
Composing Strand Spaces

Federico Crazzolara ? and Glynn Winskel

Computer Laboratory University of Cambridge
{fc232,gw104}@cl.cam.ac.uk

Abstract. The strand space model for the analysis of security protocols
is known to have some limitations in the patterns of nondeterminism it
allows and in the ways in which strand spaces can be composed. Its suc-
cessful application to a broad range of security protocols may therefore
seem surprising. This paper gives a formal explanation of the wide ap-
plicability of strand spaces. We start with an extension of strand spaces
which permits several operations to be defined in a compositional way,
forming a process language for building up strand spaces. We then show,
under reasonable conditions how to reduce the extended strand spaces to
ones of the traditional kind. For security protocols we are mainly inter-
ested in their safety properties. This suggests a strand-space equivalence:
two strand spaces are equivalent if and only if they have essentially the
same sets of bundles. However this equivalence is not a congruence with
respect to the strand-space operations. By extending the notion of bundle
we show how to define the strand-space operations directly on “bundle
spaces”. This leads to a characterisation of the largest congruence within
the strand-space equivalence. Finally, we relate strand spaces to event
structures, a well known model for concurrency.

1 Introduction

Security protocols describe a way of exchanging data over an untrusted medium
so that, for example, data is not leaked and authentication between the partici-
pants in the protocol is guaranteed. The last few years have seen the emergence
of successful intensional, event-based, approaches to reasoning about security
protocols. The methods are concerned with reasoning about the events that a
security protocol can perform, and make use of a causal dependency that exists
between events. The method of strand spaces [9–11] has been designed to sup-
port such an event-based style of reasoning and has successfully been applied to
a broad number of security protocols.

Strand spaces don’t compose readily however, not using traditional process
operations at least. Their form doesn’t allow prefixing by a single event. Non-
determinism only arises through the choice as to where input comes from, and
there is not a recognisable nondeterministic sum of strand spaces. Even an easy
definition of parallel composition by juxtaposition is thwarted if “unique origi-
nation” is handled as a global condition on the entire strand space. That strand

? BRICS Centre of the Danish National Research Foundation.

spaces are able to tackle a broad class of security protocols may therefore seem
surprising. A reason for the adequacy of strand spaces lies in the fact that they
can sidestep conflict if there are enough replicated strands available, which is
the case for a broad range of security protocols.

This paper has four main objectives. Firstly it extends the strand space for-
malism to allow several operations on strand spaces to be defined. The operations
form a strand-space language. Secondly the wide applicability of strand spaces
to numerous security protocols and properties is backed up formally. The paper
documents part of the work done in proving the relation between nets and strand
spaces we reported in [3]. Thirdly we address another issue of compositionality.
We consider languages of strand-space bundles as models of process behaviour
and show how to compose such languages so that they may be used directly in
giving the semantics of security protocols. Strand spaces that have substantially
the same bundles can be regarded as equivalent and are congruent if they ex-
hibit substantially the same open bundles. This congruence lays the ground for
equational reasoning between strand spaces. Finally we show how strand spaces
relate to event structures.

The results in this paper express the adequacy of strand spaces and relate
strand spaces to event structures only with respect to the languages, i.e., sets
of finite behaviours they generate. This is not unduly restrictive, however, as in
security protocols we are mainly interested in safety properties, properties which
stand or fall according to whether they hold for all finite behaviours.

2 Strand spaces

A strand space [11] consists of 〈si〉i∈I , an indexed set of strands. An individual
strand si, where i ∈ I , is a finite sequence of output or input events carrying
output or input actions of the kind outM or inM respectively with M a message
built up by encryption and pairing from a set of values (here names) and keys. In
the rest of this paper we use n, n0, ni to indicate names, A, B, A0, B0 to indicate
special names which are agent identifiers, and k to stand for a cryptographic
key. A name whose first appearance in a strand is on an output message is said
to be originating on that strand. A name is said to be uniquely originating on a
strand space if it is originating on only one of its strands.

A strand space has an associated graph whose nodes identify an event of
a strand by strand index and position of the event in that strand. Edges are
between output and input events concerning the same message and between
consecutive events on a same strand. Bundles model protocol runs. A bundle
selects those events of a strand space that occur in a run of the protocol and
shows the causal dependencies among them which determine the partial order
of the events in the run. A bundle is a finite and acyclic subgraph of the strand
space graph. Each event in the bundle requires all events that precede it on the
same strand (together with the edges that denote the strand precedence). Each
input event in the bundle has exactly one incoming edge from an output event.

As an example consider a simplified version of the ISO symmetric key two-
pass unilateral authentication protocol (see [2]):

A→ B : n
B → A : {n, A}k .

Agents can engage in a protocol exchange under two different roles, the initiator,
here A and the responder, here B. In a protocol round the initiator A chooses
a fresh name n and sends it to the responder B. After getting the value, B
encrypts it together with the initiator’s identifier using a common shared key k.
After getting the answer to her challenge, A can decrypt using the shared key
and check whether the value sent matches the value received. In that case A can
conclude that B is in fact operational.

out n0
//

��

in n0

��
in {n0, A0}k out {n0, A0}k

oo

. . . out ni
//

��

in ni

��
in {ni, A0}k out {ni, A0}k

oo

. . .

Fig. 1. ISO protocol

The strand-space graph in Figure 1 describes the simple case of only two
agents, A0 and B0, acting as initiator and responder respectively. For simplicity
the graph has been drawn using the actions labelling the events in place of the
events themselves. In this simple case if the strand space had a finite number of
strands it would itself form a bundle. In the strand space in Figure 1 all names ni

are uniquely originating – there is only one strand on which the first appearance
of ni is in an output action.

Unique origination intends to describe a name as fresh, perhaps chosen at
random, and under the assumptions of Dolev and Yao [4], unguessable. For a
construction of parallel composition of strand spaces it is therefore reasonable
to require that names uniquely originating on components remain so on the
composed strand space. Simple juxtaposition of strand spaces does not ensure
this. For example, a strand space for the ISO protocol which allows both agents
A0 and B0 to engage in the protocol in any of the two possible roles – in Figure 2
the strand space formed out of two copies of the one in Figure 1. Figure 3 shows
a possible bundle on such strand space. It describes a protocol run with two
complete rounds. One in which A0 is initiator and B0 responder, and another
where the roles are inverted, though the name n0 is no longer uniquely originating
on that strand space. A name’s freshness is with respect to a run of a protocol
rather than to the whole set of possible executions. A notion of unique origination
“in the bundle” seems more appropriate.

Nondeterminism in strand spaces arises only through the choice in a bundle of
where input comes from. There is no way of modelling situations in which bundles
may be taken either only over one strand space or over another. Juxtaposing

out n0
//

��

##GGGGGGGGGGGGG
in n0

��
in {n0, A0}k out {n0, A0}k

oo

out n0
//

;;wwwwwwwwwwwww

��

in n0

��
in {n0, B0}k out {n0, B0}k

oo

. . . out ni
//

��

##GGGGGGGGGGGGG
in ni

��
in {ni, A0}k out {ni, A0}k

oo

out ni
//

;;wwwwwwwwwwwww

��

in ni

��
in {ni, B0}k out {ni, B0}k

oo

Fig. 2. ISO protocol - symmetric roles

out n0

��

##GGGGGGGGGGGGG
// in n0

��
in {n0, A0}k out {n0, A0}k

oo

out n0

��

in n0

��
in {n0, B0}k out {n0, B0}k

oo

Fig. 3. A bundle for ISO symmetric roles

strand spaces as we did for example in Figure 2 allows bundles to include events
of both components as is the case for the bundle in Figure 3.

One seems to encounter even more difficulties in the attempt to define a
construction of prefixing a strand space with an action. Strands can’t branch
to parallel sub-strands and prefixing each strand with an action would cause as
many repetitions of that action as there are strands participating in a bundle.
One could add to a strand space a strand containing only the action meant to
prefix the strand space. Actions of the “prefixed” strands, however, would not
casually depend on that action.

3 Strand spaces with conflict

We extend the definition of strand space, introducing a notion of conflict, which
we adapt from event structures [14]. We differ from the original definition of
strand spaces in the treatment of unique origination which is taken care of in
the definition of bundle rather than being a condition on the entire strand space
– the “parametric strand spaces” of [1] achieve a similar effect as to unique
origination and are related.

The strands of a strand space are sequences of output and input actions,

Act = {out new n M | M msg., n distinct names} ∪ {in M | M msg.} .

In out new n M , the list n contains distinct names that are intended to be fresh
(“uniquely originating”) at the event.

Definition 1. A strand space with conflict (〈si〉i∈I , #) consists of:

(i) 〈si〉i∈I an indexed set of strands with indices I . An individual stand si, where
i ∈ I , is a finite sequence of output or input actions in Act.

(ii) # ⊆ I × I a symmetric, irreflexive binary conflict relation on strand indices.

Strand spaces with an empty conflict relation correspond to those of the
standard definition of [11]. We denote by ε the empty strand space with no
strands and with an empty conflict relation. 1 The empty strand space is different
to a strand space (〈λ〉i∈I , #) where each strand is the empty sequence of actions
λ. We write |s| for the length of the sequence s.

For a strand space (〈si〉i∈I , #) define the strand-space graph (E,⇒,→, act)
associated with it as usual (see [11]). It is the graph with nodes (events)

E = {(i, l) | i ∈ I , 1 ≤ l ≤ |si|} ,

actions labelling events act(i, h) = si[h] and two edge relations. The first ex-
presses precedence among events on the same strand,

(i, k)⇒ (i, k + 1) iff (i, k), (i, k + 1) ∈ E ,

and the second expresses all possible communication,

(i, l)→ (j, h) iff act(i, l) = out new n M and act(j, h) = in M .

An event is an input event if its action is an input action and an event is an
output event if its action is an output. The names names(e) of an event e are all
the names appearing on the action associated with e – the ones that are marked
as “new”, denoted by new(e), together with those in the message of the action.

Bundles of a strand space describe runs in a computation.

Definition 2. A bundle b of a strand space with conflict # is a finite subgraph
(Eb,⇒b,→b, actb) of the strand-space graph (E,⇒,→, act) such that:

(i) if e⇒ e′ and e′ ∈ Eb then e⇒b e′, (control precedence)
(ii) if e ∈ Eb and actb(e) = in M then there exists a unique e′ ∈ Eb such that

e′ →b e, (output-input precedence)
(iii) if e, e′ ∈ Eb such that actb(e) = out new n M and n ∈ n ∩ names(e′) then

either e ⇒∗
b e′ or there exists an input event e′′ such that n ∈ names(e′′)

and e′′ ⇒∗
b e′, (freshness)

(iv) if (i, h), (j, k) ∈ Eb then ¬(i # j), (conflict freeness)
(v) the relation ⇒b ∪ →b is acyclic. (acyclicity)

The empty graph, also denoted by λ, is a bundle. It will be clear from the context
whether λ stands for the empty bundle or whether it denotes the empty sequence
of actions. The empty strand space does not have any bundles.

Points (i), (ii), (v) of the definition of bundle for a strand space with conflict
match the standard definition of [11]. Point (iii) ensures freshness of “new” values
in a bundle. Point (iv) doesn’t allow events from conflicting strands to appear
in a bundle. Write ≤b for the reflexive and transitive closure of ⇒b ∪ →b.

1 We won’t make much use of this particular strand space; it is however the identity
for the operations of parallel composition and nondeterministic sum of strand spaces.

Proposition 1. If b is a bundle then ≤b is a partial order on Eb.

The relation ≤b determines the partial order on events occurring in a com-
putation described by b. Names introduced as “new” don’t appear on events
preceding their introduction and are never introduced as “new” more than once.

Proposition 2. Let b be a bundle of a strand space and let e, e′ ∈ Eb such that
actb(e) = out new n M . If n ∈ n ∩ names(e′) then e ≤b e′ and if actb(e

′) =
out new mM ′ then n 6∈m.

We regard two strand spaces as substantially the same if they differ only on
the indices of their strands and so that one strand space can be obtained from
the other by a simple “re-indexing” operation. 2

Definition 3. Given (〈si〉i∈I , #) and (〈tj〉j∈J , #′), two strand spaces, write

(〈si〉i∈I , #) ∼= (〈tj〉j∈J , #′)

if there exists a bijection π : I → J such that si = tπ(i) for all i ∈ I and i # j iff
π(i) #′ π(j) for all i, j ∈ I .

The relation ∼= is an equivalence. A bijection π that establishes it is called a
re-indexing of strand spaces. Let (〈si〉i∈I , #) be a strand space, J be a set,
and π : I → J be a bijection. Define the strand space (〈tj〉j∈J , π(#)) where
tj = sπ−1(j) for all j ∈ J and j π(#) j′ iff π−1(j) # π−1(j′) for all j, j′ ∈ J . The
relation π(#) is irreflexive and symmetric and (〈sπ(i)〉i∈I , π(#)) ∼= (〈si〉i∈I , #).

Proposition 3. Let (〈si〉i∈I , #) and (〈tj〉j∈J , #′) be two strand spaces such
that (〈si〉i∈I , #) ∼= (〈tj〉j∈J , #′) for a bijection π : I → J . If b is a bundle
of (〈si〉i∈I , #) then π(b) obtained from b by changing all strand indices according
to π is a bundle of (〈tj〉j∈J , #′).

4 Constructions on strand spaces

Prefixing a strand space with an action is complicated by the strand-space for-
malism not permitting strands to branch. Only if the strand space to be prefixed
is such that every two different strands are in conflict can each strand be prefixed
with the action. Then the conflict relation disallows repetitions of the prefixing
action in bundles. Given α ∈ Act and a strand space (〈si〉i∈I , #) such that for
all i, j ∈ I if i 6= j then i#j, define

α.(〈si〉i∈I , #)
def
= (〈αsi〉i∈I , #) .

We understand the special case of prefixing the empty strand space with an
action, to yield the empty strand space α.ε = ε. When prefixing a strand space
consisting of only empty strands one obtains α.(〈λ〉i∈I , #) = (〈α〉i∈I , #).

2 If the indices carry structure (some might involve agent names for example) one
might refine the permissible re-indexings.

The parallel composition of strand spaces is the disjoint union of their sets of
strands and conflict relations. Disjoint union is achieved by tagging each space
with a different index. Given a collection of strand spaces (〈sk

i 〉i∈Ik
, #k) indexed

by k in a set K, define

||k∈K(〈sk
i 〉i∈Ik

, #k)
def
= (〈sh〉h∈H , #)

where H =
∑

k∈K Ik, s(k,i) = sk
i , and where (k, i) # (k′, i′) iff k = k′ and i #k i′.

Two strands are in conflict only if they belong to the same component of the
parallel composition and are in conflict within that component. In particular if
K is the empty set then the parallel composition yields ε.

As a special case of parallel composition of strand spaces consider the strand
space obtained by composing infinitely many identical strand spaces. Abbreviate

! (〈si〉i∈I , #)
def
= ||k∈ω(〈si〉i∈I , #) .

One observes that ! (〈si〉i∈I , #) = (〈s(n,i)〉(n,i)∈ω×I , !#) where !# is the binary
relation over ω × I such that (n, i) !# (m, i′) iff n = m and i # i′.

The nondeterministic sum of strand spaces constructs the same indexed set
of strands as the operation of parallel composition. The conflict relation of a
summed space however, in addition to the existing conflicts, imposes conflict be-
tween every two strands that belong to different components. Given a collection
of strand spaces (〈sk

i 〉i∈Ik
, #k) indexed by k in a set K, define

∑

k∈K

Sk
def
= (〈sh〉h∈H , #)

where (k, i) # (k′, i′) iff either k 6= k′ or (k = k′ and i #k i′). Two strands are
in conflict only if they belong to different components or are already in conflict
within a component. The relation # is irreflexive and symmetric. The indexing
set H and the strands remain the same as for parallel composition.

5 A process language for strand spaces

The language S of strand spaces has the following grammar:

S ::= L |
∑

j∈J

Sj | ||j∈JSj

where L ∈ L, the language of “sequential strand spaces” is given by

L ::= 〈λ〉 | α.L |
∑

j∈J

Lj .

The strand space 〈λ〉 has only one strand which is the empty sequence of actions
and has empty conflict. 3 The bundles of strand spaces in L form linearly ordered
sets of events, and therefore can be thought of as runs of a sequential process.

3 Let the index of the empty strand in 〈λ〉 be a distinguished index ∗.

A strand-space term of S is a “par” process – parallel composition is only
at the top level and so the term consists of a parallel composition and sum of
sequential processes. The “!-par” processes are those terms of S of the form !S.

6 Open bundles

The usual semantics of a strand space is expressed in terms of its set of bundles.
By broadening to open bundles, the open-bundle space can be built composition-
ally. An open bundle has the structure of a bundle where, however, input events
need not necessarily be related to output events. An open bundle is “open” to
the environment for communication on input events that are not linked to output
events.

Definition 4. An open bundle b of a strand space with conflict # is a finite
subgraph (Eb,⇒b,→b, actb) of the strand-space graph (E,⇒,→, act) such that:

(i) if e⇒G e′ and e′ ∈ Eb then e⇒b e′, (control precedence)
(ii) if e′ →b e and e′′ →b e then e′ = e′′, (output-input correspondence)
(iii) if e, e′ ∈ Eb s.t. act(e) = out newnM and n ∈ n ∩ names(e′) then either

e ⇒∗
b e′ or there exists an input event e′′ ∈ Eb such that n ∈ names(e′′),

and e′′ ⇒∗
b e′, (freshness)

(iv) if (i, h), (j, k) ∈ Eb then ¬(i # j), (conflict freeness)
(v) the relation ⇒b ∪ →b ∪ ↪→ is acyclic, where e ↪→ e′ if e 6= e′ and if

new(e) ∩ names(e′) 6= ∅. (acyclicity)

In an open bundle “freshness” dependencies need not be caught through
⇒b and →b. Point (v) takes account of additional freshness dependencies and
excludes graphs like

in n

��

in m

��
out new m m

44iiiiiiiiii

out new n n .

Our constructions for open bundles take us through the intermediary of con-
trol graphs (which are similar to pomsets [7] and message sequence charts [5]).

A control graph, with indices I , is a graph (E,→, act) where E ⊆ I× IN such
that if (i, h) ∈ E and h > 1 then (i, h−1) ∈ E (when we write (i, h−1)⇒ (i, h)),
and where→⊆ E×E, and act : E → Act. Denote by ind(g) the set of indices of
a control graph g. Strand-space graphs, bundles and open bundles are examples
of control graphs. We say a control graph is an open bundle when it is finite and
satisfies axioms (ii), (iii) and (v) above.

Prefixing extends a control graph with a new initial control node (i, 1) where
i is an index. Every event in the original graph that has index i is shifted one
position later in the control structure while keeping its casual dependencies. For
i, j indices and h ∈ IN , define (j, h)/i = (j, h + 1) if j = i and (j, h)/i = (j, h)
otherwise. For an index i, α ∈ Act and g a control graph, define the control
graph

(α, i) . g = (E,→, act)

where E = {(i, 1)} ∪ {e/i | e ∈ Eg} and e/i → e′/i whenever e →g e′. Take
act(i, 1) = α and act(e/i) = actg(e) for every e ∈ Eg .

Control graphs can be composed by tagging the number of components to
keep them disjoint and juxtaposing them. For i, j indices and h ∈ w, define
j : (i, h) = ((j, i), h). For a control graph g and index j define j : g = (E,→, act)
where E = {j : e | e ∈ Eg} with j : e → j : e′ whenever e →g e′ and actions
act(j : e) = actg(e).

The definition of open bundle ensures that b extends to a bundle over a
(bigger) strand space. Let g, g′ be control graphs. Define g � g′ iff Eg = Eg′ ,
→g⊆→g′ , and actg = actg′ . Write g↑= {b | g � b and b an open bundle}.

Lemma 1. Let b be an open bundle of a strand space S. There exists a strand
space T and an open bundle t of T such that among the open bundles in (t||b)↑
there is a bundle of T ||S.

The language of open bundles of a strand-space term is defined as follows:

Definition 5. Let L ∈ L and S ∈ S. Define

O(〈λ〉) = {λ}

O(α.L) = {λ} ∪ {(α, i) . λ | i ∈ ind(L)} ∪
⋃
{(α, i) . b ↑ | b ∈ O(L) \ {λ} & i ∈ ind(b)}

O(
∑

j∈J

Sj) = {j : b | b ∈ O(Sj)}

O(||j∈JSj) =
⋃
{(

⋃

i∈I

i : bi) ↑ | I ⊆ J & I finite & ∀i ∈ I . bi ∈ O(Si)} .

Theorem 1. If S is a strand-space term in S then the elements of O(S) are
exactly the open bundles of the strand space denoted by S.

7 Strand space equivalence

We have seen an equivalence relation that relates two strand spaces if, via re-
indexing, they become the same space. That relation of isomorphism, as ex-
pected, is respected by the operations on strand-spaces. When security proper-
ties are expressed as safety properties on the language of bundles of a strand
space one doesn’t, however, want to distinguish between strand spaces that have
isomorphic bundle languages.

Let b, b′ be two bundles. Write b ∼= b′ iff there exists a bijection φ : Eb → Eb′

such that

(i) if e→b e′ then φ(e)→b′ φ(e′),
(ii) if e⇒b e′ then φ(e)⇒b′ φ(e′),
(iii) actb(e) = actb′(φ(e)).

Definition 6. Let S, S′ ∈ S. Define ≈ the symmetric relation such that S ≈ S ′

iff for every bundle b of S there exists a bundle b′ of S′ such that b ∼= b′.

Proposition 4. The relation ≈ is an equivalence relation.

The equivalence relation ≈ is not a congruence. For example, the strand-
space terms in M.ε and in N.ε where N and M are two different messages are
in the relation ≈ – they both have only one bundle, λ. A distinguishing context
exists:

in M.ε || out M.ε 6≈ in N.ε || out M.ε .

The parallel composition on the left hand side has the bundle in M ←− out M ,
that on the right only λ.

A context for a strand-space term in the language S is defined as follows:

C ::= [] | α.C | ||i∈ITi | Σi∈ITi

where for each context of the form ||i∈ITi or Σi∈ITi there is exactly one i ∈ I such
that Ti is a context C and Tj ∈ S for all j ∈ I\{i}. The context [] is a placeholder
for a strand-space term. Write C[S] for the term obtained by replacing the
strand-space term S for [] in context C in the obvious way. An equivalence
relation on strand-space terms is a congruence if it respects all contexts.

Definition 7. Let S, S′ ∈ S. Define ≈O the smallest symmetric relation such
that S ≈O S′ if for every open bundle b of S there exists an open bundle b′ of
S′ such that b ∼= b′.

Theorem 2. The relation ≈O is the largest congruence relation inside ≈.

8 Eliminating conflict

If one doesn’t restrict the number of rounds of a protocol an agent can do one
can hope to model the protocol with a strand space of the form ! (〈si〉i∈I , #). In
that case a simpler model, obtained by dropping the conflict relation, exhibits
substantially the same behaviour as the more complex strand space with conflict.

Lemma 2. Given I a set of indices, a finite set A ⊆ ω × I, and # a conflict
relation over I then there exists a bijection π : ω × I → ω × I where for all
(n, i) ∈ ω × I there exists m ∈ ω such that π(n, i) = (m, i) and ¬(π(u) !# π(v))
for all u, v ∈ A.

The previous lemma and the observation that two different copies of the same
strand space have the same strands at corresponding positions, yield:

Theorem 3. Consider strand spaces ! (〈si〉i∈I , ∅) and ! (〈si〉i∈I , #). Let b be a
bundle of ! (〈si〉i∈I , ∅). There exists a strand space S such that b is a bundle of
S and S ∼= ! (〈si〉i∈I , #).

The behaviour of a replicated strand space with conflict corresponds, modulo
re-indexing, to that of the strand space one obtains by dropping the conflict
relation.

Corollary 1. Consider strand spaces !(〈si〉i∈I , ∅) and !(〈si〉i∈I , #) strand spaces.

(i) If b is bundle of ! (〈si〉i∈I , #) then b is bundle of ! (〈si〉i∈I , ∅).
(ii) If b is bundle of ! (〈si〉i∈I , ∅) then there exists a re-indexing π such that π(b)

is a bundle of ! (〈si〉i∈I , #).

9 Event structures from strand spaces

A bundle is a graph and therefore a set of edges and nodes. It turns out that
the bundles of a strand space ordered by inclusion correspond to the finite con-
figurations of a prime event structure. Prime event structures are a particularly
simple kind of event structure where the enabling of events can be expressed as
a global partial order of causal dependency [6, 12].

Definition 8. A prime event structure E = (E, #,≤) consists of a set E of
events partially ordered by the causal dependency relation ≤ and a binary, sym-
metric, irreflexive conflict relation # ⊆ E ×E, which satisfy

(i) {e′ | e′ ≤ e} is finite for all e ∈ E, and
(ii) if e # e′ ≤ e′′ then e # e′′ for all e, e′, e′′ ∈ E.

Definition 9. The configurations of (E, #,≤) consist of x ⊆ E such that

(i) ∀e, e′ ∈ x .¬(e # e′) and (conflict free)
(ii) ∀e, e′.e′ ≤ e ∈ x⇒ e′ ∈ x. (left closed)

Write F(E) for the set of configurations of an event structure and F fin(E) for
its finite configurations. Let B be the set of bundles of a strand space. A subset
X of B is compatible iff there exists b ∈ B such that b′ ⊆ b for all b′ ∈ X . We say
X is pairwise compatible if every subset of X with two elements is compatible.

Proposition 5. The partial order (B,⊆) satisfies the following properties:

(i) if X ⊆ B, X is finite and pairwise compatible, then
⋃

X ∈ B, (coherence)
(ii) if X ⊆ B and X is compatible, then

⋂
X ∈ B. (stability)

Given b ∈ B and e ∈ Eb define deeb
def
=

⋂
{b′ ∈ B | e ∈ b′ ∧ b′ ⊆ b}.

Proposition 6. For every b ∈ B and every e ∈ Eb the set deeb is a bundle in B.
For every finite and compatible X ⊆ B if deeb ⊆

⋃
X then ∃b′ ∈ X . deeb ⊆ b′.

We call a bundle deeb a prime. The primes form a basis for (B,⊆).

Proposition 7. Every b ∈ B can be obtained as b =
⋃
{p | p ⊆ b, p prime}.

Consider the structure Pr(B)
def
= (P, #,⊆) where P is the set of primes of B

and where p # p′ iff the two primes p and p′ are not compatible.

Theorem 4. The structure Pr(B) is a prime event structure.

Theorem 5. φ : (B,⊆) ∼= (FfinPr(B),⊆) such that φ(b) = {p | p ⊆ b, p prime}
is an isomorphism of partial orders with inverse map θ : F finPr(B) → B given
by θ(x) =

⋃
x.

Since Pr(B) is a prime event structure the partial order (FPr(B),⊆) is a
special Scott domain of information, a prime algebraic domain (see [6, 12–14]).
This domain, however, can include configurations which are infinite and therefore
are not bundles in the usual sense. The prime event structures Pr(B) underlie
the strand-space semantics Syverson gave to the BAN logic [8].

Concluding remarks. This paper exposes the central position within the the-
ory of strand spaces of the congruence ≈O, based on having the same open
bundles. It suggests building an equational theory around ≈O. Its usefulness in
supporting abstract specifications would seem to require an operation to hide
(or internalise) events in addition to those of Section 5.

References

1. I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Relating
strands and multiset rewriting for security protocol analysis. 13th CSFW, 2000.

2. J. Clark and J. Jacob. A survey of authentication protocol literature: V. 1.0. 1997.
3. F. Crazzolara and G. Winskel. Events in security protocols. 8th ACM CCS, 2001.
4. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions

on Information Theory, 2(29), 1983.
5. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Charts (MSC). 1997.
6. M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, Event structures and Domains.

Theoretical Computer Science, 13, 1981.
7. V. R. Pratt. Modelling concurrency with partial orders. International Journal of

Parallel Programming, 15(1):33–71, 1986.
8. P. Syverson. Towards a Strand Semantics for Authentication Logic. Electronic

Notes in Theoretical Computer Science, (20), 1999.
9. J. Thayer and J. Guttman. Authentication tests. IEEE Symposium on Security

and Privacy, 2000.
10. J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strand spaces. 11th CSFW,

1998.
11. J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Why is a security protocol

correct? IEEE Symposium on Security and Privacy, 1998.
12. G. Winskel. Events in computation. PhD thesis, University of Edinburgh, 1980.
13. G. Winskel. Event structures. Adv. Course on Petri nets, vol. 255 of LNCS, 1987.
14. G. Winskel. An introduction to event structures. Linear Time, Branching Time

and Partial Order in Logics and Models for Concurrency, vol. 354 of LNCS, 1988.

