
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Containment in Rule-Based Models

C. D. Thompson-Walsh, J. Hayman1, G. Winskel1

Computer Laboratory, University of Cambridge, United Kingdom

Abstract

Recently, there has been substantial interest in using rule-based modelling approaches, such as
the Kappa modelling language, to attack the combinatorial intractability of many biochemical
systems. These approaches have allowed several novel static analyses to be developed, which
motivates broadening their expressivity. In this paper, we build upon prior work giving Kappa
an SPO-rewriting semantics to add containment structure, to model the various ways in which
biological mixtures are partitioned and enclosed by membranes.
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1 Introduction

There has recently been a great deal of interest in and investigation of the
use of rule-based modelling frameworks for the simulation and static analy-
sis of biochemical systems, in particular well-mixed chemical solutions such
as the cell cytoplasm. Rule-based approaches are attractive because mod-
ern approaches to biochemistry emphasise how proteins interact via different
‘functional domains’. This lends itself naturally to a modelling proteins as col-
lections of interacting functional domains or sites; rule-based approaches help
to manage the severe combinatorial explosion in numbers of different species
of protein complex possible in even fairly simply biological systems [9].

Two examples of the rule-based approach are Kappa and the BNG mod-
elling systems [11,2]. There has been substantial recent work done on ap-
plying techniques based on Kappa to managing the combinatorial complexity
of biological systems [7,10]. This motivates expanding the expressivity and
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Fig. 1. A spectrum of models of a cell, at different levels of detail. At left, a representation of the
approximation of a cell as a “cytoplasm in a bag”, with the outer membrane shown dashed, circles
representing proteins and arcs showing complexification as in standard representations of Kappa;
at right, an informal sketch of a eukaryotic cell; centre, the model we examine in this paper.

applicability of the rule-based approach, to bring it to more richly-structured
systems.

One particular area in which Kappa is currently weak in modelling expres-
siveness is in the description of different “regions” or areas in which reactions
can take place. Real cells, particularly eukaryotic cells, are complex and highly
structured spaces. Far from being simple well-mixed cytoplasms, cells have
a huge diversity of bilipid membranes and other structures within the outer
cell membrane, all of them reducing the degree to which the contents of a cell
can really be considered well-mixed at all. A typical “cut-away” depiction of
a eukaryotic cell gives a sense of the complexity (see the rightmost part of
Fig. 1)

This partition matters because different compartments can exhibit strongly
divergent concentrations, and hence divergent chemical behaviours; and be-
cause frequently, the cell will exploit concentration gradients across mem-
branes. Where a reaction happens turns out to matter to how the system
evolves. Nor are the structures static: new compartments can form, compart-
ments can be destroyed, and compartments can merge or bud (hive off from
existing compartments).

Any simple formalisation of the complexity of actual eukaryotic cells nec-
essarily approximates; the existing approximation in Kappa modelling is to
describe biochemical networks as operating in a single well-mixed solution
(i.e. one in which there is no structure statistically significant to the proba-
bilities of particular particles interacting.)

Our contribution in this paper is to describe a feasible compromise between
the full complexity of (for example) a cell and this existing approximation, as
shown in figure 1. Our approach is based around adding containment structure
to Kappa; it is related to other efforts (such as [13]), but differs in the emphasis
placed on being able to model the dynamics of these structures.

The model we give will be based around the idea of containment of pro-
tein complexes and regions within other regions; hence we adopt the name
containment structures. We will build this model as additional structure to
be carried into a semantics for Kappa developed in previous work [6].
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In this paper, we first describe a version of Kappa and its associated Single-
Pushout (SPO) semantics, simplified to take account of the fact that issues in
providing an expressive model for containment are largely orthogonal to those
in providing an expressive model for Kappa. This is a simplification of work to
appear in [6], which provides a specialised graph-based approach to describe
Kappa rewriting, comparable to graph-based perspectives on other systems for
modelling signalling pathways [1,3]. We then describe, in an analogous fashion,
the statics and dynamics of our containment structures, and give examples of
how various biological processes can be modelled. Finally, we describe how
our containment structure dynamics can be dovetailed onto Kappa; the usual
stochastics can then be applied to give a model with both stochastic chemical
and structural expressiveness. We conclude by giving a brief sketch of present
and future work based on this new model.

2 Simplified Kappa

There are a variety of papers on Kappa; a good recent introduction can be
found in [8]. The essential approach in Kappa is to model the state of a
well-mixed solution in terms of complexes of agents. The intention is that
agents model individual proteins or molecules; each agent has a collection of
functional sites associated with it, which may enter into binary links with
other sites. The dynamics are given in terms of rules, which may be thought
of as locally describing how the solution is affected by describing its effect on
any collection of agents matching a given test pattern.

Complexes are connected components of these agents in the graph defined
by link structure. Complexes model aggregations of molecules: they can model
aggregates of proteins that are chemically bonded, or else associated by any
one of a number of “weak” bonding processes.

The overall pattern of development for our semantics is first to establish
a category of structures representing Kappa states and rule patterns, which
has as morphisms structure-preserving maps. This is used to introduce a
notion of partial map (using a standard span construction) and is followed
by distinguising classes of matchings and action morphisms. We can then
model rules using action morphisms, and rule applications as matchings from
the left-hand side of the action morphism into an object representing the
mixture. We define the result of applying a rule to be the pushout of the action
morphism against this matching. Finally, we prove that this pushout always
exists. (When we come to define our compartment-modelling structures, we
will follow a similar pattern.)

We begin by defining Σ-graphs, a kind of generalised Kappa state:

Definition 2.1 Assume that we have the ambient sets Type, a set of agent
types, and SiteId a set of site identifiers; and a map Σ : Type → P(SiteId)
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which gives the set of sites on an agent of given type.

Then, a Σ-graph is a tuple (Ag, type, Sts, L) where

• Ag is the set of agents.

• type : Ag → Type is a total typing function, giving what “kind” of molecule
or protein each agent models.

• Sts ⊆ {(A, i) | A ∈ Ag and i ∈ Σ ◦ type(A)} is the set of sites specified in
the Σ graph.

• L ⊆ Sts× Sts is the set of links, a symmetric irreflexive relation on Sts.

Note the ability to leave a site’s link state unspecified. Later we will see
that an object with unspecified link state at a site may be match structures
which have that site specified as either linked or unlinked.

We identify a class of “site graph” objects which represent the physically
meaningful rule patterns:

Definition 2.2 A Kappa site graph is a Σ-graph (Ag, type, Sts, L) where the
link relation satisfies the partial function condition: (s, s′) ∈ L and (s, s′′) ∈
L⇒ s′ = s′′.

In a site graph, each site participates in at most one link.

We can also pick out those objects which represent complete system states,
without any underspecification — we call these mixtures, in reference to the
biochemical setting of Kappa:

Definition 2.3 A mixture is a Kappa site graph (Ag, type, Sts, L) in which
Sts = {(A, i) | A ∈ Ag and i ∈ Σ ◦ type(A)}.
In a mixture, every agent has to have every site specified allowed by the
signature.

For any Σ-graph X, it is convenient to adopt the convention of writing
AgX for its set of agents, StsX for its set of sites, LX for its link relation and
typeX for its typing function.

Definition 2.4 A Σ-homomorphism f : X → Y is a (total) function f :
AgX → AgY such that:

• f preserves agent types: typeX(C) = typeY (f(C)).

• f preserves the presence of sites: {(f(A), i) | (A, i) ∈ StsX} ⊆ StsY .

• Link structure is respected: if ((C, i), (D, j)) ∈ LX then
((f(C), i), (f(D), j)) ∈ LY .

Note that homomorphisms only preserve the presence of links from a site;
they do not preserve the absence of links from a given site. We shall see that
this generality is important when we come to consider action morphisms.

Partial morphisms on Σ-graphs are now constructed as particular kinds
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of spans of homomorphisms. Essentially, this amounts to describing a partial
morphism in two stages, firstly defining the domain of definition of the partial
map and then defining the effect of the partial morphism as a homomorphism
from the domain of definition into the target. The domain of definition is just
a subset of elements in the domain:

Definition 2.5 A Σ-sub-graph D of a Σ-graph S is a Σ-graph where AgD ⊆
AgS, LD ⊆ LS, StsD ⊆ StsS and typeD is the restriction of typeS to AgD. A
Σ-sub-graph inclusion is the obvious identity-like morphism from D to S.

We can now define a partial morphism from S to T to be a span consisting
of an inclusion i : D ↪→ S, where D is a Σ-subgraph of S, together with a
homomorphism h : D → T . Since the inclusion i is uniquely determined by
the choice of D, we write (D, h) for such spans.

For any partial morphism f : S → T , we adopt the convention of writing
Df for the subgraph D above and f0 for the homomorphism h above, so
f = (Df , f0). For any agent A in Df , we allow ourselves to write f(A) for the
result of applying the homomorphism f0 to A.

Suppose we have partial morphisms f = (Df , f0) : S → T and g =
(Dg, g0) : T → U . Their composition is defined in the obvious way, with
the domain of definition of the composition formed as the ‘inverse image’ of
f0 applied to the domain of definition of g. In full detail:

• For any agent A ∈ AgS, we have A ∈ AgDg◦f iff A ∈ AgDf and f(A) ∈ AgDg .
• For any site (A, i) ∈ StsS, we have (A, i) ∈ StsDg◦f iff (A, i) ∈ StsDf and

(f(A), i) ∈ StsDg .
• For any link ((A, i), (A′, i′)) ∈ LS, we have ((A, i), (A′, i′)) ∈ LDg◦f iff

((A, i), (A′, i′)) ∈ LDf and ((f(A), i), (f(A′), i′)) ∈ LDg .
It can be seen [6] that this construction yields a pullback of the homomorphism
f0 : Df → T against the inclusion Dg ↪→ T in the category of Σ-graphs with
homomorphisms between them, so it corresponds to the standard definition
of composition of spans by taking a pullback.

With this composition between partial homomorphisms, we can form a
category of Σ-graphs with partial homomorphisms. Clearly, any homomor-
phism can be regarded as a partial morphism by taking the inclusion to be
the identity.

With all the categorical underpinnings in place, we can now describe the
two distinguished classes of partial morphisms, matchings and actions, which
are used to model matches and rules.

For rewriting rules, the idea is to model an action as a partial morphism
α : X → Y between site graphs X and Y . Site graphs play the rôle of patterns:
an action can be applied to a mixture if its left-hand side X matches some
part of the mixture. Matchings, which we define next, model these matches;
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they are injective homomorphisms that additionally preserve the absence of
links on determined sites. They can be thought of as picking out an exact
image of the left-hand side of a rule in a state.

Definition 2.6 An matching from a site graph X into a site graph Y is a
homomorphism f : X → Y which satisfies the following axioms:

• f is injective.

• f reflects link information: For any (C, i) ∈ StsX , if there exists some
(D, j) ∈ StsY such that ((f(C), i), (D, j)) ∈ LY , then there must exist
some C ′ such that ((C, i), (C ′, j)) ∈ LX . (The agent C ′ is necessarily the
unique agent such that f(C ′) = D).

We now define action morphisms. Viewing an action α as a span, the
domain of definition Dα represents the part of X that is tested by the rule.
The elements of X not in Dα are to be destroyed by the rule, and the elements
of Y outside the image of α0 are created by the rule.

Definition 2.7 An action is a partial morphism α : X → Y from a site graph
X to a site graph Y that obeys the following axioms:

• α is partial injective:
for any A,A′ ∈ AgDα , if α(A) = α(A′) then A = A′

• the only way to delete a site is to delete its agent:
if (A, i) ∈ StsX and A ∈ AgDα then (A, i) ∈ StsDα .

• no sites are introduced to existing agents:
if A ∈ AgDα and (α(A), i) ∈ StsY then (A, i) ∈ StsDα .

• all newly-created agents are created with all possible sites:
if A ∈ AgY and there is no A0 ∈ AgDα such that α(A0) = A then (A, i) ∈
StsY for all i ∈ Σ(typeY (A)).

We can see how rules apply to states by taking the pushout of the action
against the matching, in the category of Σ-graphs with partial morphisms:

Proposition 2.8 Given any span α : X → Y, i : X → S in the category of
partial Σ-morphisms, with α an action and i an matching, and S a mixture,
there is a pushout

X α //

i
��

Y

i′

��
S

α′
//T

p

where α′ is an action and i′ is an matching, and T is also a mixture.

It is shown in [6] how this corresponds to the usual interpretation of Kappa
actions as describing how agents and links are added to and removed from some
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part of the mixture initially matching S.

3 Regions

Real biological systems exhibit remarkable complexity in structure and ar-
rangement. A common, simplifying pattern is wanted to be the basis of our
model. In the simplest, and most common case, one can think of a mem-
brane that encloses a well-mixed region of space, and whose precise shape is
unimportant.

We therefore adopt a perspective that views the cell (or subsystem of in-
terest) as a set of regions, each of which may recursively contain other regions,
and which assumes the contents of each region to be well-mixed, i.e. to obey
standard mass-action dynamics. Each region models one compartment; we
model one compartment held inside another through a notion of containment
on regions.

In this section, we study the definition of systems composed exclusively
of regions. In subsequent sections, we will extend our Kappa semantics from
above to carry this region structure, resulting in a recursive scheme of regions
containing well-mixed solutions of agents and other regions. The development
of this section parallels that of Section 2.

3.1 Containment Structures

We represent region containment in essence as a finite-depth forest. We have
a set of regions R and a reflexive relation �1 over them; we read x �1 y as
“the region x is immediately contained in or equal to the region y”.

Definition 3.1 A containment structure X is a pair of a set of regions RX

and a containment relation �1
X , where �1

X⊆ RX × RX , such that the �1
X

relation satisfies the following axioms:

• �1
X has finite depth: writing �X for the transitive closure of �1

X , we insist
that for any x, {y | x �X y} is finite.

• For any x, y, z with z 6= x 6= y, if x �1
X y and x �1

X z then y = z.

• For all x, we have x �1
X x.

If the order �X has a maximum element, we call the containment structure
X connected; we call the maximum element the top region.

A region models a region of space. We think of the cytoplasm (or other so-
lution) as being partitioned into regions by membranes, so each region implies
the existence of an enclosing membrane. Containment structures are easily
represented as a forest, as in Fig. 2.
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Fig. 2. Representing containment structures as trees. The informally depicted situation on the
left is represented as the tree shown at right (region identities are omitted for clarity.) It will be
convenient to be able to use filled triangles to represent subtrees whose precise members we have
not specified; in this case, the triangle represents all of the contents of the shaded membrane.

3.2 Maps and Dynamics

We now describe containment structure homomorphisms. These may be
thought of as describing how one structure can be mapped over into another.

Definition 3.2 A containment structure homomorphism f : X → Y is a
total function f : RX → RY such that f preserves �1

X — formally, for all
x, y we have that x �1

X y implies f(x) �1
Y f(y).

Containment structures with these homomorphisms form the category
Reg. The next step is to introduce partiality, as we did before, as a span
consisting of an inclusion and a homomorphism.

Definition 3.3 A containment structure inclusion is a morphism f : X → Y
where f is total and identity-like (so RX ⊆ RY ), and �1

X is contained in �1
Y

Definition 3.4 A partial containment structure morphism f : X → Y is a
span of an inclusion with a homomorphism: Df ↪→ X and f0 : Df → Y . Df

is the “domain of definition”; it identifies that part of X on which f is defined.

It can be shown that these spans compose associatively in the way ex-
pected, and that there is an identity; we therefore have the category of con-
tainment structures with partial morphisms, called PReg. Moreover, homo-
morphisms are included into the category by simply using the identity inclu-
sion to form the inclusion leg of the span; we thus have a class of “total”
morphisms in PReg.

We can now establish our class of action morphisms, used to model rules
and updates, and our class of matchings, used to model rule applications.

We utilise a constrained form of partiality for our actions, where maps must
be total on all regions. Maps need not, however, preserve the containments
between regions. This choice of partiality, taken together with the rest of the
defined dynamics, ensures that the effect of a rule is confined to the region of
the containment structure where it applies.

Definition 3.5 A containment structure matching is a total morphism i :
X → S such that i is injective.
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Definition 3.6 A containment structure action morphism is a morphism α :
X → Y , in PReg, such that both X and Y are connected, α takes the top
region of X to the top region of Y and α is total on regions.

This is all that is needed for the following result:

Proposition 3.7 Given any span in PReg α : X → Y, i : X → S, with α an
action and i an matching, and S a connected containment structure, there is
a pushout

X α //

i
��

Y

i′

��
S

α′
//T

p

where α′ is an action and i′ is an matching, and T is also connected.

3.3 Expressiveness

This dynamics enable us to model several biologically important processes,
some of which are briefly sketched here and in Figure 3. We also indicate
certain processes that are not describable in these semantics.

Merging In merging, the object is to combine two membranes into a new,
larger membrane with the union of the contents of the original membrane.
We can merge membranes in the natural way, by constructing a morphism
which maps the two to the same target.

Suppose we have two sibling membranes, b and c, which we wish to merge.
Since they are siblings, they are both immediately contained in some region
a. Our containment structure morphism will consist of a map from a, b, c
to a, d, forming a morphism between the containment structures X and Y :

RX ={a, b, c}
�1

X={(b, a), (c, a)}
∪ IdRX

α ,


a 7→ a

b 7→ d

c 7→ d

RY ={a, d}
�1

Y ={(d, a), (a, a),

(d, d)}
(Since the map is total, the domain of definition Dα is simply X.)

Motion The object of motion is to take one membrane and move it, along
with its contents, into another. This is modelled with a morphism mapping
membranes from their starting configuration into their ending configuration.
Perhaps surprisingly, however, motion exploits partiality : we use undefined-
ness to “break” immediate containments which no longer hold in the target.

For example, suppose that we have membranes b and c inside a top-level
membrane a. We wish to move the membrane c and its contents so that they
are inside b. The immediate containment of c inside a will not be preserved,
so it will not be present in the domain of definition. If X is the left-hand
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• Merging

a

b c

a

d

• Motion

a

b c

a

b

c

• Dissolution

a

b

c

a

d

Fig. 3. Merging, motion and dissolution. In each case, we illustrate at left a sketch of the structure
of the modelled membranes before and after, respectively, merging, motion and dissolution. At
right, we show how this evolution is represented in a tree-like depiction of a containment structure.
As above, the shaded triangles serve to indicate where the subtrees (which we do not draw in detail)
of each region lie. For clarity, we neglect other descendants of the top region.

side of the rule and Y the right-hand side of the rule, we can model this
example of motion as follows:

RX = {a, b, c}
�1

X= {(c, a), (b, a)} ∪ IdRX
RD = {a, b, c}
�1

D= {(b, a)} ∪ IdRD

α ,


a 7→ a

b 7→ b

c 7→ c

RY = {a, b, c}
�1

Y = {(b, a), (c, b)}
∪ IdRY

Dissolution of membranes The object in dissolution is to model a rule
which removes a membrane, placing all of its contents in the next enclosing
membrane. This is possible using a non-injective mapping on membranes:
given a membrane c, which we wish to delete, and an enclosing membrane
b, itself living inside a, we construct a morphism which maps both b and c
to a region d.
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RX = {a, b, c}
�1

X = {(c, b), (b, a)}
∪ IdRX

α ,


a 7→ a

b 7→ d

c 7→ d

RY = {a, d}
�1

X = {(d, a), (a, a), (d, d)}

Creation of new empty regions is straightforward, as these may be added
freely to the codomain of an action.

The general flavour of our semantics is of a relatively rigid matching and
rewriting of parts of the region structures. There are some situations which
do not sit well in this model. Many natural processes require a kind of “uni-
versal rendezvous” — that is, the rule-application will require the systematic
modification of an unbounded number of regions without direct pre-images in
the rule LHS. In general, our quite rigid matchings do not support these. Two
physically motivated examples not present in our semantics are:

Destruction It is sometimes desirable to model the total annihilation of a
region, together with all of its contents. This is not possible in the present
semantics: we in fact insist that regions are never destroyed. Even if we
could destroy regions, we would need to match on “everything” inside a
region, which is a form of universal rendezvous not possible with our rigid
matchings.

Budding Many processes that form membranes work by “budding”: par-
titioning an existing region. In budding then, the original region there-
fore need to be exhaustively and stochastically split between the two new
daughter regions. Although we can model “small” budding events using
techniques such as those described in [14], we cannot express the general
case: there is no way to get a “handle”, via matchings, on “all contents” of
a region. In addition, there is no way of describing stochastic partitioning
of these contents.

4 Augmenting Kappa with Containment

In this section, we give an account of how to equip our simplified Kappa
semantics with containment structure.

Definition 4.1 We define a Σ-region-graph to be a triple of:

• A Σ-graph G = (Ag, type, Sts, L).

• An containment structure S = (R,�1).

• A placing function p : Ag → R.

The intuition of course is that this is a Σ-graph which carries some extra
region structure; the placing relation indicates in which region each agent can
be found.
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We also define site graphs, mixtures and morphisms:

Definition 4.2 We import the following definitions from containment struc-
tures and Σ-graphs:

• A Σ-region site graph is a Σ-region-graph (G,S, p) where G is a Σ-site graph,
S is connected and p is total.

• A Σ-region mixture is a Σ-region site graph (G,S, p) where G is a Σ-mixture.

Definition 4.3 A Σ-region-graph homomorphism f : (GX , RX , pX) →
(GY , RY , pY ) is a pair of maps (f1, f2) where f1 is a (total) Σ-homomorphism,
and f2 is a (total) containment structure homomorphism, such that the ho-
momorphisms respect the placing relation: for any agent C ∈ GX , if pX(C) is
defined, we have that f2(pX(C)) = pY (f1(C))

Definition 4.4 A sub-Σ-region-graph D of X is a Σ-region-graph
(GD, SD, pD) where GD is a Σ-subgraph of GX , SD is a sub-containment-
structure of SX , and pD is a restriction of pX to a subset of the agents of
GD.

We call the obvious identity-like map from D into X the inclusion of D
into X.

Definition 4.5 A Σ-region-graph partial morphism is a span of an inclusion
with a Σ-region-graph homomorphism.

Once again, one can compose by pullback, to yield a category of partial
morphisms PRk (which includes total morphisms as a special case).

Definition 4.6 A Σ-region-graph action is a Σ-region-graph partial mor-
phism f : X → Y where f1 is a Σ-action, and f2 is an containment structure
action, and both X and Y are Σ-region site graphs.

Definition 4.7 A Σ-region-graph matching is a total Σ-region-graph mor-
phism (f1, f2) where the components are respectively Σ and containment struc-
ture matchings.

Note that the totality of matchings implies that the placing of agents found
in the source of the matching must be fully respected in the target.

Finally, once again we can show our standard dynamics theorem:

Proposition 4.8 Given any span α : X → Y, i : X → S in PRk with α an
action and i an matching, and S a connected containment structure, there is
a pushout

X α //

i
��

Y

i′

��
S

α′
//T

p

where α′ is an action and i′ is an matching, and T is also connected.
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5 Conclusion

We have presented a natural, conservative extension to the semantics of Kappa
to include a simple dynamics of regions. It is hoped that this begins the
process of enriching Kappa as a biological modelling language to represent
compartments. There are several possible avenues of future research.

One important question is the complexity and efficiency of simulating
Kappa with regions. A key attraction of classical Kappa is a markedly ef-
ficient simulation algorithm [9]. This algorithm relies on each rule application
only enabling or disabling a small and bounded set of other applications —
in other words, rule applications have only local impact. This allows efficient
incremental update of a set of rule enablings.

Introducing containment structure, however, creates a kind of rule which
can have decidedly non-local effect: if a container is moved or deleted, then
this potentially affects (rules applying to) all of the contained Kappa agents.
In general, in our relatively unconstrained full semantics, it is possible to define
systems in which this results in severely worse simulation cost.

Nevertheless, it may be hoped that real systems, or perhaps sufficiently
constrained and massaged real systems, might not excite this pathological be-
haviour. Preliminary work suggests that existing techniques can be effectively
adapted to simulate constrained classes of system with reasonable efficiency;
however, further work, and especially testing on real example systems of in-
terest, is necessary to validate the new techniques.

It would be useful to establish connections with other space formalisms.
In particular, representing containment structure separately from agent com-
plexification is distinctly bigraphical in flavour, and so a connection should be
attempted with [15,5].

Finally, it may be worthwhile to explore other notions of structure, both
more and less expressive. As we gain experience, it may be desirable to ex-
plore both more complex and simpler options. One could for example add
“wildcard” constructs to rule patterns, and other constructs of universal ren-
dezvous. Work here might draw on comparisons with the Brane calculus [4]
and perhaps more speculatively the Join calculus [12], as well as work on
multi-level multisets [16].

Alternatively, with the goal of simplification, one might consider whether
systems with regions at arbitrary depth beneath other regions can be trans-
lated into systems in which regions do not contain other regions, yielding
”flat” region structures. The translation should (approximately) preserve the
dynamics of the original system. Such techniques might have advantages in
implementation efficiency for particularly demanding systems.
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