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Abstract—The hiding operation, crucial in the construction of
categories of games and strategies and hence the compositional
aspect of game semantics, has a tendency, as a side effect, to
remove branches of computation not leading to observable re-
sults. Accordingly, games models of programming languages are
usually biased towards angelic non-determinism, where branches
leading to e.g. divergence are forgotten.

We present here new categories of games, which do not suffer
from this bias. In our first category, we achieve this by avoiding
hiding altogether; instead morphisms are uncovered strategies
(with neutral/invisible events) up to weak bisimulation. Then, we
show that by hiding only certain events dubbed inessential we
can consider strategies up to isomorphism, and still get a category
– this partial hiding remains sound up to weak bisimulation, so
we get a concrete representations of morphisms (as in standard
concurrent games) while avoiding the angelic bias.

We give a semantics for Affine Idealized Parallel Algol which
is adequate for both may and must equivalence within the model.

I. INTRODUCTION

A longstanding issue when giving semantics to nonde-
terministic processes is at what level of abstraction should
divergence, the process entering an internal loop, be captured:
possible operational choices are to record each individual
internal step, to record simply that the process has the potential
to diverge in a given state, or even to completely disregard the
possibility. In this paper, we study a range of choices in the
setting of concurrent games and the effect that these have when
they are used as the basis of game semantics.

By modelling the possible ways in which processes in-
teract with their context, game semantics makes it possible
to obtain compositional semantics for languages including
features such as higher-order processes and concurrency. For
nondeterministic languages, most effort has been put into
representations which are angelic, where the representation of
interaction disregards the possibility of divergence and only
records when processes may converge. This loss of a handle
on the possibility of divergence means that such semantics
are not adequate for must-convergence. For instance the term
M = if choice tt� that makes a nondeterministic choice
between converging and diverging and the term N = tt that
always converges have the same interpretation. However, N
must converge whereas M might not.

In this paper, we use concurrent games based on event
structures to develop the non-angelic game semantics of a
simple prototypical concurrent, higher-order, shared-memory
language. In comparison to a standard interleaved trace-set
semantics, event structure-based semantics has two convenient

features when studying the possibility of divergence: they
explicitly record when processes may branch and, by not
reducing concurrency to sets of possible interleavings, it is
not necessary to describe when an interleaved trace is fair.

Contributions of the paper: The starting representation
for our semantics is to allow the representation of processes
to include internal ‘hidden’ events. Such events can be used
to record how processes may diverge: the occurrence of an in-
ternal event might inhibit the occurrence of all the non-hidden
events that would otherwise indicate progress. The category
of concurrent games introduced in [14] can be extended to
retain hidden events in the composition of strategies, giving
this model a very operational flavour. However, the category
obtained is only a compact-closed category when strategies
are viewed up to weak bisimulation. As a consequence of
viewing strategies up to weak bisimulation, an interpretation
of a language in this model amounts to a giving an operational
semantics by means of a labelled transition system with an
in-built notion of independence of events. The semantics
ensures that weak bisimulation is a congruence with respect
to interaction.

The construction of the interpretation of terms gives rise to
progressively large event structures as the terms grow, con-
taining internal events that are redundant from the perspective
of keeping track of divergence. We specify which internal
events are essential to obtain a more compact representation:
composition now hides all inessential internal events. In doing
so, we get back a category up to isomorphism without losing
behaviours up to weak bisimulation.

Related work: Harmer [10] uses stopping traces to record
where strategies can get stuck, providing a game semantics
capturing both may and must convergence. Towards achieving
the benefits described above of an event structure semantics,
a similar methodology is adopted in [7] by replacing stopping
traces by stopping configurations of event structures. How-
ever, this approach is tailored to must-equivalence and it is
not clear how it would scale to other testing equivalences
(e.g. fair testing equivalence). [7] also gives a metalanguage
for concurrent strategies along with an operational semantics
that exactly corresponds to its interpretation.

Hirschowitz et al [8] have uncovered models for message-
passing concurrency (CCS, π) where plays are string diagrams,
sound up to weak bisimulation. However, they do not form a
category up to weak bisimulation, and do not consider hiding.

a) Outline: We begin Section II by introducing a simple
higher-order shared-memory concurrent language, aIPA. To



set the stage, we give aIPA an angelic interpretation (very
close to [3]) in the category CG built in [14] with strategies
up to isomorphism, and outline our two new interpretations,
detailed in the next two sections. In Section III, we give a
non-angelic, uncovered interpretation, with strategies up to
weak bisimulation. Finally, in Section IV, we give a non-
angelic, partially covered interpretation with strategies up to
isomorphism, which is weakly bisimilar to the previous one.

II. THREE INTERPRETATIONS OF AFFINE IPA
Idealized Parallel Algol (IPA) [9] is a toy language embody-

ing the paradigms of higher-order shared memory concurrency.
To ease the presentation of our techniques, terms shall be
restricted by the type system to being affine: affine terms have
already been used in [3], and non-affine terms could be dealt
with using the techniques of thin concurrent games [6].

A. Syntax of aIPA
More formally, aIPA is an extension of the affine λ-

calculus with ground state and parallel composition.

Definition II.1. The types of affine IPA are A,B ∶∶= B ∣ com ∣
A ⊸ B ∣ refr ∣ refw. The notation X ranges over ground
types, X ∶∶= B ∣ com, which are booleans or commands. As
well as a linear function space, there are types refr and refw
for read-only and write-only variables (splitting ref allows the
variables to be non-trivial in an affine setting).

The terms of affine IPA are the following:

b ∶∶= tt ∣ ff
M,N ∶∶= x ∣MN ∣ λx.M ∣ tt ∣ ff ∣ if MN1N2 ∣ �

∣ skip ∣M ;N ∣ newref r ∶= b inM ∣M ∶= tt
∣ !M ∣M ∥ N

References declared by newref r ∶= b in are considered
initialized to the constant b; having explicit initialization values
is useful when defining the operational semantics. Throughout
the paper, we use newref r in as a shorthand for newref r ∶=
ff in. As references can only be read once, it is only enough
to be able to write one possible value (tt was chosen here),
hence the restricted assignment command.

The typing rules are standard so we only mention a few.
Firstly, affine function application and boolean elimination.

Γ ⊢M ∶ A⊸ B ∆ ⊢ N ∶ A
Γ,∆ ⊢MN ∶ B

Γ ⊢M ∶ B ∆ ⊢ N1 ∶ B ∆ ⊢ N2 ∶ B
Γ,∆ ⊢ if MN1N2 ∶ B

The first rule treats the context multiplicatively, making the
language affine: it requires that Γ and ∆ are partial functions
from variables to types with disjoint domains of definition.
For reference manipulation, we have:

Γ, rr ∶ refr, rw ∶ refw ⊢M ∶ B
Γ ⊢ newref r ∶= b inM[r/rw, r/rr] ∶ B

Γ ⊢M ∶ refr
Γ ⊢ !M ∶ B

Γ ⊢M ∶ refw
Γ ⊢M ∶= tt ∶ com

Splitting between the read and write capabilities of the
variable type is necessary for the variables to be used in a
non-trivial way. For example, the following term is typable:

strict = λfcom⊸com.newref r in (f (r ∶= tt)); !r

∶ (com⊸ com)⊸ B
Operational semantics is defined along the lines of [9] as a

judgment Σ ⊢M,s→M ′, s′ where Σ is a set of memory cell
names, M and M ′ terms and s, s′ are stores: maps Σ → N.
The rules for state and parallel composition are given in Figure
1. Note that � reduces to itself so it is an active divergence. A
closed term of ground type ⊢M ∶ com may converge when
∅ ⊢M,∅ →∗ skip,∅. It must converge if it has no infinite
reduction sequence.

B. Game semantics
a) An interactive semantics: Game semantics represents

a program as a presentation of its possible interactions against
a certain class of contexts. By carefully choosing the class of
contexts, game semantics is very effective in capturing obser-
vational equivalence of programs for a variety of programming
features [11], [1], [2], [12]. In traditional game semantics, the
interaction of a program and a context is represented as a
dialogue respecting the rules of a 2-player game derived from
the type of the program.

For instance, the following dialogues represent the in-
teraction of two implementations of and against a context
evaluating them on true and true:

B ⇒ B ⇒ B
q (−,Qu)

q (+,Qu)
tt (−,An)

q (+,Qu)
tt (−,An)

tt (+,An)

B ⇒ B ⇒ B
q (−,Qu)

q (+,Qu)
tt (−,An)

q (+,Qu)
tt (−,An)

tt (+,An)
Here, dialogues are alternating Program-Context sequences of
moves. In both dialogues depicted above, the context (denoted
by the negative polarity) starts the dialogue by an initial
question asking for the value of the computation. Then both
dialogues are similar: the program (denoted by the positive
polarity) asks a question representing the interrogation of an
argument; then the context answers with a value; the program
asks another question, on a different part of the type; the
context answers it; and finally the program answers the initial
question. The difference between both dialogues is the order of
the questions: the leftmost dialogue starts with a question on
the leftmost argument while the rightmost dialogue starts with
a question on the rightmost argument. The leftmost dialogue
is a possible dialogue for the left-strict and and the rightmost
dialogue is a possible dialogue for the right-strict and. The
dashed lines (−−) are justification pointers, representing the
lexical scope of the calls. Game semantics interprets a term
as a set of such dialogues, covering all possible behaviours
under a class of contexts.



Σ ⊢M1, s→M ′

1, s
′

Σ ⊢ (M1 ∥M2), s→ (M ′

1 ∥M2), s′
Σ ⊢M2, s→M ′

2, s
′

Σ ⊢ (M1 ∥M2), s→ (M1 ∥M ′

2), s′

Σ, r ⊢M,s⊗ (r ↦ b)→M ′, s′ r /∈M ′

Σ ⊢ newref r ∶= b inM,s→M ′, s′
Σ, r ⊢M,s⊗ (r ↦ b)→M ′, s′ ⊗ (r ↦ b′)

Σ ⊢ newref r ∶= b inM,s→ newref r ∶= b′ inM ′, s′

Σ ⊢ r ∶= tt, s⊗ (r ↦ b)→ skip, s⊗ (r ↦ tt) Σ ⊢!r, s⊗ (r ↦ b)→ b, s⊗ (r ↦ b) Σ ⊢ �, s→,�, s

Fig. 1. Operational semantics for aIPA

b) Concurrent game semantics: The dialogues of the
previous section consisted in alternating sequences of moves.
At each instant, only one agent can play a move, in doing so
giving control to the other. In particular, there is no way of
playing two moves in a row. To model concurrent programs
[13], [9], it is necessary to alleviate this constraint by allowing
dialogues to be non-alternating. For instance, the dialogues
below display some concurrency:

B ⇒ B ⇒ B
q (−,Qu)

q (+,Qu)
q (+,Qu)

tt (−,An)
tt (−,An)

tt (+,An)

B ⇒ B ⇒ B
q (−,Qu)

q (+,Qu)
q (+,Qu)
tt (−,An)

tt (−,An)
tt (+,An)

In this context, concurrency is represented by the ability
of Player to ask two questions right after the other, without
waiting for an answer. This is possible e.g. for a parallel
implementation of and, one that evaluates both arguments in
parallel and waits for both answers before returning.

c) Causal game semantics: In the previous example,
the two dialogues describe the same interaction of the same
program against the same context, so what is the difference
between them? The only difference is the order in which the
two Player questions are scheduled. Because of the sequential
nature of the representation, a non-alternating dialogue dis-
plays the behaviour of a (possibly parallel) program against a
(possibly parallel) context, with a choice of scheduling for the
parallelism. Including explicitly the scheduling in the diagram
is cumbersome. The interpretation becomes subject to a com-
binatorial explosion, and some intensional information about
the program is lost [3]. So, we adopt instead a representation
of dialogues with parallelism:

B ⇒ B ⇒ B
q

6vv�+rry

(−,Qu)
q
_���

q
_���

(+,Qu)
tt

� &&-
tt

� ��(
(−,An)

tt (+,An)

In this picture, the implicit chronological linear order is
replaced by an explicit partial-order representing causality.
Concurrency is represented by moves being incomparable (as
the two player questions). In [5], we have shown how deter-
ministic pure functional parallel programs can be interpreted
using such representations.

d) Partial-orders and non-determinism: In this setting,
it is easy to represent a nondeterministic program as a set of
partial-orders representing the possible dialogues against con-
current contexts, as in [3]. For instance, the nondeterministic
boolean would be represented as the collection:

B
q

_���
tt

B
q

_���
ff

This representation is convenient, but suffers from two
drawbacks: firstly it forgets the point of non-deterministic
branching. This also makes it space-inefficient, since sharing
between dialogues is not represented. Secondly, one cannot
talk of an occurrence of a move independently of an execution.
Those issues can be solved by moving to event structures [15],
where the nondeterministic boolean can be represented as:

B
q

?zz� ���$
tt ff

The wiggly line ( ) indicates conflict: the two boolean
values cannot coexist in an execution. This combination of
causality and conflict is formalized by event structures:

Definition II.2. An event structure is a triple (E,≤E ,ConE)
where (E,≤E) is a partial-order and ConE is a non-empty
collection of finite subsets of E called consistent sets subject
to the following axioms:

● If e ∈ E, the set [e] = {e′ ∈ E ∣ e′ ≤ e} is finite
● A subset of a consistent set is consistent,
● If X ∈ ConE and e ≤ e′ ∈X then X ∪ {e} is consistent.

These event structures are based on consistent sets rather
than the more commonly-encountered binary conflict relation.
Consistent sets are more general, and more handy mathemat-
ically, but as far as diagrams are concerned, we will simply



draw the Hasse diagram of ≤ (represented by e _ e′, indicat-
ing that e is an immediate cause of e′), along with a binary
relation of minimal conflict from which the consistent
sets are recovered by letting X ∈ ConE iff ¬(e e′) for all
e, e′ ∈ [X] = {e ∈ E ∣ e ≤ e′ ∈ X}. A down-closed subset
of events whose finite subsets are all consistent is called a
configuration. The set of finite configurations of E is denoted
C (E). If x ∈ C (E) and e /∈ x, we write x

e−Ð⊂x′ when
x′ = x ∪ {e} ∈ C (E); this is the covering relation between
configurations, and we say that e gives an extension of x.

All the partially ordered diagrams above denote event struc-
tures. To make these entirely formal, the missing ingredients
are the names accompanying the events (q,tt,ff, . . . ) and
the dashed arrows. These will come as annotations by games,
to be introduced later, which are themselves event structures
representing the types.

C. Interpretations of affine IPA with event structures

Keeping, for now, the connection with types informal, let us
introduce our interpretations by showing which event structure
they associate to certain terms of aIPA.

1) Angelic interpretation: In [3], we described an inter-
pretation of aIPA in terms of sets of partial-orders. This
interpretation can be refined in terms of event structures. For
instance, the term strict has the following interpretation:

(com ⇒ com) ⇒ B

q
+rry

run
'ppw

_���
run2uu} � !!)

� ))/

done/ss{ �   ) � &&-done done tt ff

This sums up the causal structure of strict: it returns true
only if its argument calls its argument, but may return false
even then, if Opponent plays both run and done concurrently.

As mentioned, this interpretation forgets hidden diver-
gences: for instance the interpretation of D = newrefr in(r ∶=
tt ∥ if !r skip �) is run _ done (a strategy on com),
which does not account for the fact that D might diverge.

2) Non-angelic uncovered interpretation: The loss of diver-
gence in the example above is due to the way composition is
defined, and in particular to hiding. Indeed, the interpretation
of the term above is obtained by first computing that of
r ∶ ref ⊢ (r ∶= tt ∥ if !r skip�):

ref ⇒ com

run
*qqx&oovwtt

_���
r

� ��'_���
ok tt

� &&-
ff

done

As is common in game semantics, terms containing free
variables of type ref treat those references as uninterpreted,

and operations on them, r for reading and wtt for assigning
true, are simply passed on to Opponent. To compute the final
semantics of D, we precompose this strategy by a strategy
implementing a reference (following [2]), resulting in the
following interaction:

ref ⇒ com

run
+rry'ppwwtt

_���
r
_���

ok
_���

ff
_���

r
_���

wtt
_���

tt

� ''.
ok

done

We later describe how the interaction is obtained, but,
intuitively, it synchronizes the corresponding events from
the two strategies and imposes a causal ordering including
constraints imposed by either; events are removed when a
cyclic dependency would be induced. In particular, because
the memory cell implements a sequential central memory,
the memory operations are now sequentialized. Of the two
available causal histories on ref , only one leads to a visible
event (namely, done; the events named wtt, r, ff and tt are
internal to the interaction). Hence, hiding the component of
the interaction on ref will ignore the other one, and yields
the same behaviour as skip.

To solve this, one is tempted to simply omit the hiding
step. However, this is crucial in obtaining a category: for
instance, without it, the identity strategy on com is no longer
idempotent.

com ⇒ com

run

4uu�
run_���
done

���$
done

com ⇒ com ⇒ com

run
+rry

run
+rry

run_���
done

� $$,
done

� $$,
done

The left-hand diagram is the copycat strategy, interpreting
the identity function, and the right-hand diagram is the interac-
tion of copycat against itself – the com in the middle is shared
between both copies of the copycat strategy. Hiding it yields
as expected the copycat strategy back, but, without hiding, the
interaction in itself has more events that the copycat strategy.

However, we observe that treating the events in the mid-
dle as τ -transitions, the interaction is still weakly bisimilar
to copycat. Following these ideas, a category of uncovered
strategies up to weak bisimilarity is built in Section III.

3) Interpretation with partial hiding: The issue with this
solution is that considering uncovered strategies up to weak
bisimulation blurs their concrete nature – causal information is
lost, for instance. Moreover checking for weak bisimilarity is



computationally expensive, and the absence of hiding increases
dramatically the size of representatives: a term evaluating to
skip may still yield a very large representative.

There is a way to cut down the strategies to reach a
compromise between hiding no internal event, or hiding all
of them and collapsing to an angelic interpretation.

In the setting of our games based on event structures, having
a non-ambiguous notion of an occurrence of event allows us
to give a very simple definition of the internal events we need
to retain: those that are in a minimal conflict. This allows us
to remove all internal events when composing with copycat
– a necessary condition to get a category up to isomorphism,
while still being weakly bisimilar to the uncovered strategy.
The semantics of D in this setting becomes:

ref ⇒ com

run
.ss{(ppwwtt r

� ##+
done

As before, only the events under com are now visible,
i.e. observable by a context. But the events under ref are
only partially hidden; those remaining are considered internal,
treated like τ -transitions. Because of their presence, the partial
hiding performed loses no information up to weak bisimilarity.
Following these ideas, a category of partially covered strate-
gies up to isomorphism will be constructed in Section IV.

III. UNCOVERED STRATEGIES UP TO WEAK BISIMULATION

We now construct a category of “uncovered strategies”, up
to weak bisimulation. Uncovered strategies are very close to
the partial strategies of [7] – note that [7] did not aim to
construct a category of partial strategies, instead focusing on
connections with operational semantics.

Preliminaries on event structures: The parallel composi-
tion of event structures E0 and E1, written E0 ∥ E1 has:

● events: {0} ×E0 ∪ {1} ×E1

● causality: (i, e) ≤E0∥E1
(j, e′) when i = j and e ≤Ei e

′.
● consistent sets: those finite subsets of E0 ∥ E1 that project

to consistent sets in both E0 and E1

A (partial) map of event structures f ∶ A⇀ B is a (partial)
function on events which (1) maps any finite configuration of
A to a configuration of B, and (2) is locally injective: for
a, a′ ∈ x ∈ C (A) and fa = fa′ (both defined) then a = a′. In
the rest of the paper, we will mainly consider total maps of
event structures – hence all maps will be assumed total unless
explicit mention of the contrary. We write E for the category
of event structures and total maps and E� for the category of
event structures and partial maps.

An event structure with partial polarities is an event
structure A with a map pol ∶ A → {−,+,∗} (where events
are labelled “negative”, “positive”, or internal). It is an event
structure with total polarities when no events are internal.
A game is an event structure with total polarities. The dual
A⊥ of a game A is obtained by reversing the polarities of A.

Parallel composition naturally extends to games. If x and y
are configurations of an event structure with partial polarities
we use x ⊆p y where p ∈ {−,+,∗} for x ⊆ y&pol(y∖x) ⊆ {p}.

Hiding of event structures: Given an event structure E and
a subset V ⊆ E of events, there is an event structure E ↓ V
whose events are V and causality and consistency are inherited
from E. This construction is called the projection of E to V
and is used in [14] to perform hiding during composition.

It is sometimes convenient to work with partial maps to
prove isomorphisms between event structures obtained through
projection. For E and V ⊆ E there is a canonical partial map
h ∶ E ⇀ E ↓ V defined as the (partial) identity on V . The
following lemma makes reasoning on projections easy:

Lemma III.1 (Hiding maps, [4]). If f ∶ E ⇀ F is a partial
map, the following are equivalent:

● Writing V for the domain of f , there is an isomorphism
ϕ ∶ E ↓ V ≅ F with ϕ ○ h = f .

● There exists a hiding witness for f that is a map witf ∶
C (F ) → C (E) with f ○witf(x) = x for x ∈ C (F ) and
witf ○ f(x) ⊆ x for x ∈ C (E).

If they hold, we say that f is a hiding map.

A. Definition of uncovered pre-strategies

As in [14], we start with a notion of pre-strategies on which
composition is defined, and then refine it to a notion of strategy
that behaves well with respect to copycat.

1) Uncovered pre-strategies: An uncovered pre-strategy on
a game A is an event structure S partially labelled by A:

Definition III.2. A uncovered pre-strategy on a game A is
a total map of event structures σ ∶ S → A ∥ N , with N a
flat event structure, i.e. an event structure where causality is
equality and where all finite sets are consistent.

Instead of having partial maps, a representation that makes
interaction difficult to define, we have a total map that is
allowed to map an event outside A, in N . An event of S is
internal if it is mapped to N and visible otherwise. Although
N is part of the structure of σ, it can be chosen to be
arbitrarily large. This means that any finite set of strategies
can be assumed (for ease of notation) to map to the same
N . Uncovered pre-strategies are drawn just like the usual
strategies of [14]: the event structure S has its events drawn as
their labelling in A if defined or ∗ if undefined. For instance,
the event structure for D given in the previous section would
be drawn as:

com

run
)qqx

1tt}∗
_���

∗
_���∗

_���
∗
_���∗

_���
∗
_���∗

� ''.

∗

done



The −− lines indicate justification pointers, but are not
part of the structure. They are derived from the causalities
in the game: s − −s′ when σs _ σs′. Here, the game is the
interpretation of com simply described as run− _ done+.

From an uncovered pre-strategy, one can get a pre-strategy
in the sense of [14]: for σ ∶ S → A ∥ N define S↓ = S ↓
σ−1(A). By restriction σ yields σ↓ ∶ S↓ → A, called a covered
pre-strategy.

An uncovered pre-strategy from a game A to a game B
is a map σ ∶ S → A⊥ ∥ N ∥ B (which up to the isomorphism
A⊥ ∥ N ∥ B ≅ A⊥ ∥ B ∥ N can be seen as an uncovered
pre-strategy on A⊥ ∥ B.)

As an example, we introduce the copycat pre-strategy on a
game A which is the same as in [14]:

Definition III.3. The copycat strategy on A is given by the
mapping ccA ∶ CCA → A⊥ ∥ A (N is empty here so we omit
it) where CCA is the event structure defined as:

● events: those of A⊥ ∥ A
● causality: the transitive closure of (polarities taken in A)

≤A⊥∥A ∪{((0, a), (1, a)) ∣ a positive}
∪{((1, a), (0, a)) ∣ a negative}

● consistent sets: those sets X ⊆ A⊥ ∥ A such that the
down-closure of X inside the partial order ≤CCA

defined
above is consistent in A⊥ ∥ A.

Isomorphism of strategies introduced in [14] can be ex-
tended to uncovered pre-strategies:

Definition III.4. Two uncovered pre-strategies σ ∶ S → A ∥ N
and τ ∶ T → A ∥ N are isomorphic (written σ ≅ τ ) when there
exists an iso ϕ ∶ S ≅ T that restricts to an iso on the visible
part: ϕ(S↓) = T↓ and τ↓ ○ ϕ = σ↓ ∶ S↓ → A.

2) Interaction of pre-strategies: The interaction of uncov-
ered pre-strategies will be described as a certain pullback in
the category of event structures, following the lines of [14].
We briefly sketch the construction of such pullbacks.

Given maps of event structures f ∶ A → C, g ∶ B → C,
define an interaction state to be a pair (x, y) ∈ C (A)×C (B)
such that fx = gy ∈ C (C) and the induced bijection ϕ(x,y) ∶
x ≅ fx = gy ≅ y is secured: the natural preorder on ϕ(x,y)
defined on the graph of ϕ(x,y) by the transitive closure of
{((s, t), (s′, t′)) ∣ s < s′ ∨ t < t′} is a partial-order.

Lemma III.5. The following is an event structure S ∧ T :
● events: interaction states (x, y) for which the

partial-order ϕ(x,y) has a top-element, written
(Π1(x, y),Π2(x, y)), where Π1(x, y) ∈ S,Π2(x, y) ∈ T .

● causality: given by pairwise inclusion
● consistency: a set of interaction states X is consistent if

(⋃(x,y)∈X x,⋃(x,y)∈X y) is an interaction state.
Moreover the mapping (x, y) ↦ Π1(x, y) and (x, y) ↦
Π2(x, y) define maps of event structures S ∧ T → S and
S ∧ T → T such that (S ∧ T,Π1,Π2) is a pullback of f and
g both in E and in E�.

The construction is explained in more detail in [4].

Given σ ∶ S → A⊥ ∥ N ∥ B and τ ∶ T → B⊥ ∥ N ∥ C we
form the following pullback that is the interaction of σ and τ :

T ⊛ S
Π2

&&
Π1

xx
τ⊛σ

��

S ∥ N ∥ C

σ∥N∥C %%

A ∥ N ∥ T

A∥N∥τyy
A ∥ N ∥ B ∥ N ∥ C

where T ⊛ S is (S ∥ N ∥ C) ∧ (A ∥ N ∥ T ). The main
difference with [14] is the addition of internal events and their
treatment: they do not synchronize. For σ, the internal events
of τ occur in the background and vice-versa. The resulting
map τ ⊛ σ ∶ T ⊛ S → A ∥ N ∥ B ∥ N ∥ C can be viewed as
an uncovered pre-strategy from A to C via τ ⊛ σ ∶ T ⊛ S →
A ∥ (N ∥ B ∥ N) ∥ C. The events sent to B become internal.

3) Weak bisimulation: To compare uncovered pre-
strategies, we cannot use isomorphism as in [14], since as
observed in the introduction ccA ⊛σ is large than σ. To solve
this, we introduce weak bisimulation between uncovered
strategies:

Definition III.6. Let σ ∶ S → A ∥ N and τ ∶ T → A ∥ N be
uncovered pre-strategies. A weak bisimulation between σ and
τ is a relation R ⊆ C (S) ×C (T ) such that:

● (∅,∅) ∈ R

● If x
s−Ð⊂x′ such that s is visible, then there exists y ⊆∗

y′
t−Ð⊂ y′′ with σs = τt and x′Ry′′ (and the converse

condition for τ )
● If x

s−Ð⊂x′ such that s is internal, then there exists y ⊆∗ y′
such that x′Ry′ (and the converse condition for τ )

Two uncovered pre-strategies σ, τ are weakly bisimilar (writ-
ten σ ≃ τ ) when there is a weak bisimulation between them.

Lemma III.7. Interaction is associative up to isomorphism
(hence up to weak bisimulation): σ ⊛ (τ ⊛ υ) ≅ (σ ⊛ τ)⊛ υ.

Proof. Follows from the universal property of pullbacks.

Lemma III.8. Weak bisimulation is a congruence with respect
to interaction: if σ ≃ σ′ are weakly bisimilar uncovered pre-
strategies from A to B and τ is an uncovered pre-strategy
from B to C, then τ ⊛ σ ≃ τ ⊛ σ′.

Proof. If R is a weak bisimulation between σ and σ′ then
τ ⊛ R = {(w, z) ∣ (Π1w)R(Π1z) & Π2w = Π2z} is the
desired weak bisimulation.

4) Zipping lemma: The following lemma captures elegantly
the interaction between interaction and hiding:

Lemma III.9 (Zipping lemma). Let σ ∶ S → A ∥ B ∥ C and
σ′ ∶ S → A ∥ C be maps of event structures. Take h ∶ S ⇀ S′

be a hiding map making the following diagram commute:

S
h /

σ ��

S′

σ′��
A ∥ B ∥ C A∥�∥C / A ∥ C



Then, for ρ ∶ U → C⊥ ∥ D, the morphism U ⊛ h ∶ U ⊛
S ⇀ U ⊛S′ defined using the universal property of U ⊛S′ of
pullbacks in E� is a hiding map.

Proof. See [4].

5) Composition of covered strategies: From interaction, we
can define the usual composition of covered strategies easily.
If σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C are covered pre-
strategies, their composition (in the sense of [14]) τ ⊙ σ is
defined as (τ ⊛ σ)↓. The operation ↓ is well-behaved with
respect to interaction:

Lemma III.10. Let σ, τ be composable uncovered pre-
strategies. We have

(τ ⊛ σ)↓ ≅ τ↓ ⊙ σ↓.

Proof. We apply twice the Zipping Lemma (Lemma III.9) to
the hiding maps hS ∶ S ⇀ S↓ and hT ∶ T ⇀ T↓ yielding the
composition of partial maps:

T ⊛ S T↓⊛hSÐÐÐ→ T ⊛ S↓
hT⊛S↓ÐÐÐ→ T↓ ⊛ S↓ Ð→ (T↓ ⊛ S↓)↓

Since all are hiding maps, the composition is also a hiding
map with domain the visible events of T ⊛S, which gives the
result by Lemma III.1.

B. A compact-closed category of uncovered strategies

We now move on to defining a compact-closed category of
uncovered strategies up to weak bisimulation. We have a ten-
tative definition of morphisms (uncovered pre-strategies), with
a composition operation which by Lemma III.7 is associative.
The only missing ingredient is copycat: as in [14], we do not
have ccA⊛σ ≃ σ in general. In this section, we give conditions
on pre-strategies for this to hold.

1) Race-free games and copycat: The first thing to check
is that copycat is indeed idempotent. In [14], this is true, but
in our setting it does not hold automatically for every game.

Consider the game A = ⊖1 ⊕2 ⊕3 with trivial causality, and
consistency given by

X ∈ ConA iff ∣X ∣ ≤ 2

Events are pairwise compatible, but all three cannot occur
together. In particular, {⊖1,⊕2} is a maximal configuration of
A. The interaction of copycat with itself is:

A⊥ ∥ A∗ ∥ A

⊕1 ∗1
�llr ⊖1

�llr

⊖2
� ,,2∗2

� ,,2⊕2

⊖3
� ,,2∗3

� ,,2⊕3

The conflict, as it is not binary, is not represented on the
above picture. Any bisimulation between ccA ⊛ ccA and ccA
must relate the minimal configurations of ccA ⊛ ccA and ccA
featuring {⊖1,⊖2,⊖3} ∈ C (A⊥ ∥ A). From there, ccA ⊛ ccA
can do a silent transition to {⊖1,⊖2,⊖3, ∗1, ∗2} (and ccA does

nothing since there are no internal events in ccA). But ccA can
perform a visible transition to {⊖1,⊖2,⊖3,⊕3}, which cannot
be matched by ccA ⊛ ccA, as {∗1,∗2} is maximal in A∗.

A sufficient condition to avoid this problem is to restrict
ourselves to race-free games: a game A is race-free when if
x can be extended by two events a1, a2 of distinct polarities,
the union x∪{a1, a2} is consistent. Race-freeness is sufficient
to ensure that copycat is idempotent:

Lemma III.11. For a race-free game A, ccA ⊛ ccA ≃ ccA.

Proof. It will follow from the forthcoming Lemma III.13.

Note that race-freeness is not necessary. We believe the
exact characterisation is linked to phenomena studied in [7].
In the rest of the paper we only consider race-free games.

2) Uncovered strategies: Finally, we characterise the pre-
strategies invariant under composition with copycat. The two
ingredients of [14], [4], receptivity and courtesy (called inno-
cence in [14]) are needed, but this is not enough: we need
another condition as witnessed by the following example.

Consider the strategy σ ∶ ⊕1 ⊕2 on the game A = ⊕1⊕2

playing nondeterministically one of the two moves. Then the
interaction ccA ⊛ σ is:

A∗ A

∗1
� ,,2⊕1

∗2
� ,,2⊕2

It is not weakly bisimilar to σ: ccA ⊛ σ can do ∗1, an
internal transition, to which σ can only respond by not doing
anything. Then σ can still do ⊕1 and ⊕2 whereas ccA ⊛ σ
cannot: it is committed to doing ⊕1. To solve this problem,
we need to force strategies to decide their nondeterministic
choices secretly, by means of internal events – so σ will not
be a valid uncovered strategy, but ccA ⊛σ will. Indeed, ccA ⊛
( ccA ⊛ σ) below

A∗ A∗ A

∗1
� ,,2∗1

� ,,2⊕1

∗2
� ,,2∗2

� ,,2⊕2

is indeed weakly bisimilar to ccA ⊛ σ.
Accordingly, we define uncovered strategies:

Definition III.12. An uncovered strategy is an uncovered pre-
strategy σ ∶ S → A ∥ N satisfying:

● receptivity: if x ∈ C (S) is such that σx
a−Ð⊂ with a ∈ A

negative, then there exists a unique x
s−Ð⊂ with σs = a.

● courtesy: if s _ s′ and s is positive or s′ is negative,
then σs _ σs′.

● secrecy: if x ∈ C (S) extends with s1, s2 but x∪{s1, s2} /∈
C (S), then s1 and s2 are either both negative, or both
internal.

Receptivity and courtesy are stated exactly as in [14]. Unlike
in [14], though we have neutral events, courtesy in our settings
allows strategies to add causal links of the form − _ +,− _



∗,∗ _ ∗ and ∗ _ +. As a result, hiding the internal events
of an uncovered strategy yields a strategy: for an uncovered
strategy σ ∶ S → A ∥ N , the covered pre-strategy σ↓ is a
strategy in the sense of [14].

For any game A, ccA is an uncovered strategy: it satisfies
secrecy since the only minimal conflicts it has are inherited
from the game and are between negative events.

3) The category CG⊛: Our definition of uncovered strategy
does imply that copycat is neutral for composition.

Lemma III.13. Let σ ∶ S → A ∥ N be an uncovered strategy.
Then ccA ⊛ σ ≃ σ.

Proof. The weak bisimulation is given by:

R = {(x, z) ∈ C (S) ×C (CCA ⊛ S) ∣ x ⊑S Π1z&σx = Π2z}

where the Scott order x ⊑S x′ is x ⊇− x∩x′ ⊆+ x′. That it is a
weak bisimulation requires a bit of work, but is a simplification
of the proof that copycat is neutral for composition [4].

The result follows immediately:

Theorem III.14. The following data defines a compact-closed
category CG⊛ up to weak bisimulation:

● objects: race-free games,
● maps from A to B: uncovered strategies σ ∶ S → A⊥ ∥
N ∥ B from A to B, up to weak bisimulation.

The tensor product is given by parallel composition of games,
and the dual operation by the duality on games.

Proof. The fact that we have a category up to weak bisimula-
tion follows from Lemmata III.8, III.7, III.13. The compact-
closed structure follows closely the proof of [4] by lifting the
structural morphisms for the monoidal structure of parallel
composition in E to strategies.

C. Interpretation of affine IPA

From now on all strategies are by default considered uncov-
ered, unless stated otherwise explicitly. We end this section
by sketching the interpretation of affine IPA inside CG⊛. As
a compact-closed category, CG⊛ supports an interpretation of
the linear λ-calculus. However, the unit for the tensor product
(the empty game) is not terminal. As a result, there is no
natural transformation εA ∶ A→ 1 in CG⊛.

1) The negative category CG−

⊛
: We solve this issue as in

[3], by looking at negative strategies and negative games.

Definition III.15. An event structure with partial polarity is
negative when all its minimal events are negative.

A strategy σ ∶ S → A ∥ N is negative when S is.
Copycat on a negative game is negative, and negative

strategies are stable under composition:

Lemma III.16. There is a subcategory CG−

⊛
of CG⊛ con-

sisting in negative race-free games and negative strategies. It
inherits a monoidal structure from CG in which the unit (the
empty game) is terminal.

Besides a terminal object, CG−

⊛
has products. For two games

A and B, their product A&B has events, causality, polarities
as for A ∥ B, but consistent sets restricted to those whose
projection to either A or B is empty. The projections are

$A ∶ CCA → (A&B)⊥ ∥ A $B ∶ CCB → (A&B)⊥ ∥ B

Finally, the pairing of negative strategies σ ∶ S → A⊥ ∥ N ∥
B and τ ∶ T → A⊥ ∥ N ∥ C is the obvious map

⟨σ, τ⟩ ∶ S & T → A⊥ ∥ N ∥ N ∥ B &C,

and the laws for the cartesian product are direct verifications.
We also need a construction to interpret the function space.

However, CG−

⊛
does not inherit the closed structure of CG⊛:

for A and B negative, A⊥ ∥ B is not usually negative. To
circumvent this, we introduce the linear arrow A ⊸ B, a
negative version of A⊥ ∥ B. To simplify the presentation, we
only define it in a special case. A game is well-opened when
it has at most one initial event. When B is well-opened, we
define A⊸ B to be 1 if B = 1; and otherwise A⊥ ∥ B with the
exception that every move in A depends on the single minimal
move in B. As a result ⊸ preserves negativity. We get:

Lemma III.17. If B is well-opened, there is an identity
between:

● Negative strategies σ ∶ S → A⊥ ∥ N ∥ (B⊥ ∥ C)
● Negative strategies σ ∶ S → A⊥ ∥ N ∥ (B ⊸ C)

The games B ⊸ C and B⊥ ∥ C have the same events
(for C non-empty), so this identity comes from the fact that
by negativity, any strategy σ ∶ S → A⊥ ∥ N ∥ (B⊥ ∥ C)
automatically type-checks as σ ∶ S → A⊥ ∥ N ∥ (B ⊸ C).
From this, and leveraging the compact closed structure of
CG⊛, it is elementary to prove that A⊸ B is an exponential
object of A and B in CG−

⊛
– and it is still well-opened. In other

words, well-opened games are an exponential ideal in CG−

⊛
.

This gives us directly the interpretation of types of aIPA
inside well-opened games of CG−

⊛
:

JcomK =
run−

_���
done+

JBK =
q−

D||� z��"
tt+ ff+

JrefwK =
wtt−

_���
ok+

JrefrK =
r−

C{{� {��#
tt+ ff+

JA⊸ BK = JAK⊸ JBK

2) Interpretation of terms: Interpretation of the affine λ-
calculus in CG⊛

−
follows standard methods. First, the constants

tt,ff, skip are interpreted as:

JttK ∶ B

run−
_���
tt+

ff ∶ B

run−
_���
ff+

JskipK ∶ com

run−
_���

done+



The strategies implementing aIPA constructs are given in
Figure 2. The semantics is obtained by postcomposing with
these strategies:

JM ;NK⊛ = seq⊛ (JMK⊛ ∥ JNK⊛)
JM ∶= ttK⊛ = write⊛ JMK⊛
JM ∥ NK⊛ = join⊛ (JMK⊛ ∥ JNK⊛)

J!MK⊛ = read⊛ JMK⊛
Jif MN N ′K⊛ = if⊛ (JMK⊛ ∥ ⟨JNK⊛, JN ′K⊛⟩)

Jnewref r ∶= b inMK⊛ = JMK⊛ ⊛ cellb

A non-standard point is the interpretation of �: usually
interpreted in game semantics by the minimal strategy simply
playing q (as will be done in the next section), our inter-
pretation here reflects the fact that � represents an infinite
computation that never returns. Otherwise, this interpretation
follows very closely the lines of [3]. In particular, references
are implemented by precomposing with a sequential memory
cell. More precisely, given a term Γ, rr ∶ refr, rw ∶ refw ⊢
M ∶ B, the interpretation of newref r ∶= b inM is defined
as JMK⊛ ⊛ cellb, where JMK⊛ is viewed as a strategy from
refr ∥ refw to JΓK⊥ ∥ B by curryfication. This is indeed
well-defined even though cellff does not satisfy any of the
conditions for uncovered strategies:

Lemma III.18. For any uncovered strategy σ ∶ S → A⊥ ∥
ref⊥r ∥ ref⊥w ∥ B, the pre-strategy σ ⊛ ( ccA ∥ cellff) is an
uncovered strategy.

Proof. Direct verification of the axioms.

Since our language is finite, there are only two possible
complete interaction traces on variable: either the term reads
then writes or writes then reads. The pre-strategy cellb chooses
nondeterministically between those two possibilities.

3) A sound and adequate interpretation: We now prove
that our interpretation J⋅K⊛ is sound and adequate for may
and must convergences. This means that a term may (resp.
must) converge if and only if its interpretation may (resp.
must) converge. However, we have not defined what it means
for a strategy to may or must converge. May convergence
is easy: an uncovered strategy σ on com may converge if
the only positive move of JcomK is in the image of σ. Must
convergence is less obvious to define. We follow [7]:

Definition III.19. A strategy σ on com must converge if all
configurations maximal for inclusion contain a positive move.

We can see that JDK⊛ must not converge since, once
the left internal event is performed, no positive move can
ever be played. This abstract definition has a very concrete
understanding in the image of the interpretation:

Lemma III.20. For a term ⊢ M ∶ B, JMK must converge if
and only if JMK does not have infinite configurations.

Proof. This is done by proving that strategies in the image of
the interpretation satisfy the following two properties:

1) If two positive events s, s′ are concurrent but not
bounded (that is there a common event above s and
s′), then there exists two negative events s0, s

′

0 that are
either minimal or with the same predecessor, such that
s0 < s and s′0 < s′.

2) Internal events are never maximal.
The first property encodes the fact that concurrency in

aIPA is always joined: one cannot start a thread and ignore
its return value. The second assumption means that a strat-
egy corresponding to a term never stops computing without
yielding a value. Those two properties can be checked to hold
for building blocks of the interpretation and be stable under
composition, so they hold for the whole interpretation. The
equivalence follows from these two invariants.

This corresponds nicely with the syntactic notion of must-
convergence as having no infinite runs. Both notions of con-
vergence are well-behaved with respect to weak bisimulation:

Lemma III.21. Let σ ∶ S → A ∥ N, τ ∶ T → A ∥ N be
uncovered strategies on com. If σ ≃ τ and σ may (resp. must)
converge then τ may (resp. must) converge.

Proof. Let R be a bisimulation between σ and τ . By in-
duction, we can build a map f ∶ C (S) → C (T ) such that
x and f(x) are related by R and have same image in A,
and similarly g ∶ C (T ) → C (S) satisfying the corresponding
assumptions.

If σ may converge, there exists a configuration x ∈ C (S)
with a positive move. Then fx is a configuration of T with a
positive move. Assume σ must converge. Let y ∈ C (T ). By
assumption, gyRy and gy must extend to x′ with a positive
move. By applying the bisimulation rules, we find that y must
extend to y′ such that x′ and y′ have the same projection to
A so in particular y′ has a positive move.

To prove adequacy of this interpretation, we first prove
a correspondence between the denotational and operational
semantics:

Lemma III.22. Let Γ ⊢M ∶ A be a term and let M = {M ′ ∣
Σ ⊢ M,s → M ′, s′} be the set of all possible reducts of M .
Then JMK has an infinite configuration if and only if there
exists M ′ ∈ M such that JM ′K has an infinite configuration.

Proof. By induction on M .

Corollary III.23. Let M be a closed term of type com and
M = {M ′ ∣ Σ ⊢ M,∅ → M ′,∅}. The strategy JMK⊛ must
converge if and only if all the JM ′K must converge

Proof. By applying Lemma III.22 together with Lemma III.21.

We could get a stronger link between the two denotations,
but this is enough to prove adequacy:

Theorem III.24. The interpretation J⋅K⊛ is sound and ade-
quate for may and must convergence, meaning:

1) A term ⊢ M ∶ X may converge if and only if JMK⊛
contains a positive move
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Fig. 2. Interpretation of the constructions of aIPA

2) A term ⊢M ∶ X must converge if and only if JMK⊛ must
converge.

Proof. May-convergence. An uncovered σ contains a positive
move if and only if σ↓ does. As a result, we can then leverage
the result of [3] where the partial-order model is shown to be
sound and adequate by collapsing to the model of [9].

Must-convergence. Because our language is affine, if M
must converge, then there exists a global bound on the length
of any reduction path of M that we write ν(M). By induction
on ν(M), we prove that JMK⊛ must converge. If ν(M) = 0,
then M is tt or ff which must converge. Otherwise, by
induction hypothesis we have that all one-step reducts of
JMK⊛ must converge, and by Corollary III.23, so must JMK⊛.

Conversely, assume JMK⊛ must converge, but M must
not converge. This means that ∅ ⊢ M,∅ →∗ �,∅, which
contradicts the first statement of Corollary III.23.

This argues for the games model providing a good compo-
sitional LTS-semantics, one with independence built in.

IV. ESSENTIAL EVENTS

The model presented in the previous section is very opera-
tional: configurations of JMK⊛ can be seen as derivations for
an operational semantics. The price, however, is that besides
the fact that the interpretation grows dramatically in size, we
can only get a category up to weak bisimulation.

We wish now to forget most of the information that is
not relevant to characterise the behaviour of terms up to
weak bisimulation. In other words, we want a notion of
essential internal events that (1) is conservative with respect
to weak bisimulation (forgetting inessential events does not
lose behaviours), but, (2) enough events are forgotten to get a
category up to isomorphism (which amounts to ccA ○ σ ≅ σ).

A. Definition of essential events

As illustrated before, the loss of behaviours when hiding is
due to the disappearance of events participating in a conflict.
A neutral event may not have visible consequences but still be
relevant if in a minimal conflict; we will then call it essential.

However, our previously introduced notion of minimal
conflict is not sufficient. Indeed our event structures carry an
arbitrary consistency relation rather than binary conflict, so
relevant minimal conflicts may be contextual. Two extensions
e and e′ of x are compatible when x ∪ {e, e′} ∈ C (E),
incompatible otherwise. In the latter case, we have a minimal
conflict between e and e′ in context x (written e xe

′).
We can now define essential events.

Definition IV.1. Let σ ∶ S → A ∥ N be an uncovered pre-
strategy. An essential event of S is an event s which is either
visible, or (internal and) involved in a minimal conflict (that
is such that we have s xs

′ for some s′, x.)

We write ES for the set of essential events of σ. Any
uncovered pre-strategy σ ∶ S → A ∥ N induces another
uncovered pre-strategy E (σ) ∶ E (S) = S ↓ ES → A ∥ N
called the essential part of σ.

The following proves that our definition satisfies (1): no
behaviour is lost.

Lemma IV.2. An uncovered pre-strategy σ ∶ S → A ∥ N is
weakly bisimilar to its essential part.

Proof. Define R = {(x,x ∩ES) ∣ x ∈ C (S)}. We prove it is
a weak bisimulation. Let (x,x ∩ES) ∈ R.
First, assume x can extend by an event s. Either s ∈ ES and
then x ∩ ES also extends by s in S ↓ ES and (x ∪ {s}, x ∩
ES ∪ {s}) ∈ R as desired, or s /∈ ES (then s is internal) and
(x ∪ {s}, x ∩ES) ∈ R.



Now assume x ∩ES can be extended by an event s ∈ ES .
Assume that x ∪ [s] /∈ C (S): since it is down-closed, it

must be that x ∪ [s] /∈ ConS . Since x and [s] are consistent,
there must exist x′ ⊆ x∪ [s] with two incompatible extensions
s0 ∈ x and s1 ∈ [s]. By definition, s0 and s1 are essential. This
is absurd because this would mean that (x′ ∩ES) ∪ {s0, s} ⊆
x ∩ES ∪ {s} ∈ C (S ↓ ES) but this set is not consistent in S
(hence not consistent in S ↓ ES).

Having just proved that x ∪ [s] ∈ C (S), the conclusion
follows as (x ∪ [s],{s} ∪ (x ∩ES)) ∈ R.

This induces a new notion of composition that only keeps
the essential events. For σ ∶ S → A⊥ ∥ N ∥ B and τ ∶ T →
B⊥ ∥ N ∥ C we define τ ⊚ σ = E (τ ⊛ σ).

Lemma IV.3. Operator ⊚ is associative up to isomorphism.

Moreover, E behaves well with respect to composition:

Lemma IV.4. Let σ and τ be composable uncovered pre-
strategies. We have E (τ ⊛ σ) ≅ E (τ)⊚ E (σ).

Proof. The proof goes as for Lemma III.10.

We now show how to recover a category up to isomorphism
by considering some uncovered strategies.

B. The category CG⊚

In this subsection, we build a category CG⊚ out of some
uncovered strategies up to isomorphism, proving property (2):
events arising in the composition with copycat are inessential.

To do so, we study the essential events of ccA ⊚ σ.
1) Essential events of ccA ⊚ σ: Let σ ∶ S → A ∥ N be

an uncovered strategy. We study the composition ccA ⊚ σ.
Remember that CCA ⊛S is defined as the pullback of σ ∥ A ∶
S ∥ A → N ∥ A ∥ A against N ∥ ccA ∶ N ∥ CCA → N ∥ A ∥
A, and the composition CCA ⊚ S is defined as the projection
of CCA ⊛ S to essential events.

First, because of secrecy, internal essential events of a
composition arise from those of the composed strategies:

Lemma IV.5. Let σ ∶ S → A⊥ ∥ N ∥ B and τ ∶ T → B⊥ ∥
N ∥ C be uncovered strategies. An internal event p of T ⊚ S
is essential iff Π1p ∈ S ∥ N ∥ C is internal and essential in
S, or Π2p ∈ A ∥ N ∥ T is internal and essential in T .

Proof. First, we prove it for the interaction T ⊛ S. It is an
elementary lemma in concurrent games (see e.g. [4]) that a
minimal conflict in T ⊛ S projects to a minimal conflict to
either S or T . Moreover, the corresponding projection must
be internal (and hence essential) since by secrecy there are
no minimal conflict between positive moves in an uncovered
strategy. Dually, an internal minimal conflict in either S or T
yields immediately a minimal conflict in T ⊛ S. To deduce
the result for T ⊚ S, we simply notice that by definition of
essential events, no events involved in a minimal conflict are
hidden when constructing T ⊚ S.

This yields a characterisation of the internal essential events
of the composition CCA⊚S. Given a configuration x ∈ C (S),

we write x̂ = σN(x) ∥ σ↓(x↓) ∥ σ↓(x↓) ∈ C (N ∥ CCA) where
σN ∶ S ⇀ N is the obvious partial map. We have:

Lemma IV.6. An internal event p ∈ CCA ⊚ S is essential if
and only if s = Π1p ∈ S ∥ A belongs to S and is internal
essential, and Π2[p] = [̂s].

Proof. The “if” direction of the proof, is straightforward. For
“only if”, assume p is essential and internal. By Lemma IV.5,
p must project to an internal essential event of either ccA or σ.
As we have seen, ccA has no essential event so it must be that
s = Π1p ∈ S and is internal essential. Because ccA only adds
causal links in between the two A component, it follows that
Π1 preserves the causal order between events mapped to S.
As a result Π1[p] = [s] ∥ xA ∈ C (S ∥ A). By courtesy of σ,
it follows that the maximal visible events of [s] are negative.
This implies that Π2[p] = [̂x] as desired.

C. Essential strategies

We can now prove that our definition also satisfies (2): all
the events added by composition with copycat are inessential:

Theorem IV.7. Let σ ∶ S → A ∥ N be a uncovered strategy.
Then ccA ⊚ σ ≅ E (σ).

Proof sketch. We know that σ↓ is a covered strategy so as
proved in [14], there is an isomorphism ϕ ∶ ccA ⊙ σ↓ ≅ σ↓.
Lemma III.10 entails that ccA ⊙ σ↓ ≅ ( ccA ⊚ σ)↓. The difficult
part becomes extending ϕ to the neutral events. By Lemma
IV.6, we can let ϕ(p) = Π1p for an internal essential p. The
inverse maps an internal essential s ∈ S to the prime interaction
state ([s] ∥ σ↓[s], [̂s]).

This prompts the following definition:

Definition IV.8. An uncovered strategy σ is essential if,
equivalently: (1) all its events are essential, (2) σ ≅ E (σ).

It turns out that we can go further and generalize the
characterisation of strategies of [14]:

Theorem IV.9. Let σ ∶ S → A ∥ N be uncovered pre-strategy.
It is an essential strategy if and only if ccA ⊚ σ ≅ σ.

Proof. only if. Obvious from Theorem IV.7.
if. We observe that essential strategies are stable under

isomorphism. But ccA⊚σ is essential: from Theorem IV.7 and
associativity of ⊚ this boils down to the idempotence of ccA for
⊚, which follows from that for ⊙ and the fact that by Lemma
IV.6, there is no internal essential event in CCA ⊚CCA.

As a result, we get:

Theorem IV.10. The following data defines a compact-closed
category CG⊚:

● objects: race-free games
● morphisms from A to B: essential strategies from A to B

(that is essential strategies on A⊥ ∥ B) up to isomorphism
As before, the tensor product is given by parallel composition
and duality by duality of games.



1) Relationship between CG and CG⊚: Covered strate-
gies can be made into a compact-closed category [14], [4].
Remember that the composition of σ ∶ S → A⊥ ∥ B and
τ ∶ T → B⊥ ∥ C in CG is defined as τ ⊙ σ = (τ ⊛ σ)↓.
Lemma IV.11. The operation σ ↦ σ↓ extends to an identity-
on-object functor CG⊚ → CG.

In the other direction, a strategy σ ∶ A might not be an
essential strategy – in fact it might not even be an uncovered
strategy, as it may fail secrecy. Sending σ to ccA⊚σ delegates
the non-deterministic choices to internal events and yields an
essential strategy, but this operation is not functorial.

2) Relationship between CG⊚ and CG⊛: The forgetful
operation mapping an essential strategy σ to itself, seen as
an uncovered strategy defines a functor CG⊚ → CG⊛. Indeed,
if two essential strategies are isomorphic, they are also weakly
bisimilar. Moreover, we have that τ ⊛ σ ≃ E (τ ⊛ σ) = τ ⊚ σ.
However the operation E (⋅) does not extend to a functor in
the other direction even though E (τ)⊚E (σ) ≅ E (τ ⊛σ), as it
is defined only on concrete representatives, not on equivalence
classes for weak bisimilarity.

D. Interpretation of affine IPA
We now show that this new category also supports a sound

and adequate interpretation of aIPA. As before, we need to
construct the category of negative games and strategies.

Lemma IV.12. There is a cartesian symmetric monoidal cat-
egory CG−

⊚
of negative race-free games and negative essential

strategies up to isomorphism. Well-opened negative race-free
games form an exponential ideal of CG−

⊚
.

As a result, we can keep the same interpretation of types
of affine IPA. Moreover, all strategies but J�K⊛ given in
Figure 2 are essential. So we keep the same definition for the
interpretation, except for J�K⊚ which is the minimal strategy
on JBK that contains only the game’s minimal negative events:

J�K⊚ = q ∶ B
JM ;NK⊚ = seq⊚ (JMK⊚ ∥ JNK⊚)

JM ∶= ttK⊚ = write⊚ JMK⊚
JM ∥ NK⊚ = join⊚ (JMK⊚ ∥ JNK⊚)

J!MK⊚ = read⊚ JMK⊚
Jif MN N ′K⊚ = if⊚ (JMK⊚ ∥ ⟨JNK⊚, JN ′K⊚⟩)

Jnewrefr ∶= b inMK⊚ = JMK⊚ ⊚ cellb

Lemma IV.13. For all terms M , we have JMK⊚ = E (JMK⊛).

Proof. By induction using Lemma IV.4.

Theorem IV.14. The interpretation J⋅K is sound and adequate
for may and must, ie. for any ⊢M ∶ X:

● the term may converge iff JMK⊚ contains a positive move.
● the term must converge iff JMK⊚ must converge.

Proof. From Lemma IV.13 and IV.2, JMK⊚ and JMK⊛ are
bisimilar. The results follows then from the adequacy of J⋅K⊛
(Theorem III.24) and the fact that may and must equivalence
are preserved by bisimulation (Lemma III.21).

V. CONCLUSION

We described an extension of [14] to uncovered strategies
that are composed without hiding. This allows us to have
a model with a strong operational flavour: interpreting a
language in it is similar to giving it an operational semantics.
We have then seen how to extract, from this very operational
model, a representation up to weak bisimulation that erases
enough information for isomorphism to be meaningful on it.

This mixes well with the work (extension with symmetry,
further conditions on strategies) presented in [5], which allows
us to generalize the results of [5] to the nondeterministic case:
pure computation, even nondeterministic, cannot differentiate
a parallel and a sequential implementation of if up to may and
must convergence. This work, already developed, will appear
in the first author’s forthcoming PhD thesis.
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