
Independence and Concurrent Separation Logic

Jonathan Hayman and Glynn Winskel
Computer Laboratory, University of Cambridge

Abstract

A compositional Petri net based semantics is given to a
simple pointer-manipulating language. The model is then
applied to give a notion of validity to the judgements made
by concurrent separation logic that emphasizes the process-
environment duality inherent in such rely-guarantee reason-
ing. Soundness of the rules of concurrent separation logic
with respect to this definition of validity is shown. The in-
dependence information retained by the Petri net model is
then exploited to characterize the independence of parallel
processes enforced by the logic. This is shown to permit a
refinement operation capable of changing the granularity of
atomic actions.

1. Introduction

The foundational work of Hoare on parallel program-
ming [9] identified the fact that attaching an interleaved se-
mantics to parallel languages is problematic. Three areas of
difficulty were isolated, quoted directly:
• That of defining a “unit of action”.
• That of implementing the interleaving on genuinely par-

allel hardware.
• That of designing programs to control the fantastic num-

ber of combinations involved in arbitrary interleaving.
The significance of these problems increases with devel-

opments in hardware, such as multiple-core processors, that
allow primitive machine actions to occur at the same time.

As Hoare went on to explain, a feature of concurrent sys-
tems in the real world is that they are often spatially sepa-
rated, operating on completely different resources and not
interacting. When this is so, the parallel processes are in-
dependent of each other. For instance, computer processes
are spatially separated if they operate on different memory
locations. The problems above are intuitively resolved if
the occurrence of non-independent parallel actions is pro-
hibited except in rare cases where we can assume atomicity,
as might be enforced using the constructs proposed in [8, 3].

Independence models for concurrency allow the prob-
lems associated with an interleaved semantics to be resolved

by recording when actions are independent. Independent
actions can be run in either order or even concurrently
with no consequence on their effect. This mitigates the
increase in the state space since unnecessary interleavings
of independent actions need not be considered (see e.g. [6]
for applications to model checking). Independence models
also permit easier notions of refinement which allow us to
change the assumed atomicity of actions.

It is surprising that, to our knowledge, there has been
no comprehensive study of the semantics of programming
languages inside an independence model. The first com-
ponent of this work gives such a semantics in terms of a
well-known independence model, namely Petri nets. Our
model isolates the specification of the control flow of pro-
grams from their effect on the shared environment.

The language that we consider is motivated by the emer-
gence of concurrent separation logic [14], the rules of
which form a partial correctness judgement about the ex-
ecution of pointer-manipulating concurrent programs. Rea-
soning about such programs has traditionally proven diffi-
cult due to the problem of variable aliasing. For instance,
Owicki and Gries’ system for proving properties of paral-
lel programs [16] essentially requires that they operate on
disjoint collections of variables, thereby allowing judge-
ments to be composed. In the presence of pointers, the same
condition cannot be imposed just from the syntax of terms
since distinct variables may point to the same memory lo-
cation, thereby allowing arbitrary interaction between the
processes.

At the core of separation logic [18, 10], initially pre-
sented for non-concurrent programs, is the separating con-
junction, ϕ ∗ψ, which asserts that the memory may be split
into two parts, one part satisfying ϕ and the other ψ. The
separating conjunction was used by O’Hearn to adapt Ow-
icki and Gries’ system to provide a rule for parallel compo-
sition suitable for pointer-manipulating programs [14].

As we shall see, the rule for parallel composition is in-
formally understood by splitting the initial state into two
parts, one owned by the first process and the other by the
second. Ownership can be seen as a dynamic constraint on
the interference to be assumed: parallel processes always
own disjoint sets of locations and only ever act on locations

that they own. As processes evolve, ownership of locations
may be transferred using a system of invariants (an example
is presented in Section 4). A consequence of this notion of
ownership is that the rules discriminate between the parallel
composition of processes and their interleaved expansion.
For example, the logic does not allow the judgement

` {` 7→ 0} [`] := 1 ‖ [`] := 1 {` 7→ 1},
which informally means that the effect of two processes act-
ing in parallel which both assign the value 1 to the memory
location ` from a state in which ` holds 0 is to yield a state
in which ` holds 1. However, if we adopt the usual rule for
the nondeterministic sum of processes, the corresponding
judgement is derivable for their interleaved expansion,

([`] := 1; [`] := 1) + ([`] := 1; [`] := 1).
The rules of concurrent separation logic contain a good

deal of subtlety, and so lacked a completely formal account
until the pioneering proof of their soundness due to Brookes
[4]. The proof that Brookes gives is based on a form of in-
terleaved trace semantics. The presence of pointers within
the model alongside the possibility that ownership of loca-
tions is transferred means, however, that the way in which
processes are separated is absolutely non-trivial, which mo-
tivates strongly the study of the language within an indepen-
dence model. We therefore give a proof of soundness using
our net model and then characterize entirely semantically
the independence of concurrent processes in Theorem 12.

The proof technique that we employ defines validity of
assertions in a way that captures the rely-guarantee reason-
ing [11] emanating from ownership in separation logic di-
rectly, and in a way that might be applied in other situations.

In [19], Reynolds argues that separation allows store ac-
tions that were assumed to be atomic, in fact, to be imple-
mented as composite actions (seen as a change in their gran-
ularity) with no effect on the validity of the judgement. In-
dependence models are suited to modeling situations where
actions are not atomic, as advocated by Lamport and Pratt
[17, 13]. We introduce a novel form of refinement, inspired
by that of [20], and apply this to address the issue of granu-
larity using our characterization of independence.

2. Terms and states

We begin by defining the terms of our language.
t ::= α | t; t | t ‖ t | α.t+ α.t | while b do t od

| resource x do t od
| with r do t od | with x do t od
| alloc(`) | dealloc(`)

We use α to represent primitive heap actions and use b
to distinguish boolean guards that proceed only if b holds,
having no effect on the heap, but otherwise blocking. The
guarded sum α.t + α′.t′ is a process that executes as t if α
takes place or as t′ if α′ takes place.

A heap is an assignment of values to allocated, or cur-
rent, heap locations. We denote the set of heap locations
Loc and use ` to range over its elements, and we denote the
set of values Val and use v to range over its elements. The
heap model allows locations to hold pointers to other loca-
tions, so we require that Loc ⊆ Val. There is no implicit
restriction that only current locations may be pointed at,
thereby allowing the model to cope with ‘dangling’ point-
ers. Locations become current through alloc(`), which
makes a location current and sets ` to point at this location.
For symmetry, dealloc(`) makes the location pointed to
by ` non-current if ` points to a current location. A heap
action α does not change which locations are current.

In addition to acting on the heap, we allow the lan-
guage to declare new binary semaphores, drawn from a
set of resource names Res, and use these to protect criti-
cal regions. A critical region protected by a resource r is
represented by with r do t od, which executes t if no
other process is inside a critical region protected by r. The
resource x do t od construct represents that a globally
unused resource is to be chosen and then used in place of
x in t. It is therefore necessary to record, in addition to
which resources are available, which resources are current;
we shall write curr(r) if r is current. We say that the dec-
laration resource x do t od binds the variable x within
t, and that the variable x is free within with x do t od.
We write fv(t) for the set of variables free within term t and
[r/x]t for the term obtained by substituting the name r for
the variable x within t avoiding capture. As standard, we
identify terms up to α-conversion. In addition, we say that
the resource name r is free within with r do t od.

These two components form the shared state in which
processes execute. Motivated by the net semantics that we
shall give, we define the following sets:

D def= Loc×Val L def= {curr(`) | ` ∈ Loc}
R def= Res N def= {curr(r) | r ∈ Res}.

A state σ is defined to be a tuple
(D,L,R,N)

where the set D ⊆ D, the set L ⊆ L, the set R ⊆ R and
the set N ⊆ N. The sets D, L, R and N are disjoint, so no
ambiguity arises from writing, for example, (`, v) ∈ σ.

The interpretation of a state for the heap is that (`, v) ∈
D if ` holds value v and that curr(`) ∈ L if L is current. For
resources, r ∈ R if the resource r is available and curr(r) ∈
N if r is current. It is clear that only certain such tuples of
subsets are sensible.

Definition 1 (Consistent state) The state (D,L,R,N) is
consistent if we have
R ⊆ {r | curr(r) ∈ N}, L = {curr(`) | ∃v.(`, v) ∈ D}

and for any `, v and v′, if (`, v) ∈ D and (`, v′) ∈ D then
v = v′.

3. Process models

We give both an operational and a net semantics to closed
terms. The operational semantics is presented to aid un-
derstanding of the net model, and is given by means of la-
belled transition relations of the forms 〈t, σ〉 λ−→ 〈t′, σ′〉
and 〈t, σ〉 λ−→ σ′. As usual, the first form of transition indi-
cates that t performs an action labelled λ in state σ to yield
a resumption t′ and a state σ′. The second indicates that t in
state σ performs an action labelled λ to terminate and yield
a state σ′. Labels follow the grammar:
λ ::= act(D1, D2) | decl(r) | end(r) | get(r) |

rel(r) | alloc(`, v, `′, v′) | dealloc(`, `′, v).
We assume that we are given the semantics of primitive

actions in the following form:
AJαK ∈ Pow(Pow(D)× Pow(D))

The interpretation is that α can proceed in heap D if there
are (D1, D2) ∈ AJαK such that, whenever D1 is defined,
D has the same value. The resulting heap is formed by
updating D to have the same value as D2 wherever it is
defined. It is significant that this definition allows us to infer
precisely the set of locations upon which an action depends.
In order to preserve consistent markings, we shall require
that D1 and D2 are (the graphs of) partial functions with
the same domain if (D1, D2) ∈ AJαK.

An example action is copying the value held at one loca-
tion to another:

AJ[`] := [`′]K def=
{({(`, v), (`′, v′)},
{(`, v′), (`′, v′)}) | v, v′ ∈ Val}

Boolean guards b are actions that wait until the boolean ex-
pression holds and may then take place. For example,

AJ[`] = vK def= {({(`, v)}, {(`, v)})}
gives the semantics of an action that proceeds only if ` holds
value v. We omit the specification of boolean constructs
such as conjunction (∧), disjunction (∨), negation (¬) and
further forms of equality, though these are easily definable.

The operational semantics is presented in Figure 1 (we
omit the symmetric rules). Notice that special items rel r
and end r are attached to the ends of terms for critical re-
gions and to the end of scope of a resource. We write σ⊕σ′
for the union of the components of two states where they
are disjoint, and impose the implicit side-condition that this
is defined wherever it is used. For conciseness, we do not
give an error semantics to situations in which non-current
locations or resources are used (e.g. action on a non-current
location); they shall be excluded by the logic.

3.1. Net structure

The particular variant of Petri net upon which we base
our model is that where conditions are marked without mul-

tiplicity (c.f. the ‘basic’ nets of [7, 22], App. A).
Within the nets that we give for processes, we distinguish

two forms of condition, namely control conditions and state
conditions. The marking of these sets of conditions deter-
mines the control point of the process and the state in which
it is executing, respectively. When we give the net seman-
tics, we will make use of the closure of the set of control
conditions under various operations.

Definition 2 (Conditions) Define the set of control condi-
tions C, ranged over by c, to be the least set such that:
• C contains distinguished elements ∗ and �,
• if c ∈ C then r:c ∈ C for all r ∈ Res and i:c ∈ C for

all i ∈ {1, 2}, and
• if c, c′ ∈ C then (c, c′) ∈ C.
Define the set of state conditions S to be D ∪ L ∪R ∪N.

A state σ = (D,L,R,N) corresponds to the marking D ∪
L ∪ R ∪ N of state conditions in the obvious way, and we
continue to restrict to markings corresponding to consistent
states. Similarly, ifC is a marking of control conditions, the
pair (C, σ) corresponds to the marking C ∪σ. We therefore
use the notations interchangeably.

The nets that we form are extensional in the sense that
two events are identified if they have the same preconditions
and the same postconditions. An event is therefore regarded
as a tuple,

e = (C, σ,C ′, σ′),
and we write •e for C ∪ σ and e• for C ′ ∪ σ′. The con-
trol conditions in C occur as preconditions of e, as do the
state conditions in σ. Similarly, the set C ′ ∪ σ′ forms the
postconditions of e. To obtain a concise notation for work-
ing with events, we write Ce for •e ∩ C, which is the set
of control conditions that occur as preconditions to e. We
likewise define notations eC, De, Le etc., and call these the
components of e by virtue of the fact that it is sufficient to
define an event through defining its components.

Two (disjoint) markings of control conditions are of par-
ticular importance: those marked when the process starts
executing and those marked when the process has termi-
nated. We call these the initial control conditions I and
terminal control conditions T , respectively. We shall call a
net with a partition of its conditions into control and state
with the subsets of control conditions I and T an embed-
ded net. For an embedded net N , we write Ic(N) for I
and Tc(N) for T , and we write Ev(N) for its set of events.
Observe that no initial marking of state conditions is speci-
fied. WriteN :(C, σ)

e
−� (C ′, σ′) if the token game for nets

allows the marking C ∪ σ to proceed to C ′ ∪ σ′ by event e.
The semantics of terms shall be an embedded net, writ-

ten N JtK. No confusion arises, so we shall write Ic(t)
for Ic(N JtK), and Tc(t) and Ev(t) for Tc(N JtK) and
Ev(N JtK), respectively. The nets that we form shall always
have the same sets of control and state conditions, though it

(D1, D2) ∈ AJαK
D1 ⊆ D D′ = (D \D1) ∪D2

〈α, (D,L,R,N)〉 act(D1,D2)−→ (D′, L,R,N)

〈b, σ〉 λ−→ σ

〈while b do p od, σ〉
λ−→ 〈p; while b do p od, σ〉

〈¬b, σ〉 λ−→ σ

〈while b do p od, σ〉 λ−→ σ

〈t1, σ〉
λ−→ 〈t′1, σ′〉

〈t1 ‖ t2, σ〉
λ−→ 〈t′1 ‖ t2, σ′〉

〈t1, σ〉
λ−→ σ′

〈t1 ‖ t2, σ〉
λ−→ 〈t2, σ′〉

〈with r do t od, σ ⊕ {r})〉 get(r)−→ 〈t; rel r, σ〉
〈rel r, σ〉 rel(r)−→ σ ⊕ {r}

〈t1, σ〉
λ−→ 〈t′1, σ′〉

〈t1; t2, σ〉
λ−→ 〈t′1; t2, σ′〉

〈t1, σ〉
λ−→ σ′

〈t1; t2, σ〉
λ−→ 〈t2, σ′〉

〈resource x do t od, σ〉 decl(r)−→ 〈[r/x]t; end r, σ ⊕ {r, curr(r)}〉
〈end r, σ ⊕ {r, curr(r)}〉 end(r)−→ σ

〈α1, σ〉
λ−→ σ′

〈α1.t1 + α2.t2, σ〉
λ−→ 〈t1, σ′〉

〈alloc(`), σ ⊕ {(`, v)}〉 alloc(`,v,`′,v′)−→ σ ⊕ {(`, `′), (`′, v′), curr(`′)}

〈dealloc(`), σ ⊕ {(`, `′), (`′, v′), curr(`′)}〉 dealloc(`,`′,v′)−→ σ ⊕ {(`, `′)}

Figure 1. Operational semantics

is a trivial matter to restrict to those that are actually used.
As we give the semantics of terms, we make use of some

constructions on nets. For example, we wish the events
of parallel processes to operate on disjoint sets of control
conditions. This is conducted using a tagging operation on
events. We define 1:e to be the event e changed so that

C(1:e) def= {1:c | c ∈ Ce} (1:e)C def= {1:c | c ∈ eC}
but otherwise unchanged in its action on state conditions.
We define the notations 2:e and r:e where r ∈ Res simi-
larly, and extend the notations pointwise to sets of events.

Another useful operation is what we call gluing two em-
bedded nets together. For example, when forming the se-
quential composition of processes t1; t2, we want to enable
the events of t2 when t1 has terminated. This is done by
‘gluing’ the two nets together, having made them disjoint
on control conditions, at the terminal conditions of t1 and
the initial conditions of t2. Therefore, rather than using a
terminal condition c of Tc(t1), the events of t1 use the set
of conditions {1:c} × (2:Ic(t2)). Similarly, the events of t2
use the set of conditions (1:Tc(t1)) × {2:c′} instead of an
initial condition c′ of Ic(t2).

An example of gluing follows, indicating how gluing is
used to sequentially compose events.

form
glue to

a c

db

(b, c)
(a, d)

(b, d)

(a, c)e1

e2

e1

e2e4

e3

e4

e3

A variety of control properties that the nets we form pos-
sess, such as that all events have at least one pre-control
condition, allow us to infer that it is impossible for an event
of t2 to occur before t1 has terminated, and thereon it is
impossible for t1 to resume.

Assume a set P ⊆ C×C. Useful definitions to represent
gluing are:

P / C
def= {(c1, c2) | c1 ∈ C and (c1, c2) ∈ P}
∪ {c1 | c1 ∈ C and @c2.(c1, c2) ∈ P}

P . C
def= {(c1, c2) | c2 ∈ C and (c1, c2) ∈ P}
∪ {c2 | c2 ∈ C and @c1.(c1, c2) ∈ P}

Extend the notation to events so that C(P / e) def= P / (Ce)
and (P / e)C def= P /(eC), and similarly for P .e, and extend
this to sets of events in the obvious manner. Observe that the
operations of gluing and tagging affect only the control flow
of events, not their effect on the marking of state conditions.

3.2. Net semantics

The net semantics that we now give for closed terms is
defined by induction on their size, given in the obvious way.

Action Let act(C,C′)(D1, D2) denote an event e with
Ce = C eC = C ′ De = D1 eD = D2

and all other components empty. For an action α, we define
Ic(α) = {�} and Tc(α) = {∗}. The set of events Ev(α) is
the least set such that if (D1, D2) ∈ AJαK then it contains
act({�},{∗})(D1, D2). The following diagram shows a net
for assigning value 5 to `.

∗
control conditions

state conditions

�

(`, 0) (`, 1) (`, 5)

Sequential composition The sequential composition of
terms involves gluing the terminal marking of the net for
t1 to the initial marking of the net for t2. The operation is
therefore performed on the set

P = 1:Tc(t1)× 2:Ic(t2).
Following the intuition above, we take

Ic(t1; t2)
def= 1:Ic(t1) Tc(t1; t2)

def= 2:Tc(t2)
Ev(t1; t2)

def= (P / 1:Ev(t1)) ∪ (P . 2:Ev(t2)).
Parallel composition The control flow of the parallel com-
position of processes is autonomous; interaction occurs
only through the state. We therefore force the events of the

two processes to work on disjoint sets of control conditions:

Ev(t1 ‖ t2)
def= 1:Ev(t1) ∪ 2:Ev(t2)

Ic(t1 ‖ t2)
def= 1:Ic(t1) ∪ 2:Ic(t2)

Tc(t1 ‖ t2)
def= 1:Tc(t1) ∪ 2:Tc(t2)

Guarded sum Let t be the term α1.t1 + α2.t2. The sum
is formed by prefixing the actions and then gluing the sets
of terminal conditions. Let P = (1:Tc(t1)) × (2:Tc(t2)).
Define the initial and terminal conditions

Ic(t) def= {∗} Tc(t) def= P

and the events Ev(t) to be
{act({�},1:Ic(t1))(D1, D2) | (D1, D2) ∈ AJα1K}

∪ {act({�},2:Ic(t2))(D1, D2) | (D1, D2) ∈ AJα2K}
∪ P / (1:Ev(t1)) ∪ P . (2:Ev(t2)).

Iteration Intuitively, we glue the initial and terminal con-
ditions of b.t together and then add events to exit the loop
when ¬b holds. Let P = {�} × 1:Tc(t). Define:

Ic(while b do t od) def= P Tc(while b do t od) def= {∗}.
The set of events Ev(while b do t od) is defined to be

{act(P,1:Ic(t))(Dt, Dt) | (Dt, Dt) ∈ AJbK}
∪ {act(P,{∗})(Df , Df) | (Df , Df) ∈ AJ¬bK}
∪ P . (1:Ev(t)).

Semaphores and critical regions We introduce the fol-
lowing notations for resource events. These all have Ce =
C and eC = C ′, and the components other than those listed
are empty. Observe that the event decl(C,C′)(r) will avoid
contact, and thus be able to occur, only if the resource r is
non-current.

decl(C,C′)(r): eR = {r} and eN = {curr(r)}
end(C,C′)(r): Re = {r} and Ne = {curr(r)}
get(C,C′)(r): Re = {r}
rel(C,C′)(r): eR = {r}

The initial conditions of the nets representing both con-
structs are {�}, and their terminal conditions are {∗}.

First consider resource x do t od. Its events form the
least set containing, for each r ∈ Res, where t′ = [r/x]t:
decl({�},{r : Ic(t′)})(r) ∪ r:Ev(t′) ∪ end(r : Tc(t′),{∗})(r).

� ∗

end(r)

end(r′)

r:Ev([r/x]t)

r′

curr(r′)

r

curr(r)

decl(r)

decl(r′)
r′:Ev([r′/x]t)

Now consider the closed term with r do t od. Its events
are precisely
{get({�},1:Ic(t))(r)} ∪ 1:Ev(t) ∪ {get(1:Tc(t),{∗})(r)}.

Allocation and deallocation The command alloc(`) ac-
tivates, by making current and assigning an arbitrary value,
a non-current location and makes ` point at it. For symme-
try, dealloc(`) deactivates the current location pointed to
by `.

We begin by defining two further event notations, which
both have Ce = C and eC = C ′ and empty components
except those stated. First, alloc(C,C′)(`, v, `′, v′) is the event
e such that
De = {(`, v)} eD = {(`, `′), (`′, v′)} eL = {curr(`′)},

which changes `′ from being non-current to current, gives it
value v′ and changes the value of ` from v to `′. The event
has concession only if the location `′ is not current. Second,
dealloc(C,C′)(`, `′, v′) is the event e such that
De = {(`, `′), (`′, v′)} eD = {(`, `′)} Le = {curr(`′)},
which does the converse of allocation.

The initial conditions of both alloc(`) and dealloc(`)
are {�} and their terminal conditions are {∗}. The events
for alloc(`) form the least set containing, for all `′ ∈ Loc
and v, v′ ∈ Val, alloc({�},{∗})(`, v, `′, v′). Similarly, the
events for dealloc(`) form the least set containing, for all
`′ ∈ Loc and v, v′ ∈ Val, dealloc({�},{∗})(`, `′, v′).

A well-known property of independence models is that
they support a form of run in which independent actions are
not interleaved: Given any sequential run of events of the
net between two markings, we can swap the consecutive
occurrences of any two independent events to yield a run
between the same two markings. As seen in for example
[22], this allows us to form an equivalence class of runs be-
tween the same markings, generating a Mazurkiewicz trace.
This yields a partially ordered multiset, or pomset, run [17],
in which the independence of event occurrences is captured
through them being incomparable.

As we have progressed, the event notations introduced
have corresponded to labels of the operational semantics.
Write |e| for the label corresponding to event e. The follow-
ing theorem shows how the net and operational semantics
correspond. It assumes a definition of open map bisimula-
tion [12] based on paths as pomsets, (N,M) ∼ (N ′,M ′),
relating paths of net N from marking M to paths of N ′

from M ′. The bisimulations that we form respect terminal
markings and markings of state conditions.

Theorem 3 Let t be a closed term and σ be a consistent
state.
• If 〈t, σ〉 λ−→ σ′ then there exists e such that |e| = λ and
N JtK : (Ic(t), σ)

e
−� (Tc(t), σ′).

• If 〈t, σ〉 λ−→ 〈t′, σ′〉 then there exists e such that |e| = λ

and N JtK : (Ic(t), σ)
e
−� (C ′, σ′) and (N JtK, C ′, σ′) ∼

(N Jt′K, Ic(t′), σ′).

• If N JtK : (Ic(t), σ)
e
−� (C ′, σ′) then 〈t, σ〉 |e|−→ 〈t′, σ′〉

and (N JtK, C ′, σ′) ∼ (N Jt′K, Ic(t′), σ′), or 〈t, σ〉 |e|−→
σ′ and C ′ = Tc(t).

4. Separation logic

We begin by presenting the intuition for the key judge-
ment of concurrent separation logic, Γ ` {ϕ} t {ψ}:

If initially ϕ holds of the heap defined at the locations
owned by the process, then, after t runs to completion,
ψ holds of the heap defined at the locations owned by the
process; during any such run, the process only accesses
locations that it owns and preserves invariants in Γ.

The fundamental rules of concurrent separation logic are
presented in Figure 2; the remainder are as presented in [4,
App. C]. We refer the reader to [14] for a full introduction.

Notice just from the syntax of terms that the rule for
resource x do t od forces us to work on terms with free
variables and that it inserts the variable x into the domain
of Γ. We assume that the domain of Γ covers all the free
variables of t, and therefore work with respect to an assign-
ment ρ taking variables in the domain of Γ injectively to
resources. We denote the net so-formed N JtKρ. To ensure
that no non-current resources are accessed, we require that
t has no free resource names.

The rules of separation logic are founded on the heap
logic, the semantics of which arises as an instance of the
classical ‘Kripke resource monoid’ semantics of Logic of
Bunched Implications [15]. At the core of the heap logic are
the associated notions of heap composition and the separat-
ing conjunction. Two heaps, D1 and D2, may be composed
if they are defined over disjoint sets of locations:

D1 ·D2
def= D1 ∪D2 if dom(D1) ∩ dom(D2) = ∅.

A heap satisfies the separating conjunction ϕ1 ∗ ϕ2 if it can
be split into two parts, one satisfying ϕ1 and the other ϕ2:

D |= ϕ1 ∗ ϕ2 iff ∃D1, D2. D = D1 ·D2 and
D1 |= ϕ1 and D2 |= ϕ2.

An instance of the separating conjunction is seen in the
rule for parallel composition. Intuitively (ignoring for the
moment the invariants referred to above), the rule is sound
because the heap restricted to the owned locations can be
split into two disjoint parts, one satisfying ϕ1 and the other
satisfying ϕ2. The first process only accesses locations used
to satisfy ϕ1 and the second process only accesses locations
used to satisfy ϕ2. Consequently, interaction between the
processes is limited.

The collection of locations that a process owns may
change as the process evolves. As seen in the rule, after

an allocation event has taken place, the process owns the
newly current location. Similarly, deallocation of a location
leads to loss of ownership.

To enable more interesting interaction between pro-
cesses, the judgement environment Γ records, for each free
variable of t, an invariant, which is a precise heap logic for-
mula. A formula χ is precise if, for any D, there is at most
one D0 ⊆ D such that D0 |= χ. Recall that the assignment
ρ takes the variables in the domain of Γ to resources. If r is
in the image of ρ, then there is an invariant in Γ associated
with it; we call r open. We call non-open resources closed.

Whenever a process gains control of an open resource, it
gains ownership of the locations satisfying the invariant in
Γ associated with it. Reasoning relies on the fact that the
invariant is satisfied if the resource is available. Whenever a
process releases an open resource, ownership of a collection
of locations satisfying the invariant is relinquished, and it
is our obligation to guarantee that such a collection exists.
Precision is used here so that at any stage we may determine
which locations are owned by the process.

Notice that the rules allow ownership of locations to be
transferred. Assume, for example, that the process owns
location ` which has value 2 and there is an invariant for x
that is `′ 7→ 0∨(`′ 7→ 1∗` 7→ 2). The only way in which the
invariant could be satisfied disjointly from the locations that
the process owns is for `′ to hold value 0. Consequently, as
the process enters the critical region, it gains ownership of
location `′. If the process sets the value of `′ to 1, when the
process leaves the critical region it would then be necessary
to use ` to restore the invariant, so ownership of ` is lost.

4.1. Ownership model

We now formalize the meaning of judgements presented
at the start of the previous section. We begin with the obser-
vation that the judgement will remain valid if other ‘exter-
nal’ processes operate on the state providing they maintain
invariants and do not access the locations owned by the pro-
cess. In particular, external processes might soundly change
the values held at unowned locations, allocate new loca-
tions and deallocate locations that they own, declare new re-
sources and may enter critical regions thereby gaining own-
ership of any associated heap locations. This is all that we
rely on when reasoning about the effect of other processes.

To model this, we construct an interference net for the
process in Γ with ρ. This involves adding ownership con-
ditions ωproc(`), ωinv(`) and ωoth(`) for each location `.
We restrict to markings W where precisely one of these
is marked for each current location. The intuition is that
ωproc(`) is marked if ` is owned by the process, ωinv(`) if ` is
used to satisfy the invariant for an available open resource,
and ωoth(`) if ` is current but owned by another process.

It is convenient to record similar information for re-

for all D |= ϕ and (D1, D2) ∈ AJαK :„
dom(D1) ⊆ dom(D)
D1 ⊆ D implies (D \D1) ∪D2 |= ψ

«
Γ ` {ϕ} α {ψ}

Γ ` {ϕ1} t1 {ψ1}
Γ ` {ϕ2} t2 {ψ2}

Γ ` {ϕ1 ∗ ϕ2} t1 ‖ t2 {ψ1 ∗ ψ2}

Γ ` {ϕ} α1; t1 {ψ}
Γ ` {ϕ} α2; t2 {ψ}

Γ ` {ϕ} α1.t1 + α2.t2 {ψ}

Γ, x :χ ` {ϕ} t {ψ} (χ precise)
Γ ` {ϕ ∗ χ} resource x do t od {ψ ∗ χ}

Γ ` {ϕ ∗ χ} t {ψ ∗ χ}
Γ, x :χ ` {ϕ} with x do t od {ψ}

Γ ` {` 7→ −} alloc(`) {∃i(` 7→ i ∗ i 7→ −)} Γ ` {∃i(` 7→ i ∗ i 7→ −)} dealloc(`) {∃i(` 7→ i)}

Figure 2. Selected rules of concurrent separation logic

source names, so we introduce conditions ωproc(r), ωinv(r)
and ωoth(r) for each resource r.

Table 1 defines a number of notations for events corre-
sponding to the permitted interference described; they act
according to the current ownership. The interference net is
defined to comprise the following events:
• act(D1, D2) for all D1 and D2 with the same domain
• alloc(`, v, `′, v′) and dealloc(`, `′, v′) for all locations `

and `′ and values v and v′

• decl(r) and end(r) for all resource names r
• get(r) and rel(r) for all closed resource names r
• get(r,D0) and rel(r,D0) for all open r associated with

an invariant χ where D0 |= χ

The events described above describe how the locations
owned by other processes is dynamic and how this con-
strains their action. The rule for parallel composition re-
quires that the behaviour of the process being reasoned
about conforms to these constraints, allowing its action to
be seen as interference when reasoning about the other pro-
cess. This requirement may be captured by synchronizing
the events of the process with those from the interference
net in the following way:
• The process event act(C,C′)(D,D′) synchronizes with

act(D,D′), and similarly for allocation, deallocation,
declaration and events for critical region entry and exit
where the critical region is protected by a closed re-
source.

• If r is an open resource associated with the invariant χ,
the process event get(C,C′)(r) synchronizes with every
get(r,D0) such that D0 |= χ. Similarly, rel(C,C′)(r)
synchronizes with every rel(r,D0) such that D0 |= χ.

Suppose that two events synchronize, e from the process
and e′ from the interference net. The event e′ is the event
that would fire in the net for the other parallel process to
simulate the event e; it is its dual. Let e · e′ be the event
formed by taking the union of the preconditions of e and e′,
other than using ωproc(`) in place of ωoth(`), and similarly
ωproc(r) in place of ωoth(r).

Definition 4 WJt,ΓKρ is the net formed with the previous
definitions of control, state and ownership conditions, and

events:
• Every event from the interference net.
• Every event e · e′ where e is an event of N JtKρ and e′

from the interference net such that e and e′ synchronize.

Let M be a marking of WJt,ΓKρ. We say that the pro-
cess has violated its guarantees, or M is violating, if there
exists an event e of N JtKρ that has concession in marking
M but there is no event e′ from the interference net that
synchronizes with e such that e · e′ has concession. If no vi-
olation is ever encountered, the behaviour of WJt,ΓKρ en-
capsulates all that of N JtKρ.

The following example shows how release of an open re-
source will cause a violation if the invariant is not restored.

Example 5 Let r be an open resource associated with the
invariant ` 7→ 0 and D0 = {(`, 0)}. As only D0 |= ` 7→ 0,
the only associated interference event for release in the en-
vironment is rel(r,D0). This synchronizes with an event
rel(C,C′)(r) in N JtKρ to form the event e in WJt,ΓKρ with

•e = {ωproc(r), ωproc(`), (`, 0)} ∪ C
e• = {ωinv(r), r, ωinv(`), (`, 0)} ∪ C ′.

This will not have concession if the invariant is not re-
established, whereas the event rel(C,C′)(r) may have.

4.2. Soundness and validity

The rule for parallel composition tells us that the owner-
ship of the heap is initially split between the two processes,
so that what one process owns is seen as owned by an ex-
ternal process by the other.

Definition 6 (Ownership split) Let W be a marking of
ownership conditions. W1 and W2 form an ownership split
of W if (with the same constraints for each r):
• ωoth(`) ∈W iff ωoth(`) ∈W1 and ωoth(`) ∈W2.
• ωinv(`) ∈W iff ωinv(`) ∈W1 and ωinv(`) ∈W2.
• ωproc(`) ∈ W iff ωproc(`) ∈ W1 and ωoth(`) ∈ W2,

or ωproc(`) ∈W2 and ωoth(`) ∈W1.

Following Brookes’ lead, we are now able to prove the
lemma upon which the proof of soundness lies. The effect
of this lemma is that we can determine the terminal states of

Abbreviation Preconditions Postconditions
act(D1, D2) D1 ∪ {ωoth(`) | ∃v.(`, v) ∈ D1} D2 ∪ {ωoth(`) | ∃v.(`, v) ∈ D2}
alloc(`, v, `′, v′) {ωoth(`), (`, v)} {ωoth(`), ωoth(`

′), curr(`′), (`, `′), (`′, v′)}
dealloc(`, `′, v′) {ωoth(`), ωoth(`

′), curr(`′), (`, `′), (`′, v′)} {ωoth(`), (`, `
′)}

decl(r) {} {ωoth(r), curr(r), r}
end(r) {ωoth(r), curr(r), r} {}
get(r) {ωoth(r), r} {ωoth(r)}
rel(r) {ωoth(r)} {ωoth(r), r}
get(r,D0) {ωinv(r), r} ∪D0 ∪ {ωinv(`) | ∃v.(`, v) ∈ D0} {ωoth(r)} ∪D0 ∪ {ωoth(`) | ∃v.(`, v) ∈ D0}
rel(r,D0) {ωoth(r)} ∪D0 ∪ {ωoth(`) | ∃v.(`, v) ∈ D0} {ωinv(r), r} ∪D0 ∪ {ωinv(`) | ∃v.(`, v) ∈ D0}

Table 1. Interference events

parallel processes simply by observing the terminal states
of its components if we split the ownership of the initial
state correctly. For convenience, the lemma is stated with-
out intimating the particular event that takes place on the
net transition relation.

Lemma 7 (Parallel decomposition) Let M = (1:C1 ∪
2:C2, σ,W) be a marking of the net WJt1 ‖ t2,ΓKρ, and
let W1 and W2 form an ownership split of W .

If, for both i ∈ {1, 2}, Mi = (Ci, σ,Wi) is not violating
in WJti,ΓK, then M is not violating in WJt1 ‖ t2,ΓK.

Furthermore, if (1:C1 ∪ 2:C2, σ,W) −� (1:C ′
1 ∪

2:C ′
2, σ

′,W ′) in WJt1 ‖ t2,ΓKρ then there exist W ′
1

and W ′
2 forming an ownership split of W ′ such

that (C1, σ,W1) −� (C ′
1, σ

′,W ′
1) in WJt1,ΓKρ and

(C2, σ,W2)−� (C ′
2, σ

′,W ′
2) in WJt2,ΓKρ.

Say that a state σ with an ownership markingW satisfies
the formula ϕ and the invariants in Γ if the heap restricted
to the owned locations satisfies ϕ and the invariants are met
for all the available resources. In the formalization of this,
we write inv(Γ, ρ, R) for the formula χ1 ∗ . . . ∗ χn where
xi :χi ∈ Γ and xi is available in R, i.e. ρ(xi) ∈ R. We
also use the notation

D �W proc
def= {(`, v) | ωproc(`) ∈W}

for the heap at owned locations, and define similar notations
D �W inv and D �W oth.

Definition 8 A marking (C, (D,L,R,N),W), where
(D,L,R,N) is consistent, satisfies ϕ in Γ if:
• D �W proc |= ϕ and D �W inv |= inv(Γ, ρ, R)
• all the open resource constants are current in N
• the resource r is owned as an invariant if r is open and

available in R

There is no restriction on how the ownership of the non-
open and held resource names is split.

Definition 9 (Validity) Let t be a term containing no free
names with free variables contained in the domain of Γ.

Γ |= {ϕ} t {ψ} if for any marking (Ic(t), σ,W) that
satisfies ϕ in Γ and any assignment ρ, in the net WJt,ΓKρ

no violating marking is reachable and any reachable mark-
ing (Tc(t), σ′,W ′) satisfies ψ in Γ.

An analysis essentially following that in Brookes’ proof al-
lows us to arrive at:

Theorem 10 (Soundness)

Γ ` {ϕ} t {ψ} implies Γ |= {ϕ} t {ψ}.

Corollary 11 Let t be a closed term with no free resource
names. If ∅ ` {ϕ} t {ψ} then, from any state in which the
heap satisfies ϕ, the process t never accesses a non-current
heap location or resource, and, whenever the process ter-
minates, the resulting heap satisfies ψ.

We conclude this section by characterizing the indepen-
dence of parallel processes, which implies Brookes’ race
freedom result. Say that two events are control independent
if they share no common pre- or post-control condition, and
observe that two such events may be enabled only if they
arise from different components of a parallel composition.

Theorem 12 (Separation) Suppose that ∅ ` {ϕ} t {ψ}
and that σ is a state in which the heap satisfies ϕ. If M is
a marking reachable from (Ic(t), σ) in N JtK and e1 and e2
are control independent events then:
• If M

e1−� M1

e2−� M ′ then either e1 and e2 are indepen-
dent or e1 releases a resource name, resource or a loca-
tion that e2 correspondingly binds, takes or allocates.

• If M
e1−� M1 and M

e2−� M2 then either e1 and e2 are
independent or e1 and e2 compete either to declare the
same resource name, take the same resource or to allo-
cate the same location.

The first part of the preceding theorem tells us how the event
occurrences of parallel processes causally depend on each
other: the way in which the ability of one process to affect
the global state in a particular way is dependent on events
of the other process. The second part tells us how the en-
abled events of parallel processes conflict with each other in
a state: the way in which one parallel process can prevent
the other acting in a particular way on the global state.

Observe that, although there is neither conflict nor causal
dependence arising from heap events (and hence the pro-
cesses are race-free in the sense of Brookes), there may be
interaction through allocation and deallocation events. One

may therefore give judgements for parallel processes that
interact without using critical regions. Suppose, for exam-
ple, that we have a heap {(`0, `1), (`1, v), (`2, v′)}. If we
place the process t1; dealloc(`0) in parallel with
alloc(`2); while [`2] 6= `1 do alloc(`2) od; t2,

the process t2 only takes place once t1 has terminated.

5. Refinement

As we remarked in the introduction, the atomicity as-
sumed of primitive actions, also called their granularity, is
of significance when considering parallel programs. For ex-
ample, suppose that an assignment [`] := [`′] + 1 is in fact
executed as [`] := [`′] followed by [`] := [`] + 1. Now
suppose that there is process running concurrently that per-
forms some action if ` and `′ hold the same value. Run-
ning from a state in which they do not, the first interpreta-
tion falsely suggests that this may never happen. In [19],
Reynolds proposes that the absence of races allows our se-
mantics to be insensitive to the atomicity assumed of ac-
tions. We now provide a form of refinement, similar to but
more general than that of [20], that captures these ideas. We
relate the nets representing processes by regarding them as
alternative substitutions into a context.

We begin with the observation that our embedded nets
have certain properties: the sets of initial and terminal con-
trol conditions are disjoint and nonempty; all events have
at least one precondition and one postcondition; and if any
reachable marking of control conditions C contains the ter-
minal conditions T of the net, then C = T and no event has
concession on its control conditions.

Definition 13 Define a context K to be an embedded net
with a distinguished event [−]. The event [−] is such that
•[−]• ⊆ C and its pre- and postconditions form disjoint,
nonempty sets.

LetK andN have disjoint sets of control conditions and
the same sets of state conditions. Define the sets

Pi
def= •[−]× Ic(N) Pt

def= [−]• × Tc(N)
and let K[N] be the net formed with events

Ev(K[N]) def= (Pi ∪ Pt) / (Ev(K) \ {[−]})
∪ (Pi ∪ Pt) . Ev(N).

To investigate the properties of substitutions, we write
N :σ ⇓σ′ if there exists a run from the marking Ic(N) ∪
σ to Tc(N) ∪ σ′ within N . We also define a notion of
equivalence ' as:
N1 ' N2 iff (∀σ, σ′)N1 :σ ⇓σ′ ⇐⇒ N2 :σ ⇓σ′.
Intuitively, if the substituend N were an atomic event, it

would start running only if the conditions Pi were marked
and Pt were not. There are two distinct ways in which the
context K can affect the execution of N . Firstly, it might

affect the marking of conditions in Pi or Pt whilst N is run-
ning. Secondly, it might change the marking of state condi-
tions in a way that affects the execution of N . An instance
of the latter form of interference can be inferred from the
example at the start of this section. We now define a form
of constrained substitution, guided by Theorem 12, so that
N is not subject to these forms of interference.

Say that a control condition c is internal to N within
K[N] if c is a condition ofN not in Ic(N) or Tc(N). Given
a marking M of K[N], say that N is active if Pi ⊆ M or
there exists an internal condition of N in M .

Definition 14 For a given marking of state conditions σ,
we say that K[N] is a non-interfering substitution if, for all
markings M reachable from (Ic(K[N]), σ):
• if Pi ⊆M then Pt ∩M = ∅, and
• if N is active in M then no enabled event of K has a

pre- or postcondition in Pi or Pt, and
• if M

e1−� M1

e2−� M ′, one of e1 and e2 is from N and the
other from K and N is active in M and M1, then e1 and
e2 are independent.

Theorem 15 If N1 ' N2 and K[N1] and K[N2] are non-
interfering substitutions from state σ, then, for any σ′:

K[N1] :σ ⇓σ′ iff K[N2] :σ ⇓σ′.
The proof of the preceding theorem relies on the fact that,
since consecutive actions ofK andN are independent, their
occurrence in any run may be swapped (in fact, this is all
we require; independence is not strictly necessary). Conse-
quently, we only need to reason about runs in which there is
no interleaving of events of K with events of N .

Suppose that we have ∅ |= {ϕ} t {ψ} and that there is
an occurrence of α inside N JtK not at the head of a sum or
as the boolean of a while loop. It follows from Theorem 12
that this forms a non-interfering substitution with the rest of
the net for t. If N is an embedded net such that N JαK ' N
that accesses the same locations as α along any run between
two states, it follows that this also forms a non-interfering
substitution. Thus Corollary 11 also holds for the net where
the occurrence of α is replaced by N .

6. Related work and conclusions

The first component of this work provides an inductive
definition of the semantics of command terms as a net. This
is a relatively novel technique, but has in the past been ap-
plied to give the semantics of a language for investigating
security protocols, SPL [7], though our language involves a
richer collection of constructs. Other independence models
for terms include the Box calculus [1] and the event struc-
ture and net semantics of CCS [21, 22], though these model
interaction as synchronized communication rather than oc-
curring through shared state.

The proof of soundness of separation logic here is led
by Brookes’ earlier work [4]. There are a few minor differ-
ences in the syntax of processes, including that we allow the
dynamic binding of resource variables. More notably, our
store model does not include the stack variable, which may
be seen as a particular form of memory location to which
other locations may not point. In Brookes’ model, inter-
ference of parallel processes through stack variables is con-
strained by the use of a side condition on the rule rather than
using the concept of ownership; an area of current research
on ‘permissions’ [2] promises a uniform approach. We have
chosen not to include stack variables in our model in order
to highlight the concept of ownership. To obtain a more use-
able programming language without weakening this con-
cept, the language could be extended with a let x = e in t
construct, where e may evaluate to a location. This would
come at the cost of a detailed, though straightforward, tech-
nical analysis of open terms (which proves convenient for
providing Hoare’s law of existential elimination).

At the core of Brookes’ work is a ‘local enabling re-
lation’, which gives the semantics of programs over a re-
stricted set of ‘owned’ locations. Our notion of validity in-
volves maintaining a record of ownership and using this to
constrain the occurrence of events in the interference net
augmented to the process. This allows the intuition of own-
ership in O’Hearn’s introduction of concurrent separation
logic [14] to be seen directly as constraining interference.
Though the relationship between our model and Brookes’
is fairly obvious, we believe that our approach leads to
a clearer parallel decomposition lemma, upon which the
proof of soundness critically stands.

The most significant difference between our work and
Brookes’ is that the net model captures, as a primitive prop-
erty, the independence of parallel processes enforced by the
logic. We have used this property to apply a straightfor-
ward, yet general, form of refinement suited to proving that
race freedom obviates the problem of granularity. This is
in contrast to [5], which provides a different form of trace
semantics to tackle the issue of granularity, tailored very
specifically to reasoning about processes that are race-free.
Furthermore, our separation result is much stronger than the
existing proof of race freedom, for example showing that
interaction between parallel processes may occur through
allocation and deallocation. This is significant, as such in-
teraction leads to examples of the incompleteness of con-
current separation logic.

There are a number of areas for further research. At
present, we are investigating semantic models that deal
more elegantly with name binding and how local reasoning
may be used to establish liveness properties.
Acknowledgements We would like to thank Peter
O’Hearn and Matthew Parkinson for helpful discussions
and the anonymous referees for constructive suggestions.

References

[1] E. Best, R. Devillers, and J. G. Hall. The box calculus: A
new causal algebra with multi-label communication. In Ad-
vances in Petri Nets, volume 609 of LNCS. Springer Verlag,
1992.

[2] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Per-
mission accounting in separation logic. In Proc. POPL ’05.
ACM Press, 2005.

[3] P. Brinch Hansen. Structured multiprogramming. Comm.
ACM, 15(7):574–578, 1972.

[4] S. Brookes. A semantics for concurrent separation logic. In
Proc. CONCUR ’04, volume 3170 of LNCS. Springer Ver-
lag, 2004.

[5] S. Brookes. A grainless semantics for parallel programs with
shared mutable data. In Proc. MFPS XXI, ENTCS, 2005.

[6] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State
space reduction using partial order techniques. Int. Journal
on Software Tools for Technology Transfer, 2(3), 1999.

[7] F. Crazzolara and G. Winskel. Events in security protocols.
In Proc. CCS ’01, New York, 2001. ACM Press.

[8] E. Dijkstra. Cooperating sequential processes. In F. Genuys,
editor, Programming Languages. Academic Press, 1968.

[9] C. A. R. Hoare. Towards a theory of parallel programming.
In C. A. R. Hoare and R. H. Perrot, editors, Operating Sys-
tems Techniques. Academic Press, 1972.

[10] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language
for mutable data structures. In Proc. POPL ’01. ACM Press.

[11] C. B. Jones. Specification and design of (parallel) programs.
In R. E. A. Mason, editor, Information Processing 83: Proc.
IFIP Congress, pages 321–332, 1983.

[12] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from
open maps. In Proc. LICS ’93, volume 127(2) of Informa-
tion and Computation. Elsevier, 1993.

[13] L. Lamport. On interprocess communication. Distributed
Computing, 1(2):77–101, June 1986.

[14] P. W. O’Hearn. Resources, concurrency and local reasoning.
Theoretical Computer Science, 2004. To appear.

[15] P. W. O’Hearn and D. J. Pym. The logic of bunched impli-
cations. Bulletin of Symbolic Logic, 5(2), 1999.

[16] S. Owicki and D. Gries. Verifying properties of parallel pro-
grams: An axiomatic approach. Comm. ACM, 19(5):279–
285, 1976.

[17] V. Pratt. Modeling concurrency with partial orders. Int.
Journal of Parallel Programming, 15(1), 1986.

[18] J. C. Reynolds. Intuitionistic reasoning about shared muta-
ble data structure. In Millennial Perspectives in Computer
Science, 2000.

[19] J. C. Reynolds. Towards a grainless semantics for shared
variable concurrency. In Proc. FSTTCS ’04, volume 3328 of
LNCS. Springer Verlag, 2004.

[20] R. J. van Glabbeek and U. Goltz. Equivalence notions for
concurrent systems and refinement of actions. In Proc.
MFCS ’89, volume 379 of LNCS. Springer Verlag, 1989.

[21] G. Winskel. Event structure semantics for CCS and re-
lated languages. In Proc. ICALP ’82, volume 140 of LNCS.
Springer Verlag, 1982.

[22] G. Winskel and M. Nielsen. Models for concurrency. In
Handbook of Logic and the Foundations of Computer Sci-
ence, volume 4, pages 1–148. OUP, 1995.

A. Petri nets

A basic net is a five-tuple,
(B,E, •(−), (−)•,M0).

The set B comprises the conditions of the net, the set E
consists of the events of the net, and M0 is the subset of B
of marked conditions (the initial marking). The maps

•(−), (−)• :E → Pow(B)
are the precondition and postcondition maps, respectively.
Nets are normally drawn with:
• circles to represent conditions,
• bold lines to represent events,
• arrows from conditions to events to represent the pre-

condition map,
• arrows from events to conditions to represent the post-

condition map, and
• tokens (dots) inside conditions to represent the mark-

ing.
Action within nets is defined according to a token game.

This defines how the marking of the net changes according
to firing of the events. An event e can fire if all its precon-
ditions are marked and, following their un-marking, all the
postconditions are not marked. That is, in marking M ,

(1) •e ⊆M

(2) (M \ •e) ∩ e• = ∅.
Such an event is said to have concession or to be enabled.
We write

M
e
−� M ′

where
M ′ = (M \ •e) ∪ e•.

If constraint (2) does not hold, there is said to be contact in
the marking.

For any event e ∈ E, define the notation
•e•

def= •e ∪ e•.
The appropriate notion of independence within this form of
Petri net is to say that two events e1 and e2 are independent,
written e1Ie2, if, and only if,

•e1
• ∩ •e2

• = ∅.

B. Size of terms

size(α) def= 1

size(t1; t2)
def= size(t1) + size(t2)

size(t1 ‖ t2)
def= size(t1) + size(t2)

size(α1.t1 + α2.t2)
def= 2 + size(t1) + size(t2)

size(resource x do t od) def= 1 + size(t)

size(with x do t od) def= 1 + size(t)

size(with r do t od) def= 1 + size(t)

size(alloc(`)) def= 1

size(dealloc(`)) def= 1

C. Rules of concurrent separation logic

• Action
for all D |= ϕ and (D1, D2) ∈ AJαK :(

dom(D1) ⊆ dom(D)
D1 ⊆ D =⇒ (D \D1) ∪D2 |= ψ

)
Γ ` {ϕ} α {ψ}

• Allocation:

Γ ` {` 7→ −} alloc(`) {∃i(` 7→ i ∗ i 7→ −)}

• Deallocation:

Γ ` {∃i(` 7→ i ∗ i 7→ −)} dealloc(`) {∃i(` 7→ i)}

• Sequential composition:
Γ ` {ϕ} t1 {ϕ′}
Γ ` {ϕ′} t2 {ψ}

Γ ` {ϕ} t1; t2 {ψ}

• Sum:
Γ ` {ϕ} α1; t1 {ψ}
Γ ` {ϕ} α2; t2 {ψ}

Γ ` {ϕ} α1.t1 + α2.t2 {ψ}

• Loop:
Γ ` {ϕ} b {ϕ′}

Γ ` {ϕ′} while b do t od {ϕ}
Γ ` {ϕ} ¬b {ψ}

Γ ` {ϕ} while b do t od {ψ}

• Resource declaration:
Γ, x :χ ` {ϕ} t {ψ} (χ precise)

Γ ` {ϕ ∗ χ} resource x do t od {ψ ∗ χ}

• Critical region:
Γ ` {ϕ ∗ χ} t {ψ ∗ χ}

Γ, x :χ ` {ϕ} with x do t od {ψ}

• Parallel composition:
Γ ` {ϕ1} t1 {ψ1}
Γ ` {ϕ2} t2 {ψ2}

Γ ` {ϕ1 ∗ ϕ2} t1 ‖ t2 {ψ1 ∗ ψ2}

• Frame:
Γ ` {ϕ} t {ψ}

Γ ` {ϕ ∗ ϕ′} t {ψ ∗ ϕ′}

• Consequence:
ϕ =⇒ ϕ′ Γ ` {ϕ′} t {ψ′} ψ′ =⇒ ψ

Γ ` {ϕ} t {ψ}

• Existential: (As stated, uses a program variable)
Γ ` {[x/i]ϕ} t {[x/i]ψ}

Γ ` {∃i.ϕ} t {∃i.ψ} (x fresh)

• Conjunction:
Γ ` {ϕ1} t {ψ1} Γ ` {ϕ2} t {ψ2}

Γ ` {ϕ1 ∧ ϕ2} t {ψ1 ∧ ψ2}

• Disjunction:
Γ ` {ϕ1} t {ψ1} Γ ` {ϕ2} t {ψ2}

Γ ` {ϕ1 ∨ ϕ2} t {ψ1 ∨ ψ2}

• Expansion:
Γ ` {ϕ} t {ψ}

Γ,Γ′ ` {ϕ} t {ψ}

• Contraction:
Γ,Γ′ ` {ϕ} t {ψ}

Γ ` {ϕ} t {ψ} (fv(t) ⊆ dom(Γ))

