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0. Introduction.

Petri nets are a fundamental model of concurrent processes and have a wide range of applications.
They can be viewed as generalisation of transition systems in which concurrency is not simulated by non-
deterministic interleaving. They were invented by C. A. Petri in the 60’s. (A reference work is [Br].)

It can be argued that the main effort and success of Petri Net Theory has been in developing techniques
for showing properties of arbitrary Petri nets, e.g. Kurt Lautenbach has used techniques of linear algebra
to discover invariants (properties which hold at all reachable markings). These techniques can be used
to prove properiics of concurrent programs. [irst represent the program as one big net and then prove
properties about that. The problem is that big nets get out of hand, and more easily out of mind. For this
reason chiefly, Hartmann Genrich, Kurt Lautenbach and Kurt Jensen invented predicate transition nets and
coloured nets [GL, J] and accompanying techniques to find their invariants. Although they certainly do give
a more compact way to model programs and systems they are nccessarily more complicated, are nore like
programs, and need a semantics to relate them to structures which are more simple and universal.

We address another problem, that of constructions on Petri nets and how to prove properties of a
compound process by proving properties of its components. The constructions follow from a new notion of
morphism on Petri nets—it is not the same as Petri’s original notion. The morphisms respect the token game
unlike Petri’s original. The category of nets with the new morphisms has a product which is closely related
to various parallel compositions which have been defined on labelled Petri nets for synchronising processes
(sce e.g. the compositions on nets defined in [LS,...] and section 3). It has a coproduct which is a generalised
form of the “sum” operation as used for example in [M].

One can use Petri nets to give semantics to programming languages. But, what is the semantics of nets?
In themselves nets are complicated objects whose behaviour is rather intricate. When do Petri nets have the
same behaviour? Attempting to answer these questions leads naturally to occurrence nets first introduced
in [NPW1, 2]. Occurrence nets form a subcategory which bears a pleasant relation to the larger category
of nets; the inclusion functor has a right adjoint which is an operation taking a net to its unfolding to a
net of condition and event occurrences. (This construction was introduced in [NPW1, 2, W] but without
this abstract characterisation.) It is argued that the meaning, or semantics, of a net is its occurrence net
unfolding so that two nets are regarded as having essentially the same behaviour if they have isomorphic
unfoldings.

The point of this work is to develop ways to structure (and so prove) properties of behaviour of large,
even infinite, Petri nets while still keeping the nets of the straightforward form originally proposed by Petri
{P]. Thope the neatness of the constructions and their simple characterisations counter one frequent criticism
of Petri nets, that their mathcmatics is unwieldy.



1. Petri nets.

Petri nets have a structural part and a dynamic part. The structural part specifies the causal relation
between events and conditions (=local states or propositions that can be made) of a system. The dynamic
part specifies how the system evolves in time. Frequently a Petri net is identified with just the structural
part, now defined.

1.1 Definition. A Petri net is a 3-tuple (B, E, I') where

B is a set of conditions,

FE is a set of events,

F C (B X E)U (E X B) is the flow (or causal dependency) relation
which satisfy the restriction:

{b€ B|bFe} is a non-null, finite set for all events e € E.

Thus we insist that cach event causally depends on at least one condition, but require that the number
of conditions on which it depends is finite.

Nets are often drawn as graphs in which events are represented as boxes and conditions as circles with
directed arcs between themn to represent the flow relation. Here are some examples.

1.2 Example. (Some simple nets).

2 Y P

1.3 Example. (An example which fails the finiteness reslriction)

00

The above structure fails the restriction, {b € B | bFe } <oo, which we have imposed on nets. Think of
the intuitive behaviour of the net: the infinite chain of events and conditions is imagined to occur and only
then does the event e occur-—a strange computation! Petri forbids this kind of net by imposing an axiom
called K-density (sce [P]). However we find that axiom far too restrictive because if one accepts it one cannot
model as wide a range of computations as one would wish—see [W1] for arguments against K~density—and
so we prefer the weaker axiom we impose. (Later when defining occurrence nets—representatives of net
behaviour—we shall impose further restrictions.)

1.4 Notation. Let N = (B, E, F) be a net. Let z be an event or a condition so z € BU E. Define
‘z=F Y z}={yeBUE|yFaz}.
When z is an event e € E we call the set e its preconditions.Similarly define

:1:’=F{:c}={.y€BUE|a:Fy}. :
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When z is an event e the set e® is called its postconditions. We extend the “dot” notation to sets:

A= U'a and A’ = Ua'.

aEA a€A

So far, as we have defined them, nets are rather static objects. Their dynamic behaviour is based on
these principles which specify how the occurrence of events affect the holding of conditions—a condition is
said to hold when it is true:

(i)  An occurrence of an event ¢ ends the holding of its preconditions *e and begins the
holding of its postconditions e*.

(i) (a) The holding of a condition b, when it ends, ends because of the occurrence of a
unique event in b°.

(ii) (b) The holding of a coadition b, when it begins, begins because of the occurrence of
a unique event in *b.

Remark. The first principle (i) is often stated. The principles (ii){a) and (ii){b) do not seem to be recoghised_
and stated so so widely (they are stated by Winkowski in [Win]). Principles (ii)(a) and (b) are consequences
of a more basic principle:

If the occurrences of two events'in a net are ever coincident (or synchronised) then the two events are
identical.

This principle expresses our understanding of the concept of an event; it says if the occurrence of two events
is synchronised then they have to be the same event. (This principle docs not hold in all applications of nets
e.g. in [Sif] where two, or more, distinct events in the same net are forced to occur at the same time.)

Of course we need a way to specify what conditions hold. We introduce an idea of global state which
just specifies what subset of conditions hold (= are true).

1.5 Definition. Let N = (B, E, F) be a Petri net. A marking of N is a subset of conditions M C B.

The marking of a net changes over time according to rules, commonly called "the token game” because
a marking is often specified by laying tokens on those conditions in the marking; as events occur tokens are
picked-up and put-down in accord with the fundamental principles above. From the fundamental principles
it follows, only informally, of course, that an event can occur only once all its preconditions hold and none
of its postconditions which are not preconditions hold. Here are two cases where the occurrence of an event

e Oy 5 A O\/@

produces the changes in the marking shown:
(@) ®

In 1 not all the preconditions hold so how could the occurrence of end the holding of the unmarked
condition. In 2 a postcondition holds already, so how could the events occurrence begin its holdmg"’ The
occurrence of the event in cﬂ.her 1 or 2 would contradict the principle (i) above.
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When an event can occur it is said to have concession or to be cnabled.

So far we have looked at the occurrence of one event alone. Petri nets allow more than one event to
occur together but there are situations where the occurrence of one event excludes the occurrence of another
and vice versa — a phenomenon called conflict. Consider two events e; and e which are both able to occur
but which have a precondition b in common. In a picture we might have, for example

From the principle (ii)(a) it follows that only one of e; and es can occur; otherwise they would both end
the holding of the condition b. This is an example of forwards conflict.

Now consider two events which both have concession but which have a postcondition in common, for
example

By (ii)(b) only one of € , and ey can occur. This is an example of backwards conflict.
Now we can formally define the token game which specifies how the marking changes as events occur.

1.8 Definition. The token game Let N = (B, E, F) be a Petri net. Let M be a marking.
Say an event e € E has concession at M iff

eCME&(E\'e )N M =0.
Let e,e’ be events with concession at M Say e and ¢’ are in forwards conflict at M iff
et &en®e #0D.
Say they are in backwards conflict at M iff
esfe &e* Nt #D.
Let M and M’ be markings. Let-A C E. Define M -2 M/ iff

Ve € A.c has concession at M &
Ve,e' € A.e, ¢’ are not in conflict &

M = (M\"A)U A"

In this situation the events A are said to occur concurrently.

A marking M’ is said to be reachable from a marking M iff M = M, Af‘ M, -Al e -AF"NI =M
for subsets of events Ag, Ay,...,An -1 and markings My, My,..., M.

Remark. There are three points to clear up. Firstly we allow the event e to occur in

©— | —0
0,

although we do not allow the event e to occur in ® SH 3@
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The reason is that in the first, the condition a is ended and then begun by the event occurrence, in time it
looks like _ \r ~+
e’ e—Va T

while in the second, the condition b is not first ended by the occurrence of e.

The second point is for those familiar with a token game in which more than one token is allowed or a
condition, local states are allowed a certain multiplicity so that they can model, for example, the availability
of a number of resources. We shall not allow more than one token on a condition, partly for simplicity and
partly because I believe much more complicated nets should ultimately be abbreviations for the simpler nets
we consider.

The third point is that in the U.S.A. the token game is often played differently to the way it is played
in Europe. In the introductory book by Peterson [Pe], only one event is allowed to occur at a time, while in
Europe, generally it is possible for a set of events to occur concurrently, as decribed here.

1.7 Example.

Initially the net is marked as shown. The cvents 0, 1 are in both forwards and backwards conflict so
cither 0 or 1, but not both can occur. Certainly the event 2 can occur. It is not in conflict with either 0 or
1 so 2 can occur concurrently with 0 or 1, but not both. For example, taking M to be the marking above,

M’ to be the marking below and A = {0,2} we have M A .

Of course from the marking M’ the event 3 can occur giving rise to the marking M again, and we can
start all over again, perhaps letting event 1 occur this time.

f

1.8 Example. Mutual exclusion

The two processes P; and P, cannot both be in their critical regions CR; and CR, simultaneously.

Generally a process is modelled by a Petri net with an initial marking from which it reaches other
markings as events occur.

1.9 Definition. A Petri net with initial marking is a structure (B, E, F, M) where (B, E, I) is a Petri net
and My is a marking called the initial marking. Markings reachable from the initial marking are called
reachable markings. '
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There is said to be contact at a marking M of a net if for some event
e CME&("\e)N M #9.

A Petri net with initial marking is contact-free iff there is not contact at each reachable marking.

1.10 Example. A simple example of contact
ONN
~

1.11 Example. Here is an example of net with initial marking which is contact-free, but which has
backwards conflict at a reachable marking,.

1.11 Example. The following netls with initial marking are not contact free.

@/)MG
L ses0-020-050—> ¢

O,

Contact—free nets have the pleasant property that an event can ocecur at a reachable marking iff its
preconditions are included in the marking. If one accepts the earlier principles, the behaviour of nets with
contact is weird; it seems an event is prevented from occurring by the knowledge of what would happen in the
future if it did—see the above examples. For this reason it is difficult to understand their behaviour. Later
when we come to associate an occurrence net unfolding with the behaviour of a net-—thus giving nets a formal
semantics in terms of more basic nets—we shall only be able to do this with for nets which are contact-{ree.
One view of nets with contact is that they are improper descriptions. As has been remarked, there are other
token games in which conditions can have multiple holdings. For such nets the above principles are invalid.
The understanding of such nets is less settled; for example the question of the equivalence of two nets is
unsure, though a start has been made in' [GR].

When a net is contact-free the token game simplifies as we now describe.

1.12 Proposition. The token game for contact-free nets:
"Let N = (B,E, F, Mg) be a contact-free net with initial marking. Let M be a reachable marking.
Let e be an event. Then e has concession at M iff *e C M. '
Let e,¢' be events. Then e, ¢ are in conflict at M iff *e N ¢ # @.
Let M' be a marking of N. Then
MA M avecAteC M
&Ve, e cA’en®ed =0
&EM' = (M\"A)U A"



2. The new definition of morphism on nets.

Our definition of morphism on nets involves binary relations, sometimes specialised to being partial or
total functions. Here are the elementary notations, properties and operations on relations we shall use:

2.1 Notation. A relation from a set X to a set Y is a subset R C X X Y. When (z,y) € R we write
zRy. A relation R has an opposite or (converse) relation, R°?, given by

B = {(4,3) | =Ry }.

Clearly zRy < yRPz.

When the relation R satisfies the property Vy,3' € YVz € X.2Ry & zRy' = y = ¢ the relation R is
said to be a partial function. A partial function R is said to be total when it satisfies the additional property
Ve € X3y € Y.zRy.

The composition of relations is defined as follows: Let R be a relation from a set X toaset Y and § a
relation from the set Y to a set Z. The composition of R with S is the relation § o B from X to Z given by

SoR={(z,2)€EX X Z|Iy€Y 2Ry & ySz}.

Note the order of the composition which follows that generally used for functions but unfortunately not
that commonly used for relations—using both functions and relations in the same breath we had to make
a choice for one notation and chose to stick with the one for functions. We shall frequently miss-out the
composition symbol o and write S o R as just SK.

When a relation R is a partial function, and we are thinking of it as taking an argument = and giving a
value R(z), it is useful to have a symbol to invoke when the value R(z) does not exist. We use * to represent
undefined and so write A

R(z) = * & Ay.zRy

when R is a partial function from X to Y.
If R is a relation from X to Y and A C X we define the image of A under R to be the set RA given
by
‘RA={yeY |3z € AzRy}.

Note the clash with abbreviated relation composition; any ambiguities can be resolved from the context.

Let Ny = (By, Ey, Fo, My) and Ny = (By, Ey, F1, My) be two nets. A morphism from Np to N is to
be a pair of relations (¢, 3) where ¢ is a relation between events, ¢ C Eq X By, and g is a relation between
conditions, 8 C By X Bj. The relation egee; means: when ey occurs its occurrence is synchronised with the
occurrence of e;. The relation bgBb; means: when by begins to hold its beginning is synchronised with the
beginning of the holding of b;, and when by ends holding its end is synchronised with the end of b;. (In the
following discussion conditions in the initial markings are assumed begun by some starting event.)

An informal argument suggests that e should be a partia] function: Assume egee; and egee} for events
o in No and ey, €} in Ny. Then the occurrence of eg implies the synchronised occurrence of e; and é).
This makes the events e; and ¢, synchronised together. According to our informal understanding of the
behaviour of N;—as given in the last section—the two events can only be synchronised together if they are
the same event so e; = ¢}.

From our interpretation of 8 if bg8b; and by begins to hold in Np then b; should begin to hold in Nj.
Thus if egFobo and bgfby, so ey begins the holding of b which is synchronised with the beginning of the
holding of b;, there should be an event e; synchronised with ep which begins the holding of b, i.e. egeey and
ey by. In particular, if by € My and byBb; then as by holds initially so should b;, making b € M. (Recall
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conditions of the initial markings are imaginced started by a starting event.) Similarly if bgFgeo and boBby
then there should exist an event e; such that egce;-—consider how the holdings of the conditions end.

In order for the pair (¢,3) to be a morphism we insist that some further restrictions are met in the
neighbourhood of events. Suppose epcey for an cvent eg € [5g and event ey € Ey. If b1Fye;, so e; ends
the holding of b;, we insist there is a unique condition by so that byFpeq and boBby. Similarly if e; Fyb; we
require there exists a condition bg such that egFobg and bgBb;. In particular for the initial marking (imagined
started by a starting event) we have Vb € M 36y € My.bofby.

We define morphisms between general marked Petri nets. Later we shall have reason to specialise to
contact—free nets.

2.2 Definition. Let N = (B;, E;, F;, M;) be neis for i = 0,1. Dcfine a morphism of nets from Ng to N
to be a pair of relations (¢, 8) such that ¢ C Ey X E, is a partial function, 8 C By X B; which satisfies the
restrictions

M; = BM,,
Vb € M3y € My.boBby,
and for all ey € Eg, by € By

361.(60661 & blFlel) = albg(boﬂbl & boFoEo)
abo.(boﬂbl & boFgeo) = 361.(60661 & blFlel)

and
361.(80631 & CIF]bl) = H'bo(boﬂbl & eoFobo)
abo.(bnﬂbl & EUFobo) = 361.(60661 & e1F1bl).

When the function € is total we say the morphism (e, 8) is synchronous.

When the relations € and 8 are total functions we say the morphism (¢, 8) is a folding.

When (¢, 8) is a morphism, By C B; and Ey C E, and the relations ¢ and 8 are the restrictions of the
inclusion relations, i.e. egee; < eg = e; and byBb; & by = by, we say the net Ny is a subnet of Nj.

Recalling our intuition about the F' relation, the restrictions above say of a morphism:

An event ¢(eg) ends/begins the holding of a condition by iff ey ends/begins the holding of a unique
condition bg such that bp8b;.

2.3 Example. Here are Q@examp]es of morphisms:

. R X
. 7 |
A \ '
[} \ \ o
<
/ \\\ g \E‘ | é /ﬁ/ //’7

\ . -8
~ ' N z
€~ Y
- S f“:Ol«
> A, tuech

A projechon \ 3
(%' 33) ¢ % (see 3.10)

2.3 Proposition. Let Ny = (By, Eg, Fo, My) and Ny = (By, E1, F1, M) be two nets. Let (¢, 8) be a pair
of relations e C Ey X E; and # C By X By. :



The pair is a morphism, (¢, 8) : No — Ny iff € is a partial function, 8°° AM; X Mg: M, - Mpisa
total function and

Veg,e1.epce; =8¢ = *e1 &
B°P N %e; X %ep:el® —+ e is a total function, &
Be®* =e1* &
B? Ney® X e : % — *eg is a total function.

The pair (e, B8) is a folding iff ¢ and B are total functions, 8 N My X M, is a one-one correspondence between
initial markings and 8 N *e X *¢(e) (respectively B N e* X ¢(e)*) is a one-one correspondence between the
preconditions (respectively postconditions) of e and ¢(e).

Proof. Directly from the definition of morphism.

Thus our definition of folding is nol the same as Petri’s; his allows, for example, more than one
precondition of an event to map to the same condition in the image, a possibility not allowed by our definition
of morphism. Still our definition of folding and Petri’s appear to agree on all the important examples.

2.4 Lemma. Let (¢,8) : No — N; be a morphism between nets Ng = (By, Eo, Fo, My) and N =
(B1, E1, F1, M1). Let A be a subset of the events of Ng. Then ’

B(e ) = *(ed)
B(A%) = (eA)".
Also, suppose e and ¢ are two events of Ny such that e(e) % * and ¢(¢') 7 + and *¢,*¢’ C My. Then
*ele) N *e(e') # D=2 "en e # D

2.5 Theorem. Let N = (B;, E;, F;, M;) be nets for ¢ = 0,1. Let N, be contact-free. Let (¢,8): No — Ny
be a morphism of nets. Let C be a reachable marking of Ny and suppose

¢ 4 ¢ in Ny,
Then BC is a reachable marking of N and
BC <4 6C" in Ny
Further, for all reachable markings C of Ny,

Vb € BC3by € C.bofb,.

Proof. We take the statement of the theorem as inductive hypothesis and prove the theorem by induction

on the length of the chain M Ay -—4.1'0 from the initial marking My to a reachable marking C. From
the definition of morphism we immediately have that M; = 8Mj and Vb; € M;3lby € My.bpBb1. Thus the
inductive hypothesis holds for the base case when the length of the chain is zero.

To show the inductive step:

Suppose C is a reachable marking and that C A, C' in Ng. Then by induction hypothesis 8C is

a reachable marking of N;. We require that 8C 4 BC' in Nj—of course it then follows that ,BC' isa
reachable marking—and also tha.t Vb, € BC3bp € C.bpPby.
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Suppose e € A and that ¢(e) is defined. Then ¢ has concession at C so *e C C. However by the previous
lemma *e(e) = B°e C BC. Thus cach event in €A has concession at 3C because N, is assumed contact—{ree.

Suppose ¢(e) and €(e’) are defined for ¢,¢’ € A. Then *¢,*e’ C C. Suppose ¢(e) and ¢(e’) are in conflict at
BC t.e. because N is contact—{ree, (e} 7 €(e’) and *e(e) N *ee’) 74 @. By the previous lemma *e N *¢ # O.
As € is a partial function, e 7 €’ so e and ¢’ are in conflict at C. This is a contradiction. Consequently e(e)
and ¢(e’) are not in conflict at BC for e, ¢’ € A.

To complete the proof that 8C <4 BC' in Ny we show that G’ = (BC \ *(eA)) U (eA)*. Clearly

BC" = pB((C\*A)u A7)
= (B(C\*A)) U (B(A%)).

Now B°P restricted to 8C forms a (total) function, f say, such that
f=B"[BC:5C - C.
It is easily shown that
FHHNY) = (N (YY)
for such a function f and sets X and Y in the codomain of f. It follows that
BC\ A) = f-L{C\"A) = (f 'O\ (f~"°4) = (BC)\ (B°A).

By the above lemma we have §°A = *(eA) and BA* = (e4)*. Thus

BC" = (BC \ *(eA)) U (eA)°
as required. Therefore C 7 BC' and consequently 8C' is a reachable marking.

Finally, to complete the inductive step we require that

Vb, € BC' by € C.bofby.

Clearly it is sufficient to prove
Vb, by € C'.boBby & by Bb; = by = bj.

We establish a contradiction by supposing otherwise i.e. that there are bg, bl € C” with by 7% by & bofby &
b6y :

Because of the induction hypothesis on C this could only occur if either bg, by € A® or by € (C' \ *A) &
by € A*—or essentially the same case with by and &, interchanged. Fortunately the first case can be reduced
to the second: Take € € A such that by € €® and C* = (C\ *¢) U e* and At = A\ {e}; clearly then
bo € (Ct\*AT) & b € A",

Thus we nced only consider the case b € (C\*A) & b € A*. Then ¢oFpbf; for some ey € A. Consequently
for some event e; € F; we have eyce; & ey J1b;. We'show there is contact at SC. We have b & *e; as
by & ®eg. Also *e; C BC and by € BC. Thus ®e; C BC and BC \ e* # O so there is contact at fC—a
contradiction as N is contact free. Therefore

Vb, € ﬁC’E'bo € C’.boﬂbl

as required to complete the induction. @



The next example shows that the restriction, that N) be contact—free, is necessary in theorem 2.5.

o ot W
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B L e z%
r e '
|
.'
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. . Rt A ".; . - Y . . .
It is easily checked that (¢, 8) is a morphism. However because there is contact in N; the image of an event
in Ng with concession does not have concession in Nj.

2.6 Example. Let (¢,8) : Ng — Ny be a morphism between nets with initial markings as shov;rn:

i
!
|
|

2.7 Definition. Let N; = (B;, E;, F;, M;) be Petri nets for i =012 Let (€0, B0) : Ng — N; and
(€1,B1) : Ni — N3 be morphisms. Define their composition (€1, 8;) o (€o, Bo) to be (€1 o €9, B1 0 fp)—where
€1 o g9 and By o By are the compositions of relations given above.

2.8 Proposition. Contact-free Petri nets with morphisms and composition as above form a category, i.e.
each net N = (B, E,F, M) has an identity morphism (1g, 1) with respect to composition and composition
is associative. When morphisms are restricted to being synchronous or foldings we obtain respective
subcategories.

2.9 Definition. Define Net to be the category of contact-free nets with morphisms on nets as defined
above. Define Net,y, to be the subcategory with synchronous morphisms on nets. Define Nety,; to be the
subcategory with morphisms which are Toldings.

In the next section we explore further the consequences of our definition of morphism.

3. Categorical construections.

In this section we shall see that our choice of morphism throws out several interesting and useful
categorical constructions. One important consequence of the constructions being categorical is that each
comes accompanied by a characterisation to within isomotphism. Such characterisations are useful when
reasoning about processes modelled by nets built—up from the constructions. It is not just a hope that that
the constructions will eventually be found a use. The product is related to many forms of parallel composition
defined on nets (see for example the work of Lauer and Shields ....[ ]). The synchronous product (in the
category with synchronous morphisms), itself a somewhat stricter form of parallel composition, provides a
natural interleaving, or serialising operator, on nets, by setting them in synchronous product with a “clock
process”, while the coproduct construction connects well with “sum” operations used by for example Robin
Milner et al []. :

The categorical constructions we shall introduce will depend on the properties of two more basic
categories. One is well-known; it is the category of sets with partial functions. It corresponds to that
part of morphisms on nets which act between sets of events. The other is new, at least to me; it is called
the category of marked sets and corresponds to that part of morphisms on nets which act between sets of
conditions while respecting the initial marking.

3.1 Lemma. Product and coproduct for the category of sets with partial functions.
Let Set,be the category of sets and partial functions given in definition 2.1. Set, has products and
coproducts of the following form:
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Let Ey and E; be sets.
Their product, to within isomorphism, is Eg X, E; with projections my, m; where

Eo X, Ey = {(e0,*) | €0 € BEo} U {(*,e1) | e1 € E1} U {(e0,€1) |0 € Ep & es € Ey },

and mo(z,y) = =, m(z,y) = y.
Their coproduct, to within isomorphism, is Eg + Ey =gey {0} X Eo U {1} X E; with injections
ino(EO) = (0, 60) and inl(el) = (1,&1) for eqg € Ey and e, € E,;.

Proof. The proof is left to the reader. These facts are well known see e.g. [Mac] or [Arb] but note our sets
are not their pointed sets. I ’ :

3.2 Lemma. Product and coproduct of marked sets.

Define a marked set to be a pair of sets (B, M) where M C B. Define a morphism of marked sets from
(Bo, M) to (B1, M) to be a relation R C By X By such that RMo = M, and -

Vbo,b{] € MyVby, € M .boRRby & bﬁRbl = by = bﬁ.

Define composition to be the usual composition of relations given in 2.1. Then marked sets with the
morphisms above form a category with identity morphisms the identity relations. It has products and
coproducts of the following form: ’

Let (Bo, My) and (B1, M) be marked sets.

Their product, to within isomorphism, is (Bg + B1, My + M,) with projections the relations po and p;
given by (b,0)pob for b € By and (b,1)p1b for b € B,.(The projection relations p; are the opposite relations
to the injection functions from the set B; into the disjoint union By + By.)

Their coproduct, to within isomorphism, is (B, M) with injections vy and ¢y where

B={(b0,*)!boeBo\Mo}U {(*,bl)|blGB[\Ml}U{(bo,bl)|bo€Bn&bleBl},
M = My X M,,

borob & Iy € B U {*}'b= (b01b1)’

byesb ¢ 3bg € By U {» }.b = (bo, b1).

(Thus the injection relations are opposite to the obvious partial functions taking a condition in B to its first
or second component.)

Proof. The product in marked sets. We verify that the construction above does indeed give a product.
Firstly it is easily checked that the relations pg and p; above are morphisms of marked sets pg : (Bp +
By, My + Ml) — (Bo,Mo) and p) : (Bo + By, My + Ml) g (Bl,Ml). Let Rp : (B,M) — (Bo,Mo) and
Ry : (B,M) — (B, M,) be morphisms of marked sets from a marked set (B, M). We require that there
exists a unique morphism R : (B, M) — (Bg + By, Mp + M,) making the following diagram commute:

p (BotE, M&MJ \\}p‘

V4 A
{
(BOJMV)(\ ) ‘l g’ ( Q'JM’)
A7
RN (BM) ~R.
We take R = {(b,(0,bp)) | bRobo } U {(b,(1,b1)) | bR161 }. Clearly RM = My + M, and supposing
bRc & b'Rc implies ¢ has the form (0,5p) or (1,6;). Without loss of generality assume ¢ = (0, by) for some

by € By. Then from the definition of R we know bRybg and b'Rpbg. As Ry is a morphism we obtain b = .
Thus R is a morphism of marked sets.

From the definition of R it follows directly that the diagram commutes. Suppose S : (B, M) — (Bo +
By, Mo + M,) is a morphism making the diagram commute. Then as p;S = R; for j = 0,1 we get

12



bS(7,6;) & bR;b; & bR(7,b;) which makes § = R. Thus R is the unique morphism such that the diagram
commutes. Therefore the construction really is the product in marked sets as required.

The coproduct in marked sets. We verily that the construction above does indeed give a coproduct.
Firstly it is easily checked that that the relations ¢p and iy above are morphisms of marked sets ¢ :
(Bo,Mo) — (B,M) and I3 (BI,MI) hd (B,M) Let Rg : (Bo,Mo) — (P,C) and Rl : (BI,MI) rd (P,C)
be morphisms of marked sets for a marked set (P,C). We require that there exisis a unique morphism of
marked sets R : (B, My X M;) — (P, C) making the following diagram commute:

(B MoX M.)

(go M(,) iR CBUM()
&> (po <R

R = {((bo,*),P) | bo € Bo \ Mo & boRop}
U {((*, bl),p) | bl € B1 \ M1 & b1R1p}
U {((bu,bl), p)l boE Mo &b € My & bygRop & blRlp}.
Clearly as Ry and R, are morphisms
RM = {p ‘ bo € Mg & boRop & by € M3 & blRlp}
= RoMoUR;M;=CUC=C.

Also, suppose b,5/ € M and bRp and ¥ Rp. Then for some by, by € By and by, b € By we have
b= (bo, bl) & boRup & blRlp and
b= (bp, b)) & by Rop & by Ryp.

But, as Ry and R; are morphisms by = bf, and by =¥, so b="¥. Thus R : (B, M) — (P,C) is a morphism
of marked sets.

Define

Now we show R makes the above diagram commute i.e. By = Ry and Ry = Riy. (Recall our
composition of relations follows the same order as the usual one for functions!) Clearly directly from the
definition of R we obtain Riyy C R¢ and Ri; C R;. Now suppose bgRop. Bither by & My or by € My. If
bo ¢ My this gives (bp, *)Rp. Otherwise, by € Mo making p € C = RoMp. But then there is some by € M,
so that by Ryp. This gives (by,b;)Rp. In either case this yields bo(Reo)p. Thus Ry C Rio which combined
with the converse inclusion proved earlier gives By = Rep. Similarly Ry = Ri;. Thus R does make the
above diagram commute.

In addition we need that R is the unique morphism making the diagram commute. Suppose S : (B, M) —
(P, C) made the above diagram commute i.e. St9 = Rp and Si; = R;. Considering the three different kinds
of element of B we have:
(bo, *)Sp ¢ boRop, for by € By \ My,
(#,51)Sp & b1Rip, for by € Bi\ M,
(bo,bl)Sp = boRop & blRlp, _for by € My & b e Ml.

Thus § = R.
And so finally we have proved that the construction above is a coproduct. i

Now we give a construction of the product of two nets. In view of the two lemmas on the more basic
categories above it will follow that the construction really is a categorical product in Net.
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3.3 Definition. The product of nets.

Let No = (By, By, Iy, Mo) and N, = (By, Ey, Iy, M;) be contact—{free nets.

Let mg : Eg X. By — Eg and =, : Ey X, E; — E; be the projections from the product of sets in
Set.given in 3.1. Let pgp : (Bo + By, My + M]_) — (Bo,Mo) and p; : (Bo + By, Mg + Ml) — (Bl, Ml) be the
projections from the product of marked sets given in 3.2.

Define the product of the nets, No X Ny, to be the net (B, E, F', M) where B = By+ By, M = Mg+ M;,
E=Ey X, Ey and

elfb & (360 € Ey, by € By.cmpeg & bpoby & eoFobg)
or (361 € E,,b, € By.emyey & bp b & elFlbl)
bFe & (360 € Ey, by € Bg.emgeg & bppbg & boFoeo)
or (Jey € Ey,by € By.emyeq &.bplbl & b1 Fieq).

Define projection morphisms of nets:

Iy = (mo, po) : No X N1 — Np
Iy = (71,p1) : No X Ny — Ny.

The product construction can be summarised in a simple picture. Disjoint copies of the two nets Ny
and N are juxtaposed and extra events of synchronisation of the form (eg, ;) are adjoined, for ey an event
of Ny and e; an event of Ny; an extra event (ep, €1) has as preconditions those of its components *eq U ®e;

~and similarly postw

Ny 5 N

[
L

P
i

The product on nets is closely related to various forms of parallel composition which have been defined
on nets to model synchronised communication—see[ |. For the moment imagine that the events of nets
are labelled in order to specify how they can or cannot synchronise with events in the environment—the
synchronisation algebras of [W2, W3] are a way of formalising this idea. Then the parallel composition
of two labelled nets will be modelled as a restriction of the product to those synchronised events—of the
form (e, e;)—and those unsynchronised events—of the form (eg, *) and (*, e;)—allowed by the discipline of
synchronisation.

3.4 Theorem. The above construction Ny X Ny, Ilg, I1; is a product in Net, the category of nets.

Proof. Tt follows straightforwardly from the definitions that Ilg = (=g, po) and II; = (w1, p1) are morphisms
of nets.

We need that the construction Ny X N, gives an object in Netand so that Ny X N, is contact—{ree.
Suppose there is contact at a reachable marking of the product i.e. there is a reachable marking C, a
condition b and an event ¢ of Ng X Nj such that *¢ C C and b € (e*\ *e) N C. Either b = (0, bo) for
some by € By or b = (1,b;) for some by € B;. Withoul loss of generality suppose b = (0, bg) for some
bo € By. Then mo(e) = e for some ey € Ey. Thus *ep C moC and by € (eg* \ *eo) N mpC. However as N is
contact—free, by theorem 2.5, mpC is a reachable marking of Ng at which eg has concession—a contradiction.
Therefore Ng X Ny is contact-free.

Now suppose there are morphisms @, =.(Cu,ﬂ'u) : N' = Np and &; = (€1,81) : N' =+ N; from a
contact—free net N' = (B, E', F', M"). .

14



As ¢g: E' - Ep and ¢; : B/ — E; are morphisms in Set,and E, g, x; is a product in Set,there is a
unique partial function ¢ : B! — E such that the following diagram commutes in Set,:

EoX . E.
T O N
L’/ \

\E/a'

Similarly, as 8 : (B', M') — (By, Ms) and By : (B', M') — (B;, M;) are morphisms of marked sets and
(B, M), po, p1 is a product in the category of marked sets—by lemma 3.2—there is a unique relation 8 so
that the following diagram commutes in the category of marked sets:

. BM
(r;o,m) b am
8> (BM) d

Define ¢ = (¢, 8). Clearly prov1ded ® is a morphism of nets & : N’ — N it will be the unique morphism
of nets such that the following diagram commutes:

XN T
»/x\

5 ¢
‘E\N’/@

v
So finally we check that @ : N — N is indeed a morphism of nets. Because of the properties of marked
sets ¢ behaves well on initial markings.

Suppose e'ce & eFb for ¢ € E', ¢ € E and b € B. Either bpgbo for some by € By or bpyb; for some
b€ B,. Without loss of generality assume bpgbg for some by € By. Then ewpeg and egFpbg for some eg € Ep
as T is a morphism. Because g = mpe we get eegeg. As Pg is a morphism, there is some unique &' such that
¥ Bobg and € F'¥. Then because By = pof, the condition b’ is unique so that ¥'8b and €'F'V, as required.
The proof that e’ce & bFe implies there is a unique & such that ¥8b and b'F'¢ is virtually the same.

- Suppose b'Bb & b F'¢ for ¥ € B, b€ B and ¢ € E'. Without loss of generality assume bpgbo. By
commutativity ¥ Bgbg. As ¥/ F'e' there is some ey such that e’egeg & bgFgeg. But then as Ig is a morphism
there is an event e € E such that emgeg and bFe. As € is a partial function making €g = mge we must have
e'ce as well as bFe, that which was required. The remaining case is virtually the same.

Thus we conclude that @ is the unique morphism making the diagram commute. Consequently the
above construction really is a product. ‘

Of course the token game tells us how we can view a net as giving rise to a transition system in which
the arrows between states are associated with sets of events imagined to occur concurrently. Let us see how
the product construction looks from this point of view.

3.5 Theorem. Let Ny X Ny, Ty = (g, po) and I} = (my,p1) be a product of nets. Then M is a reachable
15



marking of Ng X N, and M A, M iff
poM is a reachable marking of Ng and
poM -lq/})oM' and
Ve, e € AVeg € Eg.emgeq & e'npeg = e = €' and
p1M is a reachable marking of Ny and
M —ﬂ“}nM’ and
Ve, e € AVe, € By.eniey & e'myey = e =é'.

Proof. Omitted. 3

3.8 Definition. Synchronous product. Let Ny = (B, Eo, Fo, My) and Ny = (By, E;, Fy, M) be
contact—free nets. Define their synchronous product Ng ® N; to be the restriction Ny X Ny[(Eo X E1) with
synchronous projections ITj = (}, po) and I} = (x, p1) where (e, €1) = g and 7} (eo, 1) = e1.

3.7 Theorem. The above construction No @ Ny, T}, T1} is a product in Net,,, the category of nets with
synchronous morphisms.

Proof. Use the previous result that Ny X Ny, I, II; is the product in Net and just check that this time
the mediating morphism stays inside the category Neb,yn.

Again we can view this new construction as an operation on transition systems.

3.8 Theorem. Let No @ Ny, I = (r}, po) and I} = (#}, p1) be the synchronous product of nets. Then
M is a reachable marking of Ng @ N, and M A, M' iff

poM is a reachable marking of Ny and

poM —wa‘%o.M " and

Ve, ' € AVeg € Ey.empeg & e'mpeq = ¢ = ¢’ and

p1M is a reachable marking of Ny and

M l.’V}hM' and

Ve, e € AVe; € Ej.en’ie1 & e'nlley = e=¢.

Proof. Omitted. 1

3.9 Example. One can represent a ticking clock as the [ollowing simple net, call it Q:

U:ﬁ
Given an arbitrary contact—free net N it is a simple matter to serialise, or interleave, its event occur-

rences; just synchronise them one at a time with the ticks of the clock. This amounts to forming the
synchronous product N @ 1 of N with ©, in a picture:

NK/

Of course one would like to check, in a formal way, that this construction really does interleave event
occurrences. The techniques for doing this are presented in section 5 on occurrence nets.
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Now we give the form of coproducts in Net and Net,,,.

3.10 Definition. The coproduct of nets.

Let No = (By, Eo, Fo, Mp) and N, = (B, Ey, ', M) be contact-free nets.

Let ing : Ey —» Eg+ Ey and in; : By — Eg+ I/; be the injections into the coproduct of sets in Set,given
in 3.2. Let ¢ : (Bg, Mo) — (B, M) and ¢ : (B1, M1) — (B, M) be the injections into the coproduct of
marked sets given in 3.3. '

Define the coproduct of the nets, Ny + Ny, to be the net (B, E, F, M) where

(B, M) is the coproduct of marked sets
E=FEy+ E;
eF'b = (Jeg € Eo, by € Bo-eoinge & byrob & eoFobo)
or (Jey € Ey, by € By.eginie & byyb & e F1by)
bFe & (380 € Ey, bo € Bg.eginge & boiob & boFoeu)
or (dey € Ey, b1 € By.eginie & byi1b & by Fieq).

Define injection morphisms of nets:

Iy = (ing, 10) : No — Nog + Ny
L = (ing,¢1): Ny — No + Ny.

The coproduct construction can be sumimarised in a simple picture. The two nets Ny and N, are laid
side by side and then a little surgery is performed on their initial markings. For each pair of conditions bg
in the initial marking of Ng and b; in the initial marking of N, a new condition (b, b1 ) is created and made
to have the same pre and post events as by and b; together. The conditions in the original initial markings
are removed and replaced by a new initial marking consisting of these newly crcated conditions. Here is the

picture: - - e ——

Rk

3.11 Theorem. The above construction Ny + Ny, Iy, Iy is a coproduct in the categories Net and Netizyy.

Proof. Omitted. 0
Again the construction translates over to a natural consfruction on transition systems.

3.12 Theorem. Let Ng + N, Iy = (ing, 1p) and Iy = (iny, 1) be the coproduct of nets. Then

M is a reachable marking of Ny + N; and M A, M’

iff
3Ad’O;AO’ M{)'

Mo 29 Ml & A= ingAo & M = 1Mo & M' = 1oM},
or
IMy, Ay, MY,
M, M &A= inA & M = My & M = M,

Proof. Omitted. §
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’ .
Equalisers do not exist for arbitrary nets because they do not exist for sets with relations as morphisms.

I do not yet know whether or not cocqualisers exist.

4. The subnet ordering, restriction and a “cpo” of nets.

We consider two natural partial orders on nets. One is the relation of one net being a subnet of another.
The other is that of net inclusion induced by componentwise inclusion of nets. Both will have least upper
bounds of w—chains but only net inclusion has a lcast element making it a complete partial order (cpo) for
the purpoeses of giving and solving recursive definitions of nets—of course nets form a class and not a set
so solely for this reason, it is not strictly speaking a cpo. Our opcrations on nets will be continuous with
respect to both orders so we shall be able to define nets recursively following now standard lines—see e.g.
[S]—by taking least fixed-points in the cpo. Recall the definition of subnet.

4.1 Lemma. Let No = (By, Eo, Fy, My) and Ny = (By, E1, F1, M) be nets. Then No is a subnet of N, iff
By C By, Eg C Ey, Mg = M, and

Veg € EoVb € By.epF1b & eofFob,
Veg € EpVb € By.bF1ep & bFgyeq.

Proof. Directly from the definition of subnet. &

4.2 Definition. Restriction. Let N = (B, E, F, M) be a net. Let E' C E. Define the restriction of N to
E, written N[E, to be (B, E', F', M) where F' = F 1 ((B X E')U (E' X B)).

In other words the restriction of a net to a subset of events is just the net with all the events not in the
subset deleted. Obviously the restriction of a net is a subnet.

4.3 Proposition. The restriction of a net N, in Net, to a subset of events E' gives a subnet N[E' which
is contact-free and so in Net.

4.4 Example. Obviously the synchronous product of two nets is a restriction of the product of two nets.

Clearly < is a partial order on nets. Another obvious partial order is induced by coordinatewise
inclusion of nets.

4.5 Definition. Let Ny = (Bo, Ey, Iy, Mo) and Ny = (BI,EI, Fy, M]) be nets. Write Ng<N; if Ny isa
subneb of Nl. Write No Q Nl iHBo g Bl, Eo g El, Fo g Fl and Mo g Ml.

This inclusion order makes a complete partial order of nets, apart from the the fact that nets form a

class and not a set. All the operations we have and shall introduce on nets will be continuous with respect
to .

18



this cpo structure. Unfortunately the subnet order <, though it does have lubs of w-chains, does not have -
a least net so it is not a cpo—this may indicate that my choice of morphism on nets could uscfully be made
a little more general.

4.8 Proposition. (i) The null net, (@, emptyset, emptyset, emptyset) is the C -least net i.e. for all pets N,
(2,0,0,0) C N. Let NgNy---N,, C --- be an w-chain of nets of the form N, = (By, By, Fn, My,).- Then it
has a least upper bound U ,c., Na = (Unew Brr Unew Bns Unew FryUnew Mn). Similarly if NoSNy- - -Np < -

is an w-chain of nets it has a least upper bound J,,¢,, Nn.

4.7 Definition. Say a unary operation operation op on nets is <-{C~)continuous iff it preserves least upper
bounds of w~chains of nets ordered by < (C). If op is an n-ary operation on nets, say it is <~(C)continuous
iff it is continuous in each argument separately.

4.8 Theorem. The constructions X, @ and + and restriction are continuous operations on nets ordered
by C and the subnet ordering <.

Proof. Omitted. 1 |

Thus each of the operations X, &) and + and restriction can be used to define nets recursively because
they are all continuous with respect to the cpo of nets.

5. The semantics of Petri nets.

Nets are rather complex objects with an intricate behaviour. Clearly we would like to know when two
nets have essentially the same behaviour. In this section we put forward the view that the behaviour of a
net is captured naturally by its unfolding to a net of occurrences, an operation very like that of unfolding a
transition system to a tree [W4] or Dana Scott’s operation of unravelling a flow diagram to a possibly infinite
element in his lattice of flow diagrams [S1]. Naturally we would like the operations we perform on nets to
“commute” with the represention of their behaviour.

Here we show how an occurrence nei, in which conditions and events stand for occurrences, can be
associated with a contact—free net. The occurrence net we associate with a contact—free net will be built
up essentially by unfolding the net to its occurrences. This unfolding is a canonical representative of the
behaviour of the original net. Of course we assume the behaviour of isomorphic nets is the same. Occurrence
nets and the operation of unfolding a net to an occurrence net were first introduced in [NPW1, 2 and W].

In general because of the presence of forwards and backwards conflict that part of a net “caused by” or
“causing” an event or condition need not be unique. In an occurrence net we wish the elements to represent
occurrences (as is the case with Petri’s causal nets). From this point of view backwards conflict is undesirable.

Tor instance in _Q %
e '\D
e, L1 e,
Ney -

ol

the condition b can be caused to hold in two different ways, either through the occurrence of ey or e;.
In occurrence nets we choose to allow only forwards conflict arising through events sharing a common
precondition. This explains axioms (i) and (iv).

Because we do not want repeated occurrences represented by an occurrence net we ban nets like
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by insisting there be no loops in the F* rclation. This explains half of axiom (iv).

We identify the initial marking with those conditions b for which *b = @—axiom (ii). Because we
imagine the process to have a definite start, to have not gone on forever in the past, we assume that there
are no infinitely descending F—chains—axiom (iii).

For occurrence nets there is an especially simple definition of a concurrency reletion and conflict relation
which was previously only defined with respect to a marking.

5.1 Definition. An occurrence net is a net (B, E, F', M) for which the following restrictions are satisfied:
(i) Wvbe B.|'b|{i/
(i) beEMab=0,
(i) F* is irreflexive and Vz € B U E.{ z | 2F "z }is finite,
(iv) # is irreflexive where

eft1e Sa; e €EE&EEE & en®ed # O and
zHa’ ey e, e € Beedtre & eF'z & F'.

Suppose N = (B, E, F, M) is an occurrence net. We call the relation #; defined above the immediate conflict
relation and # the conflict relation. We define the concurrency relation, co, between pairs z,y € BU E by:

g coy &aep ~(zFty or yFtz or z#y).

5.2 Definition.  Write Oce for the category of occurrence nets with net morphisms. Write Oceyyn
for the subcategory of occurrence nets with synchronous morphisms. Write Ocejo for the subcategory of
occurrence nets with foldings as morphisms.

There is a natural idea of depth of an element of an occurrence net, useful to prove properties of
occurrence nets by induction.

5.3 Definition. Let N = (B, E, F, M) be an occurrence net. Inductively define the depth of an element
z € BU E as follows: '

For b € M take depth(b) = 0;

For e € E take depth(e) = max{ depth(b) | bFFe } + 1;

For b € B\ M take depth(b) = depth(e) for that unique e such that eFb.

As expected every condition and event of an occurrence net can occur in a play of the token game of
1.6. We show that the concurrency and conflict relations on occurrence nets agree with the earlier notions.
By insisting that events and conditions in an occurrence net correspond to occurrences we do not need to
specify at which marking we assume its conditions to hold and its events to have concession.

5.4 Proposition. Let N = (B,E,F, M) be an occurrence net. Then every event of N has concession at
some reachable marking and every condition of N holds at some reachable marking.

Let e, ¢’ be two events of N. Let b, b’ be two conditions of N,

The relations #; C E? and # C (B U E)? are binary, symmetric, irreflexive relations. The relation
of immediate conflict e ¢’ holds iff there is a reachable marking of N at which the events e and ¢’ are in
conflict.

‘ The relation co is a binary, symmetric, reflexive relation between conditions and events of N. We have
b co b iff there is a reachable marking of N at which b and ¥ both hold. We have e co ¢’ iff there is a
reachable marking at which ¢ and €' can occur concurrently. :
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Let (¢,8) : Ng — N; be a morphism between occurrence nets. Then egee; & ehcey = eg = efy or ep#el.

Qjﬁd boBby & byBby = by = bfy or bo#by.
Proof. Qmitted. §

5.5 Proposition. An occurrence net N = (B, E, F, M) is the lub of its subnets N™) of depth n i.e. Define
N®) =4, (B™, EM), F®), M) where

B™ = {be B| depth(b)<n}
E®™ = {e € e| depth(e)<n}
aFMy & g,y e B® Yy EM & oFy.

Then N(W<N and N = |J ., N,

ncw

Proof. Left to the reader. J

5.8 Proposition. Let N = (B, E,F, M) be a contact-free nei. There is a <-least occurrence net No =
(Bo, Eo, Fo, M) with a folding f = (e0,Bo0) : No — N which satisfies:

Bo = {(@,b) |b€ M}U {({eo},b) | eg € Eo &'bEB&ﬁo(eo)Fb},
Eo={(S,e)| SCBo&e€E &PoS ="e& Vby,by € S.by co by},
zFoy & Jw,z.y = (w,2) & z € z,
Mo = {(9,b) |be M},
and
egeoe & 1S C Bo.eg = (S, ¢),
boBob & be M & by = (0,b) or Jeg € Eo.byp = ({ &g },b).

Proof. We define No as a lub of subnets, so No =V, ., Np and f = (U,.c,, €*s U, e, B"); for an increasing
chain of subnets Ng and foldings f* ={e",8"): N — N for n € w.

For n € w, take the occurrence net unfolding of N to depth n to be N% = (B3, E3, F3,M3) ,and the
folding to depth n to be f* = (¢", ") : N% — N where both N3 and f™ are defined inductively as follows:

For the base case take .

E%=e,
B = (9} x M,
Fh=9, °
My ={0}x M.
and
=0,

boB% & b€ M & by = (D, b).

For the n + 1st case take
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e0 € B3t & 38 C BY,e € E.f™ = "¢ & (Vbg, b}y € S.bg co™ bp) & eo = (S, ¢€),
bo € B3 &= by € BY
or Jeg € B 6" (ep) = e & eFb & by = ({0 }, b),
eF3ly & Jw, 2.y = (w,2) &z € 2,
M ={0}x M,
where :
c# y e Je,d EEe4e &°enN®d#£0& eFM 'z & ™y,
z co™ y < neither zF™ 'y nor yF" "z nor z#™y,
and .
eoc"le < 38 C By.eo = (S, ¢),
boB™ b = boB
or deg € Ez+l.bo = ({ € },b).

It is easy to check, by induction, that each N® is an occurrence net, each f» : N3 — N is a
folding and that N3<NZ' for n € w. Thus taking No = (Bo, Eo, Fo, Mo) = Up,e, N3 2nd [ =
(Usew € Upe, B™) ensures No is an occurrence net and that f is a folding. As each event occurrence
depends on only a finite set of occurrences of conditions and each condition occurrence depends on only
one event occurrence, the sets satisfy the recursive conditions stated above. That the unfolding is the least
follows from the construction.

5.7 Definition. Let N be a contact-free net. Define its occurrence net unfolding, UN, to be the unique
net and the folding morphism that folding satisfying the requirements of the proposition above,

5.8 Example. This example illustrates a contact-free net together with its occurrence net unfolding.
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' 5.g Example. This example illustrates a contact-free net logether with its occurrence net unfolding.

N

WN
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A few minutes thought should convince the reader that the unfolding construction is quite natural,
at least provided it is accepted that occurrence nets do capture the essence of net behaviour. Still the
construction alone would be quite unwieldy when used as a method for comparing the behaviours of nets.
Fortunately there is an abstract characterisation of ‘the occurrence net unfolding of a contact-free net. In
a sense it was there all the time, because the unfolding operation acts on nets as the right adjoint to the
inclusion functor Oce — Net so it was determined by the categorical set—~up. Another way to say the same
thing is to say the occurrence net unfolding UN of a nel together with the folding morphism f: UN — N
is cofree over N. And another way is to say that Oce is a coreflective subcategory of Net. (See [Mac) for
further details.}) The latter terminology is apt because as we shall sce the subcategory Oce of occurrence
nets, which can be thought of as the meanings of nets, really does reflect the category Net. The proof of the
cofreeness of the occurrence net unfolding is long. But the theorem enables us to sweep all the unpleasant
details of the construction under the carpet; they’re there if you want to look but you don’t have to, just
use the theorem.

5.9 Theorem. Let N be a contact—free Petri nct. Then the occurrence net unfolding UN and folding f
are cofree over N t.e. for any morphism g : N; — N with Ny an occurrence net there is a unique morphism
h: Ny — UN such that the following diagram commutes:

-
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Proof. Assume N = (B,E,F,M) is ;1 contact—free net which has an occurrence net unfolding UN =
(Bo,Eo, Fo, Mo) and folding f = (o, fo) : UN — N. Assume N, is an occurrence net of the form Ny =
(B1, E1, Fy, My) and that g = (e1,81) : Ny —» N is a morphism.

It is convenient to first establish necessary and sufficient conditions for there to be a morphism making
the above diagram commute, and then later to construct a pair of relations which is clearly unique so the
conditions are satisfied.

Let h = (¢, B) be a pair of relations ¢ C E; X Eg and 8 C B; X Bp. We show that h is a morphlsm,
so h: Ny — UN, such that g = f o h iff the following two conditions are satisfied:

(1) ejeeg & Je € E.eg = (,B'el, e) & eieye,
(ll) b1B8by ¢ b € B.bg = (é.bl, b) & by 1b.

Firstly suppose A is a morphism such that g = f o h. We show that the conditions (i) and (ii) must then
be satisfied.

“(i)=.” Let ejeep. Then because g = fh we have e;€;¢e for some e and § such that eg = (S, ). However
because h is a morphism we must have § = 3%¢;, as required.

“(i)&=." Suppose eg = (B°e1,¢) and e, e for some e € E. We first show eg € Eg. Because h is a
morphism 8%e, is a pairwise co set of conditions. Also as ¢ = fh and g is a morphism, we have Bp3%e; =
B1°e; = *e. Thus eg = (B%¢ey,¢€) € Eg so egege. Take by € *e;. As h is a morphism b; 8by for some bgFpeq.
But then, again as & is a morphism, we obtain some e, such that ejecy and byFoe. By the commutativity
g = fh we get eofep) = 61(61) = e. Because h is a morphism *¢j = fB%¢;. Thus e = (B¢, €) = eo, 80
ej€eg as required. .
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“(ii)=+." Suppose by Bby. Then by the commutativity, by 816 and by = (A4, b) for some b € B where either
A=0 or A= {eg} for some ey € Eo. Assume A = 0. In this case by = @. Now if *b; 5 @ then as h
is a morphism *bg 5% @. Thus *by = @ so by = (e*by, b} as required.

“(ii)}=." Suppose by = (€*by,b) and b;8:b for some b € B. Either by € M; or *by 5 @. Assume
by € M;. Then by = (@,b) € Mo. As h is a morphism there is some b € M, such that biBbo. Asgisa
morphism b; = b} so b; 8by as required. Now assume the other case, that *b; # @ and let ¢; be the unique
event such that ey F'yb;. As g is a morphism €;(e1) 5% * and €;(e;)F'b. By the commutativity ¢(e1) # *. Thus
bp = ({€(e1) },b) so e(e1)Fobo. As h is a morphism there is some &; so that b1 Bbo and ey 1 b. Therefore by
the commutativity 5, 8,b. Thus .

b’xﬁlb & elFlb'l and
blﬂlb & elFlbl.

But g is a morphism so 3!b;.(b181b & €1 Fyb1), making b, = b}. Therefore b;8by as required.

Thus we have shown that if A : N; — UN is a morphism such that g = fh then the conditions (i) and
(ii) are satisfied. Now we show the converse, that the conditions (i) and (ii) ensure that A is 2 morphism such
that ¢ = fh.

Suppose the conditions (i) and (ii) are satisfied. First we show & is a morphism & : Ny — UN.

Clearly :
b18bo & by € My = by = (@,b) € Mo.
Also
by, b € My & b Bby & b, Bbo
: = by f1b & b\ B1d where by = (D,b)
= b1 = b'l‘

Suppose ejeeg & egFobg. Then by (i), ep = (B°e1,€) & e1€qe for some e € E. From the definition of the
unfolding, eFb & by = ({ e },b) for some b € B. As g is a morphism 3!by € By.e;F1b; & b1B16. Therefore
b, is the unique condition such that &;8by & €1 I'1 b1, as required.

Suppose b;Bby & e Fiby. Then by (ii), bo = ({¢(e1)},b) & 61815 for some b € B. As g is a morphism
er€re & eFb for some e so e(e;) = (B°e1, €) # *. Take eg = €(e;). Then ejcep & epFoby, as required.

Suppose ejeeq & boFgeg. Then, by (i) eo = (8%e1,€) & ej€e for some e € E. By the properties of the
folding morphism, by € B°e;. Thus b;8by & by Fe; for some b; € B;. We also need the uniqueness of b;.
Let-Bo(bo) = b. Assume b} Bby & b, Fey for some b € By. Then by (ii) b}8:b, which combined with Vi Frey
implies b} = b as g is a morphism. So, as required b; is unique so that b;8bp & b1 Fie;.

Suppose by 8by & b1 Fye; for e; € Ey. Then by (ii), bo = (€*b1,b) & b18:b for some b€ B. As g is a
morphism bFe & eye; e for some e € E. Take eg = (3%€e1,¢). Then ejeeq & bgFoeg, as required.

We require that g = foh i.e. (€1, 81) = (€0, B0)o (€, B). Clearly it follows from (i) and (ii) that egoe C €
and Bp o B C f;. It remains to prove the converse inclusions:

Suppose ejeze. Take eg = (B%¢1,e). Then by “(i)¢=" e € Eo and so egege. Therefore e;(eg o €)e as
needed.

Suppose by 8. Take by = (e°by,b). Then by “(ii)&=" by € By and so bofpb. Therefore by(fo 0 B)b, as
needed to complete the proof that g = f o h. )
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Thus we have completed that part of the proof showing that k : Ny — UN is a morphism and g = fh
il h satisfies (i) and (ii). Of course it remains to show that such a morphism 4 exists and moreover is unique.

Now we show the existence of such an k. Define b = (¢, 8) = (U ey €*» Unew B") where € C By X Ey
and 8™ C B; X By are given inductively as follows: ’

For the basis of the construction take

=0 ‘
blﬂobg & 3b € B.hy = (0, b) & blﬂlb.

For the inductive step in the construction take

e16"leg & Je € E.ep = (B™"ey,e) & eqeye
by 8™ by & b € B.bg = ("1, b) & by B1b.

This inductive definition provides an h = (¢, 8) which satisfies (i) and (ii). (We leave the verification of this
to the reader; note the inductive definition has closure ordinal w because we assume an event has only a
finite number of preconditions.) Thus by our previous work h : Ny — UN is a morphism for which g = fh.

The ultimate step in the proof is to show that the k defined inductively above is the unique morphism
h: Ny — UN for which g = fh. Suppose k' = (¢, #') were another morphism such that g = f#’. Then it
too would satisfy (i) and (ii). Consequently by induction on n, ¢ C ¢’ and 8 C f’. The converse inclusions
are established by induction on the depth of the conditions and events of Ny: . '

Zero Depth. Clearly if b; € M; and b,8'by then, as 8 satisfies (i), b1 8bo too.

Nonzero Depth. Assume e;e’eg where depth(e;) = n + 1. As ¢ satisfies (i) we have ep = (8/*¢;, €) and
esese for some e € E. Each condition in 8’*¢; has strictly less depth than n + 1. Thus #'*¢; = 8%, so as ¢
satisfies (i) we obtain e;eep.

Assume b; f'by where depth(b;) = n + 1. As £ satisfies (ii), bg = (¢'*by,b) and b;8,b. Here the unique
event e; such that e; 15y has depth n + 1. By the argument just given ej€’eg < ejceg. Because e satisfies
(ii) we obtain b, 8bo.

This induction shows that ¢ C € and 8’ C A which together with the previously shown converse
inclusions yields & = &'. We have established the existence and uniqueness of a morphism h : Ny — UN
making g = fh.

Finally we conclude that UN, f is cofree over N, completing the proof of the theorem. K

5.10 Corollary. The unfolding operation on contact-frce nets preserves limits; in particular it preserves
products. Thus the unfolding of the product (in Net) of two nets U(Np X Ny) is isomorphic to the product
(in Occ ) of the unfoldings (UNg) X occ (UN1). To within isomorphism, the product of two occurrence nets
No X oce Ny in Oce is the net U(No X Ny).

Proof. See [Arb] or [Mac] for the proof that right adjoints preserve limits. To prove the result characterising
product in Oce note that the unfolding of an occurrence net yields an occurrence net isomorphic to the
original. 1 '

In the same way the occurrence net unfolding U N and folding f are also cofree over N in the category
Net,yn—just check that the mediating morphism A in thecorem 5.6 is synchronous provided g is. It follows
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that the (synchronous) product in Oece,y, is just the unfolding of the synchronous product in Net. Let
us look again at example 3.9 and prove our claim that forming the synchronous product of a net with
the “clock” (2 serialises or interleaves its event occurrences, t.e.no two distinct event occurrences can occur
concurrently (be in the co-relation).

5.8 Proposition. Let N be a contact—free net and (1 the “clock” of example 3.9. If ¢, ¢/ are events of
U(N ® Q) then eF'e or ¢'F’e or efte.

Proof. Clearly () unfolds to the net:

e—1—0—1—>0— - - 20—->H—>0— - - -
¢ a

(7] CI f cél, cg t

where for simplicity we name the tick occurrences 0, 1,2, - - - and their preceding conditions ¢y, ¢1, ¢3. . ..
Let I = (,8) : UN@ Q) = (UN Q.. UN) — UN be the projection morphism in Oce,yn , taking an
event occurrence synchronised with a tick (occurrence) to that tick. To avoid clutier we shall overload the
symbol F allowing it to represent the flow relation in several nets.

Let e, ¢ be event occurrences of N @ {2, so they are events of U(N @ ). As II is synchronous there
are ticks ¢t and ' so that e(e) = ¢ and €(¢') = ¢'. Without loss of generality assume t'F"t.

Because IT is a morphism and c;F't there is a condition bFe in U(N @ 1) such that bBc:. Because
U(N @ Q) is an occurrence net, either b is in the initial marking (so ¢; is) or there is some unique event
so el'b. Thus continuing inductively we obtain a chain egF...FbFe where e(eg) = t/. If ¢g = € then

* o . . .
¢ I e. Otherwise, because II is a morphism between occurrence nets ep#te’ so efte’, as required to prove the
proposition. |

Now we consider coproducts,
5.9 Proposition. The categories Occ and Oecc,yn have coproducts which coincide with those in Net.
The next example shows that the unfolding need not preserve coproducts however.

5.8 Example. This example is essentially the same as that given in [W3] for a category of transition
systems where unfolding yields a tree. The unfolding of the netl:l is of course itself.

The unfolding of the net @K;D

is

©

The coproduct of their unfoldings in Oce and the unfolding of their coproduct in Netare:

26



Of course we can restrict to subcategories ol nets so that unfolding does preserve coproducts. A
subcategory for which this is true is that for which nets satisfy: every condition in the initial marking
has no pre-events.

We have proposed one subcategory of nets, Occ the category of occurrence nets, as that category which
captures the idea of net behaviour. There may be larger subcategories which capture a more refined notion
of net behaviour while still capturing a suitably abstract idea of nct behaviour. There may well for example
be some way of unfolding nets to the subcategory of nets in which conditions can hold once and only once in a
play of the token game. (Is there a right adjoint to the inclusion functor associated with this subcategory? If
so it should correspond to some form of unfolding.) Certainly there are cruder subclasses of nets which reflect
certain aspects of net behaviour while forgetting others, and some of them are used all the time. For example
trees can be regarded as special kinds of nets and they are basic to so much work on concurrency in which
concurrency is simulated by non-deterministic interleaving. Inside Netthere is a subcategory naturally
equivalent to the category of trees introduced in [W3] and that is inside a slightly larger subcategory of
transition systems, where events occur one at a time. And then the category of event structures sits inside
Netas a subcategory. All these subcategories have right adjoints to the associated inclusion functors, so
there are analogues of the unfolding operation taking a net to a canonical representative in each of these
classes. Moreover these representatives are natural in themselves; for example the product in the subcategory
of trees is closely related to parallel compositions that have been defined on labelled trees by Milner [M].

6. Conclusion.

Petri nets are a very natural model of of concurrent computation. However they have two major
drawbacks. For one , they often describe a computation in too much detail; they are not abstract enough.
For another, they are generally presented in an unstructured way making it difficult to reason about their
behaviour; net descriptions often get too big, out of hand and out of mind. It was for these reasons that Petri
introduced morphisms on nets—see [Br] for the definition. It was intended that the resulting category would
provide a formal framework for operations on nets. In my view, Petri’s choice of definition falls far short of
its goal and this is because, in general, his definition fails to respect the dynamic behaviour of nets. This
paper gives a new definition of morphism on nets, significantly diflerent from Petri’s, which, while probably
not the final story, has several points in.its favour:

o The new morphisimns preserve the dynamic behaviour of nets; there is a forgetful functor from the new
category of nets to a category of transition systems where states correspond to markings and transitions to
concurrently firing sets of events.

e The new category of nets gives useful categorical constructions, accompanied by abstract characterisa-
tions. For example the product is closely related to many parallel compositions that have been defined on
nets and the coproduct is an operation which “fuses” nets together at their initial markings. There is a
systematic way of labelling events (using the synchronisation algebras of [W1-4]) to give net semantics to
parallel programming languages like CCS and CSP.

o The category has a pleasant relation with subcategories based on familiar objects such as trees,
transition systems (both the many-events—to-a—transition and the one-event-to-a-transition variety), event
structures and occurrence nets (unfolded or unravelled nets). In each case the inclusion functor has a right
adjoint; for trees it is an interleaving operation and for occurrence nets it is an unfolding operation which
can be viewed as associating with a net a canonical representative of its behaviour. So the category of nets
is reflected in the subcategories (and for example the results of (W3] follow).
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My hope is that the highly structured view of Petri nets presented here will not only make nets more
managable but also be a great help in giving net semantics to concurrent programs and proving their
properties. I hope to demonstrate this in the future and provide proof rules to accompany the constructions;
there should be proof rules for constructions like product, relating properties in the product to properties in
the components, and a form of induction rule associated with the operation of unfoldinﬁ.
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