR-BSFP-DB
3https://librosa.org/doc/latest/index.html

https://librosa.org/doc/latest/index.html
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Fig. 2. The model pipeline with our proposed data augmentation technique: MixFeat. After extracting the high-level features from the dataset, we generate
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the baseline data augmentation method, we conduct random upsampling in place of the synthetic feature generation to obtain a balanced dataset. Setting of
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the audio features, namely pitch, speech duration, 128 Mel
spectrograms, 20 MFCC, 20 delta MFCC, spectral centroid,
and RMS, which results in 172 audio features, as in previous
works, e.g., [39]. We used ROBERTa4 to extract the predicted
sentiment from the participants’ transcriptions resulting in 2
verbal features (label and probability), as in [10].

3) Pre-processing: We first removed constant and null
features to prepare the multi-modal features for the machine
learning models. Then, we decided to condense the temporal
information of each video clip into statistical descriptors as in
[10], [11], computing a fixed-length vector for each multi-
modal feature of each clip that consists of mean, median,
standard deviation, minimum, maximum, and auto-correlation
with 1-second lag, resulting in a facial feature vector with size
41×709×6, in an audio feature vector with size 41×172×6,
and in a verbal feature vector with size 41× 2× 6.

4) Feature Selection: We defined the high-level and low-
level features as interpretable (e.g., facial action unit, pitch)
and not-interpretable (e.g., spectral features) to select the most
informative ones for the positive affect detection model [40].
Specifically, the low-level features were 1) facial: facial land-
marks, head pose coordinates, and point-distribution model
(PDM) parameters, and 2) audio: 128 Mel spectrograms, 20
MFCC, 20 delta MFCC, spectral centroid, and RMS; while
the high-level features were 1) facial: facial action units and
gaze, 2) audio: pitch and speech duration, and 3) verbal: the
sentiment of the speech. Given the differences in dimensions
between low-level and high-level features, we conducted a
principal component analysis (PCA) to reduce the sizes of
the features while keeping 80% of the information. The PCA

4https://huggingface.co/docs/transformers/model doc/roberta

analysis resulted in i) 5 principal components (PCs) for high-
level features, 10 PCs for low-level features for face, and ii)
2 features for high-level features (no PCA conducted because
the number of high-level audio features was already small, i.e.,
equal to 2), and 3 PCs for low-level features for audio.

5) Data Fusion Strategies: We explored different state-of-
the-art data fusion strategies [41], [42]. First, we experimented
with early fusion, which consisted of concatenating features
from different modalities that resulted in a single vector of
features. Then, we experimented with different late fusion
strategies, namely majority voting (soft and hard) and stacking
(soft and hard). In majority voting, the final decision is made
according to the most frequent class label predicted across
the different uni-modal models (hard) or the classifier whose
predicted class probability is the highest across the different
uni-modal models (soft). In stacking, the final decision is made
by another classifier (e.g., logistic regression model) fed by
either the predicted class label (hard) or the predicted class
probabilities (soft) of each uni-modal model.

V. MODELING AND BIAS ANALYSIS RESULTS

A. Modeling and Features Selection Results

We first conducted experiments using various machine
learning techniques as in [10], [11] – namely logistic regres-
sion, linear support vector machine (SVM), random forest
tree, bagging, XGBoost, AdaBoost, decision tree, radial basis
function support vector machine (RBF-SVM), multi-layer per-
ceptron (MLP), and long-short term memory (LSTM) neural
network – and validating them with three different cross-
validation approaches (i.e., 5-fold CV, leave-one-subject-out
(LOSO), leave-one-week-out). Our results showed that the

https://huggingface.co/docs/transformers/model_doc/roberta


outperforming models were RBF-SVM and MLP among the
machine learning techniques we experimented with. Due to
space constraints, we only report the outperforming model
results and analyses in the following sections.

TABLE II
UNI-MODAL HIGH VS LOW-LEVEL FEATURE MODELING RESULTS.

ABBREVIATIONS. R: RBF SVM. M: MLP. VALUES IN BOLD DENOTE THE
HIGHEST ACCURACY OR THE HIGHEST F1 FOR THE SPECIFIC MODALITY

ACROSS THE THREE SETS OF EXPERIMENTS.

Uni-modal

Face Audio verbal

Low High Low High Low High

R-Acc 0.27 0.45 0.27 0.65 N/A 0.50
R- F1 0.33 0.44 0.33 0.68 N/A 0.43
M-Acc 0.35 0.43 0.35 0.47 N/A 0.49
M- F1 0.37 0.37 0.37 0.37 N/A 0.78

TABLE III
MULTI MODAL (BI-MODAL) HIGH VS LOW-LEVEL FEATURE MODELING
RESULTS. ABBREVIATIONS. R: RBF SVM. M: MLP. VALUES IN BOLD
DENOTE THE HIGHEST ACCURACY OR F1 FOR THE SPECIFIC MODALITY

ACROSS THE THREE SETS OF EXPERIMENTS.

Face and Audio

Early Soft Voting Stacking

Low High Low High Low High

R-Acc 0.46 0.38 0.45 0.59 0.76 0.71
R-F1 0.53 0.48 0.46 0.62 0.80 0.76
M-Acc 0.43 0.33 0.40 0.56 0.71 0.75
M-F1 0.44 0.40 0.52 0.65 0.76 0.78

B. Low vs High Level Feature Analysis

We trained different experimental models with either the
high or low-level features, and compared their performances.
Table II reports the results of the uni-modal models, while
Table III reports the results of the multi-modal (i.e., face and
audio, audio and verbal, face and verbal) models. We have not
reported the tri-modal (i.e., face, audio, and verbal) analysis
because the verbal feature vector contains only high-level in-
formation, making comparison impossible. Our results showed
that the models trained with high-level features performed
better in terms of accuracy and F1 in all uni-modal and most
of multi-modal setups (see Tables II and III). Therefore in the
rest of our work, we only considered high-level features to
train the models and conduct the bias analysis.

C. Uni-modal vs Multi-modal Analysis

We conducted multiple experiments to compare uni-modal
and multi-modal (with either early or late fusion strategies)
approaches. The results are collected in the Original column
of Tables VI and VII. We found that overall the multi-modal
modeling outperformed the uni-modal models. Specifically,
the average accuracy score for early, soft voting, and stacking
techniques of the models trained with multi-modal data (i.e.,
face, audio, and verbal) is always higher than the average

accuracy score of models trained with uni-modal data (e.g.,
accuracy score for RBF SVM model trained with only face
data is equal to 41%, while the accuracy score for the same
model trained with face, audio, and verbal data using an early
fusion technique is equal to 54%). Interestingly, the audio
modality consistently gives the best accuracy and fairness
scores across all three sets of experiments. This could be due
to the fact that BSFT coaching is dialogue oriented. Across
the fairness metrics, not all the multi-modal approaches led to
a reduction in bias. For example, the MLP-based soft major
voting approach seems to reduce gender and race biases more
with respect to audio or face uni-modal approaches, however,
the early fusion techniques for both MLP and RBF SVM-based
approaches increase both gender and race biases.

D. Week-based Analysis

We conducted a longitudinal analysis to understand the
effect of time on performances and bias by comparing these
metrics over 4 weeks. Our results show that the accuracy of the
models increases over the week for both uni-modal and multi-
modal approaches, e.g., the overall accuracy of the face and
verbal models is outperforming in Week 4 (60%) with respect
to the previous weeks, and analogously the overall accuracy for
the late fusion strategies is better in Week 3 and 4 with respect
to the previous weeks. Across bias, we observe different
results for the uni-modal and multi-modal approaches. The
gender and race bias in the uni-modal approaches is reduced
spreadly throughout the weeks (i.e., the data does not show
any patterns); on the other hand, the gender and race bias in
the multi-modal approaches seems to be more reduced in the
early weeks (i.e., Week 1 and 2) with respect to the last weeks.

VI. DEBIASING APPROACH AND RESULTS

A. Baseline Method: Data Balancing

To provide a comparison to our proposed method, we use
a baseline data balancing method to mitigate the bias present.
As the dataset is highly imbalanced, we employ a similar data
balancing method as [36]. We re-sample the minority group
by randomly oversampling datapoints to obtain an augmented
dataset with samples balanced across both sensitive attributes.
After data balancing, we retrain the models and capture the
results in Table VI and VII.

B. Proposed Method: MixFeat Augmentation

The implementation of our proposed method is similar to
that of the baseline method. The key difference is that instead
of randomly oversampling data points, we generate synthetic
samples according to the method outline in Equation 3.

C. Overall Comparison

Although both methods are effective in reducing bias, our
proposed method seems to produce an outcome that is less
variable compared to the baseline method. With reference
to Table VI, we see that across the uni-modal experiments,
our method consistently produces a more accurate and fairer



TABLE IV
UNI-MODAL WEEK-BASED ACCURACY AND BIAS ANALYSIS. ABBREVIATIONS. R: RBF SVM. M:MLP. UAR: UNWEIGHTED AVERAGE RECALL.

Week 1 Week 2 Week 3 Week 4

Face Audio verbal Face Audio verbal Face Audio verbal Face Audio verbal

R M R M R M R M R M R M R M R M R M R M R M R M

Female 0.57 0.50 0.50 0.33 0.33 0.50 0.14 0.57 0.43 0.57 0.43 0.14 0.43 0.57 0.43 0.43 0.43 0.29 0.50 0.83 0.33 0.00 0.33 0.50
Male 0.43 0.00 0.67 0.33 0.00 0.67 0.50 0.25 0.75 0.50 0.50 0.75 0.33 0.00 0.67 0.00 0.33 0.67 0.50 0.25 0.75 0.50 0.25 0.75
White 0.50 0.50 0.50 0.33 0.33 0.50 0.38 0.50 0.63 0.63 0.50 0.38 0.43 0.29 0.43 0.14 0.57 0.43 0.71 0.57 0.57 0.14 0.43 0.71
Non-White 0.67 0.00 0.67 0.33 0.00 0.67 0.00 0.33 0.33 0.33 0.33 0.33 0.33 0.67 0.67 0.67 0.00 0.33 0.00 0.67 0.33 0.33 0.00 0.33

Overall Acc 0.50 0.33 0.56 0.33 0.22 0.56 0.27 0.45 0.55 0.55 0.45 0.36 0.40 0.40 0.50 0.30 0.40 0.40 0.50 0.60 0.50 0.20 0.30 0.60
Overall F1 0.67 0.40 0.71 0.40 0.36 0.71 0.43 0.50 0.67 0.62 0.50 0.53 0.50 0.40 0.62 NaN 0.50 0.57 0.67 0.67 0.67 0.33 0.46 0.75
Overall UAR 0.52 0.25 0.58 0.33 0.17 0.58 0.25 0.41 0.53 0.51 0.44 0.40 0.38 0.38 0.55 0.31 0.33 0.43 0.43 0.58 0.50 0.24 0.25 0.57

EAGender 0.33 0.50 0.17 0.00 0.33 0.17 0.36 0.32 0.32 0.07 0.07 0.61 0.10 0.57 0.24 0.43 0.10 0.38 0.00 0.58 0.42 0.50 0.08 0.25
EARace 0.17 0.50 0.17 0.00 0.33 0.17 0.38 0.17 0.29 0.29 0.17 0.04 0.10 0.38 0.24 0.52 0.57 0.10 0.71 0.10 0.24 0.19 0.43 0.38
DIGender 0.80 1.00 1.50 4.00 0.67 1.50 0.88 0.70 1.17 1.05 1.31 1.17 0.93 0.58 1.40 2.33 0.93 1.17 0.75 0.75 1.20 1.50 0.60 1.00
DIRace 0.80 0.00 0.80 1.00 0.00 0.80 0.76 0.44 1.14 1.60 0.44 1.14 0.39 0.00 0.78 0.00 0.93 1.17 0.67 0.00 1.17 2.33 0.93 1.00

TABLE V
MULTI-MODAL WEEK-BASED ACCURACY AND BIAS ANALYSIS. ABBREVIATIONS. R: RBF SVM. M:MLP. UAR: UNWEIGHTED AVERAGE RECALL.

Week 1 Week 2 Week 3 Week 4

Early Soft Voting Stacking Early Soft Voting Stacking Early Soft Voting Stacking Early Soft Voting Stacking

R M R M R M R M R M R M R M R M R M R M R M R M

Female 0.67 0.50 0.67 0.50 0.50 0.67 0.29 0.57 0.57 0.57 0.57 0.29 0.71 0.71 0.71 0.29 0.57 0.43 0.43 1.00 0.57 0.43 0.57 0.14
Male 0.33 0.00 0.67 0.33 0.33 0.67 0.75 0.25 0.75 0.50 0.75 0.75 0.33 0.00 0.67 0.33 0.67 1.00 0.75 0.25 0.75 0.50 0.25 0.75
White 0.50 0.50 0.67 0.50 0.50 0.67 0.50 0.50 0.75 0.63 0.63 0.50 0.71 0.43 0.71 0.14 0.71 0.71 0.63 0.75 0.75 0.50 0.63 0.38
Non-White 0.67 0.00 0.67 0.33 0.33 0.67 0.33 0.33 0.33 0.33 0.67 0.33 0.33 0.67 0.67 0.67 0.33 0.33 0.33 0.67 0.33 0.33 0.00 0.33

Overall Acc 0.56 0.33 0.67 0.44 0.44 0.67 0.45 0.45 0.64 0.55 0.64 0.45 0.60 0.50 0.70 0.30 0.60 0.60 0.55 0.73 0.64 0.45 0.45 0.36
Overall F1 0.71 0.40 0.77 0.55 0.62 0.77 0.57 0.50 0.71 0.62 0.67 0.57 0.67 0.44 0.73 0.22 0.50 0.67 0.71 0.77 0.75 0.57 0.57 0.53
Overall UAR 0.54 0.25 0.67 0.42 0.42 0.67 0.47 0.41 0.60 0.51 0.65 0.47 0.52 0.45 0.69 0.36 0.57 0.62 0.53 0.67 0.60 0.44 0.36 0.40

EAGender 0.33 0.50 0.00 0.17 0.17 0.00 0.46 0.32 0.18 0.07 0.18 0.46 0.38 0.71 0.05 0.05 0.10 0.57 0.32 0.75 0.18 0.07 0.32 0.61
EARace 0.17 0.50 0.00 0.17 0.17 0.00 0.17 0.17 0.42 0.29 0.04 0.17 0.38 0.24 0.05 0.52 0.38 0.38 0.29 0.08 0.42 0.17 0.63 0.04
DIGender 0.80 1.00 2.00 2.00 1.00 2.00 1.40 0.70 1.40 1.05 2.33 1.40 0.93 0.78 2.33 2.33 1.17 0.93 1.17 0.88 1.40 1.31 0.70 1.75
DIRace 0.80 0.00 1.00 0.67 0.40 1.00 1.33 0.44 1.33 1.60 1.07 1.33 0.39 0.00 1.17 2.33 1.17 1.75 1.14 0.00 1.33 2.00 1.07 1.60

outcome across most metrics for both sensitive attributes com-
pared to the baseline. The only modality where the baseline
performance is better is the “Verbal” Modality using the
MLP predictor. Within the multi-modal approach depicted in
Table VII, we see that this gap in predictive and fairness
performance is diminished. For instance, for soft-voting, the
baseline method produces a better outcome across both accu-
racy and fairness compared to our proposed method whereas
our proposed method performs better across early fusion. On
the other hand, for stacking, our method performs better in
terms of fairness whereas the baseline method performs better
in terms of accuracy.

VII. DISCUSSION AND CONCLUSION

Our results indicate the following. First, a multi-modal ap-
proach consistently outperforms uni-modal approaches across
performance metrics accuracy and F1 score. However, they
may introduce additional bias which is consistent with the
findings in [36]. Second, we find that models trained with
high-level features performed better in terms of accuracy and

F1 in both the uni-modal and multi-modal setups. Third, our
results showed that the proposed data augmentation method
more consistently improves fairness across both the uni and
multi-modal experiments compared to the baseline method.
Our results suggest that using high-level features, a multi-
modal setup and an interpolation-based data augmentation
strategy may produce the best outcome in terms of model
performance and fairness measures.

An important takeaway is that first, a multi-modal approach
provides more information for a machine learning algorithm
to learn from. As a result, this will lead to better performance
in terms of accuracy and fairness as supported by previous
literature [42]. Second, a multi-modal approach seems to
balance out the bias of each individual modality. For the uni-
modal approach, we see a greater variation in results between
the original, baseline and proposed method. However, this
variation is less pronounced for the multi-modal approach.
We hypothesise that this is because making use of all three
modalities provide the algorithm with more comprehensive
information to learn from which balances out any gap, im-



TABLE VI
UNIMODAL DEBIASING RESULTS. ABBREVIATIONS. R: RBF SVM. M:MLP. UAR: UNWEIGHTED AVERAGE RECALL. VALUES IN BOLD DENOTES

HIGHEST ACCURACY OR THE FAIREST OUTCOME FOR THE SPECIFIC MODALITY ACROSS THE THREE SETS OF EXPERIMENTS.

Original Baseline Comparison Proposed Method

Face Audio Verbal Face Audio Verbal Face Audio Verbal

R M R M R M R M R M R M R M R M R M

Female 0.41 0.63 0.44 0.33 0.37 0.33 0.41 0.62 0.45 0.31 0.34 0.34 0.55 0.62 0.66 0.62 0.41 0.52
Male 0.43 0.14 0.71 0.36 0.29 0.71 0.45 0.17 0.83 0.52 0.24 0.83 0.62 0.24 0.97 0.48 0.48 0.72
White 0.48 0.48 0.55 0.31 0.45 0.48 0.48 0.48 0.55 0.31 0.45 0.48 0.62 0.48 0.86 0.55 0.48 0.55
Non-White 0.25 0.42 0.50 0.42 0.08 0.42 0.38 0.31 0.72 0.52 0.38 0.69 0.55 0.38 0.76 0.56 0.66 0.69

Overall Acc 0.41 0.46 0.54 0.34 0.34 0.46 0.43 0.40 0.64 0.41 0.29 0.59 0.59 0.43 0.81 0.55 0.45 0.62
Overall F1 0.57 0.52 0.68 0.37 0.43 0.78 0.51 0.43 0.77 0.56 0.29 0.73 0.72 0.50 0.83 0.68 0.52 0.70
Overall UAR 0.42 0.39 0.58 0.35 0.33 0.52 0.43 0.40 0.64 0.41 0.29 0.59 0.59 0.43 0.81 0.55 0.45 0.62

EAGender 0.02 0.49 0.27 0.02 0.08 0.38 0.03 0.45 0.38 0.21 0.10 0.48 0.07 0.38 0.31 0.14 0.07 0.21
EARace 0.23 0.07 0.05 0.11 0.36 0.07 0.10 0.17 0.17 0.21 0.07 0.21 0.07 0.10 0.10 0.01 0.17 0.14
DIGender 0.88 0.72 1.29 1.74 0.91 1.23 0.75 0.63 1.26 1.82 0.67 1.21 0.82 0.75 1.21 1.19 0.94 1.37
DIRace 0.68 0.12 0.97 1.41 0.60 1.06 0.68 0.24 1.08 1.58 0.50 1.12 0.76 0.33 1.33 1.06 0.84 0.96

TABLE VII
MULTI MODAL DEBIASING RESULTS. ABBREVIATIONS. R: RBF SVM. M:MLP. UAR: UNWEIGHTED AVERAGE RECALL. VALUES IN BOLD DENOTES

HIGHEST ACCURACY OR THE FAIREST OUTCOME FOR THE SPECIFIC DATA FUSION METHOD ACROSS THE THREE SETS OF EXPERIMENTS.

Original Baseline Comparison Proposed Method

Early Soft Voting Stacking Early Soft Voting Stacking Early Soft Voting Stacking

R M R M R M R M R M R M R M R M R M

Female 0.52 0.70 0.63 0.44 0.56 0.37 0.62 0.62 0.72 0.59 0.48 0.55 0.76 0.66 0.66 0.62 0.62 0.55
Male 0.57 0.14 0.71 0.43 0.50 0.79 0.76 0.34 0.69 0.45 0.66 0.83 0.69 0.59 0.72 0.48 0.73 0.62
White 0.59 0.55 0.72 0.45 0.62 0.55 0.76 0.55 0.86 0.55 0.55 0.66 0.86 0.52 0.90 0.59 0.69 0.66
Non-White 0.42 0.42 0.50 0.42 0.33 0.42 0.62 0.41 0.55 0.48 0.83 0.72 0.59 0.72 0.48 0.52 0.90 0.52

Overall Acc 0.54 0.51 0.66 0.44 0.54 0.51 0.69 0.48 0.71 0.52 0.69 0.57 0.72 0.62 0.69 0.55 0.67 0.59
Overall F1 0.67 0.55 0.74 0.51 0.60 0.63 0.75 0.48 0.71 0.63 0.68 0.74 0.71 0.72 0.69 0.61 0.64 0.56
Overall UAR 0.52 0.42 0.67 0.44 0.53 0.58 0.69 0.48 0.71 0.52 0.57 0.69 0.72 0.62 0.69 0.55 0.67 0.59

EAGender 0.05 0.56 0.08 0.02 0.06 0.42 0.14 0.28 0.03 0.14 0.17 0.28 0.07 0.07 0.07 0.14 0.11 0.07
EARace 0.17 0.14 0.22 0.03 0.29 0.14 0.14 0.14 0.31 0.07 0.28 0.07 0.28 0.21 0.41 0.07 0.21 0.14
DIGender 1.10 0.83 1.69 1.34 1.24 1.47 0.76 0.81 0.88 1.20 1.57 1.44 0.96 1.06 1.15 0.84 0.90 1.29
DIRace 0.91 0.13 1.21 1.38 0.85 1.40 0.68 0.26 0.78 0.94 1.40 0.95 1.04 0.68 1.26 0.94 0.81 0.95

balances or bias that is introduced by each singular modality,
as supported by the literature [43]. Third, our results indicate
high-level features seem to contain more information (or less
noise) in accordance with [40]. Thus, for a small dataset, it
might be better to use higher-level features for the model
to learn from. Moreover, by introducing a data augmentation
method which relies on high-level features, we will be better
able to preserve the subject’s anonymity and privacy. In this
study, we have relied on external annotation for gender and
race. Future work may consider using the labels obtained from
participants to avoid introducing labelling bias from external
annotation [44] and explore further temporal information by
conducting studies with multiple sessions over time to derive
longitudinal insights. Future work may also investigate other
sensitive attributes such as age.

ETHICAL IMPACT STATEMENT

This study has been approved by the ethics committee of the
department. Participants signed consent forms consenting for

their data to be used within the context of research. Participants
were reimbursed with the minimum wage per hour fee. This
research attempts to avoid any bias against certain groups of
people that could result in discrimination even in small dataset
and it cannot be used to deceive or negatively impact human
rights. However, our results are limited to the dataset included
in this work. Future work should repeat the same analysis on
other small datasets to further validate our hypothesis.

The ACII 2022 Conference introduced an ethical statement
as a requirement. In line with this, we suggest that papers
submitted to the ACII Conference that conduct research using
human data, in the form of a large or a small dataset, should
have a bias analysis section similar to the ablation studies
provided in conference papers submitted to the major machine
learning conferences such as CVPR and NeurIPS. This work
presents the first effort in this direction by conducting a bias
and debias analysis on a small dataset, as a case study of multi-
modal human-human dyadic mental well-being coaching.
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