
Strategies with Parallel Causes
Marc de Visme1 and Glynn Winskel2

1 Ecole Normale Supérieure de Paris, France
2 Computer Laboratory, University of Cambridge, UK

Abstract
We imagine a team Player engaging a team Opponent in a distributed game. Such games and
their strategies have been formalised within event structures. However there are limitations in
founding strategies on traditional event structures. Sometimes a probabilistic distributed strategy
relies on benign races where, intuitively, several members of team Player may race each other to
make a common move. Although there exist event structures which support such parallel causes,
in which an event is enabled in several compatible ways, they do not support an operation of
hiding central to the composition of strategies; nor do they support probability adequately. An
extension of traditional event structures is devised which supports parallel causes and hiding, as
well as the mix of probability and nondeterminism needed to account for probabilistic distributed
strategies. The extension is located within existing models for concurrency and tested in the
construction of a bicategory of probabilistic distributed strategies with parallel causes.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases Games, Strategies, Event Structures, Parallel Causes, Probability

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.41

1 Introduction

This article addresses a fundamental, potentially widespread issue of which few are aware.
It concerns the accurate modelling of parallel causes in probabilistic distributed strategies;
we are thinking for instance of a strategy in which it is advantageous to allow two or more
members of the same team to race each other cooperatively, without conflict, to perform some
common move. It fixes the absence of a computational model which simultaneously handles
parallel causes, probability and an operation of hiding internal events; it provides such a
model, locates it via adjunctions within existing models and tests it in the construction of a
bicategory of probabilistic distributed strategies supporting parallel causes.

Consider probabilistic distributed games between two teams, Player and Opponent. To
set the scene, imagine a simple distributed game in which team Opponent can perform two
moves, called 1 and 2, far apart from each other, and that team Player can just make one
move, 3. Suppose that for Player to win they must make their move iff Opponent makes
one or more of their moves. Informally Player can win by assigning two members of their
team, one to watch out for the Opponent move 1 and the other Opponent move 2. When
either watcher sees their respective Opponent move they run back and make the Player
move 3. Opponent could possibly play both 1 and 2 in which case both watchers would run
back and could make their move cooperatively together. Provided the watchers are perfectly
reliable this provides a winning probabilistic strategy for Player. No matter how Opponent
chooses to play or not play their moves, Player will win; if Opponent is completely inactive
the watchers wait forever but then Player does win, eventually.

We can imagine variations in which the watchers are only reliable with certain probabilities,
independent or correlated, with a consequent reduction in the probability of Player winning

© Marc de Visme and Glynn Winskel;
licensed under Creative Commons License CC-BY

26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Editors: Valentin Goranko and Mads Dam; Article No. 41; pp. 41:1–41:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2017.41
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Strategies with Parallel Causes

against Opponent strategies. In such a probabilistic strategy Player can only determine
probabilities of their moves conditionally on those of Opponent. Because Player has no say
in the probabilities of Opponent moves beyond those determined by causal dependencies of
the strategy we are led to a Limited Markov Condition, of the kind discussed in [6]:

(LMC) In a configuration x in which both a Player move ⊕ and an Opponent move
	 could occur individually, if the Player move and the Opponent move are causally
independent, then they are probabilistically independent; in a strategy for Player,
Prob(⊕ | x,) = Prob(⊕ | x).

Note we do not expect that in all strategies for Player that two causally independent
Player moves are necessarily probabilistically independent; in fact, because composition of
strategies involves hiding internal moves such a property would not generally be preserved
by composition.

Let us try to describe the informal winning strategy above in terms of event structures.
In ‘prime’ event structures in which causal dependency is expressed as a partial order, an
event is causally dependent on a unique set of events, viz. those events below it in the partial
order. For this reason within prime event structures we are forced to split the Player move
3 into two events one for each watcher making the move, one w1 dependent on Opponent
move 1 and the other w2 on Opponent move 2. The two moves of the two watchers stand for
the same Player move in the game. Because of this they are in conflict (or inconsistent) with
each other.1 We end up with the event structure drawn below:

w1 ⊕ ⊕

	

_LLR

	

_LLR
w2

The polarities + and − signify moves of Player and Opponent, respectively. The arrows
represent the (immediate) causal dependencies and the wiggly line conflict. As far as purely
nondeterministic behaviour goes, we have expressed the informal strategy well: no matter
how Opponent makes or doesn’t make their moves any maximal play of Player is assured to
win. However consider assigning conditional probabilities to the watcher moves. Suppose the
probability of w1 conditional on Opponent event 1 is p1, i.e. Prob(w1 | 1) = Prob(w1, 1 |
1) = p1 and that similarly for w2 its conditional probability Prob(w2 | 2) = p2. Given that
move w1 of Player and move 2 of Opponent are causally independent, from (LMC) we expect
that w1 is probabilistically independent of move 2, i.e.whether Opponent chooses to make
move 2 or not should have no influence on the watcher of move 1:

Prob(w1 | 1, 2) = Prob(w1 | 1) = p1 ; and similarly, Prob(w2 | 1, 2) = Prob(w2 | 2) = p2 .

But w1 and w2 are in conflict, so mutually exclusive, and can each occur individually when
1 and 2 have occurred, ensuring that p1 + p2 ≤ 1 —we haven’t insisted on one or the other
occurring, the reason why we have not written equality. The best Player can do is assign
p1 = p2 = 1/2. Against a counter-strategy with Opponent playing one of their two moves
with probability 1/2 this strategy only wins half the time. We have clearly failed to express
the informal winning strategy accurately!

Present notions of “concurrent strategies,” the most general of which are presented in [11],
are or can be expressed using prime event structures. If we are to be able to express the
intuitive strategy which wins with certainty we need to develop distributed probabilistic

1 Technically, the conflict is forced by the nature of maps of event structures; a map reflects the atomicity
of events and cannot send distinct consistent events to a common event.

M. de Visme and G. Winskel 41:3

strategies which allow parallel causes in which an event can be enabled in distinct but
compatible ways. ‘General’ event structures are one such model [10]. In the informal strategy
described above both Opponent moves would individually enable the Player move, with all
events being consistent, illustrated below:

⊕
OR

	

2 55=

	

aaj

But as we shall see general event structures do not support an appropriate operation of
hiding central to the composition of strategies. Nor is it clear how within general event
structures one could express the variant of the strategy above in which the two watchers
succeed in reporting with different probabilities while respecting LMC—see Section 3.1.

It has been necessary to develop a new model—event structures with disjunctive causes
(edc’s)—which support hiding and probability adequately, and into which both prime and
general event structures embed. Conceptually, one is forced to objectify cause in a way that is
reminiscent of formal proof being an objectification of theoremhood. Formally, this is achieved
by extending prime event structures with an equivalence relation; the equivalence classes
are thought of as ‘disjunctive events’ of which the representatives are ‘prime causes.’ In this
way causes may conflict or not, possess probabilities, and be correlated or independent. The
new model provides a foundation on which to build a rich theory of probabilistic distributed
strategies with parallel causes. Even without probability, it provides a new bicategory of
deterministic parallel strategies, including e.g. deterministic strategies for “parallel or" and
McCarthy’s amb [4].

Full proofs can be found in [12], Ch. 16,17. Appendix A summarises the simple instances
of concepts we borrow from enriched categories [2, 3] and 2-categories [7].

2 Event structures

We start with event structures. In their simplest form, that of ‘prime’ event structures, they
occupy a central position in models for concurrent computation, both “interleaving” and
“causal” [13], and can claim to be the concurrent or causal analogue of trees.

2.1 Prime event structures
A (prime) event structure comprises (E,≤,Con), consisting of a set E of events which are
partially ordered by ≤, the causal dependency relation, and a nonempty consistency relation
Con consisting of finite subsets of E. The relation e′ ≤ e expresses that event e causally
depends on the previous occurrence of event e′. That a finite subset of events is consistent
conveys that its events can occur together by some stage in the evolution of the process.
Together the relations satisfy several axioms:

[e] =def {e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con implies Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X implies X ∪ {e} ∈ Con.

There is an accompanying notion of state, or history, those events that may occur up to some
stage in the behaviour of the process described. A configuration is a, possibly infinite, set of
events x ⊆ E which is: consistent, X ⊆ x and X is finite implies X ∈ Con ; and down-closed,
e′ ≤ e ∈ x implies e′ ∈ x.

CSL 2017

41:4 Strategies with Parallel Causes

Two events e, e′ are considered to be causally independent, and called concurrent if the
set {e, e′} is in Con and neither event is causally dependent on the other. The relation
of immediate dependency e _ e′ means e and e′ are distinct with e ≤ e′ and no event in
between. We write [X] for the down-closure of a subset of events X. Write C∞(E) for the
configurations of E and C(E) for its finite configurations.

It will be very useful to relate event structures by maps. A map of event structures
f : E → E′ is a partial function f from E to E′ such that the image of a configuration x is a
configuration fx and any event of fx arises as the image of a unique event of x; the map is
thus locally injective w.r.t. a configuration x. Maps compose as partial functions. Write E
for the ensuing category.

A map f : E → E′ reflects causal dependency locally, in the sense that if e, e′ are events in
a configuration x of E for which f(e′) ≤ f(e) in E′, then e′ ≤ e also in E; the event structure
E inherits causal dependencies from the event structure E′ via the map f . Consequently, a
map preserves concurrency: if two events are concurrent, then their images if defined are
also concurrent. In general a map of event structures need not preserve causal dependency.

2.2 General event structures
In contrast, a general event structure [9, 10] permits an event to be caused disjunctively in
several ways, possibly coexisting in parallel, i.e. parallel causes. A general event structure
comprises (E,Con,`) where E is a set of event occurrences, the consistency relation Con
is a non-empty collection of finite subsets of E, and the enabling relation ` is a relation in
Con× E such that

X ⊆ Y ∈ Con =⇒ X ∈ Con , and
Y ∈ Con & Y ⊇ X & X ` e =⇒ Y ` e .

A configuration is a subset of E which is: consistent, X ⊆fin x =⇒ X ∈ Con; and secured,
∀e ∈ x, ∃e1, · · · , en ∈ x, en = e & ∀i ≤ n, {e1, · · · , ei−1} ` ei . Again we write C∞(E) for
the configurations of E and C(E) for its finite configurations.

The notion of an event e being enabled in a configuration has been expressed through
the existence of a securing chain e1, · · · , en, with en = e, within the configuration. The
securing chain represents a complete enabling of e in the sense that every event in the securing
chain is itself enabled by earlier members of the chain. But just as mathematical proofs
need not be sequences, so can one imagine more refined ways in which to express complete
enablings. Later the idea that complete enablings can be more generally expressed as partial
orders of events in which all events are enabled by earlier events in the order—“causal
realisations”—will play an important role in unfolding general event structures to structures
supporting hiding and parallel causes.

A map f : (E,Con,`)→ (E′,Con′,`′) of general event structures is a partial function
f : E ⇀ E′ such that

X ∈ Con =⇒ fX ∈ Con′ ,
∀e1, e2 ∈ X ∈ Con, f(e1) = f(e2) =⇒ e1 = e2 , and

X ` e & f(e) is defined =⇒ fX `′ f(e) .

Maps compose as partial functions with identity maps being identity functions. Write G for
the category of general event structures.

We can characterise those families of configurations arising from a general event structure.
W.r.t. a family of subsets F , a subset X of F is compatible (in F), written X ↑, if there is
y ∈ F such that x ⊆ y for all x ∈ X; we write x ↑ y for {x, y} ↑. Say a subset is finitely
compatible iff every finite subset is compatible.

M. de Visme and G. Winskel 41:5

A family of configurations comprises a family F of sets such that if X ⊆ F is finitely
compatible in F then

⋃
X ∈ F ; and if e ∈ x ∈ F there is a securing chain e1, · · · , en = e

in x such that {e1, · · · , ei} ∈ F for all i ≤ n. The elements of the underlying set
⋃
F are

its events. Such a family is stable when for any compatible non-empty subset X of F its
intersection

⋂
X is a member of F .

For configurations x, y, we use x−⊂y to mean y covers x, i.e. x ⊂ y with nothing in
between, and x

e
−−⊂ y to mean x ∪ {e} = y for an event e /∈ x. We sometimes use x

e
−−⊂ ,

expressing that event e is enabled at configuration x, when x
e
−−⊂ y for some y.

A map between families of configurations from A to B is a partial function f :
⋃
A⇀

⋃
B

between their events such that fx ∈ B if x ∈ A and any event of fx arises as the image of a
unique event of x. Maps compose as partial functions.

The forgetful functor taking a general event structure to its family of configurations has
a left adjoint, which constructs a canonical general event structure from a family: given
A, a family of configurations with underlying events A, construct a general event structure
(A,Con,`) with X ∈ Con iff X ⊆fin y, for some y ∈ A; and with X ` a iff a ∈ A, X ∈ Con
and e ∈ y ⊆ X ∪ {a}, for some y ∈ A.

The above yields a coreflection of families of configurations in general event structures.
It cuts down to an equivalence between families of configurations and replete general event
structures. A general event structure (E,Con,`) is replete iff

∀e ∈ E, ∃X ∈ Con, X ` e ,
∀X ∈ Con, ∃x ∈ C(E), X ⊆ x and

X ` e =⇒ ∃x ∈ C(E), e ∈ x & x ⊆ X ∪ {e} .

2.3 On relating prime and general event structures

Clearly a prime event structure (P,≤,Con) can be identified with a (replete) general event
structure (P,`,Con) by taking X ` p iff X ∈ Con & [p] ⊆ X ∪ {p} . Indeed under this
identification there is a full and faithful embedding of E in G. However (contrary to the
claim in [10]) there is no adjoint to this embedding. This leaves open the issue of providing
a canonical way to describe a general event structure as a prime event structure. This issue
has arisen as a central problem in reversible computation [1] and now more recently in the
present limitation of concurrent strategies described in the introduction. A corollary of our
work will be that the embedding of prime into general event structures does have a pseudo
right adjoint which unfolds a general event structure to a prime event structure, got at the
slight cost of enriching prime event structures with equivalence relations.

3 Problems with general event structures

Why not settle for general event structures as a foundation for distributed strategies? Because
although they allow parallel causes, they don’t generally support hiding, so composition of
strategies; nor do they support probability generally enough.2

2 Should we only be interested in deterministic, non-probabilistic strategies, general event structures
do support pullback and hiding required in the composition of strategies [12]. Nondeterministic or
probabilistic strategies with parallel causes require an extension such as ese’s or edc’s, defined shortly.

CSL 2017

41:6 Strategies with Parallel Causes

3.1 Probability and parallel causes

We return to the general-event-structure description of the strategy in the introduction. To
turn this into a probabilistic strategy for Player we should assign probabilities to configurations
conditional on Opponent moves. The watcher of Opponent move 1 is causally independent
of Opponent move 2. Given this we might expect that the probability of the watcher of 1
making the Player move 3 should be probabilistically independent of move 2; after all, both
moves 3 and 2 can occur concurrently from configuration {1}. Applying LMC naively would
yield Prob(1, 3 | 1) = Prob(1, 2, 3 | 1, 2) . But similarly, Prob(2, 3 | 2) = Prob(1, 2, 3 | 1, 2),
which forces Prob(1, 3 | 1) = Prob(2, 3 | 2), i.e. that the conditional probabilities of the two
watchers succeeding are the same! In blurring the distinct ways in which move 3 can be
caused we have obscured causal independence which has led us to identify possibly distinct
probabilities.

3.2 Hiding

With one exception, all the operations used in building strategies and, in particular, the
bicategory of concurrent strategies [8], extend to general event structures. The one exception,
that of hiding, is crucial in ensuring composition of strategies yields a bicategory.

Consider a general event structure with events a, b, c, d and e; enabling (1) b, c ` e and
(2) d ` e, with all events other than e being enabled by the empty set; and consistency in
which all subsets are consistent unless they contain the events a and b. Any configuration
will satisfy the assertion (a ∧ e) =⇒ d because if e has occurred it has to have been enabled
by (1) or (2) and if a has occurred its conflict with b has prevented the enabling (1), so e
can only have occurred via enabling (2).

Now imagine the event b is hidden, so allowed to occur invisibly in the background. The
configurations after hiding are those obtained by hiding (i.e. removing) the invisible event b
from the configurations of the original event structure. The assertion (a ∧ e) =⇒ d will still
hold of the configurations after hiding.

There isn’t a general event structure with events a, c, d and e, and configurations those
which result when we hide (remove) b from the configurations of the original event structure.3

Precisely the same problem can arise in the composition (with hiding) of nondeterministic
strategies based on general event structures. To obtain a bicategory of strategies with
disjunctive causes we need to support hiding. We need to look for structures more general
than general event structures. The example above gives a clue: inconsistency should be lifted
from an inconsistency between events to an inconsistency between enablings.

4 Adding disjunctive causes

To cope with disjunctive causes and hiding we must go beyond general event structures.
We introduce structures in which we objectify cause; a minimal complete enabling is no
longer an instance of a relation but a structure that realises that instance (cf. a judgement
of theorem-hood in contrast to a proof).

3 One way to see this is to observe that amongst the configurations after hiding we have {c}−⊂{c, e}
and {c}−⊂{a, c} where both {c, e} and {a, c} have upper bound {a, c, d, e}, and yet {a, c, e} is not a
configuration after hiding as it fails to satisfy the assertion (a∧ e) =⇒ d. In configurations of a general
event structure if x−⊂y and x−⊂z and y and z are compatible, then y ∪ z is a configuration.

M. de Visme and G. Winskel 41:7

Fortunately we can do this while staying close to prime event structures. The twist is
to regard “disjunctive events” as comprising subsets of events of a prime event structure,
the events of which are now to be thought of as representing “prime causes” standing for
minimal complete enablings. Technically, we do this by extending prime event structures
with an equivalence relation on events.

In detail, an event structure with equivalence (an ese) is a structure (P,≤,Con,≡) where
(P,≤,Con) is a (prime) event structure and ≡ is an equivalence relation on P .

An ese dissociates the two roles of enabling and atomic action conflated in the events of a
prime event structures. The intention is that the events p of P , or really their corresponding
down-closures [p], describe minimal complete enablings, prime causes, while the ≡-equivalence
classes of P represent disjunctive events: p is a prime cause of the disjunctive event {p}≡.
Notice there may be several prime disjunctive causes of the same disjunctive event and that
these may be parallel causes in the sense that they are consistent with each other and not
related in the order ≤.

A configuration of the ese is a configuration of (P,≤,Con) and we shall use the notation
of earlier on event structures C∞(P) and C(P) for its configurations, respectively finite
configurations. We say a configuration is unambiguous if it has no two distinct elements
which are ≡-equivalent. We modify the relation of concurrency a little and say p1, p2 ∈ P are
concurrent and write p1co p2 iff [p1] ∪ [p2] is an unambiguous configuration of P and neither
p1 ≤ p2 nor p2 ≤ p1.

When the equivalence relation ≡ of an ese is the identity we essentially have a prime event
structure. This view is reinforced in our choice of maps. A map from ese (P,≤P ,ConP ≡P)
to (Q,≤Q,ConQ,≡Q) is a partial function f : P ⇀ Q which preserves ≡, i.e. if p1 ≡P p2
then either both f(p1) and f(p2) are undefined or both defined with f(p1) ≡Q f(p2)), such
that for all x ∈ C(P) we have (i) the direct image fx ∈ C(Q), and (ii) ∀p1, p2 ∈ x, f(p1) ≡Q
f(p2) =⇒ p1 ≡P p2 . Maps compose as partial functions with the usual identities. Such
maps preserve the concurrency relation. They are only assured to reflect causal dependency
locally w.r.t. unambiguous configurations.

We regard two maps f1, f2 : P → Q as equivalent, and write f1 ≡ f2, iff they are
equi-defined and yield equivalent results, i.e.if f1(p) is defined then so is f2(p) and f1(p) ≡Q
f2(p), and symmetrically. Composition respects ≡: if f1, f2 : P → Q with f1 ≡ f2 and
g1, g2 : Q → R with g1 ≡ g2, then g1f1 ≡ g2f2. Write E≡ for the category of ese’s; it is
enriched in the category of sets with equivalence relations—see [3] and Appendix A.

Ese’s support a hiding operation. Let (P,≤,ConP ,≡) be an ese. Let V ⊆ P be a
≡-closed subset of ‘visible’ events. Define the projection of P on V , to be P↓V =def (V,≤V
,ConV ,≡V), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V and
v ≡V v′ iff v ≡ v′ & v, v′ ∈ V .

Hiding is associated with a factorisation of partial maps. Let f be a partial map from
(P,≤P ,ConP ,≡P) to (Q,≤Q,ConQ,≡Q). Letting V =def {e ∈ E | f(e) is defined}, the map
f factors into the composition

P
f0 // P↓V

f1 // Q

of f0, a partial map of ese’s taking p ∈ P to itself if p ∈ V and undefined otherwise, and
f1, a total map of ese’s acting like f on V . We call f1 the defined part of the partial map
f . Because ≡-equivalent maps share the same domain of definition, ≡-equivalent maps
will determine the same projection and ≡-equivalent defined parts. The factorisation is
characterised to within isomorphism by the following universal characterisation: for any
factorisation P

g0 // P1
g1 // Q where g0 is partial and g1 is total there is a (necessarily

CSL 2017

41:8 Strategies with Parallel Causes

total) unique map h : P↓V → P1 such that we obtain the commuting diagram

P
f0 //

g0 $$

P↓V
h��

f1 // Q

P1 .
g1

::

The category E≡ of ese’s supports hiding in the sense above.

5 Unfolding general event structures to ese’s

We next show how replete general event structures embed in ese’s as part of a (pseudo)
reflection. This fixes the sense in which ese’s extend the established model of general event
structures in their treatment of parallel causes, while in addition supporting hiding. The
relevant (pseudo) adjoint from G to E≡ is quite subtle and is a form of unfolding of a general
event structure into an ese of its prime causes.

The pseudo functor arises as a right adjoint to a more obvious functor from E≡ to G.
Given an ese (P,≤,Con,≡) we can construct a (replete) general event structure ges(P) =def
(E,ConE ,`) by taking

E = P≡, the equivalence classes under ≡ ,
X ∈ ConE iff ∃Y ∈ Con, X = Y≡ , and
X ` e iff X ∈ Con & e ∈ E & ∃p ∈ P, e = {p}≡ & [p]≡ ⊆ X ∪ {e} .

The construction extends to a functor ges : E≡ → G as maps between ese’s preserve ≡; the
functor takes a map f : P → Q of ese’s to the map ges(f) : ges(P)→ ges(Q) obtained as the
partial function induced on equivalence classes. Less obvious is that there is a (pseudo) right
adjoint to ges. Its construction relies on extremal causal realisations which provide us with
an appropriate notion of minimal complete enabling of events in a general event structure;
these furnish us with the prime causes from which to build the ese unfolding.

5.1 Causal realisations
Let A be a family of configurations with underlying set A. A (causal) realisation of A
comprises a partial order (E,≤), its carrier, such that the set {e′ ∈ E | e′ ≤ e} is finite for
all events e ∈ E, together with a function ρ : E → A for which the image ρx ∈ A when x is
a down-closed subset of E.

A map between realisations (E,≤), ρ and (E′,≤′), ρ′ is a partial surjective function
f : E ⇀ E′ which preserves down-closed subsets and satisfies ρ(e) = ρ′(f(e)) when f(e) is
defined. It is convenient to write such a map as ρ �f ρ′. Occasionally we shall write ρ � ρ′,
or the converse ρ′ � ρ, to mean there is a map of realisations from ρ to ρ′. Such a map
factors into a “projection” followed by a total map

ρ �f1
1 ρ0 �f2

2 ρ′ ,

where ρ0 stands for the realisation (E0,≤0), ρ0 where E0 = {r ∈ R | f(r) is defined} is the
domain of definition of f , ≤0 is the restriction of ≤, f1 is the inverse relation to the inclusion
E0 ⊆ E, and f2 is the total function f2 : E0 → E′. We are using �1 and �2 to signify the
two kinds of maps. Notice that �1-maps are reverse inclusions. Notice too that �2-maps
are exactly the total maps of realisations. Total maps ρ �f2 ρ′ are precisely those functions
f from the carrier of ρ to the carrier of ρ′ which preserve down-closed subsets and satisfy
ρ = ρ′f .

M. de Visme and G. Winskel 41:9

We shall say a realisation ρ is extremal when ρ �f2 ρ′ implies f is an isomorphism, for
any realisation ρ′; it is called prime extremal when it in addition has a top element, i.e. its
carrier contains an element which dominates all other elements in the carrier.

In the special case where A is the family of configurations of a prime event structure, it
is easy to show that an extremal realisation ρ forms a bijection with a configuration of the
event structure and that the order on the carrier coincides with causal dependency there;
the prime extremals correspond to configurations of the form [e] for some event e.

The construction is more interesting when A is the family of configurations of a general
event structure A. In general, there is at most one map between extremal realisations. Hence
extremal realisations of A under � form a preorder. The order of extremal realisations has
as elements isomorphism classes of extremal realisations ordered according to the existence
of a map between representatives of isomorphism classes. In fact:

I Theorem 1. The order of extremal realisations of A forms a prime-algebraic domain [5]
with complete primes represented by the prime extremal realisations.

The import of this theorem is that the order of extremal realisations is isomorphic to
the configurations of a prime event structure ordered by inclusion. The event structure has
events the prime extremal realisations; causal dependency the restriction of the order on
extremal realisations; with consistency induced by compatibility there.

5.2 A pseudo adjunction
From Theorem 1, a general event structure A determines a prime event structure with events
the prime extremal realisations of C∞(A) [5]. The top element of each prime extremal images
to an event of A, providing a map from prime extremals to A. To get the ese-unfolding
er(A) of A we further endow the prime event structure with an equivalence, taking two prime
extremals as equivalent if their top elements have the same image. Because equivalent prime
extremals are sent to the same event of A, we determine a map εA : ges(er(A)) → A of
general event structures. It is the component of the counit of the adjunction at A. (See
Appendix B for the proof and the detailed construction of er.)

I Theorem 2. Let A ∈ G. For all f : ges(Q) → A in G, there is a map h : Q → er(A) in
E≡ such that f = εA ◦ ges(h) i.e. so the diagram below commutes:

A ges(er(A))εAoo

ges(Q)
f

dd

ges(h)

OO

Moreover, if h′ : Q→ er(A) is a map in E≡ such that f = εA ◦ ges(h′), then h′ ≡ h.

The theorem does not quite exhibit a standard adjunction, because the usual cofreeness
condition specifying an adjunction is weakened to only having uniqueness up to ≡. However
the condition it describes does specify a simple case of pseudo adjunction between 2-categories—
a set together with an equivalence relation is a very simple example of a category (see
Appendix A). As a consequence, whereas with the usual cofreeness condition allows us to
extend the right adjoint to arrows, so obtaining a functor, in this case following that same
line will only yield a pseudo functor er as right adjoint: thus extended, er will only necessarily
preserve composition and identities up to ≡.

CSL 2017

41:10 Strategies with Parallel Causes

The pseudo adjunction from E≡ to G cuts down to a pseudo reflection (i.e. the counit ε
is a natural isomorphism) when we restrict to the subcategory of G where all general event
structures are replete. Its right adjoint provides a pseudo functor embedding replete general
event structures (and so families of configurations) in ese’s.

I Example 3. On the right we show a general event structure and on its left the ese which
it unfolds to under er:

d1 d2 d

c1

_LLR

c2

_LLR

c

AND
_LLR

OR

a

_LLR

OCCK

b

_LLR

oSS[

a

K@@I

9 77B

b

rUU]

�\\f

Although they don’t appear in this example, it is possible to have extremal realisations
in which an event depends on an event of the family having been enabled in two distinct
ways—see Appendix B, Example 10. (Such phenomena will be disallowed in edc’s.)

6 EDC’S

Our major motivation in developing and exploring ese’s was in order to extend strategies
with parallel causes while maintaining the central operation of hiding. What about the other
operation key to the composition of strategies, viz. pullback?

It is well-known to be hard to construct limits such as pullback within prime event
structures, so that we often rely on first carrying out the constructions in stable families,
into which there is a coreflection from prime event structures. We might expect an analogous
way to construct pullbacks or pseudo pullbacks in E≡.

6.1 Equivalence families
In fact, the pseudo adjunction from E≡ to G factors through a more basic pseudo adjunction
to families of configurations which also bear an equivalence relation on their underlying sets.
An equivalence-family (ef) is a family of configurations A with an equivalence relation ≡A on
its underlying set

⋃
A. We can identify a family of configurations A with the ef (A,=), taking

the equivalence to be simply equality on the underlying set. A map f : (A,≡A)→ (B,≡B)
between ef’s is a partial function f : A ⇀ B between their underlying sets which preserves ≡
so that

x ∈ A ⇒ fx ∈ B & ∀a1, a2 ∈ x, f(a1) ≡B f(a2)⇒ a1 ≡A a2 .

Composition is composition of partial functions. We regard two maps f1, f2 : (A,≡A) →
(B,≡B) as equivalent, and write f1 ≡ f2, iff they are equidefined and yield equivalent results.
Composition respects ≡. This yields a category of equivalence families Fam≡ enriched in
the category of sets with equivalence relations.

Clearly we can regard an ese (P,≤P ,ConP ,≡P) as an ef (C∞(P),≡P) and a function
which is a map of ese’s as a map between the associated ef’s, and this operation forms a
functor. The functor has a pseudo right adjoint built from causal realisations in a very
similar manner to er. The configurations of a general event structure form an ef with the
identity relation as its equivalence. This operation is functorial and has a left adjoint which
collapses an ef to a general event structure in a similar way to ges; the adjunction is enriched
in equivalence relations. In summary, the pseudo adjunction

M. de Visme and G. Winskel 41:11

E≡
ges
> 44 G
er

ss

factors into a pseudo adjunction followed by an adjunction
E≡ > 22 Fam≡ss

> 33 G .rr

Fam≡ has pullbacks and pseudo pullbacks which are easy to construct. For example, let
f : A → C and g : B → C be total maps of ef’s. Assume A and B have underlying sets A
and B. Define D =def {(a, b) ∈ A×B | f(a) ≡C g(b)} with projections π1 and π2 to the left
and right components. On D, take d ≡D d′ iff π1(d) ≡A π1(d′) and π2(d) ≡B π2(d′). Define
a family of configurations of the pseudo pullback to consist of x ∈ D iff x ⊆ D such that
π1x ∈ A & π2x ∈ B , and

∀d ∈ x∃d1, · · · , dn ∈ x, dn = d &
∀i ≤ n, π1{d1, · · · , di} ∈ A & π2{d1, · · · , di} ∈ B .

The ef D with maps π1 and π2 is the pseudo pullback of f and g. It would coincide with
pullback if ≡C were the identity.

But unfortunately (pseudo) pullbacks in Fam≡ don’t provide us with (pseudo) pullbacks
in E≡ because the right adjoint is only a pseudo functor: in general it will only carry pseudo
pullbacks to bipullbacks. While E≡ does have bipullbacks (in which commutations and
uniqueness are only up to the equivalence ≡ on maps) it doesn’t always have pseudo pullbacks
or pullbacks—Appendix C. Whereas pseudo pullbacks and pullbacks are characterised up to
isomorphism, bipullbacks are only characterised up to a weaker equivalence—that induced
on objects by the equivalence on maps.4 While we could develop strategies with parallel
causes in the broad context of ese’s, defining the composition of strategies via bipullbacks
and hiding, doing so would mean that the composition of strategies that ensued was defined
only up to equivalence and not isomorphism. Our definition of strategy-composition would
be accordingly weaker in that its characterisation could only be up to equivalence.

6.2 Edc’s defined
Fortunately there is a subcategory of E≡ which supports pullbacks and pseudo pullbacks, as
well as hiding. Define EDC to be the subcategory of E≡ with objects ese’s satisfying

p1, p2 ≤ p & p1 ≡ p2 =⇒ p1 = p2 .

We call such objects event structures with disjunctive causes (edc’s). In an edc an event can’t
causally depend on two distinct prime causes of a common disjunctive event, and so rules
out realisations such as that mentioned in Example 10. In general, within E≡ we lose the
local injectivity property that we’re used to seeing for maps of event structures; the maps of
event structures are injective from configurations, when defined. However for EDC we recover
local injectivity w.r.t. prime configurations, of form [p]: if f : P → Q is a map in EDC, then

p1, p2 ≤P p & f(p1) = f(p2) =⇒ p1 = p2 .

The factorisation property associated with hiding in E≡ is inherited by EDC.
As regards (pseudo) pullbacks, we are fortunate in that the complicated pseudo adjunction

between ese’s and ef’s restricts to a much simpler (pseudo) adjunction, in fact a coreflection,

4 Objects P and Q are equivalent iff there are two maps f : P → Q, g : Q → P s.t. gf ≡ idP and
fg ≡ idQ.

CSL 2017

41:12 Strategies with Parallel Causes

between edc’s and stable ef’s. In an equivalence family (A,≡A) say a configuration x ∈ A is
unambiguous iff ∀a1, a2 ∈ x, a1 ≡A a2 =⇒ a1 = a2 . An equivalence family (A,≡A), with
underlying set of events A, is stable iff it satisfies

∀x, y, z ∈ A, x, y ⊆ z & z is unambiguous ⇒ x ∩ y ∈ A , and
∀a ∈ A, x ∈ A, a ∈ x ⇒ ∃z ∈ A, z is unambiguous & a ∈ z ⊆ x .

In effect a stable equivalence family contains a stable subfamily of unambiguous configurations
out of which all other configurations are obtainable as unions. Local to any unambiguous
configuration x there is a partial order on its events ≤x: each a ∈ x determines a prime
configuration

[a]x =def
⋂
{y ∈ A | a ∈ y ⊆ x} ,

the minimum set of events on which a depends within x; taking a ≤x b iff [a]x ⊆ [b]x defines
causal dependency between a, b ∈ x. Write SFam≡ for the subcategory of stable ef’s.

(Pseudo) pullbacks in stable ef’s are obtained from those in ef’s simply by restricting to
those configurations which are unions of unambiguous configurations. The configurations of
an edc with its equivalence are easily seen to form a stable ef providing a full and faithful
embedding of EDC in SFam≡. The embedding has a right adjoint Pr. It is built out of prime
extremals but we can take advantage of the fact that in a stable ef unambiguous prime
extremals have the simple form of prime configurations. From a stable ef(A,≡A) we produce
an edc Pr(A,≡A) =def (P,Con,≤,≡) in which P comprises the prime configurations with

[a]x ≡ [a′]x′ iff a ≡A a′ ,
Z ∈ Con iff Z ⊆ P &

⋃
Z ∈ F , and

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

The adjunction is enriched in the sense that its natural bijection preserves and reflects the
equivalence on maps:

EDC > 11 SFam≡
Pr

rr

We can now obtain a (pseudo) pullback in edc’s by first forming the (pseudo) pullback of
the stable ef’s obtained as their configurations and then taking its image under the right
adjoint Pr. We now have the constructions we need to support strategies based on edc’s.

6.3 Coreflective subcategories of edc’s
EDC is a coreflective subcategory of E≡; the right adjoint simply cuts down to those events
satisfying the edc property. In turn EDC has a coreflective subcategory E0

≡ comprising those
edc’s which satisfy

{p1, p2} ∈ Con & p1 ≡ p2 =⇒ p1 = p2 .

Consequently its maps are traditional maps of event structures which preserve the equivalence.
We derive adjunctions

E0
≡ > 33 EDC > 33ss E≡

ges
> 33

ss G .
er

ss

Note the last is only a pseudo adjunction. Consequently we obtain a pseudo adjunction
from E0

≡, the category of prime event structures with equivalence relations and general event
structures—this makes good the promise of Section 2.3. Inspecting the composite of the last
two adjunctions, we also obtain the sense in which replete general event structures embed
via a reflection in edc’s.

M. de Visme and G. Winskel 41:13

There is an obvious ‘inclusion’ functor from the category of prime event structures E to the
category EDC: it extends an event structure with the identity equivalence. Regarding EDC as
a plain category, so dropping the enrichment by equivalence relations, the ‘inclusion’ functor
E ↪→ EDC has a right adjoint, viz. the forgetful functor which given an edc P = (P,≤,Con,≡)
produces an event structure P0 = (P,≤,Con′) by dropping the equivalence ≡ and modifying
the consistency relation to:

X ∈ Con′ iff X ⊆ P & X ∈ Con & p1 6≡ p2, for all p1, p2 ∈ X .

The configurations of P0 are the unambiguous configurations of P . The adjunction is a
coreflection because the inclusion functor is full. Of course it is not the case that the
adjunction is enriched: the natural bijection of the adjunction cannot respect the equivalence
on maps; it cannot compose with the pseudo adjunction from EDC to G to yield a pseudo
adjunction from E to G.

Despite this the adjunction from E to EDC has many useful properties. Of importance for
us is that the functor forgetting equivalence will preserve all limits and especially pullbacks.
It is helpful in relating composition of edc-strategies to the composition of strategies based
on prime event structures in [8]. In composing strategies in edc’s we shall only be involved
with pullbacks of maps f : A→ C and g : B → C of edc’s. (When C is essentially an event
structure, i.e. an edc in which the equivalence is the identity relation, the construction of
such pullbacks coincides with that of pseudo pullbacks.) While this does not entail that
composition of strategies is preserved by the forgetful functor—because the forgetful functor
does not commute with hiding—it will give us a strong relationship, expressed as a map,
between composition of the two kinds of strategies (based on edc’s and based on prime event
structures) after and before applying the forgetful functor. This has been extremely useful
in key proofs of the next section, in importing results about concurrent strategies from [8].

7 Probabilistic strategies based on edc’s

The ground is prepared for a general definition of distributed probabilistic strategies, based on
edc’s. The development follows the same lines as that of probabilistic concurrent strategies [8,
11], to which we refer the reader, and can only be sketched briefly here.

An edc with polarity comprises (P,≤P ,ConP ,≡, pol), an edc (P,≤P ,ConP ,≡) in which
each element p ∈ P carries a polarity pol(p) which is + or −, according as it represents a
move of Player or Opponent, and where the equivalence relation ≡ respects polarity. A map
of edc’s with polarity is a map of the underlying edc’s which preserves polarity when defined.
The adjunctions of the previous section are undisturbed by adding polarity.

A game is represented by an edc with polarity. There are two fundamentally important
operations on two-party games. One is that of forming the dual game. On a game A this
amounts to reversing the polarities of events to produce the dual A⊥. The other operation,
a simple parallel composition A‖B, is achieved on games A and B by simply juxtaposing
them, ensuring a finite subset of events is consistent if its overlaps with the two games are
individually consistent.

A pre-strategy in a game A is a total map σ : S → A of edc’s with polarity. A pre-strategy
from a game A to a game B is a pre-strategy in the game A⊥‖B. A map f : σ ⇒ σ′ of
pre-strategies σ : S → A and σ′ : S′ → A is a map f : S → S′ s.t. σ = σ′f ; this determines
isomorphism of pre-strategies. The map is rigid if it preserves causal dependency.

Two edc pre-strategies σ : S → A⊥‖B and τ : T → B⊥‖C compose via pullback and
hiding—with parallel causes, the key features driving our search for edc’s. Ignoring polarities,

CSL 2017

41:14 Strategies with Parallel Causes

the composite partial map A ‖ T
A‖τ
''

T ~ S

π2 88

π1 &&

A ‖ B ‖ C // A ‖ C

S ‖ C
σ‖C

77

has defined part, yielding the composition τ�σ : T�S → A⊥‖C once we reinstate polarities.
(The partial map from A‖B‖C to A‖C acts as the identity but for being undefined on B.)

The copycat strategy comprises ccA : CCA → A⊥‖A where CCA is obtained by adding
extra causal dependencies to A⊥‖A so that any Player move in either component causally
depends on its copy, an Opponent move, in the other [8].

In general, copycat may not be an identity w.r.t. composition. However, copycat acts as
identity precisely on an edc pre-strategy σ : S → A which is an edc strategy, capturing the
sense in which Player cannot influence Opponent beyond the constraints of the game:
(i) the image σ0 : S0 → A0 of σ (under the right adjoint to the inclusion of event structures
in edc’s) is a strategy of concurrent games, i.e. is receptive and innocent, as in [8];5 and
(ii) s1 ≡S s2 ⇐⇒ σ(s1) ≡A σ(s2), for all s1, s2 ∈ S; with

(iii) x
s
−−⊂ z & x

s′

−−⊂ z′ & pol(s) = − & σz ↑ σz′ =⇒ z ↑ z′.

I Theorem 4. When σ : S → A is an edc pre-strategy, σ ∼= ccA�σ iff σ is an edc strategy.

A probabilistic edc strategy in a game A, is an edc strategy σ : S → A together with a
configuration-valuation which endows S with probability, while taking account of the fact that
in the strategy Player can’t be aware of the probabilities assigned by Opponent. We should
restrict to race-free games, precisely those for which copycat is deterministic, so that we
have probabilistic identity strategies; it follows that S is race-free. A configuration-valuation
extends the definition of probabilistic event structure [11] with an axiom (lmc) which implies
the Limited Markov Condition, LMC, of the introduction. Precisely, a configuration-valuation
is a function v : C(S)→ [0, 1] which is: (normalized) v(∅) = 1; and satisfies:

(lmc) v(x) = v(y) when x ⊆− y for finite configurations x, y of S
(+ve drop condition) dv[y;x1, · · · , xn] ≥ 0 when y ⊆+ x1, · · · , xn for finite configurations.

The ‘drop’ function, dv[y;x1, · · · , xn] =def v(y) −
∑
I(−1)|I|+1v(

⋃
i∈I xi), where the index

I ranges over nonempty I ⊆ {1, · · · , n} such that the union
⋃
i∈I xi ∈ C(S). Above we use

x ⊆− y, and x ⊆+ y, to mean inclusion in which all the intervening events have the indicated
polarity.

When there are no Opponent moves in S, a configuration-valuation corresponds to
a continuous valuation on the Scott-open sets of C∞(S) and determines a probability
distribution on the Borel sets; then v(x) is Prob(x), the probability that the result includes
the events of the finite configuration x [11]. When S has Opponent moves, the reading of a
configuration-valuation involves conditional probabilities. When x ⊆+ y in C(S), provided
v(x) 6= 0, the conditional probability of Player making moves y \ x given x, is expressed by
Prob(y | x) = v(y)/v(x). Because S is race-free, this reading, with (lmc), ensures we obtain
LMC directly.

The composition above extends to probabilistic edc strategies. Assuming σ and τ

have configuration-valuations vS and vT their composition τ�σ has configuration-valuation
v(x) =def vS([x]S).vT ([x]T) for x a finite configuration of T�S; the configuration [x]S is the

5 A total map of event structures with polarity σ : S → A is receptive if σx
a
−−⊂ & pol(a) = − implies

∃!s, x
s
−−⊂ & σ(s) = a. It is innocent if s _ s′ with pol(s) = + or pol(s′) = − implies σ(s) _ σ(s′).

M. de Visme and G. Winskel 41:15

S-component in C(S) of the projection π1[x], and [x]T the T -component of π2[x]. The proof
that v is a configuration-valuation relies heavily on properties of “drop” functions.

We obtain a bicategory of probabilistic edc strategies which support parallel causes; its
2-cells are rigid maps of strategies which relate configuration-valuations across 2-cells via a
‘push-forward’ result—see Appendix D. It has a sub-bicategory of deterministic edc strategies
analogous to that of [8]. But now there are deterministic strategies with parallel causes,
including the strategy sketched informally in the introduction in which Player makes a move
iff Opponent makes one or more of their moves:

w1⊕ ≡ ⊕w2

	

_LLR

	

_LLR
σ−→ ⊕

	 	
Similarly, there are now deterministic strategies for “parallel or” and McCarthy’s amb [4].

I Example 5. Recall the game of the introduction. In the edc strategy drawn above,
individual success of the two watchers w1 and w2 may be associated with probabilities
p1 ∈ [0, 1] and p2 ∈ [0, 1], respectively, and their joint success with q ∈ [0, 1] provided they
form a configuration-valuation v. In other words, v(x) = p1 if x contains w1 and not w2;
v(x) = p2 if x contains w2 and not w1; and v(x) = q if x contains both w1 and w2; v(x) = 1
otherwise; and p1 + p2 − q ≤ 1, in order to satisfy the +-drop condition. To enliven this a
little we might imagine the two watchers have a drinking problem and the correlation depends
on whether they are sharing from a common bottle: if they had their own bottles we might
imagine the drunken unreliability of one independent of that of the other, so q = p1.p2; as
good friends sharing from a common bottle their drunkeness might correlate, so p1 = p2 = q.

Acknowledgments Thanks to the referees, to Simon Castellan, Pierre Clairambault, Mai
Gehrke, Jonathan Hayman and Martin Hyland for advice and encouragement, to ENS Paris
for supporting Marc de Visme’s internship and to the ERC for Advanced Grant ECSYM.

References
1 Ioana Cristescu. Operational and denotational semantics for the reversible pi-calculus. PhD

thesis, PPS, Université Paris Diderot, 2015.
2 G. M. Kelly. Basic concepts of enriched category theory. LNM 64. CUP, 1982.
3 Y. Kinoshita and J. Power. Category theoretic structure of setoids. Theor. Comput. Sci.,

546, 2014.
4 John McCarthy. A basis for a mathematical theory of computation. In P. Brafford and

D. Hirschberg, editors, Computer Programming and Formal Systems. North-Holland, 1963.
5 Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event structures and

domains. TCS, 13:85–108, 1981.
6 Judea Pearl. Causality. CUP, 2013.
7 John Power. 2-categories. BRICS Notes Series NS-98-7, 1998.
8 Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS 2011.
9 Glynn Winskel. Events in computation. 1980. PhD thesis, Edinburgh.
10 Glynn Winskel. Event structures. In Advances in Petri Nets, LNCS 255, 1986.
11 Glynn Winskel. Distributed probabilistic and quantum strategies. ENTCS 298, 2013.
12 Glynn Winskel. ECSYM Notes: Event Structures, Stable Families and Concurrent Games.

http://www.cl.cam.ac.uk/∼gw104/ecsym-notes.pdf, 2016.
13 Glynn Winskel and Mogens Nielsen. Handbook of Logic in Computer Science 4, chapter

Models for Concurrency, pages 1–148. OUP, 1995.

CSL 2017

41:16 Strategies with Parallel Causes

A Equiv-enriched categories

Here we explain in more detail what we mean when we say “enriched in the category of of
sets with equivalence relations” and employ terms such as “enriched adjunction,” “pseudo
adjunction” and “pseudo pullback." The classic text on enriched categories is [2], but for this
paper the articles [3] and [7] provide short, accessible introductions to the notions we use
from Equiv-enriched categories and 2-categories, respectively.

Equiv is the category of equivalence relations. Its objects are (A,≡A) comprising a set
A on which there is an equivalence relation ≡A. Its maps f : (A,≡A)→ (B,≡B) are total
functions f : A→ B which preserve equivalence.

We shall use some basic notions from enriched category theory [2]. We shall be concerned
with categories enriched in Equiv, called Equiv-enriched categories, in which the homsets
possess the structure of equivalence relations, respected by composition [3]. This is the
sense in which we say categories are enriched in (the category of) equivalence relations. We
similarly borrow the concept of an Equiv-enriched functor between Equiv-enriched categories
which preserve equivalence in acting on homsets. An Equiv-enriched adjunction is a usual
adjunction in which the natural bijection preserves and reflects equivalence.

Because an object in Equiv can be regarded as a (very simple) category, we can regard
Equiv-enriched categories as (very simple) 2-categories to which notions from 2-categories
apply [7].

A pseudo functor between Equiv-enriched categories is like a functor but the usual laws
only need hold up to equivalence. A pseudo adjunction (or biadjunction) between 2-categories
permits a weakening of the usual natural isomorphism between homsets, now also categories,
to a natural equivalence of categories. In the special case of a pseudo adjunction between
Equiv-enriched categories the equivalence of homset categories amounts to a pair of ≡-
preserving functions whose compositions are ≡-equivalent to the identity function. With
traditional adjunctions by specifying the action of one adjoint solely on objects we determine
it as a functor; with pseudo adjunctions we can only determine it as a pseudo functor—in
general a pseudo adjunction relates two pseudo functors. Pseudo adjunctions compose in
the expected way. An Equiv-enriched adjunction is a special case of a 2-adjunction between
2-categories and a very special case of pseudo adjunction. In this article there are many cases
in which we compose an Equiv-enriched adjunction with a pseudo adjunction to obtain a
new pseudo adjunction.

Similarly we can specialise the notions pseudo pullbacks and bipullbacks from 2-categories
to Equiv-enriched categories. Let f : A → C and g : B → C be two maps in an Equiv-
enriched category. A pseudo pullback of f and g is an object D and maps p : D → A and
q : D → B such that f ◦p ≡ g ◦q which satisfy the further property that for any D′ and maps
p′ : D′ → A and q′ : D′ → B such that f ◦ p′ ≡ g ◦ q′, there is a unique map h : D′ → D

such that p′ = p ◦ h and q′ = q ◦ h. There is an obvious weakening of pseudo pullbacks to
the situation in which the uniqueness is replaced by uniqueness up to ≡ and the equalities
by ≡—these are simple special cases of bilimits called bipullbacks.

Right adjoints in a 2-adjunction preserve pseudo pullbacks whereas right adjoints in a
pseudo adjunction are only assured to preserve bipullbacks.

B The proof of Theorem 2

Here we fill in some details of the proof of Theorem 2 providing a pseudo right adjoint to the
functor ges : E≡ → G: the functor ges quotients an ese down to a general event structure; its
right adjoint er constructs an ese out of the prime extremal realisations of a general event

M. de Visme and G. Winskel 41:17

structure. Note the adjunction is not an equivalence: whereas it does cut down to a reflection
from G to E≡, where the counit is an isomorphism, the unit is not an isomorphism.

The right adjoint er : G → E≡ is defined on objects as follows. Let A be a general event
structure. Define er(A) = (P,ConP ,≤P ,≡P) where

P consists of a choice from within each isomorphism class of the prime extremals p of
C∞(A) —we write topA(p) for the image of the top element in A;
Causal dependency ≤P is � on P ;
X ∈ ConP iff X ⊆fin P and topA[X] ∈ C∞(A) —the set [X] is the ≤P -downwards closure
of X;
p1 ≡P p2 iff p1, p2 ∈ P and topA(p1) = topA(p2).

I Proposition 6. The configurations of P , ordered by inclusion, are order-isomorphic to
the order of extremal realisations of C∞(A): an extremal realisation ρ corresponds, up to
isomorphism, to the configuration {p ∈ P | p � ρ} of P ; conversely, a configuration x of P
corresponds to an extremal realisation topA : x→ A with carrier (x,�), the restriction of
the order of P to x.

Proof. See the proof of Proposition 16.17 of the ECSYM Notes [12]. J

Theorem 1 of the main text, asserting the prime algebraicity of the order of extremal
realisations, follows as an immediate corollary of the above proposition.

In defining the right adjoint we rely on the fact that any realisation of a family of
configurations can be coarsened to an extremal realisation.

I Lemma 7. For any realisation ρ there is an extremal realisation ρ′ with ρ �f2 ρ′.

Proof. See the proof of Lemma 16.4 of the ECSYM Notes [12]. J

I Theorem 2. Let A ∈ G. For all f : ges(Q) → A in G, there is a map h : Q → er(A) in
E≡ such that f = εA ◦ ges(h) i.e. so the diagram below commutes:

A ges(er(A))εAoo

ges(Q)
f

dd

ges(h)

OO

Moreover, if h′ : Q→ er(A) is a map in E≡ such that f = εA ◦ ges(h′), then h′ ≡ h.

Proof. The component of the counit of the adjunction at A is given by the function εA
taking {p}≡ to topA(p); it determines a map εA : ges(er(A))→ A of general event structures.

Let Q = (Q,ConQ,≤Q,≡Q) be an ese and f : ges(Q)→ A a map in G. We shall define a
map h : Q → er(A) s.t. f = εA ◦ ges(h). Notice that εA ◦ ges(h)({q}≡Q

) = topA(h(q)), so
the requirement that f = εA ◦ ges(h) amounts to

f({q}≡Q
) = topA(h(q)) , for all q ∈ Q.

We define the map h : Q→ er(A) by induction on the depth of Q. The depth of an event
in an event structure is the length of a longest ≤-chain up to it—so an initial event has depth
1. We take the depth of an event structure to be the maximum depth of its events. (Because
of our reliance on Lemma 7, the proof of which uses the axiom of choice, we using the axiom
of choice implicitly.)

CSL 2017

41:18 Strategies with Parallel Causes

Assume inductively that h(n) defines a map from Q(n) to er(A) where Q(n) is the
restriction of Q to depth below or equal to n such that f (n) the restriction of f to Q(n)

satisfies f (n) = εA ◦ ges(h(n)). (In particular, Q(0) is the empty ese and h(0) the empty
function.) Then, by Proposition 6, any configuration x of Q(n) determines an extremal
realisation ρx : h(n)x→ A with carrier (h(n)x,�).

Suppose q ∈ Q has depth n + 1. If f(q) is undefined take h(n+1)(q) to be undefined.
Otherwise, note there is an extremal realisation ρ[q) with carrier (h[q),�). Extend ρ[q) to a
realisation ρ>[q) with carrier that of ρ[q) with a new top element > adjoined, and make ρ>[q)
extend the function ρ[q) by taking > to f(q). By Lemma 7, there is an extremal realisation
ρ such that ρ>[q) �2 ρ. Because ρ[q) is extremal ρ[q) �1 ρ, so ρ only extends the order of ρ[q)
with extra dependencies of >. (For notational simplicity we identify the carrier of ρ with
the set h[q) ∪ {>}.) Project ρ to the extremal with top >. Define this to be the value of
h(n+1)(q). In this way, we extend h(n) to a partial function h(n+1) : Q(n+1) → er(A) such
that f (n+1) = εA ◦ ges(h(n+1)). In showing that h(n+1) is a map we rely on f being a map.

Defining h =
⋃
n∈ω h

(n) we obtain a map h : Q→ er(A) such that f = εA ◦ ges(h).
Suppose h′ : Q→ er(A) is a map sush that f = εA ◦ ges(h′). Then, for any q ∈ Q,

topA(h′(q)) = εA ◦ ges(h′)({q}≡Q
) = f({q}≡Q

) = εA ◦ ges(h)({q}≡Q
) = topA(h(q)) ,

so h′(q) ≡ h(q) in er(A). Thus h′ ≡ h. J

A configuration x ∈ F , of a family of configurations F , is irreducible iff there is a
necessarily unique e ∈ x such that ∀y ∈ F , e ∈ y ⊆ x implies y = x. Irreducibles coincide
with complete join irreducibles w.r.t. the order of inclusion. It is tempting to think of
irreducibles as representing minimal complete enablings. But, as sets, irreducibles both (1)
lack sufficient structure: in the formulation we are led to of minimal complete enabling as
prime extremal realisations, several prime realisations can have the same irreducible as their
underlying set; and (2) are not general enough: there are prime realisations whose underlying
set is not an irreducible.

We provide examples illustrating the nature of extremal realisations. In the examples
it is convenient to describe families of configurations by general event structures, taking
advantage of the economic representation they provide.

I Example 8. This and the following example shows that prime extremal realisations do
not correspond to irreducible configurations. Here, we show a general event structure E0
with irreducible configuration {a, b, c, d} and two prime extremals E1 and E2 with tops d1
and d2 which both have the same irreducible configuration {a, b, c, d} as their image. The
lettering indicates the functions associated with the realisations, e.g. events d1 and d2 in the
partial orders map to d in the general event structure.

E0 E1 E2 F0 F1

d

c

AND
_LLR

OR

a

J??I

5 66?

b

tUU_

	__h d1

c1

_LLR

a

_LLR

b

qTT]
d2

c2

_LLR

a

MAAJ

b

_LLR

d

c

AND
_LLR

OR

a

J??I

5 66?

b

tUU_

	__h d1

c1

_LLR

a

_LLR

b

qTT]

I Example 9. On the other hand there are prime extremal realisations of which the image
is not an irreducible configuration. We consider the general event structure F0. The prime
extremal F1 describes a situation where d is enabled by b and c is enabled by a. It has image
the configuration {a, b, c, d} which is not irreducible, being the union of the two configurations
{a} and {b, c, d}.

M. de Visme and G. Winskel 41:19

I Example 10. It is possible to have extremal realisations in which an event depends on
an event of the family having been enabled in two distinct ways, as in the following prime
extremal realisation, on the left.

f f

AND

d

MAAJ

e

qTT]

d

E<<G

e

yWWb

c1

_LLR

c2

_LLR

c

< 99C�[[f

OR

a

_LLR

b

_LLR

a

C;;F

b

zXXb

The extremal describes the event f being enabled by d and e where they are in turn enabled
by different ways of enabling c. Such phenomena are disallowed in edc’s.

C On (pseudo) pullbacks of ese’s

We show that the enriched category of ese’s E≡ does not always have pullbacks and pseudo
pullbacks of maps f : A→ C and g : B → C, the reason why we use the subcategory EDC,
which does, as a foundation on which to develop strategies with parallel causes. It suffices to
exhibit the lack of pullbacks when C is an (ese of an) event structure as then pullbacks and
pseudo pullbacks coincide. Take A, B, C as below, with the obvious maps f : A→ C and
g : B → C (given by the lettering). In fact, A and B are edc’s.

ese A ese B ese C edc P
a1 a2

b1 b2

c1

_LLR

8 77A

c2

_LLR

�]]g

d

_LLR

e

_LLR

a

b

_LLR

c

d e

a

b

c

d e

a1 a2

b1

_LLR

b2

_LLR

c1

_LLR

c2

_LLR

d

_LLR

e

_LLR

The pullback in edc’s EDC does exist and is given by P with the obvious projection maps.
However this is not a pullback in E≡. Consider the ese D with the obvious total maps to A
and B; they form a commuting square with f and g. This cannot factor through P : event
b2 has to be mapped to b2 in P , but then a1 cannot be mapped to a1 (it wouldn’t yield a
map) nor to a2 (it would violate commutation required of a pullback).

ese D ese bP ese E
a1

b1 b2

�[[e

c1

8 77A

_LLR

c2

_LLR

d

_LLR

e

_LLR

a1 a2′ a1′ a2

b1

�[[f _LLR

b2

_LLR ; 88C

c1

_LLR

LAAI

c2

_LLR

rUU]

d

_LLR

e

_LLR

a1

b1

_LLR

b2

�[[e

c1

_LLR

c2

_LLR

d

_LLR

e

_LLR

CSL 2017

41:20 Strategies with Parallel Causes

There is a bipullback bP got by applying the pseudo functor er to the pullback in ef’s.
But this is not a pullback because in the ese E the required mediating map is not unique in
that a1 can go to either a1 or a1′. In fact, there is no pullback of f and g. To show this we
use the additional ese F.

Suppose Q with projection maps to A and B were a pullback of f and g
in E≡. Consider the three ese’s D, E and F with their obvious maps to A
and B; in each case they form a commuting square with f and g. There
are three unique maps hD : D → Q, hE : E → Q, and hF : F → Q

such that the corresponding pullback diagrams commute. We remark
that there are also obvious maps kD : E → D and kF : E → F (given
by the lettering) which commute with the maps to the components
A and B. By uniqueness, we have hD ◦ kD = hE = hF ◦ kF , so we
have hD(a1) = hF (a1). From the definition of the maps, the event
hD(a1) = hF (a1) has at most one ≤-predecessor in Q which is sent to
b in C (as D only has one). Because of the projection to B, it has at
least one (as B has one). So the event hD(a1) = hF (a1) has exactly
one predecessor which is sent to b. From the definition of maps, this
event is hD(b2) which equals hF (b1). But hD(b2) cannot equal hF (b1)
as they go to two different events of A —a contradiction.

ese F

a1

b1

_LLR

b2

c1

_LLR

c2

_LLR

d

_LLR

e

_LLR

Hence there can be no pullback of f and g in E≡. (By adding intermediary events, we would
encounter essentially the same example in the composition, before hiding, of strategies if
they were to be developed within the broader category of ese’s.)

D The bicategory of probabilistic edc strategies

We obtain a bicategory of probabilistic edc strategies in which objects are race-free games.
Maps are probabilistic edc strategies, composition that of strategies and identities are given
by copycat strategies, which for race-free games are deterministic, so permit configuration-
valuations which are constantly 1.

The 2-cells of the bicategory require consideration. Whereas we can always “push forward”
a probability measure from the domain to the codomain of a measurable function this is not
true generally for configuration-valuations involving Opponent moves. However:

I Theorem 11. Let f : σ ⇒ σ′ be a rigid 2-cell between edc strategies σ : S → A and
σ′ : S′ → A. Let v be a configuration-valuation on S. Defining, for y ∈ C(S′),

(fv)(y) =def sup
X

∑
∅6=Z⊆X &Z↑

(−1)|Z|+1v(
⋃
Z)

as X ranges over finite subsets of {x ∈ C(S) | y = fx}, yields a configuration-valuation fv
of S′ —the push-forward of v.

A 2-cell from σ, v to σ′, v′ is a rigid 2-cell f : σ ⇒ σ′ of edc strategies for which the
push-forward fv is pointwise less than or equal to v′, i.e.

(fv)(x′) ≤ v′(x′) ,

for all configurations x′ ∈ C(S′). Vertical composition of 2-cells is their usual composition.
Horizontal composition is given by composition �, which extends to a functor on 2-cells via
the universality of pullback and the factorisation property of hiding.

	Introduction
	Event structures
	Prime event structures
	General event structures
	On relating prime and general event structures

	Problems with general event structures
	Probability and parallel causes
	Hiding

	Adding disjunctive causes
	Unfolding general event structures to ese's
	Causal realisations
	A pseudo adjunction

	EDC'S
	Equivalence families
	Edc's defined
	Coreflective subcategories of edc's

	Probabilistic strategies based on edc's
	Equiv-enriched categories
	The proof of Theorem 2
	On (pseudo) pullbacks of ese's
	The bicategory of probabilistic edc strategies

