
E V E N T S T R U C T U R E S

by
Glynn Winskel

University of Cambridge,
Computer Laboratory,
Corn Exchange Street,
Cambridge CB2 3QG.

A b s t r a c t

Event structures are a model of computational processes. They represent a process as a set
of e'cent occurrences with relations to express how events causally depend on others. This paper
introduces event structures, shows their relationship to Scott domains and Petri nets, and surveys
their role in denotational semantics, both for modelling languages like CCS and CSP and languages
with higher types.

I n t r o d u c t i o n .

Event structures are models of processes as events constrained by relations of consistency and
enabling. Their study in denotational semantics first arose as a biproduct in the pioneering work
of G.Kahn and G.Plotkin on some foundational questions in denotational semantics (See 1.5). The
concrete data structures of Kahn and Plotkin were later realised to be closely related to confusion-
free Petri nets (see part 3 and [NPW]) and this led to the more general definitions discussed here.
Since then they have been developed as a model in their own right and for certain applications (e.g.
see part 4) they are easier and less clumsy to use than Petri nets to which they are closely related
however. These notes are intended to present the mathematical theory of event structures, show how
they are related to Petri nets and Scott domains, and how they can be used to provide semantics to
programming languages for parallel processes as welt as languages with higher types.

A goal in working with event structures has been to develop a theory of concurrency which
incorporates both the insights of C.A.Petri and D.S.Scott. To some extent this has been achieved.
On the one hand, event structures consist of relations on events and bear a close relationship to Petri
nets. On the other, the configurations or states of an event structure naturally reflect information
about what events have occurred and determine a Scott domain of information. Because of this dual
nature event structures stand as an intermediary between the theories Petri nets and denotational
semantics, sharing ideas with both. As such they can serve a bridge between the two theories. For
example the insight of Scott that computable functions ifiduce continuous functions on domains
appears as a finiteness axiom on event structures (1.4), which can be readily interpreted for Petri
nets, while the restriction of confusion-freeness on a Petri net translates to concreteness on a domain
naturally associated with it (1.5, 3.3). There remains the curious mismatch noted in [NPW]: a
computation which is described by an event structure, or Petri net, gives rise to a whole domain
whereas usually in denotational semantics a computation denotes a single element of a domain.
This indicates, I believe, that we are still some way from the comprehensive theory of events in
computation envisaged in [W].

The notes are organised in four parts. The first introduces event structures and their relations
to families of configurations and certain kinds of domains which are viewed as different presentations
of essentially the same idea. It develops the framework in which event structures can be defined
recursively. Here the closeness of event structures to domains has another pay-off. It is easy to
adapt ideas from denotational semantics to provide a smooth framework for recursion. In parts
2 and 4 this work is extended to particular applications. In part 2, event structures are used to

326

provide a non- in t e r l eav ing model of languages like CCS and CSP. T h e approach is qui te a b s t r a c t
and ma thema t i ca l , using some ca tegory theory, bu t has the benefi t of es tab l i sh ing once and for
all, in a uni form way, a variety of semant ics , inter leaving and non- in te r l eav ing , and the re la t ions
be tween them. We can now move on, use the semant ics , and try, for example, to advance our
u n d e r s t a n d i n g of the re la t ionship of models of " t rue concurrency" wi th opera t iona l semant ics and
the logic of concur ren t programs. The guts of the work of this pa r t appea red in [W1]. Pa r t 3 shows
how the same ideas can be carr ied t h r o u g h for Petr i nets , giving rise to a more algebraic t r e a t m e n t
of nets t h a n usual, and gives a formal t r ans l a t ion between nets and event s t ruc tures . (Sections 3.1
to 3.:1 can be read w i th ou t any knowledge of the earl ier sections.) In pa r t 4 some work of G.Ber ry
is presented in a new light. It is shown how event s t ruc tu res can be made into car tes ian closed
category and so be used to model p r o g r a m m i n g languages wi th h igher types. This pa r t is mean t as
a p repara t ion and indicator to fu r ther work, bo th Berry and Cur ien ' s work (see Icl especially) and
some recent work of Gi ra rd on a model for his System F, the po lymorphic A-calculus (see [G] and
[CGW]). The work after pa r t 1 will use some basic ideas f rom category theory. Our main reference
is [Mac l.

1. E V E N T S T R U C T U R E S , C O N F I G U R A T I O N S A N D D O M A I N S .

This pa r t gives the definit ion of event s t ruc tures , focusses on special forms, and shows how
par t icu lar kinds of Scott domains of in format ion are formed by the i r configurat ions (or s ta tes) .
Scot t ' s thesis is re la ted to the axiom of finite causes and the mach inery is es tabl ished for defining
event s t ruc tures recursively. In addi t ion , the re la t ionship be tween event s t ruc tu res and concrete
domains is exhib i ted wi th a br ief ind ica t ion of the relevance of concre te domains to deno ta t i ona l
semantics .

1.1. Event s tructures .

Pic ture a process as performing events as t ime goes on. W h a t we choose to regard as events of
the process will depend on the level of abs t r ac t ion a t which we view the process. For the m o m e n t
let us not worry a b o u t wha t kinds of events they are. Suppose t h a t this is set t led on and we
have decided t ha t the events of in teres t to us come from a set E of events or more s tr ic t ly event
occurrences. General ly for various reasons some events exclude some others f rom occurr ing so not all
subsets of events can occur together in a his tory of the process. For example one event may exclude
ano the r for physical reasons, you jus t c a n n o t have two values at the same t ime at some place or
they may be in conflict because they compe te for the same resource. Wha teve r the reason we can
only expect cer ta in subsets of events to be able to occur in the same history. We can express th is
as as a consistency predicate Con C_ F i n (E) on the finite subsets of E . And of course if a set X of
events can occur toge ther in the same his tory then so can a subse t Y c~ X so we can pu t Y E Con
too. There is a addi t iona l cons t ra in t on the occurrence of events. Genera l ly an event can occur only
after cer ta in other events have already occurred, and na tu ra l ly we can assume they are consis tent .
We capture this by use of an enabl ing re la t ion ~G Con × E where intui t ively an event e can only
occur after a set X , wi th X ~- e, has occurred previously.

1 .1 .1 D e f i n i t i o n . An event structure is a tr iple (E, Con, k) where
(i) E is a set of events,
(ii) Con is n o n e m p t y subset of F i n E , the finite subsets of E , called the

consistency predicate which satisfies

X ~ C o n & Y C X = ~ Y E C o n , and

327

(iii) kC Con x E is the enabling re la t ion which satisfies

X F e & X C Y E C o n ~ Y k e .

Our intui t ive u n d e r s t a n d i n g of the consis tency predica te and the enabl ing re la t ion are expressed
in the not ion of conf igurat ion (=s ta t e) we adopt for event s t ruc tures . A conf igura t ion is a set of
events which have occurred by some stage in a process. According to our u n d e r s t a n d i n g of the
consis tency predicate a conf igurat ion should be cons is tent in the sense t h a t any finite subse t is in
the consis tency predicate . And according to our u n d e r s t a n d i n g of the enabl ing re la t ion every event
in a configurat ion should have been enabled by events which have occurred previously. However the
chain of enabl ings should not be infinite but eventual ly end wi th events which are enab led by the
null set, and so need no events to occur previously.

1 .1 .2 D e f i n i t i o n . Let E = (E, Con, ~-) be an event s t ruc ture . Define a configuration of E to be a
subset of events x C E which is

(i) consistent: V X C fin x. X ~ Con,
(ii) secured: Ve e z 3 e o , . . . , e ~ E x. en = e & Vi < n. { e o , . . . , e i _ ~ } ~- ei.

The set of all configurat ions of an event s t ruc tu re is wr i t t en as 5r(E).

It is helpful to unwrap condi t ion (ii) a little. It says an event e is secured in a set x iff the re is
a s'equence of events e0, • • - ,en = e in x such t h a t

0 k eo, {e0} U q,. . . ,{e0,- .- ,ei-1} k e~,...,{e0,...,en ,} ~-e~.

We call such a sequence e0, e l , . . . , en = e a securing for e in x. The following propos i t ion expresses
when an event can be added to a conf igurat ion to ob ta in ano the r configurat ion. We use X C fin Y
to m e a n X is a finite subset of Y.

1 .1 . a P r o p o s i t i o n . Let E = (E, Con, F) be an event structure. Suppose x 6 f (E) and e E E.

Then x U {el E ~'(E) iff
(i) V X C_fin x. X U {e} 6 Con and
(i 0 3 X c si,~ z. X k e.

Proof. Clearly (i) and (ii) are necessary for x u {el to be a configurat ion. Conversely, assume (i)
and (ii) hold. Then by (i), x U {el is consis tent . By (ii) there is some X _C/in z such t h a t X F e.
Write X as { e 0 , . . . , e ~ - l } . Each ei has a securing s~ in x. Form the chain s ~ s ' ~ . . . ~ s ~ _ l e by
conca tena t ion . T h e n this chain is a securing for e in x U {el . |

1 .1 .4 E x a m p l e . Event s t ruc tu res ma.y be infinite. For example , define ~ to be the event s t ruc tu re
wi th events the nonnega t ive integers w, wi th any finite subse t cons is tent and enab l ing re la t ion

x k n ~ { n ' l ~ ' < ~ } c x .

T h e n fl represents a process, like a "t icking clock", which can per form the events 0, 1,- • •, n , . . • in
sequence.

1 .1 .5 E x a m p l e . Event s t ruc tures can exhibi t nonde t e rmin i sm , or conflict. Cons ider the event
s t ruc tu re wi th two events O, 1 in which 0 k 0 and 0 ~- 1, {0},{1} E Con and yet {0, 1} ~ Con. Its
configurat ions have the form:

{ 0 } - , ~ 0 . ~ {1}

Nonde te rmin i sm appears as "branching" in the par t ia l order of configurat ions o rdered by inclusion.

328

1.1 .6 E x a m p l e . Event structures can exhibit parallelism, or concurrency. The event structure
with two events 0, 1 in which 0 ~- 0 and O ~- 1 and this t ime {0, 1} E Con, has configurations of the
form:

~,{0,1}

Concurrency of events appears as a "little square" in the part ial order of configurations.

1 .1 .7 E x a m p l e . A parallel switch:

An event may be enabled in more than one way even in a single configuration. Assume initially both
switches are open. Closing either one enables the event of the bulb lighting up. The configurations
have the form:

/ ~ . { 0 , 1, b}

{0, b } (i " ~ { X , b }

Thus each event s t ructure determines a family of subsets of events, the configurations of the
event structure. Such families have a simple characterisation.

1 .1 .8 D e f i n i t i o n .
Let (P, E_) be a partial order.
Say a subset X of P is compatible, and write XT, iff

~ p E P V x ~ X . z E p .

We can use this notion in the particular case where P is a family of sets ordered by inclusion. In
the special case where X is a set of two elements {x, y} we write x ~ y for X T.

For families of configurations we shall use a more delicate notion of compatibility. Say a subset
X is finitely compatible, and write X~ fin, iff

VX0 ~f i~ X. XoT,

i.e. when every finite subset is compatible.

1 .1 .9 T h e o r e m . Let E = (E, Con, ~-) be an event structure. Its configurations F = 7(E) form a
set of subsets of E which satisfy

(i) finite-completeness:

(ii) finiteness:

Oil)

AC_ F & A T $ i ~ U A C F ,

Vx E FVe E x3z C F. (z is finite & e E z & z ~ x),

coincidence-freeness:

VxEFVe , e ' E x . e ~ e ' ~ (~ .y~F. y C x & (e E y ¢ ~ . e ' ~ y)) .

329

Proof. The proof is a rout ine exercise using the definit ion of conf igura t ion of an event s t ruc ture .
]

1 . 1 . 1 0 D e f i n i t i o n . Let F be a set of subsets . Say F is a family of configurations w h e n it satisfies
the axioms of f in i te-completeness , finiteness and coincidence-freeness above. Say F is a family of
configurat ions of E when E = U F.

1 .1 .11 L e m m a . Let F be a family of configurations. For all x, y C F

z c y ~ 3e~ y \ z . zu {e}EF.

Proof.

Suppose x C y for x ,y E F. T h e n there is some event e E y \ x. By finiteness e E z C f in y for
some finite config z. By f in i te-completeness xU z C F. Of course, x C x u z c y. Thus it is sufficient
to prove the lemma in the case where the set y \ x is finite. We do this by induc t ion on the size
]y \ x I of the set difference, taking the s t a t e m e n t of the l emma as the induc t ion hypothesis .

If jy \ x I = 1 t hen obviously y = x U {el for the unique event e wi th e E y \ z.

Suppose]y \ x[> 1 and assume the induc t ion hypothes is for s t r ic t ly smal ler sizes. There are
then two dis t inct events co, el C y \ x. By coincidence-freeness there is a conf igura t ion z con ta in ing
one and not the other . (W i t h o u t loss of genera l i ty assume e0 E w and el ~ w.) Hence x c x u w C y.
Therefore by the induc t ion hypothesis there is some e e (x u w) \ x for which xU {el E F, a n d clearly
e E y \ x, as required.]

1 .1 .12 D e f i n i t i o n . Let F be a family of conf igurat ions of a set E. Define a s t r uc tu r e £ (F) =
(E, Con, t-) on E by tak ing

X E C o n ~ d ~ s X i s f i n i t e & 3 x E F . X C x ,
X k e c c , d e f X E C o n & ~ x E F . e C x & x C X U { e } .

1 . 1 . 1] T h e o r e m . If F is a family of configurations then £ (F) is an event structure such that
~re (F) --- F.

Proof. Let F be a family of configurat ions. It is easy to see t h a t £ (F) is an event s t ruc ture .

Suppose x E f £ (F). Then , by the def ini t ion of the enab l ing re la t ion of ~ (F), for each e E x
there is a configurat ion xe E F such t h a t e E ze C_f~n x. By the def ini t ion of the consis tency pred ica te
of £ (F) , the set {xe I e E x} is a finitely compat ib le subse t of F. Therefore

x = U { x ~ ! eEx } E F.

Suppose x E F. We show x E ~ '£(F) . Cer ta in ly x is consis tent . Suppose e E x. By the finiteness
proper ty of F there is a finite conf igurat ion y for which e E y C f in x. Repeatedly apply ing l e m m a
1.1.11, s t a r t ing wi th the interval 0 c y, we ob ta in a sequence e l , . . . , e l , . . . , en such t h a t

{ e , } , . - - , { e , , e ~ } , - - - , { e ~ , . . . , e i ~ n } C F

with { e l , . . . , e i , . . . , e n } = y. As e occurs in some stage of the sequence this provides us wi th a
securing for e in x. Hence x is a conf igura t ion of £ (F) . I

Notice we do not have £ 7 (E) and E equal in general for event s t ruc tu res E.

330

1.1 .14 C o r o l l a r y . Let Fo and Fi be families of conligurations. I f ~ (Fo) - E(F1) then Fo = F1.

Proof. If ~(Fo) = ~ (FI) then Fo = 7 ~ (F o) = Fd'(F1) = F1, by the theorem above. I

Of course the configurations of an event s t ructure form a part ial order when ordered by inclusion.
It is sensible to think of the points of this part ial order as elements of information expressing how far
the process has progressed; the computa t ion has progressed further when more events have occurred.
The idea of information is familiar from Dana Scott 's work and in fact the configurations of an event
structure do form a domain when ordered by inclusion. Though note it is a rather special kind
of domain. In particular it satisfies the finiteness axiom that an finite element dominates only a
finite number of elements. This is because the concept of more information is t ied very closely to
the progress of the process over time. The associated domains are closely related to the concrete
domains of Kahn and Plotkin (see [W, KP i and section 1.5) Recall:

1 ,1.15 D e f i n i t i o n . Let (D , ~) be a partial order.
~ay D is consistently complete iff all finitely compatible subsets X C D have least upper bounds

UX.
:Note a consistently complete partial order has a least element, viz. ± = L]O, though it may not have
a greatest.

Say a subset S of D is directed iff all So C/ i~ S have upper bounds in S. (So S is finitely
compatible and cannot be empty.) An element e of D is said to be finite iff for all directed sets S,
if c E i l S t h e n e E _ s f o r s o m e s E S .

A consistently complete part ial order is algebraic iff for every element d

d = U{e E_ d I e is finite}.

We call a consistently complete algebraic partial order a Scott domain (or simply a domain).
A finitary domain is one in which every finite element dominates only a finite number of elements,

i.e. {d] d E_ e} is finite.

1 .1 .16 T h e o r e m . Let F be a family of configurations. The partial order (F, C_) is a finitary Scott
domain with finite elements the finite configurations.

Proof. As the family F is f ini tely-complete, the partial order (F, _C) is consistently complete. Clearly
every configuration which forms a finite set is a finite element. Let x E F. Each e E x is contained
in some finite configuration x~.C x by the finiteness axiom. Obviously x = (.j{xe t e E x}. Hence
(F, C) is algebraic and so a Scott domain. I

The thesis [W[contains a characterisat ion of the domains that result f rom event structures
in the case when the consistency relation is induced by a binary conflict relation between events
(see later, 2.3). I am not sure of the characterisat ion of domains associated with the more general
event structures presented here. However such representation results are part icularly smooth for the
slightly more restrictive class of stable event structures, introduced in the next section, which are
st, itable in most cases.

Thus when we picture a process as an event s t ructure we can choose, if we wish, to regard it
more abstractly as determining a family of conf igurat ions--when we abstract from the precise nature
of the consistency and enabling re la t ions- -or more abstract ly still as a domain of conf igurat ions--
when we abstract from the precise nature of the names we use for events. Conversely we can regard
families of configurations and domains of configurations as special kinds of event structures. As we
shall see we can abstract in other ways too, and see these means of abstraction in a categorical light.
(The trees which underly the interleaving models of CCS and CSP are a similar abstraction from
the extra detail present in the non-inter leaving model of event structures.)

331

1.2. S t a b l e e v e n t s t r u c t u r e s .

Many people [Pe, He, La, Ma, NPW, W, Sh, MS, F, Pr} represent concurrent processes as
part ial orders of events where an event e0 precedes an event el if the occurrence of the event eo is
necessary in order for el to occur, in other words if the event el causally depends on the event co.
Often in these t reatments all possible events of the process are put in the part ial order whether or
not they are in can occur in the same history; there is a global partial order of causal dependency.
We shall t reat models like these in the next section. It is useful to look at a more general class of
structures for which there need not be one global part ial order but where each configuration has its
own local partial order of causal dependency.

We look for a special class of event structures for which there is a partial order of causal
dependency on each configuration. This can not be done so obviously for all event structures.
Consider the event structure of example 1.1.7, representing a parallel switch where the event b
causally depends not on a unique set of events but rather on either the occurrence of 0 or on the
occurrence of 1. It is incorrect to say b causally depends on both 0 and 1 because the occurrence of
only one of them enables the occurrence of b. The ditficulty arises because there is a configuration
{0,1, b} in which there is an event b which is not enabled by a unique minimal set of event occurrences.
We can rule out such possibilities by insisting event s t ructures satisfy the following stability axiom.

1.2.1 Def in i t ion .
following axiom

Let E = (E, Con, k) be an event structure. Say E is stable if it satisfies the

X ~ - e & Y k-e & X U Y U { e } E C o n ~ X N Y k e .

1.2.2 E x a m p l e . Let E be the event s t ructure with events {0, 1,2} with consistency predicate the
least one such that

{0,1}, {0, 2}, {1, 2} e Con,

so {0, 1, 2} ~ Con, and enabling relation the least one such that

0 ~0, 0 ~1, {0} ~2, {1} ~ 2

Then E is a stable event s t ructure and the configurations 5(E) have the form

{0'2} l I {1'2}

The stability axiom ensures that an event in a configuration is enabied in an essentially unique
way. Assume e belongs to a configuration x of a stable event structure. Suppose X ~- e and X C x.
Then X tO {e} E C o n - - t h e enabling X t ~ e is consistent. Take

X o = ~ { Y I Y C _ X & Y k-e}.

Because X is finite this is an intersection of a finite number of sets and we see by the stabil i ty axiom
tha t 32o ~- e. Moreover X0 is the unique minimal subset of X which enables e. More formally, for
any event structure, stable or otherwise, we can define the min imal enabling relation ~-mi~ by

X F-mi,~ e v> X k- e & (VY C X . Y ~- e ~ Y = X) .

332

T h e n for any event s t ruc tu re
Y k - e = c ~ 3 X C Y . X ~ m , ~ e .

But for s table event s t ruc tu res we have uniqueness too, a t least for cons is tent enabl ings:

Y k-e & Y U { e } E C o n = ~ 3 ! X C Y . X ~-mine.

It follows t h a t for s table event s t ruc tures

X ~rnin e & Y k 'mine & X U Y U e E Con =C, X = Y

Consequent ly the families of configurat ions of s table event s t ruc tures sat isfy the following intersect ion
property.

1 .2 .3 T h e o r e m . Let E be a stable event structure. Then its family of configurations IT(E) satisfies

v x c IT(E). x ~ 0 & x T ~ N x c IT(E).

Proof. Suppose X is a n o n e m p t y compa t ib | e subse t of configurat ions. T h e n Vx ~ X. x E_ z for some
conf igurat ion z. Clearly N X is consis tent . Suppose e ~ r) x . Then e c z so there is some securing
e 0 , e l , . . . , e n = e for e i n z. By stabil i ty, for any e E N X i f Y k-rain e and Y C z then Y C= ~ X .
Therefore the securing for e in z becomes a secur ing for e in N X by omi t t ing all members of the
sequence not in ~ X . Thus ~ X is secured, and so a configurat ion. I

1 .2 .4 D e f i n i t i o n . Say a family of configurat ions F is stable when it satisfies the following axiom
(in addi t ion to those in 1.1.9)

(stability) V X C F . X # O & X T ~ [-] X C F .

Thus the configurat ions of a s table event s t ruc tu re form a s tab le family. For a s table family
there is a par t ia l order of causal dependency on each configurat ion of events.

1.2.5 D e f i n i t i o n .
define

W h e n e E x define

Let F be a s tab le family of configurat ions. Let x be a configurat ion. For e, e t E x

eJ<_~eec, V y ~ F . e ~ y & y C x = c , e E y .

We say a set y is <_~-left closed when it satisfies

e r < ~ e & e C y : 4 - e 1 C y .

As usual, we w r i t e e I < z e f o r e _ < ~ e t & a c e ' .

1 .2 .6 P r o p o s i t i o n . Let x be a configuration of a stable family F. Then <_~ is a partial order and
[e 1 . is a configuration such that

[d ~ = {~ ' ~ .~ 1 ~' <-~ ~}.

Moreover the configurations y C x are exactly the left-closed subsets of <_~.

Proof. Let x be a conf igura t ion of a s table family F.

333

The relation <= is clearly a preorder. Further it is a part ial order by coincidence-freeness.

The fact that the set [e] = is a configuration follows directly from its definition as the family
is stable. Suppose e' <~ e. Then e E [e]~ c_ x so e' E [e l~, Thus [e l= is <z- le f t closed. Suppose
e' E [e 1 ~. Then from the definition of [e 1, we see directly that e' <~ e. Hence

rel.= = {~'1 ~' <-= ~}.

Supposey 6 F and y _C x. Assume e ~ <~ e and e 6 y. Then by the definition of < , we see
e ~ 6 y. Thus y is left closed. The converse also holds. Suppose y is left closed and y C x. Then
clearly

= U { [4 ~ I e c y} ,

and {[elz I e E y} t , each element being a configuration included in x. Therefore by finite-
completeness of the family we see y 6 F.]

Let x be a configuration of a stable family. Intuitively an event e in x can only occur once all
its predecessors {e' E x I e~ <z e} have occurred.

1 .2 .7 E x a m p l e . Refer to example 1.2.2. Let x -- {0, 2} and y = {1, 2} be particular configurations.
Then 0 <~ 2 and 1 _<y 2 but 0 ~y 2 and 1 ~ 2. The orderings <~ and <y cannot be the restrictions
of a "global" partial order on events.

1.2.8 T h e o r e m .
Let E be a stable event structure. Then its family of configurations 7 E is stable.
Let F be a stable family of conIigurations. Then ~ (F) is a stable event structure.

Proof. The first part is simply a res ta tement of 1.2.3. We show the second part. By 1.1.13 we
already know ~(F) is an event structure. Suppose X ~- e and Y ~- e with X u Y u { e } 6 Con in

(F). Then
e E x & x C X u { e } a n d

e C y & y C Y U { e }

for x, y 6 F. Thus x u y C~ X U Y U {e}, a consistent set, so x T y- Therefore x n y E F and clearly
e 6 m a y & x N y C (X N Y) U{e}. Thus X N Y ~ e, as required to s h o w £ (F) is a stable event
structure. I

1.3. P r i m e a l g e b r a i c d o m a i n s a n d p a r t i a l o r d e r s o f e v e n t s .

We consider the form of domain associated with stable event structures. First ly we define the
relevant properties.

1 .3 .1 D e f i n i t i o n .
Let D = (D, E) be a consistently complete part ial order.
Say D is distributive iff it satisfies

y T z :* • n (~ u z) = (~ y) u (~ n z).

Say D is infinitely distributive iff it satisfies the following two laws:

(U x) n y = u { x n y I ~ e X} ,

334

where X is a compatible subset of D and y E D, and

(H X) . u = I I (~ u v I x e x }

where 0 # X C D and y E D.
A complete prime of D is an element p E D such that

p K [~ X ~ 3xC X. p K x

for any compatible set X .
D is a prime algebraic domain iff

x - U{P E_ x I P is a complete prime},

for all x ~ D.

Thus a prime algebraic domain is a Scott domain of information which possesses a special kind
of sub-basis.

Pr ime algebraic domains have a characterisation as familiar structures, a result which follows
directly from [W2].

1.3.2 T h e o r e m . Let D be a consistently complete partial order,
D is a prime algebraic domain iff it is infinitely distributive and algebraic.
If D is finitary then it is prime algebraic iff it is distributive.

Proof. The proofs are quite lengthy and so are omitted. They can be found for lattices in [W2] from
which the results follow for consistently complete orders. I

Families of configurations of stable event structures are prime algebraic. The axiom of stability
on event structures has as its counterpart the axiom of distr ibutivi ty on domains.

1 .3 .3 T h e o r e m . Let F be a stable family of configurations. The partial order (F, _C) is a finitary
and prime algebraic domain; the complete primes are the set {[e]z I e • z & x C 7(E)}.

Proo£

By 1.1.16 we know (F, C) forms a finitary Scott domain.

S u p p o s e e E x E F. Assume [e l~ C UW. Then e E w for s o m e w C W. By stability and the
fact that [e] ~ T w we see [e 1 ~ c w. Hence [~] ~ is a complete prime.

Let x ~ F. Clearly (Ue]¢ I e E x}Tfm. Thus x = I){[el~ I e E x}. Therefore (F ,C) is prime
algebraic. I

Thus stability of event structures appears as distr ibutivity of the domains of configurations.
The fact that events must be secured in configurations, expressing the intuition that an event 's
occurrence can only depend on a finite number of previous occurrences, reappears as the fact that
domains of configurations are finitary.

Conversely, given a finitary prime algebraic domain we can easily generate a stable event struc-
ture which has an isomorphic domain of configurations. There is a natural choice of events associated
with a finitary prime algebraic domain, viz. the complete primes. They inherit the ordering from
D and this partial order can be viewed as a causal dependency relation. Unlike the local causal

335

dependency relations of the previous section which were defined with respect to part icular config-
urations this is one global relation. There is an obvious consistency relation on complete primes;
take a finite subset of primes to be consistent iff they are compatible. The family of configurations
is easily generated from these relations. Structures (P, Con, <) can be thought of as another kind
of event structure in which the enabling relation can be expressed in an especially simple form, as
a global partial order of causal dependency.

1.3.4 D e f i n i t i o n . Define a prime event structure to be a structure E = (E, Con,_<) consisting of
a set E , of events which are partially ordered by <, the causal dependency relation, and a predicate
Con C F inE, the consistency relation, which satisfy

{e'] e' < e} is finite,

{e} ~ Co.,
Y C X C C o n ~ Y~_ Con,

X (: Con & -~e'C X. e < e' ~ X U { e } E Con

for all e E E , and finite subsets X, Y of E.
Define its consistent left-closed subsets, £(E) , to consist of those subsets x C E which are

consistent: VX C fi~ x. X ~ Con and
left-closed: Ve, eq e f < e C x --~ e r C x.

In particular, define [e] = {e' C E I e' < e}.

1 .3 .5 T h e o r e m .
Let E be a pr ime event structure. Then £(E) is a stabIe family of configurations. The domain

(£(E) , C) has complete primes those elements of the form [e] for e C E.

Proof. Routine. |

Conversely, as we have indicated, any prime algebraic domain is associated with a prime event
structure in which the events are its complete primes.

1 .3 .6 D e f i n i t i o n . Let D be a finitary prime algebraic domain. Define Pr(D) = (P, Con, ~) , where
P consists of the complete primes of D,

p < _ f ¢~pE_p ' ,

for p,p' C P, and

for a finite subset X of P.

X E Con ~ X T

1 .3 .7 T h e o r e m . Let D be a [initary prime algebraic domain. Then Pr(D) is a prime event
structure, with ¢ : D ~ (£Pr(D) , C) giving an isomorphism of partial orders where
¢(d) = {p E_ d t P is a complete prime} with inverse 8: £Pr(D) -+ D given by 0(x) = Ux.

Proof.

It is easy to see that Pr(D) = (P, Con, <) as defined is a prime event structure.

Obviously the maps 0 and ¢ are monotonic i.e. order preserving. We show they are mutual
inverses and so give the required isomorphism.

It is easy to see that the maps ¢ and 0 are well defined.

336

First ly we show 0¢ = t . Thus we require d - U{P E P I P ~ d} for all d E D. Bu t this is ju s t
the condi t ion of pr ime algebraicity.

Now we show ¢0 : 1. Let x E £ P r (D) . We require x : ~O(x) i.e. x : {p E P [p E Ux}.
Clearly x C {p E P [p E Ux}. Conversely if p E mix, where p is a complete pr ime, then cer ta in ly
p E q for some q E x. However x is left-closed so p E x, showing the converse inclusion.

Thus we have es tab l i shed the required isomorphism. I

Thus finitary pr ime algebraic domains and pr ime event s t ruc tu res are equivalent; one form of
s t ruc tu re can be used to represent the other . Pr ime event s t ruc tu res are very s imple and de te rmine
the same domains of conf igurat ion as the s tab le event s t ruc tures so why do we not work solely wi th
them? The reason is t h a t pr ime event s t ruc tu res do not always combine very easily. Cons t ruc t ions
on stable event s t ruc tu res are generally easy whereas it can often be quite awkward and clumsy to
make the cons t ruct ions yield pr ime event s t ruc tu res directly. For example the p roduc t (see section
2.3) and funct ion space (see sect ion 4.2) of two prime event s t ruc tu res are complicated when defined
directly. By in t roducing the more general class of s table event s t ruc tures we get the best of b o t h
worlds; cons t ruc t ions are easy and we can always ob ta in p r ime event s t ruc tures wi th isomorphic
domains of configurat ions by theorems 1.3.5, 1.3.7. We should r emark t h a t f initary pr ime algebraic
domains have appeared in the context of Berry 's work; in [B] he considers dI-domains which are
f initary d is t r ibut ive domains , which by the results above are exactly the f ini tary pr ime algebraic
domains .

As example 1.2.7 shows the local par t ia l orders of causal dependency are not necessarily par t
of a global par t ia l order on events . The above theorems show t h a t at the cost of r enaming events
they can made to be so. Suppose E = (E, Con, ~-) is a s table event s t ructure . Ins tead of taking the
events as E we might change our view and regard the events as be ing P = {Iel ~. I e ~ x ~ Jr(E)}, so
a new event is a complete p r ime which includes the informat ion a b o u t how it occurs. W h a t causal
dependency relat ion should be pu t on the events P ? An event p can only occur once all events p~
str ic t ly included in p have occurred. The global causal dependency relat ion < on P given by

And when can a finite set of events X C fi~ E occur together in a configurat ion? When they are
compat ib le as configurat ions of E. This is the consistency predica te on events P :

X ~ Conp ~ X ~f~n P & X T •

In this way, by renaming events , a s table event s t ruc tu re E de termines a pr ime event s t ruc tu re
(P, Conp , ~) . Of course, the configurat ions of (P, Conp , <) are no t the same as the configurat ions
of the original event s t r u c t u r e - - t h e events are different. Still, the two domains of configurat ions
are isomorphic as par t ia l orders. This jus t expresses the fact t h a t the domain of configurat ions of a
s table event s t ruc tu re is p r ime algebraic.

In [NPW] and [W] it is po in ted out t h a t events also manifes t themselves in a domain as p r ime
intervals. We say d is covered by d' in a domain , wr i t ten d -< d ' iff

d u d t & d ¢ d ' & (Vz. d E z E d ' ~ d = z or z = d) .

The re la t ion -< is called the covering relat ion. A prime interval is a pair [d, d ' t such t h a t d < d I. In
a domain of configurat ions a p r ime interval is associated wi th the occurrence of an event a t some
configurat ion; in a domain of conf igurat ions (F, C), the re la t ion x -< x ~ holds iff there is a n event e
such t ha t e ~ x and z ' = x U {e} wi th x , x ' ~ F. Define

337

Form the equivalence relat ion ~ as the symmetr ic , t rans i t ive closure of <, and wri te [d, dP]_ for the
equivalence class of [d, d ' 1 wi th respect t o ~ . In a domain of configurat ions, [c, c'} ~ [d, d ' I implies
c ' \e = d~\d = {e} for the same event e. So ~ -c las ses are associated wi th unique events . For domains
represented as families of configurat ions of complete pr imes this associat ion is a 1-1 correspondence.

1 .3 .8 P r o p o s i t i o n . Let D be a finitary pr ime algebraic domain. Let ¢ : D ~ £Pr(D) be the
isomorphism d ~-~ {p E_ d I P is a complete prime}. Define the following m a p from H-classes to
complete primes:

[d, d'] p

where p is the unique m e m b e r of ¢(d') \ ¢(d), This map is a 1-1 correspondence with inverse

where d = U{c I c C P ~ c ~ p} and d' = p.

Proof. R o u t i n e - - o r see [NPW]. |

Later in some proofs we shall make use of the fact t h a t if d is a finite e lement of a f ini tary pr ime
algebraic domain D then there is a covering chain

2_ = do -< dl -~ . . . < dn = d

in D up to d. This is obvious because we can represent any such domain as the left closed consis tent

subsets of some pr ime event s t ruc ture .

We tu rn now to one special kind of pr ime algebraic domain. Trees form a basic model of
computa t ion . Of ten b ranch ing represents n o n d e t e r m i n i s m as for example in Mi lner ' s synchron i sa t ion
trees. We show how such trees can be taken to be pa r t i cu la r kinds of pr ime algebraic domains and
hence can be identified wi th cer ta in kinds of event s t ruc ture .

1 .3 .9 D e f i n i t i o n . A tree is a pr ime algebraic doma in which satisfies

x T y ~ (x ~ y or y E x) .

Thus for our purposes a t ree is a special k ind of d o m a i n whose order s t ruc tu re is t h a t of a t ree
in the convent ional sense bu t wi th l imit points at the end of every infinite b ranch . Of course such
trees are in 1-1 correspondence wi th cer ta in forms of p r ime event s t ruc tures and a t ree T, as we
have defined it, can be identified wi th its image Pr(T) as a pr ime event s t ruc ture . Its events are
complete pr imes which are in 1-1 correspondence wi th p r ime intervals which are the arcs of the tree.

A f ini tary pr ime algebraic domain de te rmines a t ree in a na tu ra l way, a cons t ruc t ion which will

be i m p o r t a n t la ter in pa r t 2.

1 .3 .10 D e f i n i t i o n . Let D = (D ,U) be a f ini tary p r ime algebraic domain . Define a covering
sequence of D to be a sequence (do,all , . . . , d ,~- l , . . . } , which may be empty, finite or infinite~ in

which
- L = d 0 - ~ d t - ~ ' " - < d ~ - ~ - <

Define T (D) to consist of all the covering sequences in D ordered by extension.

1 .3 .11 P r o p o s i t i o n . Let D be a finitary prime algebraic domain. Then Y(D) is a tree.

338

Proof. Clear. |

The t rans la t ion f rom event s t ruc tu res to domains has perhaps seemed ra the r formal. However
as was argued in [NPW, W] it does provide a bridge between concepts expressed in te rms of Scot t ' s
idea of informat ion and. the ideas of Pe t r i and others . And of course as we pointed out domains of
configurat ions can be associated wi th cer ta in kinds of event s t ruc tures in a na tu r a l way.

1.4. S c o t t ' s t h e s i s a n d t h e a x i o m o f f i n i t e c a u s e s .

Dana Scott proposed the thesis t h a t computab le funct ions are cont inuous. Here it is unders tood
t h a t da ta types are associated wi th domains of in format ion and t h a t computab le functions between
da ta types are associated wi th funct ions between the i r domains of informat ion . Recall a funct ion
f : D --~ E from one cpo D to ano the r E is continuous iff it preserves least upper bounds of d i rected
sets i.e. for all d i rected sets S

UfS : f(US).

Note a cont inuous funct ion is monotonic, i.e.

vx, y c D. x E y ~ f(=) ~ f(y),

In par t icular , a cont inuous funct ion should preserve least upper bounds of w-chains , i.e. for all
chains xo C xl E . . . E x,~ ~ - . . in D we have

[_]nc~f(z~) = f (Ur~c~xn).

Intui t ively the u l t ima te o u t p u t value should be no more t han the l imit of the values de te rmined at
finite stages in delivering the input , so we can approx imate the u l t ima te o u t p u t value a rb i t ra r i ly
closely by the o u t p u t values at finite stages. Scot t ' s thesis has an intui t ive just i f icat ion (see e.g. [St]),
and plays a key pa r t in the m a t h e m a t i c a l basis of denota t iona l semant ics . We show how Scot t ' s
thesis implies the thesis t h a t for a computab le process the occurrence of an event depends on the
previous occurrence of a finite n u m b e r of events.

We need first to mot iva te some definitions. For s implici ty we assume a process is modelled by
a par t i a l order on events , E -- (E, <) say, and show how the process will obey Scott 's thesis iff i t
satisfies the axiom of finite causes:

Ve E E. {e' E E I e' < e} is finite.

Of course we need to make clear w h a t we mean by "obey Scot t ' s thesis". This hinges on associat ing
da t a types and cont inuous funct ions wi th E.

We can choose to imagine some of the events of E as being events of input E0 f rom some
da ta type , some as in ternal events, and o thers as events of ou tpu t E i to some da ta type . The da ta types
may have their own causal dependencies , which con t r ibu te to the dependency of the full process,
so the input da t a type can carry an par t ia l order E0 = (E0, _<o) and the o u t p u t da ta type a par t i a l
order E1 = (E l , <1)- T he order ings of the da ta types should be s u b - p a r t i a l orders of t ha t of the
process, i.e.

E o C E & E 1 C E ,

mean ing <0C_< and _ < i ~ . There are na tu ra l domains of informat ion associated with the two
da ta types , viz. thei r domains of left-closed sets of events. The process induces a funct ion between
the domains . Define

fE , ,Z , : £ (E0) ~ 2:(El) to map o: ~-* {e E E1 I [el F1 E0 C_ x}.

339

The idea is that an event of E occurs once the necessary input events have occurred. It is clear that:

1 .4,1 L e m m a . The function fEz,EL is monotonic.

Proof. Obvious. l

However for partial orders in general the function may not be continuous. Consider, for example,
the partial order

e

eo e l e2 • . . e n . . .

with E0 = {e~ [n E ca} and El =- {e} ordered by the identity relation. Then taking S to be the
directed set consisting of all finite subsets of E0 we see (as in the proof of the theorem below) that
the least upper bound of S is not preserved by fEo ,EL . If E is to represent a computable process,
according to Scott 's thesis, fE,,,E~ should be continuous. Furthermore it should be for any choice of
n events for the input and output datatypes. We say g obeys Scott's thesis iff

VE0,E1. (E0 C E & E1 C_ E => fE,,,E, is continuous).

Now by an elementary argument we can show those partial orders of causal dependency E which
obey Scott 's thesis are precisely those which satisfy the axiom of finite causes.

1.4,2 T h e o r e m . The partial order E obeys Scott's thesis if[

Ve E E. {e t C E t e' <_ e} is finite.

Proof.

"=>" Suppose E obeys Scott's thesis. Suppose for some e in E we had Iel infinite. Take

E 0 = { e ' E E l e ' < e } a n d E 1 - { e } ,

with both ordered by the identity relation. Define S to consist of all finite subsets of E0. Then
S is a directed subset of ~(E0). Moreover no element of S is E0 as E0 is infinite. However now
f E o , E , (U S) = {e} while U f E o , E L S == O. Thus f E o , E , is not continuous which contradicts the
assumption that E obeys Scott 's thesis. Thus ~e 1 is finite for all e E E.

"¢:" Suppose [et is finite for all e in E. Assume Eo C_ E and E1 c E. Let S be a directed
subset of £(E0). Abbreviate fE,,,E, to f . As f is always monotonic we have U f S c f (U s) .
Suppose e E f (U S) . Then [e] • E0 ~ U S. As Iel is finite so is [e 1 N Z0. Thus because S is directed
[e I N E0 C s for some s E S. Then e E f(s). This shows f (U S) c U f s so f (U S) = U f S . Therefore
f is continuous. Hence (E, <) obeys Scott 's thesis, as required.]

1.5. C o n c r e t e d o m a i n s .

Event structures first arose in denotat ional semantics through the work of Kahn and Plotkin
on concrete domains [KP]. They were interested in extending the definitions of sequential functions
used by Milner and Vuillemin. It had become clear that often there was a mismatch between de-
notat ional semantics and operational semantics because the denotat ional semantics failed to take

340

account adequately of the sequential nature of the evaluation performed by machines. The problem
was realised in its most acute form in [P], where the failure of full-abstraction for the denotational
semantics of languages with higher type was traced to an inadequate t rea tment of sequential func-
tions. For much more on these notions of sequentiality and ful l-abstract ion, their importance, and
work which s temmed from them see P.L.Curien's book [C]. (For a little more see section 4.1.)

Let 0 be the simple domain consisting of two points ± E T. Then the product 0 × O, as a
domain, is got by taking all ordered pairs (x, y) E {_L, T} 2 ordered coordinatewise:

(~, y) E (x', y') ~ ~ E_ 5' & y E y'.

This yields a domain which may be pictured thus:

(T,T)
(T , •) ~

(i,±)

(L , T)

Consider the least monotonic function giving (T, _L) ~ T and (_1_, T) ~-~ T which can be drawn as

(T,T)

(T, ~ _) ~ (±, T)
(i , l)

encircling the minimal points at which T is output. This function cannot be realised according to
the operational semantics of many languages because often they are deterministic and so cannot
express functions like this one which examines its two arguments in parallel. It is not a sequential
function.

We seek a definition of sequential function between domains based solely on the s tructure of
the domains themselves. Two early definitions of sequential function were proposed independently
by R.Milner and J.Vuillemin. These depend on viewing a function f : D1 × ' " × D~ ~ E between
domains as having n arguments x = (Xl , . . . ,x~ , . . . ,x~) (viewing the function as having more or
less arguments may change its character according to these definitions!) Assume f is a continuous
function.

Then f is M-sequential (Milner) iff either it is constant or there is an integer i (with 1 < i < n)
such that f is strict in its i th argument (i.¢. xi = • ::> f(x) = t_) and the function obtained by
fixing its i th argument is M-sequential.

On the other hand, f is V-sequential (Vuillemin) iff it is a constant or there is an integer i (with
1 < i < n) such that

for any x , y E Do × --- × D1.

Note the definitions depend on the grouping of argument places, and in particular that if
we regard x as occupying a single argument place the function f would then be both M and V
sequential. The two above definitions of sequential do not agree in general. However, importantly,

341

they do coincide and appear correct in the s i tua t ion where D o , . . . , D1 and E are fiat domains , i .e .
those for which d = 2 or ± -< d for all e lements d.

G . K a h n and G.P lo tk in sought a very general defini t ion of sequent ia l funct ion which unlike M
and V sequent ia l i ty was independen t of the way t h a t the funct ion was viewed as hav ing a rgumen t s .
Reasonably, the definit ion should agree wi th M and V sequent ia l i ty in the case where the domains
D1 , . . •, D~ and E are flat. They achieved this by ax iomat is ing a wide class of domains for which
there was a na tu ra l definit ion of places accessible f rom a point . Places are a genera l i sa t ion of
a rgument -p laces of funct ions. Unlike a r g u m e n t places, however, places are defined independen t ly of
the way the domain is viewed as a product . The i r definit ion of sequential then agrees locally wi th M
or V sequentiali ty. Recognising t ha t the not ion of sequent ial depended on the na tu re of the p rog ram
terms denoted in the domains they chose to axiomatise only the first -order domains consis t ing of
basic inpu t or o u t p u t values and so include domains of integers, t r u t h values, tapes and trees.

K a h n and Plotkin first axiomat ised the concrete domains and then discovered they could be
represented by a concrete data structure (ra ther like a Petr i net) . Our p resen ta t ion is the o ther way
round. A concrete da t a s t ruc tu re consists of places which can be occupied by at mos t one of a set
of events. In general a place may not be occupied immedia te ly but must wai t unt i l this is enab led
by cer ta in events. A place may be thus enabled by several different sets of events. (As an example
the n t h place of a list is enab led by the event of making the (n - 1)th entry. We now give the formal
defirdtion of a concrete da t a s t ruc tu re M and its configurat ions.

A concrete data s t r u c t u r e C is a quadrup le (P, E , I, }-) where:

P is a set of places,

E is a coun tab le set of events,

l is a funct ion from E onto P locating events at places,

[= is a subset of F i n e x P called the enabl ing relat ion.

Such a concrete da t a s t ruc tu re de termines an event s t ruc tu re and so a family of conf igurat ions .
The events are the same. Define the consis tency predicate by

X ~ C o n ~ X C / i , ~ E & Ve, e ' ~ X . l (e) =f(e ') ~ e - e ' .

Thus events are not allowed to occur together if they occupy the same place. Define the enabl ing
on the event s t ruc tu re by

X ~-evv 3 Y C X , p ~ P . Y ~ p & l (e) = p ,

for X #2 Con and e ~ E. The configurat ions of C, wr i t ten jr(C), are taken to be the conf igura t ions
of the associated event s t ruc ture . Say C is stable iff the associated event s t ruc tu re is.

Domains which are isomorphic to (7 (C) , c_) for some concrete da t a s t ruc tu re C are said to be

concrete.

The following definitions are i m p o r t a n t in defining sequent ia l functions.

Let C be a concrete da t a s t ruc ture . Suppose x ~ Jr(C) and p is a place of C.

Say x {il/s p iff 3e E x. l(e) - p.

342

Say p is accessible from x iff x does not fill p and ~X C x. X t= p.

Write p(x) for the set of places accessible at x.

For x ,y in Jr(C) and a place p write x v ~ y iff x E y and p is accessible from z and y fills p.

Thus we can tentat ively define a function f : Jr(C0) ~ 7(C~) to be sequential if it is sequential
at all x in Jr(C0) where this means

Vp' E p(f (x)) . ([~z. x E z & f (x) P'-~ f(y)}

~p e p(x). IVy. ~ C y ~ f(~) P' , f(y) ~ ~ ~ y]).

This says to fill p~ accessible from f (x) there is some p accessible from x which must be filled; it
generalises V-sequentiality. Of course, it is not immediately dea r that this definition gives the same
notion of sequential for different ways of generating isomorphic domains. This is the case however, a
fact which follows from the particular representation provided for concrete domains in [W, BC, C].

We shall not give the most general representation theorem here but mention a simpler one in
the case when the concrete data structure is stable. It involves an axiom called Q by Kahn and
Plotkin.

1 .5 .1 T h e o r e m .
Let C be a stable concrete data structure. The family of configurations ordered by inclusion

forms a finitary prime algebraic domain which satisfies

(Q) x i ~ y & x ~ z & x] (y = > 3 ! t E y , x ~ t & t / z .

Let D be a finitary prime algebraic domain which satisfies axiom (Q). Then D is a concrete
domain.

Proof. It is easy to check stable concrete da ta structures satisfy (Q) and the other properties have
already been dealt with for event structures. We omit the construction which shows that the domains
mentioned are concrete. Proofs can be found in [KPI, [W 1 or {C 1. A key idea is to recover places
from the domain as equivalence classes of prime intervals under the least equivalence relation ~ such
that

((c = d & c ' Z d ') or [c,c' l ~ [d , d ']) ~ [c , c ' } ~ [d , d '] .

As we have already seen events can be recovered as equivalence classes of prime intervals under ~.
|

1.6. A c o m p l e t e p a r t i a l o r d e r o f e v e n t s t r u c t u r e s .

There is a useful ordering o n event structures which is a representation of the notion of rigid
embedding in [KP i. t t is useful for giving meaning to recursively defined event structures. The order
is based on an idea of substructure.

1.6.1 D e f i n i t i o n . Let E0 = (E0,Con0, t-0) and E1 = (E l ,Con1 , ~-1) be event structures. Define

E0 ~ E1 ¢*E0 c E l ,

VX. X C C o n 0 ¢vXC_ E0 & X E C o n l and

VX, e. X ~-o e ca X G Eo & e E Eo & X ~l e.

343

In this case say Eo is a subs t ruc ture of E l .

The notion of substructure is closely tied to that of restriction, an important operat ion in its
own right.

1.6.2 D e f i n i t i o n .
of E to A to be

where

Let E = (E, Con, ~-) be an event structure. Let A C_ E. Define the restriction

EIA = (A, ConA, F-A)

X C COnA ¢=~ X C A & X E Con,

X ~ A e z ~ X C A & e E A & X ~ - e .

1.6.3 P r o p o s i t i o n . Let E (E, Con, ~-) be an event s tructure . Let A C_ E . Then E[A is an
event s tructure.

Le t Eo = (Eo, Cono, ~o) and E1 = (El , Con1, ~1) be event s tructures. Then

Eo~E1 ~Eo=EI[Eo.

I f Eo ~_ E1 and Eo = E1 then Eo = El .

Proof. Obvious from the definitions. |

This clefinition of substructure almost gives a complete part ial order (cpo) of event structure.s.
There is a least event structure, the unique one with the emptyset of events. Each w-chain 6f
event structures, increasing with respect to ~ has a least upper bound, with events, consistency and
enabling relations the union of those in the chain. But of course event structures form a class and
not a set and for this reason alone they do not quite form a cpo. We call structures like cpos but
on a class rather than a set large cpos. This is all we need. (Very similar approaches for solving
domain equations, or equations for structures like domains, occur in [C], [LW], [W1], [A] and IS1].)

1.6.4 T h e o r e m . The relation ~_ is a part ial order on event s tructures . It has a least event s t ruc ture
0_ =gel (O,{O},0). An w-chain o f event s t ructures Eo ~_ E l . . . ~_ E,~ ~ . . . where E,~ = (E,~, Conn, ~-~)
has a least upper bound

Proof. Routine. |

It is easy to extend the substructure relation to n- tuples of event structures. They form a large
cpo too.

1.6.5 D e f i n i t i o n . Write IIj for the project ion map H / (E 0 , . . . , E n - 1) = E 1 on n- tup les of event
structures. For n- tuples ,

f I t _ . . , E n _ l) iff & E,~- i ~_ E n _ l . (E0 En-1) ~ (E0,. Eo~_E~ - . - &

1.6.6 P r o p o s i t i o n . For a part icular integer n, the relation ~ is a part ial order on n - t u p l e s
o f event s t ruc tures wi th least e lement (_0,... ,0_). There are least upper bounds o f increasing w-
chains in n - t u p l e s o f event s tructures; in each coordinate j the least upper bound U i E i o f a chain

E0 _~ E1 " " ~ en ~" . . E satisfies n j (U , E ,) = U , H j (E d .

344

Thus , as an example, the above proposi t ion says the project ion maps II 3 are con t inuous on
tuples of event s t ruc tu res ordered by ~.

For tuna te ly in reasoning abou t the monotonic i ty and cont inui ty of an opera t ion we need only
consider one input coordina te and one o u t p u t coordina te at a t ime because of the following facts,
we l l -known for cpos.

1 .6 .7 P r o p o s i t i o n . Let F be an operation on n- tuples of event structures.
It is monotonic, respectively continuous, (with respect to ~) iff it is monotonic, respectively

continuous, in each argument separately (i.e. considered as a function in any one of its argument,
holding the others fixed).

Similarly it is monotonic, respectively continuous, (with respect to ~_) iff it is monotonic, re-
spectively continuous, considered as a function to each output coordinate (i.e. each function H i F
is continuous for j < n).

Thus in verifying t h a t an opera t ion is monotonic or cont inuous we u l t imate ly have to show
cer ta in unary opera t ions are cont inuous wi th respect to the subs t ruc tu r e re la t ion ~. The next
l emma will be a great help in proving operat ions cont inuous . General ly it is very easy to show t h a t
a una ry opera t ion is monotonic wi th respect to ~ and cont inuous on the sets of events, a not ion we

now make precise.

1 .6 .8 D e f i n i t i o n . Say a u n a r y opera t ion F on event s t ruc tu res is continuous on events iff for any
u - c h a i n , E0 ~_ E1 --- ~_ E,~ ~_--. E , each event of F ((J /E i) is a event of U~F(Ei) .

1 .6 .9 L e m m a . Let F be a unary operation on event structures. Then F is continuous iff F is
monotonic with respect to ~ and continuous on events.

Proof.

only if: obvious.

if: Let E0 ~ E l - - " 5 E~ _~... E be an u - c h a i n of event s t ructures . Clearly UiF(E~) fl F ((J iE ,)
since F is assumed monotonic . Thus from the a s sumpt ion the events of U~F(Ei) a re the same as
the events of F((.JiEi). Therefore they are the same event s t ruc tu re by propos i t ion 1.6.3. I

Now we relate the s u b s t r u c t u r e re la t ion on event s t ruc tu res to cor responding relat ions on fam-
ilies of configurat ions and domains . The s ubs t r uc t u r e re la t ion represents the rigid embeddings of

K a h n and Plotk in [KP].

1 . 6 . 1 0 D e f i n i t i o n . Let Do and D1 be domains. Let f : Do ~ D1 be a cont inuous funct ion. Say
f is an embedding iff there is a cont inuous funct ion g : D1 -+ Do, called a projection, such t h a t

gf(d) = d for all d E Do and

fg(c) U_ c for all c E D t .

Say f is a rigid embedding iff it is an embedd ing wi th project ion g such t h a t

c E_ f(d) => fg(c) = c

for all d C Do,c E D1.

1 . 6 . 1 1 P r o p o s i t i o n . Let Eo and E1 be event structures such that Eo ~_ El . The inclusion m a p
i : 3r(Eo) - , 3r(E1) is a rigid embedding with projection j : ~r(EI) -* 3r(Eo) given by j (y) = U { x E

Z(Eo) 1 • ~ Y} fo, ~ e Z(E~).

345

Proof. Straightforwgrd. II

It is well-known that continuous functions on cpos have least fixed points and the argument is
vir tual ly the same for continuous operations on large cpos.

1 .6 .12 D e f i n i t i o n . Let D be a large cpo ordered by ~, with least upper bounds U X when they
exist. Let F be a continuous operation on D. Define fix F to be the least upper bound

U,,.~ F'(~).

1.6 .13 P r o p o s i t i o n . For the situation in the above definition, the element fix F o l D is the least
fixed point of F.

We finish this section with a simple example of a recursively defined event s t ructure. The
operat ion we consider is that of prefixing (sometimes called lifting, or guarding) whose effect on an
event structure is to adjoin an extra initial event. Then once it has occurred the behaviour resumes
as that of the original event structure.

1 .6 .14 D e f i n i t i o n . Let a be an event. For an event structure E = (E, Con, k) define aE to be
the event structure (E ' , Con' , ~_r) where

E ' = {(0, a)} U {(1, e) I e C E},

X E Con' ¢* {e t (1,e) 6 X} e Con,

X ~ - ' e ' c = ~ e ' = (0 , a) or [e ' = (1,el) &: (0, a) e X & {e] (1,e) E X } ~ e,].

1 .6 .15 P r o p o s i t i o n . For any event a the operation a() is g. continuous on event structures. The
least fixed point fix a(has events in 1-1 correspondence with strings in the regular language l*0a;
any finite subset of events is consistent and the enabling relation satisfies

0 ~-Oa,

X ~- l~Oa ¢v {Oa,--- , ln- lOa} C X,

for n > 1. In fact the map l=0a ~-~ (n + 1) gives an isomorphism fix a() ~ f~-- the two event
structures are the same but for renaming of events.

Proof. Exercise. |

One thing may be puzzling the reader; why do we build a large cpo from the relation ~ ra ther
than the simpler relation based on coordinatewise inclusion of an event s t ructure in another? This
is a part ial order and does indeed give another large cpo and in many cases does suffice. However
it suffers a drawback; the function space construct ion on event s t ruc tures- -def ined in part 4 - -whi te
being continuous in its right argument is not even monotonic in its left a rgument with respect to
this inclusion order.

2. E V E N T S T R U C T U R E S E M A N T I C S O F C O M M U N I C A T I N G P R O C E S S E S .

Event structures are applied to give a non-inter leaving semantics to parallel p rogramming lan-
guages like CCS and CSP, based on the idea that processes communicate by events of synchronisa-
tion. There are natural morphisms between event structures including for example morphisms which

346

project the events of a parallel composit ion to events of its components. Useful constructions like
parallel composition and sum of event structures are derived simply from from categorical construc-
tions. These yield abstract characteris~tions of constructions to within isomorphism. Morphisms on
event structures induce morphisms on other classes of models like trees. The relationship between
models can often be expressed as a corefiection between categories. Because of the way coreflections
preserve limits and colimits, this leads to a smooth translat ion between semantics in terms of one
model and semantics in terms of another. Then there are adjunctions between with other models
and semantics in terms of them can be expressed as adjunctions

2.1. M o r p h i s m s t o e x p r e s s s y n c h r o n i s a t i o n .

Here, in part 2, we choose a part icular interpretat ion of events. They are to be either internal
actions or actions of synchronisation of the kind that appear in CCS and CSP (see [M1, 2], [H,
HBR]). Henceforth, we shall deal mainly with stable event structures.

2 .1 .1 N o t a t i o n . We shall be working with partial functions 0 on events. We indicate that 0 is
a partial function from E0 to E1 by writing 0 : E0 --** E l . Then it may not be the case that 0(e)
is defined and sometimes we use * to represent undefined, so 0(e) = * means the same as 0(e) is
undefined. It is a nuissance when using predicates like 0(e) E X to always have to say "provided 0(e)
is defined". Instead we adopt the convention that the basic predicates of equality and membership
are strict in the sense that if they mention 0(e) this implies 0(e) is defined. Under this convention,
for example,

O(e) e X =~ O(e) is d.efined, and

O(e) = O(e') ~ e(e) is defined & e(e') is defined.

As usual we represent the image of a set under a partial function by

OX= {O(e) I e e X & O(e) is defined}.

Here morphisms are introduced which show the way. in which the occurrences of events of in
one process imply the synchronised occurrences of events in another process.

2 .1 .2 D e f i n i t i o n . Let E0 = (Eo, Cono, ~o) and E1 = (E , , C o n l , k l) be stable event structures.
A (partially synchronous) morphism from E0 to E1 is a part ial function 0 : E0 --~, E1 on events
which satisfies

(i) X E Con0 ~ OX E Conl ,
(ii) { e , e ' } E C o n 0 & O(e) = 0 (e ') ~ e - e ' a n d
(iii) X ~-0 e & 0(e) is defined ~ OX ~1 O(e).

Say a morphism is synchronous if it is a total function.
(Note by the convention stated in 2.1.1 the t ruth of 0(e) = 0(e') asserts also that 0(e) and 0(e') are
defined.)

For a morphism 0 : Eo --+ E1 on event structures an event e is imagined to synchronise with
the event 0(e) whenever it is defined. The partial function 0 preserves consistency (i) and enabling
(iii) and (ii) expresses tha t it preserves events in the sense that no two distinct events which are
consistent with eachother can together synchronise with a common event in the image. When 0 is
synchronous every occurrence of an event of E0 is linked to a synchronised occurrence of an event
in E l .

347

2.1.3 P r o p o s i t i o n .
Stable event structures with morphisms of event structures form a category with composit ion

the usual composition of partial functions and identity morphisms the identity functions on events.
Stable event structures with synchronous morphisms form a subcategory.

2.1.4 D e f i n i t i o n .
Write E for the category of stable event structures with morphisms of event structures.
Write Esu~ for the category of stable event structures with synchronous morphisms.

As one would hope morphisms preserve configurations.

2.1.5 P r o p o s i t i o n . Let 0 : Eo ~ Ea be a morphism of stable event structures. Then

Proof. Let x E Y'(E0). Any finite subset of Ox is the image of a finite subset of x which is consistent.
Thus by property (i) in the definition of morphisms we see Ox is consistent. Suppose 9(e) C Ox.
Then, by (iii), the image of a securing for e in x forms a securing for 0(e) in Ox. Hence Ox C ~r(E1).
The additional property follows directly from (ii). II

Similarly, morphisms between event structures induce functions on domains.

2 .1 .6 D e f i n i t i o n . Let (D0,E_0) and (D1,E1) be partial orders. Let f be a function f : Do -* D1.
Say f is

(i) additive iff
V X C_ Do. 'X T ~ f ([J X) = U f X ,

(ii) stable iff

VXC_D0. X # 0 & XT==>f([IX) = l] f X ,

(iii) ~_-preserving iff

Vx, a:' E Do. x < x' :::> f (x) ~_ f (x ') ,

(iv) -<-preserving iff

vx, ~' c Do • ~ ~ ' ~ f(~) -< f (~ ')

(We use x -:< x I to mean x = x t or x ~ x/.)

2 .1.7 P r o p o s i t i o n . Let 0 : Eo --+ E1 be a morphism of stable event structures. Then the
function x v-+ Ox from ~r(Eo) to 7(Ex) is additive, stable and X-preserving. I f O is synchronous then,
moreover, it is ~<-preserving.

Proof. Easy. !

Note incidentally that the substructure relation is associated with a morphism.

2.1.8 P r o p o s i t i o n . Suppose Eo <_ El. Then the inclusion map i : Eo ~ E1 is a synchronous
morphism.

Proof. Obvious. II

348

2.2. C o n s t r u c t i o n s o n e v en t s t r u c t u r e s .

The categories E and Esy,~ have produdts and coproducts. Of course like all limits and colimits
they are determined uniquely up to isomorphism. They are intuitively na tura l constructions and
provide a basis for defining and proving relations between different semantics for languages like
P r o c L . They generalise and make more uniform and less ad hoe the kind of constructions used in
iF] and [MS], and elsewhere.

2 .2 .1 D e f i n i t i o n . Let E0 = (Eo, Con0, k-0) and E1 = (El ,Con1, k-l) be stable event structures.
Define their partially synchronous product E0 × E1 to be the structure (E, Con, t-) consisting of
events E of the form

E o x ~ E l : { (e 0 , *) I e o C E o } U { (* , e l) [e~ e E 1 } U { (e o , el) [e o e E o & et E E I } ,

the product in sets with partial functions with projections rq : E --+~ Ei, given by ~ri(eo, el) - e:,
for i = O, 1, consistency predicate Con given by

X E C o n e v (X C _ f i n E & r roXCCono & 7 r l X C C o n l &

w , g e x.(,~o(e) = ,~o(~') or ~, (e) = , u (g) ~ = g)) ,

enabling relation k- given by

' X k - e ~ X E C o n & e C E &

(~ro(e) is defined ~> ~roX k-o 7to(e)) & (~rl(e) is defined ~z 7rtX k-1 rq(e)).

2 .2.2 T h e o r e m . The partially synchronous product Eo × El of two stable event structures Eo
and El, with projections ~ro and 7rl, is a product in the category E.
The product is continuous with respect to ~.

Proo£ Clearly E0 × El is an event structure, which we shall assume is (E, Con, k-). It is also s t ab le - -
the proof uses both parts in the definition of Con. It is easy to see that the projections r0 and ~rl
are morphisms. Assume 00 : E' -+ E0 and 01 : E' -÷ Et are morphisms from a stable event s tructure
E' = (E' , Con' , k-'). To be a product we require that there is a unique morphism 0 : g ' --~ E0 × E1
making the following diagram commute:

Eo × E1

OI l - E1

E'

Because the events and projections E0 x ~ E l , ~r0, 7rl are a product in the category of sets with partial
functions there is no doubt about the uniqueness of ~; if it exists it is the partial function which acts
on an event e of E' according to

0(e) = (eo(e),e,(e))

with the understanding that (*, *) is interpreted as undefined. (Recall our use of * for undefined.)
Thus it onty remains to show that 8 as defined is a morphism g ' -+ Eo × E, , i.e. that conditions {i),
(ii) and (iii) hold in 2.1.2:

(i) Let X ~ C o n I. We require 0X C Con. But certainly r k O X - - O k X ~ _ Conk, f o r k = 0 , 1 , a seach
Ok is a morphism. Further if e,e' C O X then e,e ' have the form e - O(t),e = O(t'). If ~rk(e) - rrk(e'),

349

for k = 0, 1, then Ok(t) = ~rkO(t) = ~rkO(t') = Ok(t'). As both Oo and 01 are morphisms, in either
case, k = 0 o r k = 1, we o b t a i n t = t l s o e - e ~.

(ii) and (iii) use arguments of a similar style and are left to the reader.

Finally, we see that x is fl-continuous by an application of lemma 1.6.9. It is s t ra ightforward
to check that it is monotonic and continuous on events for each argument separately, and so is
<-continuous. II

We characterise the configurations of the product of two event structures in terms of their
configurations.

2.2.3 P r o p o s i t i o n . Let Eo × E1 be the product of stable event structures with projections ~ro, ~rl.
Let x C Eo x . El , the events of the product. Then x C Y(Eo x El) iff

(a) ~rox e Y(Eo) & ~ lx ~ .T(EI),

(b) Ve, e' C x. ~o(e) = ~o(e') or ~1(~) = ~l(e ') ~ ~ = e',

(d) V e E x 3 y C x . ~ r o y E Jr(Eo) & ~r~y~Jr(E,) & e ~ y & lY[< ° a and

(c) ve , e ' e ~. e ¢ e' ~ 3y c z . ~o~ ~ 7 (Eo) & ~ y E ~(E~) & (e ~ y ~* e' ¢ y).

Proof. Routine. I

R e m a r k . Refer to [Wll(examples 3.11 and 3.12) for examples which show the necessity of properties
(c) and (d) for the "if" direction of the proof.

2.2.4 E x a m p l e .

look like:

The configurations of the product of two trees

(1, ,) ~ " ' ~ '
~ (*,2) "/l (1,*)

(0, , 1 ~ . I ~
(,,2)

2.2.5 D e f i n i t i o n . Let Eo = (E0,Cono, ~-0) and E1 = (E l ,Con1 , ~-1) be stable event s tructures.
Their synchronous product, E0 ® El , is defined to be (E0 × E l) [E 0 × E~.

2 .2 .6 T h e o r e m . The synchronous product Eo x E1 of two stable event structures Eo and El ,
with projections the restrictions of 7to and ~rt, is a product in the category of event structures with
synchronous morphisms, Es~n.

350

The operation ® is <a-continuous.

Proof. This proof is similar to the proof for the product but this time the underlying category of
events is that of sets with total functions. I

2 .2 .7 E x a m p l e . Let E = (E, Con, }-) be a stable event structure. Let fl be the event s tructure
defined in 1.1.4 (the "ticking clock"). Then E®fl has events E × w , consistent sets those X C_/in E x w
such that

(V(e ,n) , (e ' ,n ') 6 X. ¢ = e ' or n : n ' = ~ (e,n) = (et, n ') , ~roX E Con &

and enabling
x ~- (e ,n) ~ [n - 11 <_ ~ l x & ~ o X ~ ~.

Thus the configurations are "sequences"

{(e0,0), (e l , G . . . , (e ~ , n) , - - . }

of distinct events from E such that {e0, e l , ' " ,en} E Y(E) for all n.

2 .2 .8 D e f i n i t i o n . Let Eo = (Eo, Cono, }-0) and E1 = (E~,Con~, ~-1) be stable event structures.
Their sum, Eo + El , is defined to be the structure (E, Con, }-) with events E = {(0, e) t e E Eo}U
{(0, e) t e E El} , the disjoint un ion of sets Eo and E l , with injections ek : Ek --* E, given by
~k(e) = (k, e), for k = 0, 1, consistency predicate

X C Con Ca (3X0 C Con0. X = toXo) or (~Xt E Con1. X =/,1Xl),

and enabling relation

X t - e C a X E C o n & e E E &

[(3 X o e C o n o , e o e E o . X = e o X o & e=Lo(eo) a Xo ~-oeo) or

(3X, e COnl,et E El . X = t , IX 1 & e = ~1(¢1) & X', }-1 e,)].

2 .2 .9 T h e o r e m . The sum Eo + El of two stable event structures Eo and El, with injections ~o
and L1, is a coproduct in both the categories E and E ~ .
The operation + is <:-continuous.

Proof. It is easy to check that the sum is a stable event s tructure and that the injections are
synchronous morphisms. Assume 00 : E0 --* E' and 81 : El --* E' are morphisms from a stable event
s tructure E'. To be a coproduct we require that there is a unique morphism 0 : E0 + E1 --* E'
making the following diagram commute:

Eo + El

/
0 E1

E I

Because the disjoint union of events with injections is a coproduct in the underlying category of sets
with partial functions the uniqueness of 0 is guaranteed. It is a simple mat te r to check that this
unique 0 is a morphism. Moreover if 00 and 01 are synchronous then so is 0 ensuring that the sum
is also the coproduct in Esun.

351

The continuity of + follows directly by lemma 1.6.9. |

It will be useful to consider more general sums as is done for t ransi t ion systems and trees in
the work on CCS and SCCS (see e.g. [M1,2]); this will help in relat ing our work to Milner 's .

2 .2 .10 D e f i n i t i o n . Let Ek = (Ek, Conk, t-k), for k C K , be a set of stable event s t ructures
indexed by a set K. Define their indexed sum, ~keKEk, to consist of events E = {(k,e) t e E Ek},
the disjoint union of events, with injections ~k : Ek -+ E , for k E K , consistency predicate Con,
where

X E Con ¢~ 3k C K. 3Xk E Conk. X = ~kXk

and enabling relation ~-, where X ~- e iff

XC Con & e C E & (3k C K ~ X k , e k . X = LkXk & e : Lk(ek) & Xk ~-k ek).

We understand the empty sum to be the null event s t ructure ~_.

2 .2 .11 P r o p o s i t i o n . Let Ek = (Ek, Conk, ~-k), for k C K , be a set of stable event structures
indexed by a set K with injections ~k for k E K.
It is a coproduct in E and Esu=.
It is a continuous K - a r y operation with respect to ~_.
Also

Proof. Obvious. |

Sums of event structures induce simple operations on families of configurations; for example
configurations of E0 + E1 consist of copies, after renaming events, of the configurations of Eo and
El . Intuitively a sum has the capabilities of its components.

2.3. S y n c h r o n i s a t i o n .

Individually a process P0 is thought of as capable of performing certain events. Some of them
may be communications with the environment and others may be internal events. Set in parallel
with another process PI an event e0 of P0 might synchronise with an event el of P1. Whether they
do or not will of course depend on what kinds of events e0 and el are because P0 and P1 can only
perform certain kinds of synchronisation with their environments. But if they do synchronise we
can think of them as forming a synchronisation event (eo, el) . The synchronisation event (e0,el)
has the same effect on the process P0 as the component event e0 and similarly on P1 has the same
effect as the event el.

Of course generally not all events of P0 will synchronise with events of Pt; there might be an
internal event of P0 for example which by its very nature cannot synchronise with any event of PI.
So we cannot expect all events of the parallel composit ion to have the form (e0,el). Some will have
no component event from one process Or the other. We can represent these events in the form (e0, *)
if the event e0 of P0 occurs unsynchronised with any event of P1 or (*, e l) if the event el of P1 occurs
unsynchronised. The * stands for the absence of an event from the corresponding component .

Thus we can view synchronisation as forming compound events from component events; a
synchronisation event is viewed as a combinat ion of events from the processes set in parallel. Whether
or not synchronisations can occur is determined by the nature of the events. We use the idea of a
synchronisation algebra to specify how events synchronise. We label events of processes to specify

352

how they interact wi th the env i ronment , so associated wi th any par t i cu la r sychron isa t ion Mgebra
is a par t icu lar paral lel composi t ion. By specialising to par t icu lar synchron isa t ion a lgebras we can
ob ta in a wide range of parallel composi t ions .

A synchronisation algebra, (L , . , *, 0), consists of a binary, commuta t ive , associat ive opera t ion *
on a set of labels which always includes two dis t inguished elements * and O. The b ina ry opera t ion *
says how labelled events combine to form synchron isa t ion events and w h a t labels such combina t ions
carry. No real events are ever labelled by * or O. However the i r in t roduc t ion allows us to specify the
way labelled events synchronise wi thou t recourse to par t ia l opera t ions on labels. I t is required t h a t
L \ {*,0} ¢ O.

The cons tan t 0 is used to specify when sychronisa t ions are disallowed. If two events labelled)~
and A r are not supposed to synchronise then the i r composi t ion A • .V is 0. For th is reason 0 does
indeed behave like a zero wi th respect to the "mul t ip l ica t ion" • i.e.

VAE L. A - 0 = 0 .

In a synchronisa t ion algebra, the cons tan t * is used to specify when a labelled event can or
canno t occur asynchronously. An event labelled A can occur asynchronously iff ,~ • * is not O. We
insist t h a t the only divisor of * is * itself, essentially because we do not want a synchron isa t ion event
to disappear . We require

VA,A I C L . A . 3 , / = * ¢ : > A = A I = * .

We present two synchronisa t ion algebras as e x a m p l e s - - m o r e can be found in [W1,2 I.

2 .3 .1 E x a m p l e . The synchronisation algebra for CCS--no value passing: In CCS [M11 events
are labelled by a , # , - . , or the i r complements ~ ~ , - . . or by the label r . The idea is t h a t only two
events bear ing complemen ta ry labels may synchronise to form a synchronisa t ion event label led by
r. Events labelled by r canno t synehronise fur ther; in this sense they are invisible to processes in
the envi ronment , t hough the i r occurrence may lead to in ternal changes of state. All labelled events
may occur asynchronously. Hence the synchron isa t ion algebra for CCS takes the following form.
The resu l tan t parallel composi t ion, of processes p and q say, is represented as Plq in CCS.

a 0 r 0 0

r 0 0 0

f l 0 0 0 T

• - - r 0

- . . r 0
• .- 0 0
• . . 0 0
--- 0 0

2 .3 .2 E x a m p l e . The synchronisation algebra for n in CSP: In the form of CSP in [H, HBR, Bk]
events are labelled by a , 3 , - - - . There are also silent moves and following the more opera t iona l
semant ics in [Bk} we label t h e m by r. For its parallel composi t ion 1[events mus t "synchronise on"
a , ~ , - . . . In other words non-v - l abe l l ed events canno t occur asynchronously. Ra the r , an a - l a b e l l e d
event in one componen t of a parallel composi t ion mus t synchronise wi th an a - l a b e l l e d event f rom the
o the r componen t in order to occur; the two events m u s t synchronise to form a synchron i sa t ion event
again labelled by a . The synchronisa t ion a lgebra for this paral lel composi t ion takes the following
form.

• * (3(, ,,,~

• " * 0 0

a] O a 0

• " " T

" ' " T

• .- 0
. . . 0

0

0

0
0

Using synchronisation algebras one can define a generic programming language, inspired by
CCS, SCCS and CSP but parameterised by the synchronisation algebra. For a synchronisation
algebra L, the language P r o c L i s given by the following grammar:

t : := nil I x t At (t + t (t (~ t)t[A) t[~] I recx.t

where x is in some set of variables X over processes, A C L \ {*, 0}, A C L \ {*, 0}, and • : L -+ L is
a relabelling function preserving * and 0 and such that ~(A) = * ~ A = * and ~(A) = 0 ==~ A = 0 -
otherwise it would not lead to a sensible labelling of events.

We explain informally the behaviour of the constructs in the language P r o c L . The behaviour
can be described accurately by the models presented in the next sections. Roughly, a process
of P ro ccde t e rmines a pat tern of event occurrences over time. The nature of the events, how
they interact with the environment, is specified by associating each event with a label from the
synchronisation algebra L. The term nil represents the nil process which has s topped and refuses to
perform any event. A prefixed process At first performs an event of kind A to become the process
t. A sum t + t ' behaves like t or t '; which branch of a sum is followed will often be determined by
the context and what kinds of events the process is restricted to. A parallel composition process
t (~) ff behaves like t and t ~ set in parallel. Their events of synchronisation are those pairs of events
(e0, e l) , one from each process, where eo is of kind .k0 and el is of kind A1 so that A0 • A I ¢ 0; the
synchronisation event is then of kind A0 * A 1. The restriction t [£ behaves like the process p but with
its events restricted to those with labels which tie in the set £. A relabelled process t [- =] behaves like
p but with the events relabelled according to ~. A closed term reex.t recursively defines a process x
with body t.

2.4. D e n o t a t i o n a l s e m a n t i c s .

We sketch how to give denotat ional semantics to a range of simple parallel p rogramming lan-
guages PrOcLwhieh despite their simplicity, by varying the synchronisation algebra L, include pure
CCS (just synchronisation, no value-passing [M1]), SCCS (synchronous CCS [M2]) and the bet ter
part of (theoretical) CSP of [HBR] but with just one parallel composit ion.

To pin down the intuitions given earlier we can take each closed t e rm in P r o c L a s denoting a
labelled event structure. This is simply an event structure E, with events E labelled by elements
of L, and so a structure (E,I) where l : E -~ L \ {%0}. Parallel composit ions of event s tructures
are defined with respect to a synchronisation algebra which specifies those pairs of events which can
synchronise, those which cannot and those which may occur asynchronously.

2 .4 .1 D e f i n i t i o n . Let (E0,lo) and (E l , / l) be labelled event s tructures with events Eo and E l
respectively. Assume their labels lie in a synchronisation algebra L = (L, *, *,0). Define their
parallet composition

(~:o,to) ® (E, ,I1) : ([E0 × E~][S ,0

354

where
S ={e E E0 x~ E t f lozro(e) • ll~rl(e) ¢ 0} and

l(e) =~0~0(e) • h~l(e)

the set of allowed events in the composition, and for any event e of the composition. The other
operations are simple to define; prefixing, sum and restriction are just as before but taking account
of labels, and the operat ion of retabelling simply alters the labelling function.

In order to give a meaning to the recursivety defined processes of the form recx.t we use the fact
that the operations are continuous with respect to a large c.p.o, of labelled event structures. The
large c.p.o, of event structures ~ extends natural ly to labelled event structures in such a way that
operations like parallel composition are continuous.

Let L be a synchronisation algebra. Define the ordering ~L on labelled event structures by:

(E0,/0) St. (E1,/1) ~=~E0~_E1 & 1 0 = l l [E o ,

where Eo is the set of events of E0. The null labelled event structure (0, 0) is the least L- label led
event structure with respect to -~L' Of course, --~L has least upper bounds of w-chains; the lub of
a chain (E0,/0), (E l , / l) , . . . , (E~,ln) takes the form (U,~En,Unln). All the operations prefixing,
sum, restriction, relabelling and parallel composit ion are continuous with respect to ilL. Thus we
can give a denotational semantics to P r o c L b y representing recursively defined processes as the least
fixed points of continuous operation.

2.4.2 D e f i n i t i o n . Denotationat semantics for PrOCL: Let L be a synchronisation algebra. Define
an environment for process variables to be a function p from process variables X to labelled event
structures. For a te rm t and an environment p, define the denotat ion of t with respect to p wr i t ten
~t~p by the following s tructural induction. Note syntactic operators appear on the left and their
semantic counterparts on the right.

~nil~p =(0, O) ~t IA~p =~t~p IA
Izlp , =p(z) ~t[E]lp =It lp[~ =]
~At~p =A(~t~p) ~tl @ t2]p=~tl ~p 0 ~t2]p
~tl + t2~p=~tl]p + ~t2]p ~recx.t~p =fix F

where r is an operation on labelled event structures given by r(E) = It~p[E/x] and fix is the
least-f ixed-point operator.

R e m a r k . A straightforward structural induction shows that F above is indeed continuous with
respect to 9.~, so the denotat ion of a recursively defined process is really the least fixed point of the
associated functional F.

Choosing L to be the appropriate synchronisation algebra we immediately obtain denotat ional
semantics for CCS, SCCS and CSP with one parallel composition. Of course, in the semantics
of CCS, for example, denotations of processes carry far more detail than the semantics generally
given. In particular they include information about the concurrency or causal dependence of events,
information which is missing from the interleaving semantics in [M1, 21 . Results from the next section
show how the semantics relates to Milner 's in [MI!; as you would expect Milner 's synchronisation
tree semantics is obtained by serialising, or interleaving, the denotations of the event s t ructure
semantics.

355

2 . 5 . O t h e r c a t e g o r i e s .

We have given denotational semantics to P r o c L i n terms of event structures. In a similar way
we might give semantics using families of configurations, domains, prime event s t ructures, or trees.
All such classes of structures form categories too with morphisms induced by those on stable event
structures.

2 . 5 . 1 D e f i n i t i o n .
A morphism between stable families of configurations F0, F1, of events Eo, E1 respectively, is a

partial function 0 : E0 -~. E1 such that

V x E F o . [0 x E F I & (Ve,e'Ex.O(e) = 0 (e ') = > e = e ') l .

It is synchronous when 0 is total.
A morphism between prime event structures (Eo,Conn,_<o) and (El,Con1,_<_1) is a partial

function 0 : Eo --% E1 such that

ge C Eo. 0(e) is defined => [0(e)] _C 0[el &

V X e Cono. lex e C o n , (V, ,e ' e X. e(e) = e(e ') e = e')l.

It is synchronous when 0 is total.
A morphism between finitary prime algebraic domains Do and D1 is a function f : Do ~ D1

which is additive, stable and "<-preserving. It is synchronous when f is <-preserving.
A morphism between trees To and 7"1 is a function f : To ~ T1 which is -<-preserving and such

that f(0) = 0. It is synchronous when f is -<-preserving.

Morphisms on prime event structures can be characterised in a slightly different way which
recalls the simple way in which their configurations are generated.

2.5.2 P r o p o s i t i o n . Let Po and P1 be prime event structures with events Po and PI. A partial
function 0 : Po -% P1 is a morphism 0 : Po --+ P1 of prime event structures iff

Yx E £(Po). (Ox e £.(Pt) & (Ve,e' C x. 0(e) = 0(e') => e = e')).

Proo£ Routine. II

The classes of structures with the appropriate morphisms under function composit ion give rise
to categories.

2 . 5 . 3 D e f i n i t i o n .
Let F be the category of stable families of configurations with morphisms of families composed as
functions. Let Fsy,~ to be subcategory with synchronous morphisms.
Let P and P ~ be corresponding categories of prime event structures.
Let D and D ~ be corresponding categories of finitary prime algebraic domains.
Let T and Tsy,~ be corresponding categories of trees.

We have defined the categories above in such a way that there is a natura l chain of functors

E ~ ~ F P ~ D T ~ T .

The functor ~" acts on an event structure E to give ~'(E) and on morphisms 0 : E0 --~ E1 to give
~'(0) : 7(E0) --* 7(EL) which is the partial function 0 restricted to the events of 7 (g0) . It is easily
checked that ~r preserves identity morphisms and composition and so is indeed a functor.

356

The functor P acts on a family F to give the domain (F , C) and on morph i sms 0 : F0 ---* F1 to give
the funct ion O(O) : P(F0) ---* P(F1) which acts (P(0)) (x) = Ox for x C F0. It is a t r ivial m a t t e r to
verify t h a t /) is well-defined a n d a functor.

Morph isms on trees are clearly the same as morph i sms on t h e m when regarded as domains ; trees
T form a subeategory of domains D. Morphisms are also induced by a "sequential[sat[on" func tor
f rom domains to trees. The func tor T acts on a doma in D to give the tree T D consis t ing of all t he
covering sequences in D and on morph i sms f : Do -+ D1 to give the func t ion T (f) : T (Do) --+ T (D1)
which acts

(T (f)) (do ,d l dn ,) = (f (d o) , f (d l) , . . . , f (d n - 1) , . . .)

on a covering sequence of Do. It is easy to see T is a functor .

There are a n u m b e r of categories now, each could be used to give deno ta t iona l semant ics in a
m a n n e r very similar to the last section; again because the behaviour of parallel composi t ions should
be t ha t allowed when we project into the componen t s we expect to model it as a res t r ic t ion of a
product . At first sight we face the laborious task of defining parallel composi t ions and sums in each
category and showing how they rela te to eachother . Th i s is needed in order to verify t ha t all t he
semant ics are compatible . For tuna te ly however, the categories bear a s imple re la t ionship wi th one
another ; there is a coreflection between any two. This fact, es tabl i shed next , gives us, as a corollary,
the form of parallel composi t ions and sums in the different categories and yields s m o o t h t rans la t ions
between the various semant ics .

A coreflection is a special form of adjunct[on. An adjunct [on between two categories A and B
involves a pair of functors

F : A - ~ B , G : B - ~ A

between them. Recall one way of de te rmin ing an ad junc t [on between two categories (see [Mac] p.81).
Let G : B ~ A be a functor be tween categories A and B. Suppose for an object A ~ A there is an
object F(A) E B and a m o r p h i s m ~A : A ~ GF(A) in A which is universal in the following sense:
For any morph i sm f : A --~ G(B) in A with B ~ B there is a unique m o r p h i s m h : F(A) ~ B in B
such t h a t (G(h)) ~?A = f , i.e. so the d iagram below commutes .

A ~?A ~ GF(A) F(A)

!a(h) hl

In this s i tua t ion we say F(A), ~A is free over A, with respect to G. In the case where for each A, we
have such F(A), YA free over A there is an ad junct [on from A to B. T h e n F extends to a func tor
F : A -* B by taking F (f) , for f : A -+ A' in A, to be the unique m o r p h i s m F(A) ~ F(A') in B
such t h a t G F (f) ~]A = ~?A' f . T he functor F is called the left adjoint of G, while G is called the
r ight adjoint of F. If each m o r p h i s m ~?A, for A ~ A, is an i somorph ism then the ad junct [on is called
a coreflection.

The role of the following l emma will be to de te rmine m o r p h i s m s on event s t ruc tu res f rom
morphisms on domains, where events are exhib i ted as pr ime intervals.

2 .5 .4 L e m m a . Let f : Do -~ Dt be a morphism in D. Then

([c,c ' l ~ [d,d'] & f(c) ~ f(c ')) =~ (f(d) < f(d ') & [f(c), f(c ')] ~ [f(d), f(d')]) .

Proo[.
get

Let c < e' and d < d' in D and suppose [d, d'] ~ [c,c']. Because f is addi t ive and s table we

f (d) = f(d ' F-I c) = f(d ') V~ f(c) ,

f (c ') -- f (d ' ~-:: c) = f(d ') U f(c) .

357

Because f is -<_-preserving too the above equations make f (d) -< f (d ') iff f (c) -< f (c ') .
that if [d,d'] ~ [c, c'] and f (d) ~ f(d') then If(d), f(d')] ~ [f(c), f(c')]. I

The following theorem establishes the coreflections between the various categories.

It follows

2 . 5 . 5 T h e o r e m .
The event structure £(F) with morphism 1F : F ~ Y £ (F) is free over F with respect to 5 , for each
F E F .
The family gPr(D) with morphism ~ : D ~ D gPr(D) is free over D with respect to P, for each
D E D, where

¢(d) = (p K d t P is a complete prime}.

The tree T with morphism CT : T ~ T (T) is free over T with respect to T , for each T E T , where

cT(d) = {do,d1 d~ , . . .)

where A_ = do -< dl "< " . -< d~ < . . . with d = [In d,~ (i.e. the sequence is a branch up to d).
The resulting coreflections cut -down to coreflections between the associated categories with syn-
chronous morphisms.

Proof. The first two isomorphisms presented above are known by earlier results (1.1.13 and 1.3.7).
We only present the proof of the coreflection from D to F. The other two coreflections are easier
to show, and left to the reader. The proofs go through virtually unchanged with synchronous
morphisms instead giving the coreflections in the synchronous cases.

Let D E D. Certainly, by previous results, ~Pr(D) e F and ¢ : D .~ P~Pr(D) when defined as
above. Suppose F E F and f : D ~ (F, C_) is a morphism in D. We require a unique 0 :/~Pr(D) ~ F-
i n F s o t h a t P(0) ¢ = f.

Recall the 1-1 correspondence between complete primes and prime intervals of D under the
equivalence relation ~, shown in 1.3.8; an equivalence class [d, d~]~ corresponds to the unique prime
p in ¢(d~)\¢(d). This makes it easy to define the required partial function 8 : P --+~ E from complete
primes P of D to events of F. It is easy to see that if [z, z'] ~ [w, w'] in (F, C) then z' \ z = w' \ w,
both containing the same unique event. Thus, by the lemma above, the following definition of 8 is
well-defined:

For p E P, take a prime interval [d, d'] whose equivalence class corresponds to p. If f (d) -< f (d r)
then take 8(p) to be the unique event in f (d ') \ f (d) , and otherwise take O(p) to be undefined.

Let d be a finite element of D. Take a covering chain up to d:

A_ = do -< dl -< . . . ~ d,~ = d.

By induction along the chain we obtain O¢(d) = f(d) . As both functions are additive this implies
0¢(d) = f(d) for all d E D, so the functions are equal. Hence, provided we can show 0 is a morphism
we do have the required commutativity (DO) ¢ = f.

Now we show 8 is a morphism. Suppose x C •Pr(D). Then

Ox = f ¢ - l (x) e F.

Suppose p, pt E x and O(p) = O(p') being equal to e say. Assume p # p', in order to obtain a
contradiction. Take a covering chain up to p u p~ in D. Without loss of generality we may assume
this yields

d < d~ K c < c '

358

whe~:e the equivalence class of [d, d'] corresponds to p and that of [c, c'] corresponds to p'. The image
under f yields

f(d) C f(d') C_ f(c) C f(c')

where f(d') \ f(d) = f(c') \ f(c) = {e}. But this is impossible. Hence p = p' .

Therefore 0 is a morphism 0 : /~Pr(D) --~ F in F so that (P(0)) ¢ = f . Any other morphism 0'
satisfying (P(0')) ¢ = f must satisfy (P(0')) = f ¢ - : = (/9(0)) and so equal 0. So 0 is unique too.
|

There is also a triangle of functors:

F P) D

P

Here/~ takes a prime event s tructure P to its family ~(P) of consistent, left closed subsets, and acts
on a morphism 0 : P0 -+ P: to give /~(8) : x --~ 0z - - th i s is a morphism in F by proposition 2.5.2,
and so well-defined. The functor Pr acts on a domain D to give the prime event s t ructure Pr(D).
Its action on morphisms is more complicated to describe, and is best done using lemma 2.5.4. Let
f : Do -+ D: be a morphism in D between domains Do and D1 with complete primes P0 and P:
respectively. Each complete prime p E P0 corresponds to an equivalence class of prime intervals,
as in 1.3.8, and because f respects this equivalence-- the content of lemma 2 .5 .4 - - f determines a
partial function 0 : P0 -*- P: . More precisely, let p E Po correspond to the equivalence class [d,d~]~
in Do. Define (Pr(f))(p) -- p' if f(d) < f(d') and p' corresponds to If(d), f (d ')] in D: , and undefined
otherwise. By lemma 2.5.4, Pr(f) is a well-defined partial function, and, as in the proof of 2.5.5
above, it can be checked that it is a morphism Pr(Do) ---+ Pr(D1) of prime event structures (or see
appendix B, | emma BD, of [Wlt). Theorems 1.3.5 and 1.3.7 show how for any prime event s t ructure
P there is an isomorphism P ~ 2 r P / ' (P) and for any domain D E D there is an isomorphism
D ---- P£Pr(D) . Further it is easy to show these are natura l isomorphisrns in the sense of [Mac],
which is precisely what is required to establish an equivalence of the categories P and D. In this
way we have shown:

2 .5 .6 T h e o r e m . The functor PC : P -~ D is an equivalence of categories with adjoint Pr.

We can interpret this theorem as expressing that , while on the surface the categories P and D
look very different, they are essentially the same model of processes.

Thus the various categories are all related by coreflections--recall coreflections compose. Ad-
junct ions satisfy a useful property: right adjoints preserve limits like products and left adjoints
preserve colimits like coproducts [Mac p.l14]. These facts, with the na tura l isomorphisms of the
coreflections, enable us to construct products and sums in the various categories. On these can then
be based constructions like parallel composit ion and sum in the same manner as in the last section.

2 .5 .7 Theorem.
(i) Fo ×F F: ~ Y(~(Fo) ×E ~(F1)) for Fo, F: C F.
(ii) Do x 9 01 ~- P(r.Pr(Do) XF /:2r(D1)) for Do,D: C D.
(iii) To ×T TI ~ T(To XD T1) for To, T1E T.

Proof. (i) For F0, F1 C F we have •(F0) ×E £ (F t) is a product in E. It is preserved by the right
adjoint 7 so

7 (f (F 0) ×E £(F1)) ~ (Yf(Fo)) UF ()r~'(F1)) ~ Fo ×F F: .

359

The proofs of (ii) and (iii) are similar. |

Because left adjoints preserve coproducts we know how to construct e.g. the coproduct of two
families Fo, F1 provided it exists. If Fo +F F1 exists then by the preservation of colimits,

E(Fo +F Fi) ~ ~(Fo) +E ~e(F1).

Hence
Fo +F F1 ~ :7"~(Fo +F F1) ~ ?'(E(Fo) + s 3(Fi)) .

But of course it must exist for this argument to apply. The following lemma provides a sufficient
condition for existence.

2.5.8 Lemma. Let F : A -+ B be a coreflection from A to B with right adjoint G. Suppose B has
~ p r o Let ~0 ,~ t E A. , f r o [r ~ t o) + B F (A 1)) ~ F(Ao)+BF(A1) then G(F(Ao)+BF(A1))
is a coproduct of Ao,A1 in A.

Proof. Consider the image category ImF. It is a full subcategory of B and F : A --~ I m F is an
equivalence of categories with adjoint the restriction of G. Let Ao, A1 E A. Then their images
F(A0), F(A1) have a coproduct F(Ao)+B F(A1) in B. If FG(F(Ao) +B F(A1)) ~ f (Ao) +B F(A1)
then there is an object D in I m F isomorphic to F(Ao) +e F(AI). The object D is a coproduct of
F(Ao), F(Ai) in ImF. Hence G(F(Ao) +B F(A1)) ~ GD is a coproduct of GF(Ao), GF(AI), and
thus of Ao, At, in A. |

2 .5 .9 T h e o r e m .
(i) Fo +F F1 ~- 7(£(Fo) +E £(F1)) for Fo,Fi E F.
(ii) Do +o D1 ~ P(£Pr(Do) ÷~ £Pr(D1)) for Do, D1 E D.
(iii) To +T T1 -~ T(To +D Ti) for To, Ti E T.

Proof. It is easy to see:

(i) £3r(Z(F0) +E $(F1)) ~ $(F0) + s £(F1) for F0,Fi E F,

(ii) LPrD(ZPr(Do) ~-F LPr(D,)) ~ L:Pr(Do) +F ~Pr(Di) for Do, Di E D,

(iii) T(To +D T1) ~ To +D T1 for To,T~ E T,

from which the results follow by the lemma above. |

It is not hard to see that the sum of families has the effect of taking their union, once the events
of the families are made disjoint, and that the sum of domains and trees essentially glues disjoint
copies of them together at their bottom elements. Similarly we can define indexed sums so that they
are coproducts too. For example we can define

k

EkEKFk = 3r(EkEn~ (Fk)),

and we shall encounter a use for indexed sums of trees soon.

R e m a r k . Similar theorems hold in the synchronous case.

The theorems above construct products and sums in the different categories. But of course they
are all based on constructions on event structures. There are generally more direct characterisations
of the constructions in the different categories. By theorem 2.5.7(i) above and 2.3.3 characterising
the configurations of a product we obtain immediately such a result for families.

360

2.5 .10 T h e o r e m . Let Fo and Fi be stable families with events Eo and El. Their product in F is
the family consisting of those subsets x C_ Eo x . Ei which satisfy (a), (b), (c) and (d) of proposition
2.3.3.

Proof. The product F0 × F F l in F is isomorphic to 3r(~'(Fo) xE £ (F i)) . But 2.3.3 characterises this
family as those subsets of Eo x , E1 which satisfy (i), (ii), (ill) and (iv). |

The characterisations of the product on trees T are simplified through the use of another functor
TF : le --. T behaving like T but acting on families instead of domains. Let F E F be a family
with events E. Define TF(F) to be the set of finite and infinite sequences s of events E ordered by
extension which have the form

s = (e l , e ~ e n , . . .)

where {e l , e2 , . . . ,e{} E F for all i at which ei is defined. Let 0 : Fo --* F1 be a morphisrn in F. Then
0 : E0 -~, El . It can be extended to sequences by insisting

r (O) : O,
and

{O(e)0 *(s) if 0(e) is defined,
0*(es) = O*(a) if 0(e) is undefined.

We use es where e is an element and s is a sequence to denote the result of prefixing e to the
beginning of s.

2 .5 .11 L e m m a . The operation TF is a functor Tv : F -* T. We have

Tr(F) ~ T P(F)

for F E F. Moreover this isomorphism is natural in F.

Proof. Clearly covering chains
O-4xt < x 2 -4 . . . ~ x n -4 . . .

in (F, C) are in 1-1 correspondence with sequences

(el, e2 , . . . ,en, . . .)

where x~ = {e l , e2 , . . . ,en} for each n. This gives an isomorphism Tr(F) ~ T((F , ~)) = TD(F) . It
is easily checked to be natural . |

Thus the two functors Tr, TD : F --~ T are natural ly isomorphic, so TF is a right adjoint too.
As such it preserves products yielding the following characterisation of the product of trees.

2 .5 .12 L e m m a . Let S and T be trees. Then

s × T TU :~(£Pr(S) ×F £Pr(T)).

Proof. As a right adjoint TF preserves products. Thus TF(f.Pr(S) xF £Pr (T)) is the product in T
of TF£Pr(S) a n d /] P r (T) . However

Tr£pr(S) ~ TP~:Pr(S) ~- : (S) = S,

using the natural isomorphism between "rE and T P, the eqivalence of categories D and P and the
corefiection from T to D. |

361

This explains the product of trees in terms of the image under TF of the product of families.
Such an image can be understood very simply.

2.5.13 L e m m a . Let Fo and F1 be stable families with events Eo and E1 respectively. Then

TF(Fo XF F1)

is the product of trees TF(Fo), TF,(F1). Moreover, for s a sequence of events in Eo x . E l ,

s E TF(Fo XF FI) *~ 7r;(s) C TF(Fo) & try(s) E TF(F1),

where ~rk are the projections Eo x . E1 -+. Ek for k = O, 1.

Proo£ The tree TF(F0 XF F1) is the product stated as Tp preserves products. By the definition of
how TF acts on objects, if s E TF(F0 XF F1) then ~r~s E T~'(F0) and ~r~s E TF(F1), The converse
follows by 2.3.3 characterising configurations of the product, l

For a family F, the construction consists of the sequences of events allowed by F. The result
above expresses the intuitive fact that the sequences of events allowed by the product of families are
precisely those sequences whose projections are allowed by the components.

Another characterisation of the product of trees yields Milner's expansion theorem.

2.5.14 Def ini t ion. Define prefixing on domains to be induced by the operation on event structures.
Let D E D and e be any element (not generally in D). Define eD to be the domain P3r(eg~.Pr(D)).

2.5.15 T h e o r e m . Let S and T be trees. Then

S ~ Z aS~ and T ~ Z bTb
s E A bEB

for some sets of events A and B and trees Ss and Tb indexed by a E A and b E B respectively. We
have the following characterisation of the product of S and T in Tr :

SxT-~ ~(a,*)SsXT+T Z (a,b)SaxTb+T~(*,b)SxTb.
s E A aEA,bCB b c B

Proof. In proving the characterisation it is smoothest to represent trees as sequences of events
allowed by families. We introduce some notation. Let S be a set of sequences and a an element.
Define

Let F be a family of configurations with a configuration {a}. Define the family of sets

e / a = { x \ a l a E x & x C F } .

Clearly if F is stable then so is F/a .

Let F be a stable family. Then directly from the definition we obtain this recursive characteri-
sation of TF

Tr(F) = U{~}eF a~ TF(F/a).

Let F0 and F1 be stable families. By lemma 2.5.13,

u E TF(F0 x f F0) *~ ~r0(u) E TF(F0) & rE(u) E Tr(F1),

362

where r0, r l are the projections of the product in; F. Write A = {a I (a} E F0} and B = {b I {b} E
F1}. Considering the different forms an initial event of a non-nul l sequence u can take, we see
U E TF(Fo ×F F1) i ff

{ (a,*)u ~ for a E A & ro*(u t) E (Fo/a) & r l * (u ~) E E l o r
u---- (a,b)u ~ f o r a E A & b E B & 7r0*(u ~)E (F0/a) & 7rl*(u ~) E (F1/b) or

(*,b)u' for b • B & 7r0*(u') • F0 & rl*(u') • (El /b) .

Hence TF(F0 XF F1) =

U~ea(a, *)~Tr(Fo/a x F F1)U

~aeA(a,*)--Tr(Fo/a) XT" TF(F1)+

P.(a,b)EAxB(a,b)~Tr(Fo/a) x r Tr(Fz/b) + E b e B (* , b) ~ T r (F o) ×T TF(F1/b).

This is the product of T f (F0) and TF(F1) in T.

Assume now that S and T are trees. Take Fo = /:Pr(S) and FI =: £Pr (T) . Then S ~ TF(Fo)
and W ~ TF(FI) . Writing Sa = T r (f0 / a) and Tb = Tr (F t /b) we obtain the result. I

Restricting the events of the product in accord with e.g. the synchronisation algebra for CCS we
obtain the recursive characterisat ion of the parallel composit ion of synchronisation trees tha t Milner
uses in [M1]. In this way we obtain a formal translat ion between the noninterleaving semantics
using event structures, their families, prime event structures and the equivalent domains and the
interleaving semantics in [M1] all of which factor through a semantics in terms of synchronisation
trees. (See [W3] for more on trees, synchronisation trees and semantics using them.)

3. P E T R I N E T S A N D E V E N T S T R U C T U R E S .

It is shown how Petri nets also possess morphisms "extending" those on event structures. The
morphisms preserve net behaviour (unlike those in [Br]) and can be viewed as special kinds of
homomorphisms on nets viewed as algebras. The definition of morphism generalises the process
morphisms in [GR I. Safe Petr i nets are related to a full subcategory of prime event structures via
a corefiection, and it is in this sense that their morphisms extend those on event structures. The
coreflection uses the idea of unfolding a net to a net of occurrences. The categorical constructions of
product and coproduct of safe nets are closely related to construct ions in common use in net theory
for modelling parallel compositions and nondeterminist ic sums.

3.1. M o r p h i s m s on P e t r i ne t s .

In [W5,6] it is proposed that we view Petri nets as kinds of two-sor ted algebras over multisets,
and that a useful definition of morphism on nets, appropriate to synchronised communicat ion results
by taking a restricted kind of homomorphism between nets viewed as algebras. This notion of
morphism is markedly different from the s tandard kind defined in [Br t which do not respect the
behaviour of nets. In this section we give a brief introduction to the new kind of morphisms, and
refer the reader to [W4,5,6] for more details. (I do not hold with all the axioms generally placed
on Petri nets, which I regard as too restrictive, so the reader is warned to expect some differences
in some definitions. For example, I shall allow a Petri net to consist of a single marked condition,
disallowed according to the s tandard definition.)

363

3.1 .1 D e f i n i t i o n . A Petri net is a 4- tuple (B , E , F , Mo) where
B is a non-nul l set of conditions,
E is a disjoint set of events,
F is a mult iset of (B x E) U (E x B), called the causal dependency
relation,
Mo is a non-nul l multiset of conditions, called the initial marking,

which satisfies the restrictions:

(i) V e E E 3 b E B . Fb,~ > 0 and V e E E B b C B . Fe,b > 0 and

(ii) Vb C B. [Mob ¢ O or (?e ~ E. F~,b ¢ 0) or (3e C E. Fb,~ ~ 0)].

Thus we insist tha t each event causally depends on at least one condit ion and has at least one
condition which is causally dependent on it. It is insisted tha t nets have no isolated condit ions (i.e.
that a condition is ei ther marked initially or the pre or post condi t ion of some event) in order to
give a simple t rea tment of morphisms, in which the mult irelat ions never have infinite multiplicities.
This restriction is no handicap because, according to the dynamic behaviour of nets, an isolated
condit ion can never hold.

R e m a r k . In more recent work I have found it useful to impose even less restr ict ions on the definition
of a Petri net so as to allow the emptynet , useful for defining nets recursively, and perhaps even
the net consisting of a single isolated event, for the purpose of labelling events of a net within the
category of nets. In this s e t -up the only axiom is (ii) above, and initial markings may be empty.
This work is still a little experimental , and so here we shall assume the more restr ict ive definition
of a Petri net given above.

Now we make precise the sense in which Petr i nets can be identified with special algebras.

3 .1 .2 P r o p o s i t i o n . A Petri net (B, E, F, Mo) determines a 2-sorted algebra over multisets: It
has sorts multisets of conditions ~B and multisets of events #E, with operations a constant multiset
Mo over B and two unary operations "() a multirelation from E to B with matrix (Fb,e)beB,eeE,
and ()" a multirelation from E to B, with m a t r i x (Fe,b)beB,eE E.

We describe the "token game" on Petri n e t s - - i t differs from some others in tha t we do not
play the token game by firing only one event at a t ime but allow instead t ransi t ions in which finite
multisets of events fire.

Let N = (B , E , F , Mo) be a Petri net.

A marking M is a mult iset of conditions, i.e. M E ~B.

Let M, M ~ be markings. Let A be a finite mult iset of events. Define

M A ~ M I C , OA<_M & M t = M _ O A + A . .

This gives the transition relation between markings.
(This definition has used mult iset sum +, difference - , and mult iset subset so X < Y iff each
multiplicity in X is less than the corresponding multiplicity in Y.)
The t ransi t ion M A ~ M r means tha t the finite mult iset of events A can occur concurrent ly f rom
the marking M to yield the marking M ~. When we wish to stress the net N in which the t rans i t ion
M A ~ M ~ occurs we write

N : M - A , M ~.

364

A reachable mark ing of N is a marking M for which

M0 A(! ~ M1 ~ " ' " A.-~) M r = M

for some markings and finite multisets of events.

The reason for only allowing finite multisets of events to occur as transit ions is in order that
the occurrence of an event only depends on a finite set of event occurrences, and so to t ie - in nicely
with the finiteness properties of configurations event structures.

Our morphisms on Petri nets are a restricted kind of homomorphism between algebras in which
the multirelation between events is assumed to be a part ial function.

3.1.3 D e f i n i t i o n . Let N = (B, E, F , M) and N' = (B ' , E ' , F ' , M ') be nets. A morph i sm from N
to N' is a pair of (r l , f) consisting of a partial function 7/ from E to E ' and a mult i re la t ion/3 from
B to B ' such that

f - M = M t & VA C/zE . "(rt-A) = f . (° A) & (r/.A) ° = ft-(A*).

(We use e . g . f . A to s tand for the application of the mult i relat ion f to the multiset A.)

Morphisms of nets preserve initial markings and the environments of events. As a consequence
they respect the behaviour of nets in the sense of the two following results. The first lemma invokes.
the proviso that a part icular application of a mu[tirelation to a multiset should converge. Remember-
multirelations and multisets are not necessarily finite so, in general, such an application can lead to
infinite sums. (A more complete t rea tment of muttisets can be found in [W6 I.)

3 .1 .4 L e m m a . Let (Tl,fl) : N --+ N ~ be a morph i sm of Petri nets . Then, prov ided f . M is convergent,

N : M A ~ M ' : ~ N ' : f . M n.A , f . M ' .

Proof. Directly from the definition we see that ;3 preserves the initial marking. The remaining fact
is proved using simple facts about multisets and multire |at ions. Assume N : M 4 ~ M t. Ther~
°A < M, so °r/ .A = /~- (°A) <_ ~ M , and

M ' = M - ° A + A °.

Now applying f , assuming the application f - M converges,

f l -M ' = f . (M - "A + A ')

= / 3 . M - f - (*A) + / 3 . (A ') by linearity

= / 3 . M - "(r/.A) + (r/-A)" by the defn. of morphism.

But these facts express that N r : f . M n.A~ f . M ~. I

3 .1 .5 T h e o r e m .
Let (71,fl) : N --* N l be a m o r p h i s m o f Petr i nets. Then ~ preserves the init ial mark ing and

preserves reachable mark ings i.e. i f M is a reachable mark ing o f N then 13.M is a reachable mark ing
o f N ~. Further, i f M A) M ' and M is reachable in N then f . M - n:A , f . M t i n n ~,

Proof. By repeated application of the lemma above. I

365

For safe nets a condi t ion only holds or fails to hold and an event e i ther occurs or does not occur;
they do not h a p p e n wi th multiplici t ies.

3 .1 .6 D e f i n i t i o n . Say a Petr i ne t N = (B, E , F, Mo) is safe iff each mul t ip l ic i ty is a t mos t 1 in F
and M , for any reachable mark ings M . For safe nets we wri te x F y ins tead of F~,y = 1.

3 .1 .7 P r o p o s i t i o n . Let N = (B , E , F , Mo) be a safe net.
Let M be a reachable marking. Let M ~ be a marking of N and A a ~nite mult iset o f its events.

I f M A ~ M ~ then M , M v and A , ° A , A * are sets. Further, M - ~" ~ M ¢ iff M , A , M t are sets and

(V e C A . * e C M) & (Ve, e ' E A . e # e ' : = > ° e n ° e ' = 0) & M ' = (M \ ' A) tAA °.

For a safe net N, an event e is said to have concession at a reachable mark ing M if °e C M . If
two events e and e ~ have concession at a reachable mark ing M and share a c o m m o n precondi t ion ,
so °e A °e' ~ 0, the events e, e ~ are said to be in conflict at M because if one occurs at M t h e n the
o ther does not . On the o ther hand , if M A ~ M ~ the events in A are said to occur concurrently.

When nets are safe, jus t as the i r behav iour can be descr ibed us ing sets and re la t ions ins tead of
mul t ise ts and mul t i re la t ions , so can morph i sms be charac te r i sed in a more e lementa ryr if less brief,
m a n n e r in t ha t , for example, in the propos i t ion below f * e is now the image, as a set , of t he set *e
under the re la t ion/3 . We use flop to s t a n d for the oppos i te re la t ion to f , i.e. x f °Vy iff y f x .

3 .1 .8 P r o p o s i t i o n . Let No = (Bo ,Eo ,Fo ,Mo) and N1 = (B ~ , E 1 , F 1 , M 1) be safe nets. A pair
(rt , f) is a morphism No --~ Nz iff rl is a partial function from Eo to E l , and f is a relation between
Bo and BI such that:

(i) f M o -- M1 and fop restricts to a total function M1 --* M0,
(ii) Xf~(e0) = e~ then

13*eo = "el and flop restricts to a total function *el -+ °eo and

leo ° = el* and fop restricts to a total function el* ---+ eo*,

Oil) If~l(eo) is undefined then /3"eo = (~ and l e o " = ~.

Proof. See [W6] for details. T he proposi t ion makes use of the following observa t ion re la t ing set
appl icat ion to mul t i se t appl icat ion: If f : X --~ Y is a re la t ion such t h a t the opposi te re la t ion
fop : y ~ X is a par t ia l funct ion then the mul t i re la t ion appl ica t ion f (X) of f , r egarded as a
mul t i re la t ion, to X , regarded as a mul t i se t , is equal to the set image j3X. The a r g u m e n t also uses
the fact t h a t we insist there are no isolated condi t ions ; it is only because of th is t h a t mul t i r e la t ions
on safe nets can be represented as relations. |

In proofs we somet imes find it easier to reason a b o u t m o r p h i s m s be tween safe ne t s us ing the
following proposi t ion. It character ises such m o r p h i s m s in t e rms of how they behave be tween ini t ial
markings and in the ne ighbourhood of events and condi t ions .

3 .1 .9 P r o p o s i t i o n . Let N : (B i , E { , F i , M i) be safe nets for i : 0,1. Then (rl,fl) : No --~ NI is a
morphism of nets if f rt is a partial function from Eo to E1 and j3 is a relation from Bo to B1 which
satisfy

(i) f Mo C_ M1 and Vbl C M t 3lbo E Mo. bofbl , and
(ii) i f ~?(eo) -- el then for bl C B1

b iFle l ~ 3!bo. (boFoeo & bofbl) and

elFlbl ~ 3!bo. (eoFobo & bofbl) , and

366

(iiO if bomb1 then for eo E Eo

eoFobo ==~ Hel. (elFlb, & ~?(e0) = el) and

b0F0e0 ~ 3e,. (b~flel ~ ~(e0) = el).

Proof. We use the characterisat ion of morphisms between safe nets given in the proposit ion above.

Suppose (~?, fl) consists of a partial function ~/on events and fl is a relation between conditions
which satisfy (i), (ii) and (iii) above. The condition (i) says /3340 C_ M1 and that ~op restricts to
a total function M1 -+ Mo. Hence /3Mo = M1. Assume ~(eo) - el. By (iii), ~ ' e0 ~ "el and
/3eo" C e l ' . By (ii),/~op restricts to a total function "el -+ "co and el ° ~-~ co*. Hence/3°e0 = "el
and /%0" = e l ' . By (iii), if ~(eo) is undefined then ~ ' e o =/~eo" = 0. Thus together conditions (i),
(ii) and (iii) imply that 07,/3) : No -~ N1 is a morphism.

Conversely, suppose (~,fi) : No -~ N1 is a morphism. Then (i) above follows as /~M0 = M1
as multisets. Condition (ii) expresses the fact that /jop restricts to total functions *el -~ "Co and
el* -* e0 °. Finally, (iii) follows because/~(°eo) = °(7/(co)) and/~(e0") = (r/(e0)) °, and so if boflbl
and eoFobo (or boFoeo) we must have r](e0) is defined with r](eo)Eibl (or blFl~?(eo)). II

The main category which will concern us is that of safe nets.

3 .1 .10 D e f i n i t i o n . Define N e t to be the category of safe nets with net morphisms composed
coordinatewise as functions and relations.

A remark on notation: sometimes it is easier to write partial functions as relations, writ ing
e0,/el for instance instead of r](eo) = el , and in this section we shall sometimes follow this pract ice
when working with morphisms.

In future we shall have cause to use some rather special morphisms, subnets and foldings.

3 .1 .11 D e f i n i t i o n . Let 0%/~) : No -+ N1 be a morphism of nets. When (,/,/~) consists of
relations r/ and fl which are the restrictions of the inclusion relations, i.e. c0~el ¢> e0 = el and
bo/~bl ~ bo = bl, we say the net No is a subnet of N1. When r / and /3 are total functions we say the
morphism (,/,fl) is a folding.

Notice the subnet relation is a partial order. Our definition of subnet is a little different form
some others because it involves initial markings, while our definition of folding is more restr ict ive
than that generally proposed.

3.2. C a t e g o r i c a l c o n s t r u c t i o n s on ne t s .

Morphisms on nets give rise to intuitive categorical constructions and the story is very similar
in theme to that of event structures. The category of all nets has products but not necessarily
coproducts though the lat ter exist in the smaller category of safe nets. For simplicity here we only
present the both constructions for safe nets and refer the interested reader to [W6] for more details.

3 .2 .1 D e f i n i t i o n . Let No = (Bo,Eo, Fo,Mo) and No = (B1,E1,F1,M1) be safe nets. Define their
product to be the net consisting of events

E - Eo x . E l ,

367

associated with projections ~ro : E 4 . Eo and Ir lE --** E t , condit ions

B = {~0, b) t b • Bo} U {(1,b) I b • B1},

a disjoint union associated with relations po C B x Bo and Pl C B x Bz given by btpkb ¢v b' = (k,b),
for k = 0, I, initial marking

M = { (0 , b) t b • M o } U { (1 , b) I b • M l } ,

and relation F given by

eFb ¢~ (3eo • Eo,bo E Bo. e~roeo & bpobo & eoi~bbo)

or (~elEEl ,b l • B l . eTrlel & bplbl & elFlbl)

bFe ¢v (~eo • Eo,bo E Bo. e~roeo & bpobo & boFoeo)

or (3e l •E l ,b1 E Bl. eTrzel & bplbl & blFlel).

Define projection morphisms of nets:

Iio = (~ro,p0) : No x N1 --* No
g l = (Trl ,Pl) : No × N1 --> NI .

The product construction can be summarised in a simple picture. Disjoint copies of the two
nets No and N1 are juxtaposed and extra events of synchronisat ion of the form (eo, et) are adjoined,
for eo an event of No and el an event of N1; an extra event (eo,et) has as preconditions those of its
components "eo U *el and similarly

(eo,l,)~

~ostconditions eo ° U el".

[N,

The product on nets is closely related to various forms of parallel composit ion which have been
defined on nets to model synchronised communica t ion- - for an early example see [LC].

3.2 .2 T h e o r e m .
nets.

The above construction No × N1, Ho, H1 is a product in N e t , the category of

Proof. See [W6]. |

8 .2 .3 De f in i t i on . Let No = (Bo,Eo,Fo,Mo) and Nt = (B1,E1,F1,MI) be safe nets. Their sum is
the net (B, E, F, M) with events E = {(0, e) I e E E0} U {(1, e) t e C E l} , a disjoint union associated
with the obvious injections Lo : Eo --~ Eo + El and ~1 : E1 --~ Eo + E l , conditions

B = { (b o , *) I b o E B o \ M o } U { (% b l) t bl • B l \ M 1 } u { (b o , b l) I b 0 • 5 4 o & bl • M t } ,

associated with injections
boa+no b 4~ ~b I e B1 L] {$}. b ~- (bo,bl) ,

bl{nlb ¢a ~bo • Bo U {*}. b = (bo,bl),

368

init ial mark ing M = M0 x M r , and re la t ion F given by

eFb *~ (3co C Eo,bo C Bo. eo~oe & boinob & eoFobo)

or (3ei E El ,h i E B1. comte & blinlb & elFtbl)

bFe ¢* (~eo C Eo,bo E Bo. eo~oe & boinob & boFoeo)

or (3el C Et ,b l C Bl . eo~le & blinlb & blFlel) .

Define injection morph i sms of nets:

Io = (to,ino) : No ~ No + N1

I1 = (~ t , in l) : Nt ~ No + N1.

The coproduct cons t ruc t ion can be summar i sed in a s imple picture. The two nets No and N1
are laid side by side and then a l i t t le surgery is per formed on the i r init ial markings . For each pair of
condi t ions b0 in the ini t ial mark ing of No and bl in the init ial mark ing of N1 a new condi t ion (bn, bl)
is c rea ted and made to have the same pre and post events as b0 and bt together . The condi t ions in
the or iginal initial mark ings are removed and replaced by a new ini t ial mark ing consis t ing of these
newly c rea ted condit ions. Here is the picture:

;0;2?;ii
3 .2 .4 T h e o r e m .

I

The above construction No + N1, Io, [1 is a coproduct in the category N e t .

Proof. See [W6 I. |

3 .3. O c c u r r e n c e n e t s a n d u n f o l d i n g .

Nets are ra ther complex objects wi th an in t r ica te behav iour which so far has been expressed
in a dynamic way. We would like to know when two nets have essential ly the same behaviour . In
[NPW l and [W 1 we proposed a more "stat ic" represen ta t ion of the i r behav iour as a cer ta in kind of
net, a net of condi t ion and event occurrences. This gave a genera l i sa t ion of the familiar unfolding
of a s t a t e - t r a n s i t i o n sys tem to a tree [W2}. T he nets of occurrences we called occurrence n e t s - - a
name I will stick wi th here. (Note here occurrence nets may conta in forwards conflict.) The ideas
here can be viewed as ex tend ing those in [Pel, where Petr i proposes t h a t the behav iour of a ne t be
identified wi th the those causal nets which represent its "processes". Ins tead of a set of causal nets
we represent the behav iour of a safe net by a single net of occurrences.

3 .3 .1 D e f i n i t i o n . An occurrence net is a safe net (B, E,/7, M) for which the following restr ic t ions
are satisfied:

(i) b E M *~ °b - 0, so the init ial mark ing is identified wi th the set of
condi t ions which are not preceded by any events in the F - r e l a t i o n ,

(ii) Vb E B.l'b[_< 1, so a condi t ion can be caused to hold t h r o u g h the
occurrence of at mos t one event,

(iii) F + is irreflexive and Ve C E. {e' I e 'F 'e} is finite, so we b a n repet i t ions
of the same event and insist the occurrence of an event can only depend
on the occurrence of a finite n u m b e r of events ,

369

(iv) # is irreflexive where

g~rne t ¢d~de f e C E • e) E E & °e ~ "e r ¢ 0 and

x ~ x! ~;=~def 3e, e ~ E E . e # m e t & eF*x & e tF*x r.

In this way we eliminate those events which cannot possibly occur be-
cause they depend on the previous occurrence of conflicting events.

In an occurrence net we call the relation ~ ,~ defined above the i m m e d i a t e conflict relation and 7~
the conflict relation. We define the concurrency relation, co, between pairs x, y E B 1.3 E by:

x c o y ~ d ~ f ~ (x F + y or y F + x or x ~ y) .

It is useful to generalise the co-relation to subsets , and not jus t pairs, of conditions. Intuitively
we say a subset S of condit ions of an occurrence net is concurrent if it possible for all the condi t ions
in S to hold at some reachable marking. Similarly we say a finite subset of events is concurrent
if they can occur concurrent ly from some reachable marking. For an occurrence net (B, E, F , M)
these notions can be expressed simply.

3.3.2 D e f i n i t i o n . For S C B U E define

C o S 4=~ (Vs, t e S. s co t) & {e e E I 3s C S. eF*s} is finite.

Clearly s co t i f f Co{s , t } , for conditions and events s , t . The extra restr ict ion simply ensures
that together the elements in S only depend on a finite number of event occurrences. Obviously if
T is a subset of events and Co T then T must itself be a finite set.

3 .3 .3 P r o p o s i t i o n . Let N = (B, E , F, M) be an occurrence net .
Every event o f N has concession at some reachable mark ing and every condit ion o f N holds at

some reachable marking.
Let e, e I be two events o f N. Let b, b f be two condi t ions o f N.
The relations ~ ,~ C E 2 and # C (B U E) 2 are binary, symmetr i c , irrettexive relations. The

relation o f conflict x ~ x t holds i f f there is a reachable marking M at which events eF*x and e1F* x '
have concession and are in immedia te conflict e:#=meq

The relation co is a binary, symmetr ic , reflexive relation between condi t ions and events o f N.
We have b co b ~ i f f there is a reachable m ar k i ng o f N at which b and b ~ bo th hold. We have e co e r
i f f there is a reachable mark ing at which e and e I can occur concurrently.

Let S be a subset o f condit ions and T a subse t o f events. We have C o S if f there is some
reachable mark ing M for which S c M . We have Co T i f f there are reachable markings M , M t for
which M T ~ M q

3.3.4 D e f i n i t i o n . Write Occ for the category of occurrence nets with net morphisms.

We observe two propert ies of morphisms between occurrence nets which we shall use later.

3 .3.5 L e m m a . Let No = (B o , E o , F o , M o) and N1 = (B , , E 1 , F I , M ,) be occurrence nets. Le t
(71, fl) : No -* N1 be a morph ism. Then

(i) boflbl & bl E M1 =:~ bo E Mo and
(ii) boZb, ~ ~F~b~ ~ 3:~o. ~(~o) = ~ & ~oFo~o.

Proof.

370

(i) Assume bomb1 & bl E M: . If bo ~ M0 then eoFobo for some event co, which by the
properties of morphisms implies there is some event e:Flbt - - imposs ib le as bt C M1.

(ii) Assume bo~bt & elF:b1. As (r/,~) is a morphism b0 C Mo so there is a unique event eo
such that eoFobo. By the properties of morphisms rt(eo)F:b~ and so r/(eo) = e: , the unique event in
*b~. I

As a corollary we see that morphisms between occurrence nets reflect F-cha ins and conflict in
the following sense.

3 .3 .6 L e m m a . Let No = (Bo,Eo, Fo,~lo) and Nt = (B t , E I , F ~ , M ~) be occurrence nets. Let
(77, ~) : No --+ N: be a morphism.
(i),r

b(~)~ o(~)~(~ -l) ~(o) L, _(o)
[Z'lCl Ul " ' ' (J l Z'lCl

is a chain in N1 and r/(e (°)) = e~ °), with eg') E Eo, then there is a unique chain

b (•) ~. _ (, ~) : (, ~ - :) : (o) r. _(o)
0 rOgo ~0 " ' " UO rOCo

~(')'~(') , (C) d ') in No such that ~o ~'~l and = [orO < i < n.
(ii) For events eo,e~ of No and e l ,e i o f N: and conditions bo,b~o of No and b:,b i of Nt :

' a: el # e'l v , eo#e'o, ~(~o) = el a~ '7(go) = q

bo~bl *~ b~,~b~ a: b: # b', ~ bo#b'o.

(iii) For events co, e~o of No and e l of N: and conditions bo, b~o of No and b: of N::

~(~o) = ~l ~ . (4) = e l - ~o = 4 or ~ o # 4 ,

bo~b 1 ~5 blo~bl ::~ b 0 : bto or bo~:~blo ,

Proof.

(i) The proof proceeds by induct ion down the chain bl n) Fle~n)b~ ~ -1) . . .b~ °) Fte~ °) We are given
h(o) a~,(o)

r/(e(0 °)) = e~ °). By the properties of morphisms there is a unique condition b(0 °) such that ~0 ~' ' : "

Now by the above lemma there is a unique e(o l) such that ~(e(o t)) = el :). Continuing we obtain the

result. Notice, by the lemma, if b{ n) is marked initially then so is b(o =).

(ii) Suppose e,,e~ are two events in conflict with r/(e0) = e: and r/(e~) = e~. Then this can only
t :F1%. arise through two events t:,t~t being in immediate conflict with t : F l e t and ' * ' So t t # m t ~ i.e.

t : ¢ t~ with b:Fl t l and b:F:t~ for some condition b:. But then two simple applications of part (i)
= toF o %. yield events to,t~o in immediate conflict (with r/t0 t : and ~t~) = t~) so that toF~)eo and ' * '

This makes eo # e~). The same argument works to show: If bo/3bl and bPo/3bl and bl # b~ then bo#bto .

(iii) Suppose r/(eo) = rl(eo') are defined and equal e,. There is a chain

c~ F: d~ . . . d: Ft coFl do

in N1 with do = ex and cn E M: . Applying part (i) we obta in chains

b,~ Foe~ . . . et FoboFoeo and
! t ! ! ! b, F o % ' " e 1E?boFoe o.

371

such t h a t r/(e~) -- ~(ei ') = di and bi~3ei and bJj3ci for 0 < i < n and °b,~ = °b,~' = "e,~ = 0. As
f is a morph i sm, ~op is a funct ion when res t r ic ted to ini t ial mark ings so bn = b,J. We can now
show e 0 (# u1)e~. Suppose e0 ¢ e~. T h e n the chains leading up to these events mus t differ a t some
earl iest point , giving rise to one of these two s i tua t ions :

ei = e l' & bi-1 ¢ bi 1 (1)

for some i < n. Case (1) is impossible as f/or shou ld be a funct ion res t r ic ted to di ° --* ei °. The
remain ing case, case (2), implies e~ and e~ are in immed ia t e conflict so e0 ~ e~. The same a r g u m e n t
shows condi t ions wi th the same image mus t e i ther be equal or in conflict. |

There is a na tu ra l idea of dep th of an e lement of an occurrence net , useful to prove proper t ies
of occurrence nets by induct ion.

3 .3 .7 D e f i n i t i o n . Let N = (B, E , F , M) be an occurrence net. Induct ively define the depth of an
e lement x E B U E as follows:

For b E M take depth(b) = 0;
For e E Z take depth(e) = max{depth(b)] bFe} + 1;
For b E B \ M take depth(b) = depth(e) for t h a t un ique e such t ha t eFb.

3 .3 .8 P r o p o s i t i o n . An occurrence net N = (B, E, F, M) is the /eas t upper bound, with respect to
the subnet order, of its subnets N ('~) of depth n i.e. Define N (~) =def (B(n), E(n), F(n), M) where

B (~) = {b e B I depth(b) ~ n}

E (~) = {e e e I depth(e) <_ 4 }

xF(~)y t:~ x , y E B ('~) U E (~) & x F y .

Then N (~) is a subnet of N and N = U ~ N (~) - - t h e coordinatewise union of the ne t s N (n).

Proof. Clear. |

3 . 3 .9 T h e o r e m . Let N = (B , E , F , M) be a safe net . There is a unique occurrence net ~/N =
(Bo ,Eo ,Fo ,Mo) with a folding f = (r/ ,~) : L/N --+ N which satisfies:

B o = {(O,b) [bE M } u { ({ e o } , b) [eoE Eo & b E B & ~?(eo)Fb},

E 0 = {(S,e) I S C B o & Co(S) & e e E & ~ S = ° e } ,

x F o y v ~ 3w, z. y = (w,z) & x C z,

M 0 = { (O , b) [b E M } ,

and

eo~e ¢~ 3S C_ Bo. eo = (S ,e) ,

b o ~ 3 b ~ b E M & b 0 = (0,b) or 3 e 0 E E 0 . b 0 = ({e0},b).

Proof. The existence is shown by giving an induct ive definit ion. It is rout ine , tedious and omi t ted .
The uniqueness follows because every e lement of an occurrence ne t has finite dep th . |

3 . 3 . 1 0 D e f i n i t i o n . Let N be a safe net . Define its occurrence net unfolding, ~/(N), to be the
unique net and folding m o r p h i s m t h a t satisfy the r equ i rement s of t heo rem 3.3.9 above.

372

3.3 .11 E x a m p l e . This example illustrates a safe net together with its occurrence net unfolding.
The associated folding morphism from the occurrence net unfolding to the original net is indicated
by the inscriptions.

Q

3

, u n f o l d >

¢1

A characterising property of the occurrence net unfolding is expressed in the following propo-
sition. Roughly it says every possible occurrence of an event in the original net is matched by a
unique event in the unfolding.

3 .3 .12 T h e o r e m . Let N be a safe net. The occurrence net unfolding ~l(N) and folding f = (~,fl) :
ll(N) --+ N satisfy

C o S ~ # s = "~ ~ ~ o s = "eo ~ . (~o) = ~, (*)

where e is an event of N and eo is an event and S a subset of conditions of No. Further, L/(N) and
the folding f are determined to within isomorphism by (*) i.e. i f f l : N , ~ N is a folding from an
occurrence net NI which also satisfies (*) then there is an isomorphism h : N1 "~ U(N) such that

Ix = f h .

Proof Let N be a safe net. It is follows directly from their definitions that the unfolding ~/(N) of a
net N and the folding f : ~/(N) -* N satisfy (*).

To show uniqueness to within isomorphism, assume f0 : No -* N and f l : N1 ---* N are foldings
from occurrence nets No = (Bo, E0, F0, Mo) and N, = (B1, E l , / ;1 , &It) onto N which both satisfy
(*), For an occurrence net O = (B , E , F , M) let O (~) = (B('~),E('~),F('~),M ('q) be the subnet of

conditions and events of depth < n, for n 6 w, and write f(~) and f ~) for the restrictions of the

foldings to the subnets N (~) of No and N~ n) of N, , so f0(n): N (~) --* N and f [~) : N~ n) -* N.

We construct by induct ion on n e w isomorphisms h(~) = (rl(n),# (n)) : N (~) --* N~ n) which
satisfy

: So
For the basis, define h (°) = (O, f l(°)) : N (°) ~ N~ °) where

bofl(°)bl ¢e, bo E Mo & bl E, M1 & flobo = fllbl.

Certainly,].1(o) h(O) = f(o) because #o, and il l , restrict to 1-1 correspondences between the initial
markings Mo and M, and M1 and M respectively, and hence fl(o) is a 1-1 correspondence Mo ~ MI .

373

Now for the step in the induct ive defini t ion, assume h (~) to be defined so t h a t h('q is an i somorph i sm

and f~n) h(n) = f (,q . Take h (~+~) to be a pair of re la t ions (r/('~+~),fl(~+a)) given by:

eorl(n+l)el if ~o(eo) = r / l (e~) & f l ('~) 'eo = "e l ,

bo/3(~+l)b~ if flobo =/~lb~ & r / (n+D'bo = " b l .

Of course, it needs to be shown t h a t h (n+l) is an i somorph i sm wi th ~.(,+1) h(~+l) = fo(,~+1). .11

ve(~+l) such We first show ~/(~+1) is a 1-1 correspondence between the events of No (n+l) and "'1

t h a t ~o(eo) = ,(~+1)~71(eo) for all events eo of N (~+1). Suppose e0 is an event of N(o ~+1). T h e n
r/o(eo) = e say. As fo is a m o r p h i s m flo'eo = "e. Because eo has dep th at most n + 1, "eo consists

of condit ions in No (~). Because h (~) is a m o r p h i s m Co(fl('O'eo) in N~ ~) and by c o m m u t a t i v i t y
/31/3(n)s = floS = "e. By the proper ty (*) of fL we see there is a unique event el in N1 such t h a t
"el = fl(~)*eo and t / l (e l) = e. Thus eor/(~+i)el for some eL. It is unique because if e0r/('~+l)el,e~
t hen from the induct ive a s sumpt ion r/l(e~) = ~?l(e~), forcing eL = e~ by (*). Similarly, if eL is

an event of N~ '~+l) there is a unique event eo such t h a t eo~?(n+l)el. This shows r /(n+l) is a 1-1

correspondence. Clearly ~o (~+1) = ~?(~+L)~?I~+I) f rom the defini t ion of r/(~+1).

A similar a r g u m e n t shows/3(~+1) is a 1-1 cor respondence too. Let b0 be a condi t ion of N (~+l) .
T h e n boflb for some b E B. The case when "b0 = 0 has been deal t wi th in the basis of the induct ive

~ (n + l) As f0 is a m o r p h i s m const ruct ion, so we may assume eoFobo for some unique event e0 in - '0 -
there is some e wi th eFb and r/0(e0) = e. By the previous a rgumen t r/(~+~)(e0) = el for some

event eL of N~ n+l) . As f l is a m o r p h i s m there is a unique condi t ion 5l of N~ ~+1) so t h a t blfllb.
Now we see f rom the induct ive a s sumpt ion t ha t fl0/3(n+l)bl. Moreover such a bl is unique. For,
suppose bofl('~+l)bl,b]. T h e n etFlbl ,b] and b~,b]13tb. But then bt = b] as f~ is a morph i sm. Thus

j3('~+~) : B (~+~) ---* ~R ("+t) is a to ta l funct ion. Similarly, if b~ is a condi t ion of N~ n+l) there is a
unique condit ion b0 such t h a t bo~('~+l)bl. Hence /3(~+l) is a 1-1 correspondence. Clearly f rom its
definit ion f~('+ ') = /~(n4-1)~ n4"l).

Now we can define h = ((_J~r} (~), (_j~fl(n)) to ob ta in the required i somorphism No ~ N1. |

3 . 3 . 1 3 T h e o r e m . Let N be a safe Pe t r i net. Then the occurrence net unfolding ~l (N) and folding
f are cofree over N i.e. for any morphism g : N1 --~ N with NI an occurrence net there is a unique
morphism h : N1 --~ U(N) such t ha t the following diagram commutes:

~(N) f , N f '
N1

Unfolding extends to a functor ~/ : N e t ---* Occ which is a right adjoint to the inclusion functor
Oec --* N e t . Further, this adjunction is a coreflection: the folding f : ~l (0) ~ 0 for each occurrence
net 0 forms a natural isomorphism.

Proof. Assume N = (B, E , F, M) is a safe net which has an occurrence net unfolding t /(N) =
(Bo,Eo,Fo,Mo) and folding f = (r/0,/3o) : U(N) -+ N. Assume N1 is an occurrence ne t of the form
N1 = (BI ,E1 ,F1 ,M1) and t h a t g = (r}l,/31) : N1 -* N is a morph i sm.

It is convenient to first es tab l i sh necessary and sufficient condi t ions for there to be a m o r p h i s m
making the above d i ag ram commute , and then later to cons t ruc t a pair of relat ions which is un ique
so the condit ions are satisfied.

374

Let h = (~.,fl) consist of a part ial function ~? from E1 to Eo and a relation fl C_ B1 x B0. We
show that h : N1 --* U (N) is a morphism and g = / h iff the following conditions are satisfied:

(I) , (e~) = eo ~ ~e ff E.eo = (fl'et,e) & r l l(el) = e f o r all co, e l ,

(II) b~flbo ~¢. ~b~ B.bo = (rt*bl,b) & blfl~b for all bo, b~.

Firstly suppose h is a morphism such that g = / h. We show that the conditions (I) and (II)
must then be satisfied.

(i)

"=~." Let , (e l) = e0. Then because g = /h we have ,1(e l) = e for some e and S such that
eo = (S,e). However because h is a morphism we must have S = fl°el, as required.

"4=." Suppose eo = (fl*el,e) and y l (e l) = e for some e C E. We first show eo C E0. Because h
is a morphism Co(fi°el) and by the commuta t iv i ty flo(fl°el) = ill°el = °e. Thus eo = (fl*et, e) E Eo,
and rio(co) = e. By commuta t iv i ty ~(el) = e~ and ~o(e~) = e for some e~ e Eo. As h is a morphism
°e~ = f l ' e l . Thus e~ = (f l ' e l , e) = co. Hence r/(ei) = co.

(II)

"=~." Suppose blflbo. Then by the commutat ivi ty , blfllb and boflob for some b E B. If "bl = 0
then bl C M1 so bo E M0 and °b0 = 0. Otherwise °bl = {el}, for some event el, so as h is a
morphism ri(el) = co, for some co, and °bo = (co}. In either case bo = (y*bl, b).

"4=." Suppose bo = (rl*bl,b) and blfllb for some b E B. Either bl C MI or °bl ¢ 0. Assume
b1 E M1. Then bo = (0, b) E 54o. As h is a morphism there is some b] C M1 such tha t b]flbo.
As g is a morphism bl = b] so blflbo as required. Now assume the other case, that °bl ¢ 0 and
let el be the unique event such that elFlbl. As g is a morphism ~71(el) = e and eFb, for some e.
By the commutat iv i ty r/(el) = e0, for some e0. Thus b0 = ({e0},b) E B0 and eoFobo. As h is a
morphism there is some b] so that b]flbo and e~Flb]. Therefore by the commuta t iv i ty b]fllb. Thus
both elFlbtl with b]fltb and elFlbl with blfllb. But, then as g is a morphism, bl = hi. Therefore
blflbo as required.

Thus we have shown that if h : N1 --~ ~/(N) is a morphism such that g = fh then the conditions
(I) and (II) are satisfied. Now we show the converse, that the conditions (I) and (II) ensure that h
is a morphism such that g = / h .

Suppose the conditions (I) and (II) are satisfied. First.we show h is a morphism h : Nt --* U(N).
We check that the conditions (i), (ii) and (iii) of proposit ion 3.1.9 hold:

(i) Clearly, by (I I) , i fb l f lb0 & b, C M , thenb0 = (0,b) E M 0 . Also, if we assumeb, ,b~ E M t and
blflbo and b~flbo then, by (II), blfi~b and b~fl~b for some b which implies bl = b~, as g is a morphism.

(ii) Suppose rl(el) = co.

Assume eoFobo. Then, by (I), eo = (fl*el,e) & rh(e ,) = e for some e E E. From the definition
of the unfolding, eFb & bo = ({eo},b) for some b E B. As g is a morphism elF~bl and bv31b for
some unique condition bl E B1. Therefore, by (II), bl is the unique condit ion such that blflbo and
elF 1 bl, as required.

Assume boFoeo. Then, by (I), e0 = (f l ' e l , e) & rh(e l) = e for some e C E. By the properties
of the unfolding, b0 C / / ' e l . Thus blflbo & blFlel for some b~ C B1. We also need the uniqueness

375

of bl. Let flo(bo) = b. Assume b~flbo & b~Flel for some b~ E B1, Then by (ii) b~fllb, which
combined with b~Flel implies b~ = bl as g is a morphism. So, as required bl is unique so that
bilbo & blFlel .

(iii) Suppose blflbo.

Assume elFlbl. As g is a morphism, .1 (e l) = e and eFb for some e E E. By (II), bo = (.*bl,b)
and blfllb for some b E B. By the definition of the unfolding, eoFobo and rio(e0) = e for some
eo E So. Thus , ' b l = ri{el} = {eo}. Hence , (e l) = eo.

Assume blF~el for e~ E E~. By (II), bo = (.°b~,b) & blfllb for some b E B. As g is a
morphism bFe & rh(e l) = e for some e C E. "Fake eo = (fl°el,e). Then, by (t), , (e l) = e0, and
clearly boFoeo.

Now by proposit ion 3.1.9 we can conclude h is a morphism N1 ---* ~/(N). In addition, we require
the commutat iv i ty g = f h i.e. (r h , f l) = (,0,fl0) (ri,fl). These follow from (I) and (II) by the
following arguments:

Suppose ~]o,(el) = e. Then , (e ,) = eo and ,o(eo) = e for some eo ff Eo. By (I) " ~ " ,
r i l (e l) = e. N o w s u p p o s e . 1 (e l) = e. T a k e e0 = (fl°el,e). T h e n b y (I) " 4 = " . (e t) = co. Therefore
(rio r/)el = ,o(eo) = e. Combining these results we see rio, :- ,1 .

Suppose bl(flof)b. Then bilbo and boflob for some bo E Bo. By (II)"=~", this implies blfl~b.
Suppose blfllb. Take bo = (,*bl ,b) . Then by (I I) " ~ " b0 E Bo and so boflob. Therefore bl (f0 f)b.
Combining these results we see f/off = ill- This completes the proof that g = f h.

We have completed that part of the proof showing that h : N1 -+ U(N) is a morphism and
g = f h iff h satisfies (I) and (II). Now it remains to show that such a morphism h exists and
moreover is unique.

We show the existence of such an h by giving an inductive defini t ion--see [Acz]. Define h =
(, , f l) to consist of the pair of smallest relations , C E1 x E0 and fl C- B1 x B0 which satisfy:

eo = (f ° e l , e) & . 1 (e l) = e : : ~ . (e l) = eo and

bo = (y'bl,b) & bl f lb ~ blflbo.

This inductive definition provides a least h = (. , f) which satisfies (I) and (II). (Note the inductive
definition has closure ordinal ~ because we assume an event depends on only a finite number events.)
Thus by our previous work h : N1 ~ ~/(N) is a morphism for which g = fh .

The ult imate step in the proof is to show that the h defined inductively above is the unique
morphism h : N1 --* L/(N) for which g = fh . Suppose h ' = (e,a) were another morphism such that
g = fh ' . Then it too would satisfy (I) and (II). Consequently by the definition of h, ri C e and
fl C a. The converse inclusions are established by induction on the depth of the conditions and
events of NI:

Zero Depth: Clearly if bl ~ M1 and blabo then, as a satisfies (II), bilbo too.

Nonzero Depth: A s s u m e ~e~ = eo w h e r e &pth(~l) = n + 1. As ~ sat i s f ies (I) w e have ~o = (~ ' e , , 0

and rh(el) = e for some e E E. Each condit ion in a ' e l has strictly less depth than n + 1. Thus
a*el = fl*el so a s , satisfies (I) we obtain ri(el) = e0. Assume blabo where depth(b1) = n + 1. As a
satisfies (II), bo = (e°bl,b) and blf~b. Here the unique event el such that elF~bl has depth n + 1.
By the argumefit just given exee0 4~ , (e l) = e0, Because ri satisfies (II) we obtain btflbo.

376

This induction shows that e _C ,7 and a C ~ which together with the previously shown converse
inclusions yields h = h'. We have established the existence and uniqueness of a morphism h : N 1 -~
/2 (N) making g = fh .

Finally, we conclude that U (N), f is cofree over N. The adjunction follows from the cofreeness--
see [Mac, p.81]. Clearly each folding f : t/(O) --* O, for O E Oct, is an isomorphism, so the
adjunetion is a coreflection. |

3.3.14 Corol lary. The unfolding operation on safe nets preserves limits, in particular it preserves
products. Thus the unfolding of the product (in Net) of two nets U(N0 × N1) is isomorphic to
the product (in Oce) of the unfoldlngs U(No) ×oct U(N1). To within isomorphism, the product of
two occurrence nets No ×oct N1 in Occ is the net •(No × N1). The inclusion functor Occ -~ N e t
preserves colimits and in particular coproducts. The category Oct has coproducts which coincide
with those in Net.

Proof. As remarked (see {Mac]) right adioints preserve limits and left adjoints preserve colimits. To
prove the result characterising product in Occ note that the unfolding of an occurrence net yields
an occurrence net isomorphic to the original. Because the inclusion functor Occ ~ Ne t preserves
colimits, it follows directly that coproducts in Oct coincide with those in Net . |

'Now we consider coproducts further. The next example shows that the unfolding need not
preserve coproducts however.

3.3.15 Example . This example is essentially the same as that given in [W3] for a category of
transition systems where unfolding yields a tree. The unfolding of the net is of course itself.

The isUnf°lding of the net ~

® - tD " - -

The coproduct of their unfoldings in Occ and the unfolding of their coproduct in Net are:

Of course we can restrict to subcategories of nets so that unfolding does preserve coproducts.
A subcategory for which this is true is that for which nets satisfy: every condition in the initial
marking has no pre-events.

3 .4 , O c c u r r e n c e n e t s a n d p r i m e e v e n t s t r u c t u r e s .

We show the relationship between the category of occurrence nets and a full subcategory of
prime event structures. We show that constructions given in [NPW] determine a coreflection from

377

these event s t ruc tures to nets. This p leasan t categorical s e t - u p extends t h a t of the previous sect ion
and makes i t easy to relate semant ics given in t e rms of nets to those in t e rms of event s t ruc tu res ,
s table families, f ini tary pr ime algebraic domains and trees, and t h r o u g h t h e m to o the r models like
the pomset model of V . P r a t t [Pr] and the behaviour systems of M.Shields [Sh 1.

Clearly an occurrence net de te rmines an event s t r uc tu r e [NPW]; jus t s t r ip the condi t ions away
bu t r e m e m b e r the more abs t r ac t causal dependency and conflict re la t ion they induce.

3 .4 .1 D e f i n i t i o n . Let N = (B, E , F, M) be an occurrence net. Define go(N) = (E, Con, F + IE)
w h e r e X E C o n i f f X ~ f i n E & V e , e I ~ X. ~(e Cp e').

A m o r p h i s m between occurrence nets N and N ~ consists in par t of a par t ia l funct ion r! : E ~ E '
between the associated sets of events. The par t ia l funct ion rt is a m o r p h i s m on the associa ted event
s t ruc tures .

3 . 4 . 2 L e m m a . Let (~?,fl) : N o -~ Nt be a morphism between occurrence nets. Then ~ : go(No) -+
go(Nt) is a morphism in P.

Proof. Assume No = (Bo ,Eo ,Fo ,Mo) and Nt = (B~,Ea, F~,M1). We are required to show:

V x C ~go(N0). (r /xC ~ ' o (N 1) & (Ve, e t E x. r/(e) = tl(e t) 7 £* =~ e = et)).

Let x E £go(N0).

Consider r/x. Suppose elF~e] ~ rlX. Then r/(e~) = e~ for some event e~ e x. By l emma 3.3.6
(i) the re is some event eoFde~o such t h a t r/(eo) = et. Hence rtz is left closed. If two events et,e~ in
~x are in conflict t hen by l emma 3.3.6(ii) this can only arise t h rough two events events e0, e~ ~ x
being in conflict, which is impossible as x is consis tent . Thus x is cons is tent and lef t-closed so
~x E £go(N ') . By l emma 3.3.6 (iii), because x is cons is ten t it follows t ha t each event in r/x is the
image u n d e r 7? of a unique event in x. |

3 .4 .3 C o r o l l a r y . The operation £o extends to a functor Oec -* P from occurrence nets to prime
event structures by defining £o on morphisms (~, [J) by £o(rh fl) = rl.

Proof. We have seen go(f) : go(N0) --* £o(Nt) is a morph i sm. Clearly go preserves identi t ies and
composi t ion so it is a i~nctor . |

R e m a r k . Note t h a t now we not only have a functor £o : Oce --+ P f rom occurrence nets to event
s t ruc tu res bu t also the functor go~/: N e t ~ P , t r ans l a t ing a rb i t r a ry safe nets to event s t ruc tures .

The pr ime event s t ruc tu res de te rmined by occurrence nets have a special form; the i r consis tency
predicates are induced by a b inary conflict re la t ion and the cons is tent sets are precisely those finite
sets which are conflict free. We focus on the cor responding subca tegory of P .

3 .4 .4 D e f i n i t i o n . Let (E, Con,<_) be a pr ime event s t ruc ture . Define the conflict relation #
between events e, e' by

e # e' ~ (e, e'} ~ Con.

3 .4 .5 P r o p o s i t i o n . Let E be an event structure. The conflict relation ~ is a binary, symmetric,
irreflexive relation which satist~es

e # e' <_ e" ~ e # e".

378

Proof. Clearly # is a binary, symmetr ic relation. Because {e} E Con it is irreflexive. Suppose
e' < e". Then {e, e"} E Con =¢~ {e, e'} e Con and hence e ~ e' =~ e ~ e". II

For any prime event s tructure, for a finite subset X of events, we have

X C Con==> Ve,e'. ~e # e'.

In the subcategory of interest the consistency predicate is determined by {he conflict relation.

3 .4 .6 D e f i n i t i o n . Define P # to consist of those prime event structures E = (E, Con, _<) for which

X E Con ¢> X Ci~= E & Ve,e' E X. ~(e # e').

In this case we shall write E as (E, # , <).

We characterise morphisms in pC# in terms of the conflict relations on event structures. They
preserve enablings and reflexive closures of the conflict relation.

3 .4 .7 P r o p o s i t i o n . A morphism between prime event structures (Eo, #o , <_0) and (Et , # , , _<l) is
a partial function # : Eo --+. E1 such that

ge e Eo. 8(e) is defined ::> {e(e)l C 8[e 1 &

Ve, e ' C E0. (e(e) # t O(e') or O(e) : O (e ')) => (e # , e' or e : e').

Proof. Directly from earlier characterisations of morphisms on prime event structures specialised to
this case. I!

By the definition of 1 ~ we have a functor £o : Occ ~ W . It is natural to ask if, conversely,
an event structure in 1 ~ can be identified with an occurrence net. Of course we would like every
morphism between event structures to correspond to net morphism between the associated nets. We
seek a functor)4 : P --~ O c c which "embeds" the category of event structures in the category of
occurrence nets, so ~oJC(E) is natural ly isomorphic to the original event s t ructure E . Ideally, we
would hope that Co would be a right adjoint to N making a coreflection. This is indeed the case and
we have all the benefits explained earlier. We explain the construction of N, a minor modification
of that in [NPW].

An event s t ructure in P # can be identified with a canonical occurrence net. The basic idea is
to produce an occurrence net with as many conditions as are consistent with the causal dependency
and conflict relations of the event structure. But we do not want more than one condition with the
same beginning and ending events - -we want an occurrence net which is "condit ion-extensional" in
the terms of [Br t. Thus we can identify the conditions with pairs of the form (e, A) where e is an
event and A is a subset of events causally dependant on e and with every distinct pair of events in
A in conflict. But not quite, we also want initial conditions with no beginning events.

3 .4 .8 D e f i n i t i o n . Let E - (E, # , _<) b e a n event structure. Define X/(E) to be (B, E, F , M) where

M = { (0 , A) t A C E & (Va, a' E A. a (# U1)a')}

B = M U { (e , A) t e ~ E & A C E & (Va, a ' E A . a ((# U l)) a ') & (V a e A . e < a) }

f = {(e,(e,A)) I (e,A) • B} u {((c,A),e) I (c,A) e B & e e A}.

379

The proof of the coreflection between occurrence nets and event structures uses the following
notat ion and lemma which expresses a property of the relation between conditions in a morphism
between occurrence nets.

3 .4 .9 N o t a t i o n . Let (E , # , <) be an event structure. Define

LLoJJ = E and

[[{e}Jj = (e' e E I e < e'}.

We also use this notat ion for occurrence nets with the understanding that it applies to the underlying
event structure.

3 .4 .10 L e m m a . Let h = (rl,3) : No ---* N: be a morphism between occurrence nets. I f bo3bl, for
conditions bo, b:, then

(r e eFobo ~ ,7(~)F,b,) a < " = (~ - : b l ') n [[('bo)]].

Proof. Suppose bo3b:, for conditions bo,bl. Directly from proposit ion 3.1.9 we see (Ve. eFobo ¢=~
rl(e)Flb:) and bo ° C (r / - :b : °) M [[(°bo)jJ. Take e ~ (r / - ' b l °) n [[('bo)Jj. We show e E bo ° and hence
establish the converse inclusion. There are two cases: when °bo = 0 and when °bo ~ 0. Assume
first *bo = 0. In this case b0 E Mo and b: E M1. Because y(e) C b:" and as h is a morph ism there
is a b~ with b~oFoeo and b~o3b:. By the property of morphisms on initial markings we must have
bo = b~. Hence in this case e E b0 °. Now assume the other case, that °bo 7 G 0. Then °bo = (eo}
and °bl = {r/(eo)} for some eo. Also rl(e) e bl °. Because h is between occurrence nets, by temma
3.3.6, there is a b~ such that eoFob~oFoe and b~o3b:. But now as h is a morphism bo = b~. Hence
e E b0 °. Thus in either case we have established the required converse inclusion and so shown
bo ° = (T- :b : °) n LL(Obo)jj. I

This t ime it is easier to establish the coreflection by showing the freeness of the occurrence net
associated with an event structure.

3.4.11 Theorem. Let E be an event structure in P#.
Then J¢(E) is an occurrence net. Moreover, £oJ4 (E) = E.
The net)F(E) and identity function l s : E -+ £oN(E) is free over E with respect to Co i.e. for

any morphism ~ : E -* Co(N) in P# there is a unique morphism h : X(E) -~ N in Oec such that
Co(h) :~ = ~ (i.~. co(h) = 7).

Proof. Let (E, # , _<) be an event structure. It is easy to see X/(E, ~ , <) is an occurrence net and
& ~ (E, # , <) = (E, # , <). We prove freeness.

Let N E O¢c and r / : E --* Co (N) be a morphism in P~. Define h = (r/, 3) by taking

bo3b: <* (W ~Sbo ~ ~(~)F~b,) ~ bo" = (~-%') n l[('bo)]j, (:)

for b o a condition of No and bl a condit ion of N. We require that h : ~ (E) --~ N is the unique
morphism such tha t Co(h) = ,7.

To show h is a morphism we use the characterisat ion of proposit ion 3.1.9 and show h satisfies
the conditions (i), (ii) and (iii) wri t ten there.

(i) I f ' b0 = 0 then %1 = 0 so 3M0 C Mi . Let bl E M1. Take b0 = (0, r / - : b l °) . Then b0 E Mo
because r / - lb l ° is pairwise (~ u1), and bo3bl by (1), the definition of 3. Suppose b~o3bl and

380

b~ • Mo. Then °b~ = °bo = 0 and b~ ° = (r / - l b l °) N LL(°bS) H = (~-161") n LL(°bo)j] = bo °. By the
condit ion-extensionali ty of JY (E) we obtain b0 = b~).

(ii) A s s u m e , (e o) = e l .

If bo • eo ° and bo3bl then °hi = r/'bo = {et}. Hence 3eo ° C et °. Let bl E el °. Take
bo = ({eo}, r / -%l ° N [[{eo}]]). Then b0 E B0 by the properties of morphisras on event structures.
Also bo C eo °. Suppose bro~bl with b~ ~ eo °. Then °b~ := °b0 = {eo} and b~ ° = (r l - lb t °)N [~(°b~)lJ =
(r l - tb l °) n l[e0]j = b0 °, By condit ion extensionality b~ = bo.

Suppose b0 e °e0 and bo3b,. Then e0 E bo" = (r / - tbl .) N kk('bf0jA so e~ = 0(~0) ~ b," which
makes bt E *et. Hence 3%o c "et. Let bl • "et. Consider the two cases: "bl = 0 and "bl # 0. If
"bt = 0 take bo = (0 , ? - t b l ') . Otherwise "bl = {e'}, say. Because r/ : E ~ ~'o(N) is a morphism of
event structures rl(e) - e' for some e • E. In this case take bo = ({e}, (r/ lb l") N [~eJ]). In either
case bo • Bo and by (1) we see bo3bl. Assume b~o[3bl. Then from (1), the definition of 3, we s e e
" ' b ~ " = = b o = "bo and bo*. By condit ion-extensionati ty b~ bo.

(iii) Now suppose bo3bl. If eoFobo then by (1), rt(eo) is defined and ,l(eo)Ftb,. If boFoeo then
eo • bo" C ? - t b 1. so ?(Co) is defined and blFl~(eo).

By proposition 3.1.9, we conclude h - (r/,3) is indeed a morphism N(E) -+ N.

It remains to show that h : ~ (E) --+ N is the unique morphism such that ~o (h) = ~7. We do this
by showing that any such morphism f = (? ,3 ') :) /(E) --~ E must satisfy (1) i.e.

bo~tb t ~ (re. eFob 0 ~;~ ? (e) F l b l) ~ bo a ~- (~ - l b l °) r~ LL('bo)j3.

which makes/3 ' = 3 so S = h. By the lemma above any such morphism S must satisf~

bo[3'bl ~ (Ve. eFobo ~ ?(e)Flbl) & bo ° = (r / - Ib l °) n [[(°bo)jJ.

To show the converse assume (Ve. eFobo ¢* r/(e)Flbl) and bo ° = (r / - lb l °) n L[(°b0)]j. Because f

is a morphism, b~o3'b~ for some b~) with °b~ = %o (consider the two cases %0 = 0 and °bo ¢ 0).
By the lemma above b~) ° = (r / - lb l °) rq [W(°b~))]] := (r / - tbt °) N lL(*bo)jj = bo °. By the condition
extensionality of)¢(E), b0 = b~) so bo3'bt. Thus 3 ' satisfies (1). Hence 3 ' = 3 so f = h, establishing
uniqueness. II

Thus there is a coreflection between event structures and occurrence nets with Co as its right
adjoint and J¢ as its left adjoint. This composes with the coreflection between occurrence nets and
safe nets to give a coreflection between event structures and safe nets.

Reasoning in the same way as we did for the coreflection between N e t and Occ , we see, for
instance,

Co(N0 xocc N,) ~ Co(N0) Xp ~o(N1)

Eo xp E1 ~- ~oU(~(Eo) × ~ X(E1))

So +p E1 ~ go~l(N(Eo) +Net J¢(E1)),

which translates constructions in one category to constructions in the other, giving the product and
coproduct in 1 ~ in terms of the product and coproduct in N e t . With extra labelling structure on
nets one can carry out the construction for parallel composit ion and the other constructions needed
for P r o c L p r e t t y much as before, secure in the knowledge of how the different models and semantics
are related.

We can summarise how the different categories are related in a diagram where all funetors are
left adjoints. The functor P --+ pC# is a left-adjoint to the inclusion functor pC# __~ p ; it takes an

381

event structure (E, Con, <) in P to the event s t ructure (E, (¢, <) in P # . This and the adjunctions
involving transi t ion systems T S and event structures in general Eg are not proved here. The
inclusion functor identifying trees with a certain kind of transit ion system has the unfolding functor
as a right adjo in t - -see [W3]. The-inclusion functor E -+ Eg from stable event structures to general
event structures has a right adjoint which essentially makes enough copies of the events to ensure
the stability condition.

T --+D +-- F --+ E --~ Eg

T S P

1 ~ ~ Occ -~ N e t

In particular the functor P ~ ' o ~ : N e t ~ D translates safe nets into domains, and we can ask what
properties of domains correspond to what properties of nets. There is a result relating confusion in
nets to concreteness in domains. Say a net is not confused iff there no reachable marking at which
either symmetric or asymmetr ic confusion occurs.

3 .4 .12 T h e o r e m . Let N be a safe net. Then

P3r£oU (N) is concrete iff N is not confused,

Proof. See [NPW] for art account and [W] for the full details. II

P a r t 4 . H I G H E R T Y P E S .

As motivation the ful l-abstract ion problem for typed A-calculi is introduced. This motivates a
more operational approach to domain theory. It is shown how event s tructures can be used to model
datatypes of functions and functions on functions e tc . . Using another definition of morphism event
structures can be made into a cartesian dosed category equivalent to one discovered by G.Berry. In
this category functions are not ordered extensionatly, .by the pointwise order, as in Scott ' s category
of domains but intensionally, by the stable order, which takes into account the manner in which
they compute. It is indicated how a model of the A-calculus can be constructed.

4 .1. B a c k g r o u n d .

At first sight it is perhaps rather remarkable that event structures should provide models for
programming languages with higher types such as the typed or untyped A calculus. For one thing
it is not immediately clear what an event at higher type is. More strikingly, the well-known models
for such languages originating with D.Scott make essential use of a part icular function space con-
struction on domains, that formed by taking the set of continuous functions ordered pointwise. This
construction quickly takes domains outside the finitary ones, and as we have seen all domains deter-
mined by event structures are finitary. Nevertheless there are forms of function space const ruct ion
on event structures, yielding cartesian closed categories of event structures. The one we shall define
gives rise to a different function space constructions on domains, and is associated with a more
restricted class of functions than just those which are continuous, and the ordering on functions is
different too.

In IPI, Plotkin uncovered the ful l -abstract ion problem for PCF, a programming language, built
around a typed lambda calculus with f ixed-point operators, whose terms at ground type - -ca l l them

382

programs---compute integers or t ru th values. We explain the problem briefly (refer to [B, C, W],
especially {C], for more details). Plotkin defined a natural preorder on terms. In P C F only programs
can yield definite results, and terms at higher type are of interest only in so far as they are parts
of programs. It is natural to regard two terms (of the same type) as operationally equivalent iff
they can be freely subst i tuted for each other in any program without changing its output behaviour.
Formally define the equivalence relation to hold between terms M and N of the same type by

M - N iff for all program contexts C[] either the evaluations of both
C[M] and C[N 1 diverge or they converge to the same v~lue.

More generally, an operational preorder can be defined by taking

M ~ N iff for all program contexts C[} if the evaluation of C{M l
converges to a value then so does that of C{N] converge to the same
value,

A denotat ional semantics also provides a preorder on terms. Write M E N iff the denotat ion of M
is below that of N. Ideally one would hope that the two preorders, operational and denotational,
are equal. In such a case it is said that the denotational semantics is fully abstract.

Unfortunately, as Plotkin showed, the obvious denotational semantics for PCF, interpreting
higher types using the space of all continuous functions, does not lead to a fully abstract model.
Plotkin produced two terms which were operationally equivalent but denotationally distinct through
acting differently on "parallel or". "Parallel or" is a function which takes a pair of t ru th values
including ± for "unknown" and gives value "true" if either argument is "true". "Parallel or" existed
as a function in the domain but could never be defined in the language or supplied in a program
context. Plotkin went on to show that by extending PCF to allow limited parallelism the obvious
model became fully abstract. Milner filled out the picture by showing there is a fully abstract model
for the original P C F but his method was essentially to construct a te rm model from the operational
semantics. There r ema ined- -and still r ema ins - - the problem of providing a semantic construction
of the ful ly-abstract model.

The full abstraction problem led G.Berry, and following him P.L.Curien, on the quest to find
a semantic characterisation of the concept of sequential function at higher type. They hoped to
el iminate problematic elements like "parallel or". Attacks on the problem led Berry to discover
a range of new cartesian closed categories of domains. (Roughly, a category is cartesian closed
iff it has products and function spaces--see [Mact.) Here it will be shown how the simplest of
these, the category of finitary, distr ibutive domains (which Berry called the dI-domains) with stable
functions can be represented as a category of event structures. Other cartesian closed categories of
event structures which are bet ter approximations to the frilly abstract model can be found in [W]
and [BC, C]. I would especially like to highlight the work of Berry and Curien on CDS presented
in [BC, C]. CDS, standing for "concrete data s tructures", is a programming language, which has
been implemented, in which the da ta types are concrete data structures and the computat ions are
"algori thms", in a technical sense, between them. CDS has an elegant mathemat ical theory; concrete
da ta structures and algorithms form a cartesian closed category of objects intimately linked to event
structures and so many of the concepts overlap those encountered in the study of Petri nets.

4.2. Higher - type events.

The simplest new cartesian closed category in [B 1 consists of the finitary, distributive domains
with stable, continuous functions. As we have seen such domains are precisely those formed as the
domains of configurations of stable event structures, so we can get an equivalent category by taking

383

the objects to be stable event structures and the morphisms between event structures to be stable,
continuous functions on the associated domains of configurations. (It is easily confirmed that it is
indeed a category under the usual func~iorL composition.)

4.2.1 Def in i t ion . Define Estab to be the category with objects stable event structures and with
morphisms from Eo to E1 the stable, continuous functions f : (br(E0), C) --~ (gr(E1), C) on their
configurations, i.e. f is continuous and

VXC_iT(E0) .X•0 & X t ~ f (~ X) = ~ f X .

Composition is composition of functions and identities are the identity functions on configurations.

The product in the category is obtained very simply. The event structures are allowed to operate
disjointly, completely in parallel, neither one having an effect on the other. It is easily defined for
all event structures not just the stable ones.

4.2.2 Def in i t ion . Let E0 = (E0,Con0, [-0) and E1 = (El,COn1, F1) be stable event structures.
Their disjoint product, E0 @ El, is the structure (E, Con, [-) where the events are

E = { 0 } x E 0 U { 1 } x E 1 ,

a disjoint union, the consistency predicate is given by

X E C o n c : > { e I (O,e) • X } e C o n o & {e t (1,e) e X } E C o n l ,

and the enabling by

X ~ - e ~ X C C o n & e C E &

[(3eoeEo . e = (O , eo) & {e' I (O ,e ')EX} Noeo) or

(3 e l e El . e = (1,el) & {e' { (1 , e ') e X } k, e,)l.

Define the projections pk: 5r(Eo ® El) -+ 5r(Ek) by taking pk(z) = {e t (k,e) • x}, for k = O, 1.

4.2.3 P r o p o s i t i o n . Let Eo and El be event structures with events Eo, E1 respectively. Then

x E 3r(Eo @ E,) ¢~ x C_ Eo • E1 & po(x) C 3r(Eo) & p,(x) E 7"(E,).

There is a 1-1 correspondence between ~r(Eo G E,) and 3r(Eo) × 3r(El) given by

. ~ (p 0 (x) , p , (x)).

The disjoint product is fl-continuous.

Proof. Obvious. Routine application of lemma 1.6.9 gives the continuity of the disjoint product. |

Thus we can identify x, a conf igurat ion of a disjoint product, with the pair (po(x),pL (x)).

4.2.4 T h e o r e m . The disjoint product Eo @ EL of stable event structures Eo and EL, with
projections 7to, 7fl, is a product in the category E~,~b.

Proof. Obviously the disjoint product of stable event structures is stable. It is easy to see that
the projections are stable functions. The disjoint product is easily seen to be a product now its
configurations are recognised to be essentially pairs of configurations of the components. |

384

To be cartesian closed we must somehow represent the space of stable, continuous functions
f : Eo --~ E1 between two stable event structures E0 and E1 as an event s t ructure itself. This
is done by taking the events of a "function space" event s tructure to be basic parts of functions
(x ,e) standing for the event of output t ing e, an event of El , at input x, a finite configuration of
E0. The function f will correspond to a configuration of events (x, e) in which x is a minimal input
configuration at which e is output.

4 .2 .5 D e f i n i t i o n . Let E0 = (Eo, Cono, No) and E1 = (E h C o n l , ~-l) be stable event structures.
Their s tab le f unc t i on space, [E0 Eli is defined to be the event structure (E, Con, i-) with events
E consisting of pairs (x,e) where x is a finite configuration in 7(E0) and e e E l , a consistency
predicate Con given by

{(zo,eo), . . . , (~,,- , ,~,,- ,)} e Con
i f f V l C { O , - - . , n - 1}. U , c i x i C Con0 =~ {e, I i 6 I } ~ Con1 &

V i , j < n. x i T z i & e, = e 3 ~ x , = x3,

and an enabling relation given by

{ (x o , e o) , . ' . , (x ~ - t , e , ~ - l) } ~ (x ,e) iff{ei [x~ C x} I-1 e.

4 .2 .6 P r o p o s i t i o n . T h e s tab le f unc t i on space o f two s t a b l e even t s t r u c t u r e s is a s t a b l e e v e n t
structure. T h e s tab le f u n c t i o n space c o n s t r u c t i o n is ~ - c o n t i n u o u s .

Proof . Let E0 - (Eo, Cono, }-0) and E1 = (E1,Conl , ? t) be stable event structures. Obviously
their function space forms an event structure (E, Con, b). Suppose

{(w~,a~) I i e I} ~ (~,e),
{(y~,b~) l J E J} t- (x,e) and

{(wi,ai) I i e r} v {(y,,b~) I J c J} v {(~,e)} e Con.

Then, by the definition of enabling and consistency in the function space,

{bi I Yj C_ x } ~-1 e and

{a, I wi ~ 2::} LJ {hi I Y3 ~ ~2} U {e} ~ C o n 1.

As E~ is stable {ai I wi c_ x} N {bi I YJ c x} B~ e. By the definition of consistency on the function
s p a c e ai - b 3:2~ w i = y2 so

((~ , ~) [i e I} n { (y ~ , b ~) I J e J } ~ (~,~)

Thus the function space is a stable event structure.

It is easy to check [-~ / is monotonic in each argument. The operation obtained by varying the
right hand side argument is obviously continuous on events. Because events in the function space
are buil t from only finite configurations so is that for the left hand argument. By lemma 1.6.9 the
function space operation is <_-continuous. |

R e m a r k . Given two event structures Eo and El , not necessarily stable, a similar construct ion can
be given to provide an event structure [E0 --% Ell , again not necessarily stable, whose configura-
tions are in l d correspondence with the continuous functions (7(E0),C_) -* (7(U0), C_). (This is

385

remarked in [G} though for the more restrictive category of qualitative domains.) However, unlike
the stable function space, this construction will not be the exponentiat ion in the category of do-
mains of configurations with continuous functions. The category of event structures with continuous
functions between their associated domains is not cartesian closed by Smyth's lemma 5 in [Smy], or
Curien's theorem 2.4.13 and the remark that follows in [C] (p.158-160).

In fact the stable function space [Eo ~ Eli of stable event structures can be provided with a
stable, continuous application function ap : [Eo ---* Ell • E0 ---* Ei given by

ap (f , x) = {e I • E1] ~x0 C .T. (.TO,el) • f}

for f E 0V([E0 -+ Ell) and .T E J'(E0). (We have identified (f, .T) with the corresponding configuration
of the disjoint product.) As we shall see this makes the function space an exponent iat ion in the
category Est~b. Firstly though it is helpful to show how the configurations of a stable funct ion space
[Eo -~ Ell correspond to stable, continuous functions 5r(E0) ~ Jr(El).

4 .2 .7 D e f i n i t i o n . Let Eo and El be stable event structures.-
For F • Y'([Eo ---* Eli) define

(¢(F))(x) = {e E E~ I 3.T' C .T. (x',e) • F}

for x E jr(E0).
For f : 7(E0) --~ Jr(El) a stable, continuous function define tt(f) a subset of events of [E0 -~ E.t]

by
(x,e) E # (f) *~ e • f (x) & (Vx' C_ x. e • f (x ') =:~ x' = x).

4.2 .8 T h e o r e m . Let Eo and Ei be stable event structures.
(i) For r e 7([Eo ~ El]), the function ¢(F) : 7(Eo) ---* 7(E1) is continuous and stable.
(i) For f : 7(E0) ~ 7(E1) a stable, continuous function, the subset U(f) C ~([~0 ~ ~1]).
(iii) Further, ¢ and # are mutual inverses giving a 1-1 correspondence between configurations
7([Eo --~ Et]) and stable, continuous functions Jr(Eo) --+ Jr(E1).

Proof. Assume Eo = (Eo,Cono, F-o), Ei = (E , , C o n l , ~-i) and the function space lEo --~ E l] ' =
(E, Con, ~-).

(i) Firstly we check ¢(F)(x) E 7 (E l) when F E 7([E0 ~ El]) and x E J'(E0). So we require that
¢(F)(x) is consistent and secured in El .

Suppose Y C fin ¢(F)(x) . Write Y = {e0 , . . . , en -1} . Then there are finite configurations
xo x n - i of Eo such that (xo,eo) , (x , - l , e , - l) E F and z o , . . . , x , - x C x. Thus Ui<,x i E
Cono and so as F is consistent in [Eo ~ El] we obtain Y = { e o , . . . , e n - 1 } E Conl . Therefore
¢(F)(x) is consistent.

Suppose e E ¢(F)(x) . Then. (x',e) E F for some finite configuration x' of Eo. As F is a
configuration of [E0 --* El], so secured, there is a sequence (z0, e 0) , " ' , (x=, en) = (x', e) in F such
that { (x o , e o) , - ' - , (X i - h e i - 1) } ~- (xi,ei) for all i <_ n. Recall this means {e 3] j < i & xy C xi} ~-1
ei. Thus without loss of generality we may assume xi C x' for each i in the secur ing- -any event
(xi, ei) failing this can be removed to still leave a securing for (x', e). For such chains e0 , e,~ is a
securing for e in ¢(F)(x) .

Hence ¢(F)(x) is consistent and secured, and so an element of Jr(E1). This shows ¢(F) Is a
function 7(Eo) ---* 7(E~). It is obviously monotonic. Tha t it is continuous follows because F consists

386

of events of the form (x, e) with z finite. Suppose X is a nonempty, compatible subset of 3r(Eo). By
the monotonicity of ¢ (F) we see

¢(F)(Nx) c_ N~ex¢(F)(~).

Suppose e • N~Ex¢(F)(x) . Then for any x • X there is a finite configuration m~ of E0 for which
mz C_ x and (m~, e) • F. The set {m~ I x • X} is compatible and as F is consistent each rn~ = m
say for x • Z . Now m _ N X making e • ¢ (F) (N X) as, of course, (m,e) • F . Therefore

¢ (F) (~ X) = rqzEx¢(F)(x) ,

showing ¢(F) is stable.

(ii) Let f : 3r(E0) ~ 7 (E ,) be a stable, continuous function. We show it(f) E J'([E0 --+ El l) , i.e.
that # (f) is consistent and secured in leo --~ El l .

Suppose { (x o , e o) , - - - , (x n - l , e , ~ - l) } C_ b~(f)- Assume I C_ {0 ,n - 1} and U i e l x i • Cono.
Write x = U i e r x i • Cono. o f course x E Y(Eo). We have {ei I i • I} C_ f (x) . Consequently
{el I i E I} E Conl . Assume xi U x i E Con and ei = e~ = e say. Then as f is stable

f (x i n xj) = f (x i) N f (x j) ~ e.

As xi and x i are minimal inputs yielding e we must have xi = xi Nxy = xj. T h u s / z (f) is consistent.

We now require that

(IH) (x,e) E # (f) ::~ (z ,e) is secured in t t(f) .

for all finite configurations x of Eo. We show this by induction on the size Ixl of the finite con-
figuration x. When txl = 0 then x = 0. If (0, e) E # (f) then e e f(0). As f(0) is secured
there is a securing eo en for e in f(0). This makes (0 , eo) , . . . , (0 , e~) a securing for (0, e) in
i t (f) . Assume now that txl > 0 and that (IH) holds for all strictly smaller configurations. As-
sume (x,e) E i t(f) . Then e C f (x) so there is a securing e0 e~ = e for e in f (x) . There are
x0 xn C_ x such that (x0, e 0) , . . . , (x~, e,~) C i t (f) with xn = x. Working along this sequence, we
see that for each i, 0 < i < n, either xi C x so (xi,ei) has a securing si in i t(f) by (IH) , or xi = x
so {(x0,e0) (X i - l , e i -1)} F- (xi,ei) and s ~ ' . . . ~ s['_l(xi,ei) is a securing for (xi ,e i) . This shows
(x, e) is secured in # (f) .

We conclude/z(f) E ~r([Eo -+ El i) .

(iii) Now we show 4) and it determine a 1-1 correspondence.

Let F E 3r([Eo + Ell) . We require i t¢(F) = F. Suppose (x,e) E F. Then e E ¢(F) (x) . If
e E ¢ (F) (x ') for x ' c x there would have to be some y C x with (y,e) E F, impossible by the
consistency requirement on F. Therefore (x, e) E / z¢ (F) . Suppose (x, e) E # ¢ (F) . Then e E ¢ (F) (x)
and (x', e) E F for some x ' __C_ x. But the minimali ty of x ensures x = x ' , giving (x, e) E F. We have
shown i t ¢ (F) = F .

Let f : jr(E0) --+ jr(E1) be stable, continuous. We require 4)it(f) = f . Then, using the continuity
of f ,

e e f (x) ~ 3x' C x. (x' ,e) E it(f) ¢* e e (¢/z(f))(x),

for any e ~ E t and x E 7(E0). Therefore ¢/z(f) == f , and we have established the required 1-1
correspondence. !

387

At this point we can quickly prove the cartesian closure of Estab, based on the observation that ,
for stable event structures E, Eo, El the two event structures

[E (D Eo -+ Eli

and
[E ~ leo --, El}}

are the same up to a natura l renaming of events.

4 .2 .9 L e m m a . Let E, Eo, E1 be stable event structures. There is a 1-1 correspondence 0 between
the events o f[E@ Eo ~ E,] and [E --~ [E0 El]] given by

0: ((w , x) , e) , , (w, (:~, e)),

for w, x finite configurations of E, Eo and event e of El , such that

X E Conp ¢:~ OX E ConF

and
X l-p e ~ OX l-F 0(e),

where Conp, l- p are the consistency and entailment relations of [E0 @ E1 -+ E2] and Conr, l- F are
the relations of [Eo --+ le t --+ E2]].

Proof. Let E = (E, Con, l-), E0 = (E0,Con0, l-o) and E1 = (E1 ,Cont , ~-~) be stable event struc-
tures. Assume

[E • E0 -~ E,I = (p, Con~, ~p),

[E - , lEo E1]I = (F, ConF, l-F),

[E0 -~ Eli = (E2,Con2, l-2).

Clearly 0 : P -+ F defined above is a 1-1 correspondence between sets of events.

Compare the notions of consistency.

Consistency in [E-+ leo -+ El]I:

{(w/, (xi, ei)) I i e I } • ConF iff

1(i) VJ C_ I. {wi I i E J}~::~ {(x i ,e ,) [i E J } ~ Con2 &

1(ii) V i , j E I . wi ~F wj & (xi ,ei) = (xj ,ey) ~ wi = wy.

Consistency in [E @ Eo ---* El]:

{((w¢,x~),e~)) I i ~ x} c Conp iff

2(i) VJ _C I. {(wi,xi) I i c J } T ~ {e~ I i c J} e Conl &

2(ii) V i , j E I. wi T wj & xi T x] & ei = e i ~ wi = w i & xi = xy.

Assume {(w~, (x . e d) f i e I} e ConF. We show it follows that { ((w . x ,) , e d) I i C *} e Cone.
Because 1(i) holds 2(i) follows directly. To show 2(i/), assume wi T wy and xi T xy and e~ = e 1. By
1(i), {(xi, ei), (xj , ey)} E Con. Therefore x~ = xj by the property of consistency in a function space.
Now (xi,ei) = (xy,ej) so wi = w i by 1(ii).

388

Assume {((wi,xi),ei)) I i C I} E Cone. We show it follows that {(wi,(xi, ei)) I i E I} ~ ConF.
1(ii) follows directly from 2(ii). We show 1(i). Let J C~ I and suppose (wi t i C J} ~. We need
{(xi, ei) t i E J} E Con2. But this is proved as follows: Let K C J . If {xi I i E K}.~ then
{(wi,xi)] i E K}T so {ei] i E K} E COql by 2(i). I f x i T xy and ei = ej, for i , j E J, then, because
wi T wj too, by 2(ii) we obtain xi = xj.

Thus the correspondence pi'eserves and reflects consistency. It also preserves and reflects en-
tailment:

~(((w,,xO,eO I ¢ ~ z} ~ ((~ ,~) ,d .

Certainly E,tab has products including the null event s tructure as terminal object. The above
results yield a natura l 1-1 correspondence between morphisms E0 ® E1 -~ E2 and E0 -~ [El ~ E2]
and so show that Estab is cartesian closed [Mac. p.95-96 t. We show the exponentiat ion more
explicitly.

4 .2 .10 T h e o r e m . The category E~t~b is cartesian closed. It has products as shown and an
exponentiation of two stable event structures Eo and E1 has the form {Eo --~ ELI, ap where ap :
leo ~ Eli @ Eo -~ E1 is given by

up(S, ~) = (~S) ix)

for f ~ 5({~0 -~ Eli) and x e ~(~o) .
(We have identified (f, x) with the corresponding configuration of the disjoint product.)

Proof. By the preceding remarks the category Est~b is cartesian closed. Alternatively, this is shown
by the following explicit demonstrat ion of an exponentiat ion of two stable event structures. Let Eo
and E1 be event structures. For ap as defined above we see

ap(f ,x) : {e C El [3x' _ x. (x' ,e) C f}

for f E ~r([E0 -+ EL]) and x ~ ~r(E0). The function ap is easily checked to be continuous and
stable. In order for lEo --~ E1},ap to be an exponentiat ion it is required that for any morphism
f : E @ Eo -* E1 there is a unique morphism g : E --+ [E0 ~ Eli such that the following diagram
commutes:

[Eo -+ EI]®Eo~ g@ is. E®Eo

Let a b : [E ® Eo --* El] ~ [E -+[Eo El]] be the isomorphism

ab: r ~-~ {(w,(x,e)) I ((~,,x),e) C r} .

provided by the previous lemma. Take g = ¢ a b #(f) . This ensures g is a morphism. Then, recalling
definitions,

g(w) = {(x',e) t 3w' C w. (wt,(x' ,e)) ~ abt t(f)}

for any configuration w of E. Hence

ap(g(w), ~:) =(¢g(w))(x)

: (~ I ~ ' ~ ~ , x ' c ~. ((~',~'),e) e ~(f)}
=(¢#(f)) (w, z)

=f(w,x) .

389

This establ ishes the existence of g making the d i ag r am commute . Uniqueness follows as if g ' also
makes the d iagram com m ut e then (¢g(w))x = (¢g'(w))x for all w, x. Bu t t hen Cg(w) : ¢g ' (w) for
all w. As ¢ is 1-1, g(w) = g'(w) for all w. Hence g = g'. |

In the t rad i t iona l funct ion space used in deno ta t iona l semant ics the funct ions in the func t ion
space [D -~ El, where D and E are domains are ordered pointwise, i.e. two con t inuous func t ions

f , g are ordered by
f ~ g ~ Vd E D. f(d) E g(d).

This order ing is called the extensional (or Scott) order . The inclusion order on the conf igura t ions
of [E0 --+ Ell induces ano the r order on stable, con t inuous funct ions (~'(E0), C) --+ (7 (E ,) , C) which
we have seen can be expessed as

This order is called the stable order (a name due to Berry) . We give an example.

4 . :] .11 E x a m p l e . The two point domain O consis t ing of ± C T can be r ep resen ted as the the
configurat ions of the obvious event s t ruc tu re wi th a single event *, so 2- : 0 a n d T : { ,} . All the
monotonic functions O ~ O are s table and cont inuous . Ordered extensionai ly they are

(l x . k) E_ (>,z. x = T -~ T I±) ~ (>,x.T)

while according to the s table order ing we only have

(>,x.±) < (~ x ~ : r - . TI ~) and (>,~.±) ~ (>,x.T),

because (>,x. x = T --~ T [k) :~ (>,x.T). For two funct ions to be in the s tab le order it is not only
necessary tha t they are ordered extensional ly bu t also t h a t if they bot:h o u t p u t a value for c o m m o n
input then they do so for the same min imal value.

As an example we indicate how the category can be used to give a model for a >`-calculus w i th

a toms.

4 . 2 . 1 2 E x a m p l e . We can use the s um cons t ruc t ion on event s t ruc tu res (it is a func tor on E~t~b)
and a cons tan t event s t ruc tu re A of a tomic events to define an opera t ion

E ~ A + IE -~ El.

This opera t ion is _<-continuous, be ing the composi t ion of cont inuous th ings , and so has a [east fixed
po in t which can serve as a model for the ,~-calculus wi th a toms following s t a n d a r d lines.

We re tu rn briefly to the p rob lem of full abs t rac t ion . Even more s imply t h a n in the example
above, we can give a denota t iona l semant ics to any typed >`-calculus including PCF; func t ion types
are in terpre ted as the s table funct ion space. Because "parallel or" is not s tab le we have succeeded
in e l iminat ing it f rom the funct ion spaces. However the model is not fully a b s t r a c t - - f a r f rom it. I t
now includes funct ions which axe not monotonic wi th respect to the Scott o rder (in Ber ry ' s t e r m s
the model is not order extensional fB]) and these e lements , like "paral lel or" are no t def inable in
PCF , and cause s imilar difficulties. Berry realised a fairly s imple way to e l imina te such n o n - o r d e r
extens ional funct ions. T he basic idea was to work wi th bidomains which car ry the e x t r a s t r u c t u r e
of the Scott order which can then be used to cut down the funct ions allowed in the func t ion space
(see [W] for ano the r approach based on event s t ruc tures) . Cer ta in ly this leads to a much more
refined model of P C F t h a n one based on the Scott func t ion space bu t the fact r ema ins t h a t there
are finite stable funct ions which are not definable in P C F . So at this poin t Ber ry and P .L.Cur ien , his
s t u d e n t at the t ime, embarked on the s tudy of sequent ia l i ty at h igher type; they h o p e d to proceed

390

by analogy with Berry's work on stable functions and bidomains. Unfortunately, while this work
did take exciting turns (the results are reported in [C]), it did not yield a fully abstract model. The
full abstraction problem is still open.

Recent work of Girard has pointed the way to another appplication for the category of event
structures with stable functions, or the equivalent category of dI-domains. In [G], Girard works with
a proper subcategory of]~stab with objects called qualitative domains and shows how they give a
model to his System F, the polymorphic h-calculus. From the point of view of semantics qualitative
domains are a little too restrictive because they are not closed under the useful operations of lifting
(prefixing) or separated sum. However Girard's ideas can be extended to E~t~b which is (see [CGW]).

Acknowledgements

I am grateful for discussions with Mogens Nielsen and Gordon Plotkin, and to the anonymous
referee for suggested improvements.

References

[A] Aczel, P., A note on Scott's theory of domains. Unpublished note, Math. Dept., Univ. of
Manchester, (1983).

[Ac] Aczel, P., An introduction to inductive definitions. In the handbook of Mathematical Logic,
Ed. Barwise, J., North-Holland (1983).

[B] Berry, G., ModUles compl~tement ad~quats et stables des lambda-calculs typds. Th~se de Doc-
torat d'Etat, Universit~ de Paris VII (1979).

[Bk] Brookes, S.D., On the relationship of CCS and CSP. ICALP 1983, in Springer-Verlag Lecture
Notes in Comp. Sc., vo1.154 (1984).

[Br] Genrich, H.J., Lautenbach, K., and Thiagarajan, P.S., Elements of general net theory. In Net
Theory and Applications, (Ed. Brauer, W.), Springer-Verlag Lecture Notes in Comp. Sci., vol.84
(1980).

[C] Curien, P.L., Categorical combinators, sequential algorithms and functional programming. Re-
search notes in theoretical comp. sc., Pitman, London (1986).

[29] Coquand, T., Gunter, C., and Winskel, G., Polymorphism and domain equations. Submitted
to Third Workshop on the Mathematical Foundations of Programming Language Semantics, New
Orleans, LA 1987.

IF] Fogh, T., En semantik for synkroniserede parallelle processer. Master's thesis, Comp. Sc.,
Aarhus Univ., Denmark (1981).

[G] Girard, J.Y., The system F of variable types, fifteen years later. Manuscript, (1985).

[GR l Goltz, U. and Reisig, W., Processes of Place/Transition Nets. Icaip 83 and appears in Infor-
mation and Control (1984).

[He] Hewitt, C., and Baker, H., Actors and continuous functionals. In "Formal description of
programming concepts (ed. E.Neuhold), North Holland (1978).

[HI Hoare, C.A.R., Communicating sequential processes. Prentice Hall (1985)

391

[HBR] Hoare, C.A.R., Brookes, S.D., and Roscoe, A.W., A Theory of Communicating Processes,
Technical Report PRG-16, Programming Research Group, University of Oxford (1981); in JACM
(1984).

[KP] Kahn, G., and Plotkin, G., Domaines Concretes. Rapport IRIA Laboria No. 336 (1978).

[La] Lamport, L., Time clocks and the ordering of events in a distributed system. CACM 21, (1978).

[LW] Larsen, K., and Winskel, G., Using information systems to solve recursive domain equations
effectively. In the proceedings of the conference on Abstract Datatypes, Sophia-Antipolis, France
in June 1984. Full version submitted to the journal "Information and Control" and appears as a
report of the Computer Laboratory, University of Cambridge (1983).

[LC] Lauer, P. E. and Campbell, R. H., Formal semantics for a class of high-level primitives for
coordinating concurrent processes. Acta Informatica 5 pp.297-332 (1974).

[Maz] Mazurkiewicz, A., Concurrent program schemes and their interpretations. Report PB-78 of
the Computer So. Dept., University of Aarhus, Denmark (1977).

[Mac] Maclane, S., Categories for the Working Mathematician. Graduate Texts in Mathematics,
Springer (1971).

[M] Milner, R., Fully abstract models of typed lambda-calculi. Theor. Comp. Sc., vol.4(1), 1-23
(1977).

IM1] Milner, R., A Calculus of Communicating Systems. Springer Lecture Notes in Comp. Sc. vol.
92 (1980).

[M2] Milner, R., Calculi for synchrony and asynchrony. Theoretical Computer Science 25, pp.267-
31o (1983)

IMS] Montanari, U., and Simonelli, C., On distinguishing between concurrency and nondeterminism.
Proc. Ecole de Printemps on Concurrency and Petri nets, Colleville (1980).

[NPW] Nielsen, M., Plotkin, G., Winskel, G., Petri nets, Event structures and Domains, part 1 .
Theoretical Computer Science, vol. 13 (1981).

[P] Plotkin, G.D., LCF considered as a programming language. Theor. Comp. Sc., vol.5(3), 223-256
(1977).

[Pe] Petri, C.A., Nonsequential processes. GMD-ISF Report ISF-77-05 (1977).

[Pr] Pratt, V. R., On the composition of processes. Proc. of the 9th annual ACM symposium on
Principles of Programming Languages, (1982).

IS] Scott, D. S., Domains for Denotational Semantics. ICALP '82. Springer-Verlag Lecture Notes
in Comp. Sc. 140 (1982).

[$1] Scott, D. S., Lectures on a mathematical theory of computation. Oxford University Computing
Laboratory Technical Monograph PRG-19 (1981).

[Shl,2] Shields, M., Non-sequential behaviours: 1 and 2. Reports of the Comp. Sc. Dept., University
of Edinburgh (part 1: 1982, part 2: 1983).

392

[Smy] Smyth, M.B., The largest cartesian closed category of domains. Theor. Comp. Sc., vol. 27
pp. 109-119 (1983).

[St} Stoy, J. Denotational semantics: The Scott-Strachey approach to programming language theory.
MIT Press (1977).

[W 1 Winskel, G., Events in Computation. Ph.D. thesis, available as a technical report, Comp. Sc.
Dept., University of Edinburgh (1980).

[Wl] Winskel, G., Event structure semantics of CCS and related languages. Proc. ICALP '82.
Springer-Vertag Lecture Notes in Comp. Sc. 140 and as a report of the Computer Sc. Dept.,
University of Aarhus, Denmark (1982).

tW2] Winskel, G., A representation of completely distributive algebraic lattices. Report of the
Computer Science Dept., Carnegie-Mellon University (1983).

[W3] Winsket, G., Synchronisation trees. In Theoretical Computer Science, May 1985.

[W4] Winskel, G., A New Definition of Morphism on Petri Nets. Springer Lecture Notes in Comp
Sc, vol. 166 (1984).

[W5] Winskel, G., Categories of Models for Concurrency. In the proceedings of the workshop on
the semantics of concurrency, Carnegie-Mellon University, Pittsburgh, Springer Lecture Notes in
Computer Science 197 (July 1984), and appears as a report of the Computer Laboratory, University
of Cambridge (1984).

[W6] Winskel, G., Petri nets, algebras, morphisms and compositionality. Report 79 of the Computer
Laboratory, University of Cambridge. To appear in Information and Control. An extended abstract
appears in "Advances in Petri Nets", Springer-Verlag Lecture Notes in Comp. Sc. (1985).

