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Abstract. A game-semantics foundation for quantum computation is
presented. It draws on two lines of work: for its temporal dynamics, on
concurrent games and strategies, based on event structures; for its quan-
tum interactions, on the mathematical foundations of positive operators
and completely positive maps. The two lines are married in the definition
of quantum concurrent strategy, obtained via an operator generalisation
of the conditions on a probabilistic concurrent strategy. The result is a
compact-closed (bi)category of quantum games, whose finite configura-
tions carry finite dimensional Hilbert spaces, and quantum strategies,
whose finite configurations carry operators.

1 Introduction

We describe how concurrent strategies, based on event structures, can be ex-
tended with quantum effects. The motivation is threefold:

(1) Concurrent strategies have been advanced as a possible foundation for a
generalised domain theory, in which concurrent games and strategies take over
the roles of domains and continuous functions [1, 2]. A major reason has been
to broaden the applicability of denotational semantics. It became important
to see how concurrent strategies could be adapted to quantitative semantics, to
probabilistic and quantum settings. Although a previous extension of concurrent
strategies [3] did generalise quantum game theory as then developed [4], it did
not provide a framework rich enough to represent quantum computation; it was
insufficient to express the mix of classical and quantum behaviour of quantum
lambda-calculi [5]. The extension to truly quantum strategies, has proved elusive.
The pioneering attempt [6] placed severe restrictions on entanglement and the
recent dynamic account of the execution of a quantum programming language
via the geometry of interaction [7] is not compositional.

(2) As quantum information and computation become more sophisticated
there is a need to reconcile quantum theory with causality [8], and put any at-
tempt through the strictures of computer science, with its emphasis on composi-
tionality, adequacy and full abstraction. Concurrent quantum strategies expose
the causal nature of a quantum process as an event structure, and provide a
means to compose quantum processes, in the manner of strategies.

(3) We aim to broaden the semantic basis for quantum programming. The
breakthroughs in the denotational semantics of quantum programming of the last
decade or so, e.g. [9, 5], have been based on insightful generalisations of those
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categories used in quantum information, specifically by extending completely
positive maps with extra structure to more fully address mixes of classical and
quantum effects. But we are now seeing their limitations. Because the generali-
sations do not capture the dynamics of quantum programs directly it is hard to
see whether the models are fully abstract or how they might be refined to fully
abstract models. Concurrent quantum strategies form a marriage of concurrent
strategies with completely positive maps. They extend to nonlinear features,
through symmetry in games, and support the fine-tuning needed to obtain full-
abstraction results, along the lines of [10, 11].

An adequate denotational semantics to the full quantum lambda calculus [12]
in terms of concurrent quantum strategies is given in [13]. This paper is intended
to complement that work by focussing on the fundamental, linear concurrent
quantum strategies and how they generalise concurrent probabilistic strategies.

2 Event structures

An event structure comprises (E,≤,Con), consisting of a set E of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E. The relation e′ ≤ e
expresses that event e causally depends on the previous occurrence of event e′.
That a finite subset of events is consistent conveys that its events can occur
together. The relations satisfy several axioms:

[e] =def {e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con implies Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X implies X ∪ {e} ∈ Con.

There is an accompanying notion of state, or history, those events that may
occur up to some stage in the behaviour of the process described. A config-
uration is a, possibly infinite, set of events x ⊆ E which is: consistent, X ⊆
x and X is finite implies X ∈ Con ; and down-closed, e′ ≤ e ∈ x implies e′ ∈ x.

Two events e, e′ are considered to be causally independent, and called con-
current if the set {e, e′} is in Con and neither event is causally dependent on
the other; then we write e co e′. In games the relation of immediate dependency
e _ e′, meaning e and e′ are distinct with e ≤ e′ and no event in between, plays
a very important role. We write [X] for the down-closure of a subset of events X.
Write C∞(E) for the configurations of E and C(E) for its finite configurations.
(Sometimes we shall need to distinguish the precise event structure to which a
relation is associated and write, for instance, ≤E , _E or coE .)

A map of event structures f : E ⇀ E′ is a partial function f from E to E′

such that the image of a configuration x is a configuration fx and any event
of fx arises as the image of a unique event of x. When f is total, then written
f : E → E′, it induces a bijection x ∼= fx. Maps compose as functions.
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A map f : E ⇀ E′ reflects causal dependency locally, in the sense that if e, e′

are events in a configuration x of E for which f(e′) ≤ f(e) in E′, then e′ ≤ e also
in E; the event structure E inherits causal dependencies from the event structure
E′ via the map f . Consequently, a map f : E ⇀ E′ preserves concurrency. In
general a map of event structures need not preserve causal dependency; a total
map which does is called rigid.

Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’
events. Define the projection of E on V , to be E↓V =def (V,≤V ,ConV ), where
v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V . Projec-
tion hides all events outside V . It is associated with a partial-total factorization
system. Consider a partial map of event structures f : E ⇀ E′. Let

V =def {e ∈ E | f(e) is defined} .

Then f clearly factors into the composition

E
f0 / E↓V

f1 // E′

of f0, a partial map of event structures taking e ∈ E to itself if e ∈ V and
undefined otherwise, and f1, a total map of event structures acting like f on V .
Note that any x ∈ C∞(E↓V ) is the image under f0 of a minimum configuration,
viz. [x]E ∈ C∞(E). We call f1 the defined part of the partial map f .

It is sometimes useful to build an event structure out of computation paths.
A computation path is described by a partial order (p,≤p) for which the set
{e′ ∈ p | e′ ≤p e} is finite for all e ∈ p. We can identify such a path with an
event structure in which the consistency relation consists of all finite subsets of
events. Between two paths p = (p,≤p) and q = (q,≤q), we write p ↪→ q when
p ⊆ q and the inclusion is a rigid map of event structures.

Proposition 1. A rigid family R comprises a non-empty subset of finite partial
orders which is down-closed w.r.t. rigid inclusion, i.e. p ↪→ q ∈ R implies p ∈
R. A rigid family determines an event structure Pr(R) whose order of finite
configurations is isomorphic to (R, ↪→). The event structure Pr(R) has events
those elements of R with a top event; its causal dependency is given by rigid
inclusion; and its consistency by compatibility w.r.t. rigid inclusion. The order
isomorphism R ∼= C(Pr(R)) takes q ∈ R to {p ∈ Pr(R) | p ↪→ q}.

The pullback of total maps of event structures is essential in composing strate-
gies. We can define it via a rigid family of secured bijections. Let σ : S → B and
τ : T → B be total maps of event structures. There is a composite bijection

θ : x ∼= σx = τy ∼= y ,

between x ∈ C(S) and y ∈ C(T ) such that σx = τy; because σ and τ are total
they induce bijections between configurations and their image. The bijection is
secured when the transitive relation generated on θ by (s, t) ≤ (s′, t′) if s ≤S s′
or t ≤T t′ is a partial order.
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Theorem 1. Let σ : S → B and τ : T → B be total maps of event structures.
The family R of secured bijections between x ∈ C(S) and y ∈ C(T ) such that
σx = τy is a rigid family. The functions π1 : Pr(R) → S and π2 : Pr(R) → T ,
taking a secured bijection with top to, respectively, the left and right components
of its top, are maps of event structures. Pr(R) with π1 and π2 is the pullback of
σ and τ in the category of event structures.

Notation 2 From Proposition 1, finite configurations of the pullback of σ : S →
B and τ : T → B are order-isomorphic to the rigid family of secured bijections.
Define x ∧ y to be the configuration of the pullback which corresponds via this
isomorphism to a secured bijection between x ∈ C(S) and y ∈ C(T ), necessarily
with σx = τy; any finite configuration of the pullback takes the form x ∧ y for
unique x and y.

3 Games and strategies

Both a game and a strategy will be represented by an event structure with
polarity, which comprises (A, polA) where A is an event structure and a polarity
function polA : A → {+,−, 0} ascribing a polarity + (Player), − (Opponent)
or 0 (neutral) to its events. The events correspond to (occurrences of) moves.
It will be technically useful to allow events of neutral polarity; they arise, for
example, in a play between a strategy and a counterstrategy. Maps are those
of event structures which preserve polarity. A game is represented by an event
structure with polarities restricted to + or −, with no neutral events.

Definition 1. In an event structure with polarity, with configurations x and y,
write x ⊆− y to mean inclusion in which all the intervening events are Opponent
moves. Write x ⊆+ y for inclusion in which the intervening events are neutral
or Player moves. The Scott order, between x, y ∈ C∞(A), where A is a game, is
defined by: y vA x ⇐⇒ y ⊇− x ∩ y ⊆+ x . (The order ⊇− is converse to ⊆−.)

There are two fundamentally important operations on two-party games. One
is that of forming the dual game. On a game A this amounts to reversing the
polarities of events to produce the dual A⊥. The other operation, a simple parallel
composition A‖B, is achieved on games A and B by simply juxtaposing them,
ensuring a finite subset of events is consistent if its overlaps with the two games
are individually consistent; any configuration x of A‖B decomposes into xA‖xB
where xA and xB are configurations of A and B respectively.

A strategy in a game A is a total map σ : S → A of event structures with
polarity such that
(i) if σx ⊆− y, where x ∈ C(S) and y ∈ C(A), there is a unique x′ ∈ C(S) with
x ⊆ x′ and σx′ = y;
(ii) if s _ s′ in S & pol(s) = + or pol(s′) = −, then σ(s) _ σ(s′) in A .
The first condition is one of receptivity, ensuring that the strategy is open to all
moves of Opponent permitted by the game. The second condition ensures that
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the only additional immediate causal dependencies a strategy can enforce are
those in which a Player move awaits a move of Opponent.

A strategy from a game A to a game B is a strategy in the game A⊥‖B. A
map f : σ ⇒ σ′ of strategies σ : S → A and σ′ : S′ → A is a map f : S → S′

s.t. σ = σ′f ; this determines isomorphism of strategies.
The conditions defining a strategy are precisely those needed to ensure that

the copycat strategy behaves as identity w.r.t. composition.

3.1 Copycat

Let A be a game. The copycat strategy ccA : CCA → A⊥‖A is an instance of a
strategy from A to A. The event structure CCA is based on the idea that Player
moves in one component of the game A⊥‖A always copy previous corresponding
moves of Opponent in the other component. For c ∈ A⊥‖A we use c̄ to mean the
corresponding copy of c, of opposite polarity, in the alternative component. The
event structure CCA comprises A⊥‖A with extra causal dependencies c̄ ≤ c for all
events c with polA⊥‖A(c) = +; together with the additional causal dependency
they generate a partial order; take a finite subset to be consistent in CCA iff its
down-closure w.r.t. the relation ≤ is consistent in A⊥‖A.

Lemma 1. Let A be a game. Let x ∈ C(A⊥) and y ∈ C(A),

x‖y ∈ C(CCA) iff y vA x .

3.2 Composition

Two strategies σ : S → A⊥‖B and τ : T → B⊥‖C compose via pullback and
hiding summarised below.

T ~ S

π1

zz

/

τ~σ

��

π2

$$

T�S

τ�σ

��

S‖C

σ‖C $$

A‖T

A‖τzz
A‖B‖C / A‖C

Ignoring polarities, by forming the pullback of σ‖C and A‖τ we obtain the
synchronisation of complementary moves of S and T over the common game
B; subject to the causal constraints of S and T , the effect is to instantiate the
Opponent moves of T in B⊥ by the corresponding Player moves of S in B, and
vice versa. Reinstating polarities we obtain the interaction of σ and τ

τ ~ σ : T ~ S → A⊥‖B0‖C ,

where we assign neutral polarities to all moves in or over B. Moves over the
common game B remain unhidden. The map A‖B‖C ⇀ A‖C is undefined on B
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and otherwise mimics the identity. Pre-composing this map with τ~σ we obtain
a partial map T ~ S ⇀ A⊥‖C; it is undefined on precisely the neutral events of
T ~ S. The defined parts of its partial-total factorization yields

τ�σ : T�S → A⊥‖C

on reinstating polarities; this is the composition of σ and τ .

Notation 3 For x ∈C(S) and y ∈C(T ), let σx = xA‖xB and τy = yB‖yC where
xA ∈ C(A), xB , yB ∈ C(B), yC ∈ C(C). Define y ~ x = (x‖yC) ∧ (xA‖y) . This
is a partial operation. Any finite configuration of T ~ S has the form y~ x =def

(x‖yC) ∧ (xA‖y) for unique x ∈ C(S) and y ∈ C(T ).

3.3 A bicategory of strategies

We obtain a bicategory for which the objects are games, the arrows σ : A + //B
are strategies σ : S → A⊥‖B; with 2-cells f : σ ⇒ σ′ maps of strategies.
The vertical composition of 2-cells is the usual composition of maps. Horizontal
composition is given by the composition of strategies � (which extends to a
functor on 2-cells via the universality of pullback and partial-total factorisation).

As A⊥‖B ∼= (B⊥)⊥‖A⊥, a strategy σ : A + //B corresponds to a strategy σ⊥ :
B⊥ + //A⊥. The bicategory of strategies is compact-closed; the unit ∅ + //A⊥‖A
and counit A‖A⊥ + //∅ being the obvious modifications of the copycat strategy.

We can restrict the 2-cells to be rigid maps and still obtain a bicategory. This
is important later, when the 2-cells for probabilistic and quantum strategies will
be rigid.

A strategy σ : S → A is deterministic if S is deterministic, viz.

∀X ⊆fin S. [X]− ∈ ConS =⇒ X ∈ ConS ,

where [X]− =def {s′ ∈ S | ∃s ∈ X. polS(s′) = − & s′ ≤ s}. In other words, a
strategy is deterministic if consistent behaviour of Opponent is answered by
consistent behaviour of Player. Copycat ccA is deterministic iff the game A is
race-free, i.e. if x ⊆− y and x ⊆+ z in C(A) then y ∪ z ∈ C(A).

4 Quantum foundations

The category FdHilb of finite dimensional Hilbert spaces has as objects finite
dimensional vector spaces, over the complex numbers C, with an inner product
〈φ|ψ〉, which is conjugate-linear in the first argument and linear in the second.
Its arrows are linear maps between the underlying vector spaces. Any map f :
H → K has an adjoint f† : K → H specified by 〈f†(φ)|ψ〉H = 〈φ|f(ψ)〉K .

The category FdHilb is symmetric monoidal w.r.t. the well-known operation
of tensor product of Hilbert spaces, where the tensor unit I is the one-dimensional
vector space, comprising the complex numbers C with inner product 〈c|d〉 = c∗·d
where c∗ is the complex conjugate of c.
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As observed in [9], the category FdHilb is compact-closed w.r.t. the op-
eration of dual space. A finite dimensional Hilbert space H with inner prod-
uct 〈φ|ψ〉H has a dual space H∗ given concretely as the vector space of lin-
ear maps from H to I; as any linear map from H to I can be represented by
φ∗ = 〈φ| = 〈φ| 〉H , for some φ ∈ H, its inner product is specified by taking
〈φ∗|ψ∗〉H∗ =def 〈ψ|φ〉H . The unit of the compact-closure ηH : I→ H∗⊗H takes
1 ∈ I to the identity matrix

∑
i 〈i| ⊗ |i〉 w.r.t. an orthonormal basis |1〉, · · · , |n〉,

of size the dimension dim(H). The counit, εH : H⊗H∗ → I is given by the inner
product and takes φ⊗ ψ to 〈ψ|φ〉.

As is well-known, via this compact-closed structure, FdHilb admits a partial
trace to form a traced monoidal category [14]. Given a map f : H ⊗L→ K ⊗L
in FdHilb its partial trace is a map TrL(f) : H → K. When H and K are the
unit space, tr(f) = TrL(I⊗ f) : I→ I, so is a scalar factor, which coincides with
the usual trace of the matrix of the operator f .

We reserve the term operator for a linear map with the same domain and
codomain. An operator preserving the inner product is called unitary; unitaries
are associated with the undisturbed evolution of a quantum system. An operator
f : H → H in FdHilb is positive if 〈φ|f(φ)〉 is a non-negative real for all
φ ∈ H. Write Op(H), and Pos(H), for the set of operators, respectively positive
operators, on a finite dimensional Hilbert space H. Given operators f and g on
a finite dimensional Hilbert space H we can define the Löwner order on Op(H)
by taking f ≤L g iff g − f is positive. Those ρ ∈ Pos(H) for which tr(ρ) ≤ 1
are called subdensity operators. They play the role of “mixed” quantum states
to be thought of as subprobabilistic combinations of pure quantum states.3

In order to represent operations on quantum systems, such as those taking
quantum states to quantum states, one derives a category CPM based on a
rich class of completely positive maps.The objects of CPM are again finite
dimensional Hilbert spaces but now a completely positive map f : H → K
in CPM is a linear map f : H∗ ⊗ H → K∗ ⊗ K in FdHilb such that its
correspondent f̄ : H∗ ⊗ K → H∗ ⊗ K in FdHilb, got via compact-closure, is
a positive operator. We write CJ : f 7→ f̄ for the 1-1 correspondence between
completely positive maps f ∈ CPM(H,K) and positive operators f̄ ∈ Pos(H∗⊗
K); it is the well-known Choi-Jamiolkowski isomorphism.

We represent the Hilbert space H∗⊗H as that of matrices of the isomorphic
space of operators Op(H); w.r.t. an orthonormal basis of H, an operator on H
can be described as a vector

∑
i,j cij |i〉〈j| or as a matrix with entries cij . It is help-

ful conceptually and technically to regard a map f : H → K in CPM as taking
operators on H to operators on K, so as a map f : Op(H)→ Op(K) in FdHilb.
A linear map f : Op(H) → Op(K) is positive if it takes positive operators to
positive operators. Those f : Op(H)→ Op(K) arising from completely positive
maps are those for which f ⊗ idL is positive for any idL : Op(L) → Op(L).
If a completely positive map f further satisfies tr(f(A)) ≤ tr(A) it is called a
superoperator. Superoperators represent the physically realisable operations on

3 The use of subdensity rather than density operators, where tr(ρ) = 1, is natural in
quantum systems which may stick with a non-trivial probability.
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quantum states. In strategies, due to the presence of Opponent moves, we shall
have call for completely positive maps which are not superoperators, for maps of
CPM which act on positive operators which are not identifiable with the usual
states of quantum mechanics.

We can describe a map in CPM, regarded as a map between operators, as
function from matrices of the argument to matrices of the result. A qubit is
represented by a vector so a column matrix in C2, w.r.t. the standard basis,
and an operator on qubits by a 2-by-2 matrix. The measurement of a value
0 or 1 of a qubit in C2 is described, respectively, by the two superoperators
meas0,meas1 ∈ CPM(C2, I) where

meas0 :

(
a b
c d

)
7→ a and meas1 :

(
a b
c d

)
7→ d .

The two superoperators representing the creation of qubit initially set to 0 or 1,
respectively, are given by new0, new1 ∈ CPM(I,C2) where

new0 : a 7→
(
a 0
0 0

)
and new1 : d 7→

(
0 0
0 d

)
.

For U a unitary on H, the superoperator Û ∈ CPM(H,H) takes an operator
M ∈ Op(H) to UMU†, which restricts to the usual application of a unitary
operation to a quantum state.

Two maps in CPM play an early role. They derive from the unit and counit
associated with the compact closure of FdHilb. Let H be a finite dimensional
Hilbert. The unit ηHilb

H of FdHilb viewed as completely positive map gives
1H ∈ CPM(I,H) which on argument 1 returns the identity operator idH ; it is
not a superoperator. The counit εHilb

H∗ , makes a completely positive map trH ∈
CPM(H, I) which on an operator on H returns its trace.

The category CPM inherits its symmetric monoidal structure from FdHilb.
Its compact-closed structure, ηcpmH ∈ CPM(I, H∗ ⊗H) and εcpmH ∈ CPM(H ⊗
H∗, I), is also induced by the compact-closed structure of FdHilb once we iden-
tify an object H in CPM with its space of operators Op(H):

ηcpmH = ηHilb
Op(H) : I→ Op(H)∗ ⊗Op(H) ;

εcpmH = εHilb
Op(H) : Op(H)⊗Op(H)∗ → I .

More explicitly, w.r.t. an orthonormal basis |1〉, · · · |n〉 of H, we have an or-
thornormal basis Eij =def |i〉〈j| of Op(H). The unit ηcpmH takes 1 to the identity∑
i,j E

∗
ij ⊗ Eij . The counit εcpmH takes v ⊗ f to f(v); explicitly, on the basis, it

takes Eij ⊗ E∗kl to δikδjl, described using the Kronecker delta.
CPM provides a conveniently rich category, supporting all quantum oper-

ations, and the diagrammatic reasoning which derives from compact-closure.
In fact, CPM inherits a dagger (a.k.a. strong) compact-closed structure from
FdHilb [9, 15]. The mathematics that follows could be explained more axiomat-
ically w.r.t. dagger compact-closed categories enriched over cancellative commu-
tative monoids; the enrichment is needed to support subtraction in the “mono-
tone” condition on quantum strategies.
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In what follows, often Hilbert spaces will come presented as explicit tensor
products A =

⊗
a∈xH(a) or B =

⊗
b∈yH(b); in such cases we adopt the con-

vention that A ⊗ B =
⊗

c∈x∪yH(c) when x ∩ y = ∅; the associated structural
maps, symmetry and the left and right unit maps, will become identities.

5 From probabilistic to quantum strategies

Taking guidance from probabilistic strategies we are led to a definition of quan-
tum strategy in a quantum game. Probabilistic strategies are recovered as a
special case, when the quantum game is classical.

5.1 Probabilistic strategies

A probabilistic strategy in a game A is a strategy σ : S → A together with
a probability valuation which endows S with probability, while taking account
of the fact that in the strategy Player can’t be aware of the probabilities as-
signed by Opponent. We should restrict to race-free games, precisely those for
which copycat is deterministic, so that we have probabilistic identity strate-
gies; it follows that S is race-free. Precisely, a probability valuation is a function
v : C(S)→ [0,∞) which is

(normalised) v(∅) = 1;
(oblivious) if x ⊆− y then v(x) = v(y), for x, y ∈ C(S); and
(monotone) if y ⊆+ x1, · · · , xn then dv[y;x1, · · · , xn] ≥ 0,

where the drop function,

dv[y;x1, · · · , xn] =def v(y)−
∑

∅6=I⊆{1,··· ,n}

(−1)|I|+1v(xI) ,

y, x1, · · · , xn ∈ C(S) and we take xI =
⋃
i∈I xi and v(xI) = v(

⋃
i∈I xi) when

the union xI is a configuration and 0 otherwise. Together the three conditions
ensure that the range of a probability valuation stays within the interval [0, 1].

When there are no Opponent moves in S, a probability valuation v makes S
into a probabilistic event structure [16]. Then v extends to a continuous valua-
tion w on the Scott-open4 sets ofC∞(S), one in which w({y ∈ C∞(S) | x ⊆ y}) =
v(x); this yields a 1-1 correspondence between valuations on configurations and
continuous valuations on open sets [16]. Hence, by [17], the valuation v deter-
mines a probability distribution on the Borel sets. In this case v(x) reads as
Prob(x), the probability that the result includes the events of the finite config-
uration x. When S has Opponent moves, the reading of v involves conditional

4 A Scott-open subset of configurations is upwards-closed w.r.t. inclusion and such that
if it contains the union of a directed subset S of configurations then it contains an
element of S. A continuous valuation is a function w from the Scott-open subsets of
C∞(E) to [0, 1] which is ((normalised) w(C∞(E)) = 1; (strict) w(∅) = 0; (monotone)
U ⊆ V =⇒ w(U) ≤ w(V ); (modular) w(U ∪ V ) + w(U ∩ V ) = w(U) + w(V ); and
(continuous) w(

⋃
i∈I Ui) = supi∈Iw(Ui), for directed unions.
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probabilities. When x ⊆+ y in C(S), provided v(x) 6= 0, the conditional probabil-
ity of Player making moves y given x, is expressed by Prob(y | x) = v(y)/v(x).
Player is oblivious to Opponent in the sense that if two events, ⊕, 	, of oppo-
site polarities can occur at a configuration x, then not only are they causally
independent there (because S is race-free), they are also probabilistically inde-
pendent: Prob(⊕|x) = Prob(⊕|x,	). The monotone condition expresses that we
assign non-negative probabilities to generalised intervals [y;x1, · · · , xn], consist-
ing of those configurations which include the finite configuration y but do not
include any of the finite configurations x1, · · · , xn.

The composition of strategies extends to probabilistic strategies, σ : S →
A⊥‖B with valuation vσ and τ : T → B⊥‖C with vτ . A configuration of their
interaction, of the form y~ x ∈ C(T ~S) for x ∈ C(S) and y ∈ C(T ), is assigned
valuation vτ~σ(y ~ x) = vτ (y) · vσ(x). Their composition τ�σ has probability
valuation vτ�σ(z) = vτ~σ([z]T~S) for z a finite configuration of T�S. The proof
that we so obtain probability valuations relies heavily on properties of drop
functions.

We obtain a bicategory of probabilistic strategies on race-free games. Because
copycat is deterministic it can be assigned the constantly 1 valuation and remains
an identity w.r.t. composition. The 2-cells are rigid maps of strategies which
relate probability valuations across 2-cells via a push-forward result:

Lemma 2. Let f : σ ⇒ σ′ be a rigid 2-cell between strategies σ : S → A and
σ′ : S′ → A. Let v be a probability valuation for σ. Taking, for y ∈ C(S′),
(fv)(y) =def

∑
x:fx=y v(x) defines a probability valuation fv for σ′, the push-

forward of v.

A 2-cell between probabilistic strategies σ, v to σ′, v′ is a rigid 2-cell f : σ ⇒ σ′ of
strategies for which (fv)(x′) ≤ v′(x′), for all configurations x′ ∈ C(S′). Vertical
and horizontal composition are inherited from strategies.

5.2 Quantum strategies

The probabilistic case provides loose guidelines in extending to quantum strate-
gies. As usual probabilities are replaced by operators but there is now the ques-
tion of their type, which we take as given by the game.5

A quantum game (A,H) comprises A, a race-free event structure with polar-
ity, together with H assigning a finite dimensional Hilbert space H(a) to each
event a ∈ A. It is convenient to extend the assignment to any finite y ⊆ A and
write H(y) =def

⊗
a∈yH(a); in particular H(∅) = I, the one-dimensional Hilbert

space.
At this point we are guided to a quantum extension of strategies in which

finite configurations of a strategy are positive operators of type given by the
game. (In order to extend the probabilistic case and model the non-local nature

5 We eschew the other obvious possibility in which the game also determines the
operators because we want strategies to be quantum, not just probabilistic, in line
with the quantum lambda-calculus [5] and earlier definition [6].
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of quantum theory we do not assign operators just to events.) Once here, it
is hard to escape the quantum generalisations of the first two conditions on
quantum strategies. There is though the issue of how to generalise the remaining
monotone condition and the drop function on which it is based. For reasons
explained shortly we adopt a strong condition in which positivity is expressed
by the Löwner order between operators.

A quantum strategy in a quantum game (A,H) is a strategy σ : S → A to-
gether with a quantum valuation for σ, an assignment Q(x) of a positive operator
on H(σx) to each x ∈ C(S), which is

(normalised) Q(∅) = 1, the identity on I;

(oblivious) if x ⊆− y then Q(x)⊗ idH(σy\σx) = Q(y); and

(monotone) if y ⊆+ x1, · · · , xn then dQ[y;x1, · · · , xn] ≥L 0,

where dQ[y;x1, · · · , xn] =def Q(y)−
∑

∅6=I⊆{1,··· ,n}
(−1)|I|+1TrH(σxI\σy)Q(xI) .

Analogously to the probabilistic case, we take xI =
⋃
i∈I xi and Q(xI) =

Q(
⋃
i∈I xi) when the union is a configuration and to be 0, the zero operator,

otherwise. The role of the partial trace in the “monotone” condition is to hide
the effects of operators outside the space H(σy), and reduce an operator on
larger spaces H(σxI) to one on H(σy).

Note a special case, when the quantum game is classical, in the sense that each
H(a) is the one-dimensional Hilbert space. Then, by the “monotone” condition,
every non-zero operator Q(x) is necessarily multiplication by a positive scalar,
less than or equal to 1. Identifying operators on one-dimensional Hilbert space
with scalars, we recover probabilistic strategies.

Another special case is that in which all the moves in the game A are those
of Player. Then, by “monotone”, each Q(x) is a subdensity operator; so in this
case states of an event structure, viz. configurations, are assigned quantum states.
In moving from probabilistic to quantum strategies what were formerly proba-
bilistic states have become quantum states. Without Opponent events we have
uncovered a notion of quantum event structure (in some ways stricter, in others
more general, than those defined previously [16].)

When the games contain Opponent events the operators Q(x) need not have
trace less than or equal to one; consider, for instance, the identity operator
assigned to the singleton configuration of a strategy over a quantum game com-
prising a single Opponent event with a space of dimension 2. The operators Q(x)
will however be 1-bounded—the output’s norm never exceeds that of the input,
see Proposition 3.

There is the issue of the choice of “monotone” condition. Why not weaken
it to one in which the drop is reduced to a real number using the full trace
operation? Because the weaker form is not preserved by composition of strategies.

Quantum strategies and superoperators We characterise those positive
operators Q(x) on H(σx) which are assigned to x ∈ C(S) in a quantum strategy
σ : S → A w.r.t. a quantum game (A,H). This involves splitting a configuration
x into its Opponent and Player events, x− and x+ respectively.
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Lemma 3. Let σ : S → A with Q be a quantum strategy in a quantum game
(A,H). For any x ∈ C(S), Q(x) is a positive operator for which

TrH(σx+)(Q(x)) ≤L idH(σx−) in the Löwner order.

Given a positive operator Q on N ⊗ P , for which TrP (Q) ≤L idN , it is easy
to arrange a quantum strategy in which Q is assigned to a finite configuration.

Example 1. Let A be the quantum game 	_ ⊕ with 	 assigned Hilbert space
N and ⊕ the space P . Imagine a quantum strategy σ : S → A where S has the
same shape as A, viz. 	_ ⊕. It will necessarily assign idN to the configuration
{	} and the operators Q that can be assigned to {	,⊕} are precisely those
positive operators Q on N ⊗ P , for which TrP (Q) ≤L idN .

Lemma 3 informs us how to rescale a quantum valuation to obtain subdensity
operators whose trace is a probability valuation:

Proposition 2. Let Q be a quantum valuation for a strategy σ : S → A. Defin-
ing ρ(x) = Q(x)/dim(H(σx−)) we obtain subdensity operators for all x ∈ C(S).
Their trace v(x) = tr(ρ(x)) = tr(Q(x)/ dim(H(σx−)), for x ∈ C(S), yields a
probability valuation v for σ.

Via the Choi-Jamiolkowski isomorphism, the positive operators Q(x) as-
signed to a strategy correspond to superoperators. In more detail, a positive
operator Q(x) ∈ Pos(H(σx)) is an operator

Q(x) ∈ Pos((H(σx−)∗)∗ ⊗H(σx+))

which corresponds under Choi-Jamiolkowski to a completely positive map

−Q+(x) : CPM(H(σx−)∗, H(σx+)) .

In quantum strategies, the operators Q(x) are precisely those which correspond
to superoperators −Q+(x) —a corollary of the following refinement of the Choi-
Jamiolkowski isomorphism (read H(σx−) for N and H(σx+) for P ):

Lemma 4. Let N and P be finite dimensional Hilbert spaces. Positive operators
Q ∈ Pos(N⊗P ), for which TrP (Q) ≤L idN in the Löwner order, correspond via
the Choi-Jamiolkowski isomorphism to trace non-increasing completely positive
maps CJ−1(Q) ∈ CPM(N∗, P ), i.e. superoperators.

The view espoused by Leifer and Spekkens of this refinement of the CJ-
isomorphism is that it establishes a correspondence between conditional quantum
states of P , conditional on N , and superoperators from N to P , understood as
the quantum analogue of stochastic maps [18]. Their view is underscored here in
strategies where the explicit contingency on the environment through Opponent
moves leads to matching intuitions.

It follows as a corollary of Lemma 4 that any positive operator Q(x), where
x ∈ C(S), is necessarily 1-bounded:
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Proposition 3. A positive operator Q on N ⊗ P for which TrP (Q) ≤L idN in
the Löwner order is 1-bounded.

Let σ : S → A be a strategy in a race-free game A, expanded to a quantum
game (A,H). In summary, in moving from a probabilistic valuation v to a quan-
tum valuation Q, w.r.t. x ∈ C(S), we replace: the valuation v(x) ∈ [0,∞), at
x ∈ C(S), by a bounded positive operator Q(x); that the value v(x) is in [0, 1],
by Q(x) being a 1-bounded positive operator; the order ≤ on the reals by the
Löwner order ≤L on operators; that v(x) = Prob(x), when x = x+, by Q(x)
being a sub-density operator, i.e. a quantum state; the conditional probability
v(x) by a conditional state Q(x); multiplication in the reals by composition in
CPM. Indeed, in the next section, composition in CPM will play a central role
in the composition of quantum valuations, replacing the role of multiplication
in composing probabilistic valuations.

6 Quantum strategies between games

We extend the operations on games, simple parallel composition and dual, to
quantum games (A,HA) and (B,HB). Any finite subset z of A‖B splits as
z = x‖y for unique finite subsets x of A and y of B; we take HA‖B(z) =

HA(x) ⊗HB(y). A quantum game (A,HA) has dual (A⊥, HA⊥) where HA⊥(z)
is the dual Hilbert space HA(z)∗, for any finite subset z of A⊥.

6.1 Quantum valuations as completely positive maps

Before we compose quantum strategies we reformulate quantum valuations as
maps in CPM. Let σ : S → A⊥‖B be a quantum strategy with valuation
QS . For x ∈ C(S) its image in the game A⊥‖B decomposes into xA‖xB =
σx, where xA ∈ C(A) and xB ∈ C(B). Thus QS(x) is a positive operator
on HA⊥‖B(σx) = HA(xA)∗ ⊗ HB(xB). As such, it corresponds via the Choi-
Jamiolkowski isomorphism to a completely positive map

QS(x) ∈ CPM(HA(xA), HB(xB)) .

(The map need not be a superoperator, but note, in general, it acts between
conditional quantum states not merely mixed states.)

Via the compact-closure of FdHilb, we can reformulate the conditions re-
quired of a quantum strategy now with the corresponding assignments Q of
completely positive maps. In the reformulation, when x ⊆− y, we shall require
the expansion of a map Q ∈ CPM(HA(xA), HB(xB)) to

⇑y (Q) = Q⊗ (1HB(yB\xB) ◦ trHA(yA\xA))

in CPM(HA(yA), HB(yB)). Similarly, in rephrasing the “monotone” condition,
when y ⊆+ x, we need the reduction of a map Q ∈ CPM(HA(xA), HB(xB)) to

⇓y (Q) = (idHB(yB) ⊗ trHB(xB\yB)) ◦Q ◦ (idHA(yA) ⊗ 1HA(xA\yA))
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in CPM(HA(yA), HB(yB)). The expansion and reduction operations on com-
pletely positive maps correspond via the CJ-isomorphism to the earlier opera-
tions (tensoring with an identity and partial trace) we saw earlier on positive
operators. The conditions on a quantum valuation become

(normalised) Q(∅) = 1 ∈ CPM(I, I);
(oblivious) if x ⊆− y then ⇑y (Q(x)) = Q(y); and
(monotone) if y ⊆+ x1, · · · , xn then dQ[y;x1, . . . , xn] is in
CPM(H(xA), H(xB)), where

dQ[y;x1, . . . , xn] = Q(y)−
∑

∅6=I⊆{1,...,n}

(−1)|I|+1 ⇓y (Q(xI)) ,

again with the understanding that Q(xI) = Q(
⋃
i∈I xi) when the union is a

configuration and the zero map otherwise.

6.2 Quantum copycat

Let (A,HA) be a race-free quantum game. We can extend a copycat strategy
ccA : CCA → A⊥‖A with a quantum valuation. Recall a finite configuration
of CCA comprises x‖y where x, y ∈ C(A) are in the Scott order y v x, so
y ⊇− x ∩ y ⊆+ x. We thus have the inclusion (x ∩ y)‖(x ∩ y) ⊆ x‖y in C(CCA).
Define the quantum valuation of copycat as

Q ccA
(x‖y) =⇑x‖y (idHA(x∩y)) ∈ CPM(HA(x), HA(y)) ,

the expansion of the identity on HA(x ∩ y) in CPM. Its being a quantum
valuation depends on A being race-free to validate the “monotone” condition.

6.3 Composition of quantum strategies

Consider quantum strategies σ : S → A⊥‖B, Qσ and τ : T → B⊥‖C, Qτ . We
assign a quantum valuation, Qτ~σ to their interaction. Recall, the interaction

τ ~ σ : T ~ S → A⊥‖B0‖C ,

in which the events of B are reset to have neutral polarity, and are now addition-
ally assigned the one-dimensional Hilbert space. Recall a configuration of T ~S
has the form y ~ x, for unique x ∈ C(S) and y ∈ C(T ). We have

Qσ(x) ∈ CPM(HA(xA), HB(xB)) ,

where xA‖xB = σx, with xA ∈ C(A) and xB ∈ C(B). Similarly,

Qτ (y) ∈ CPM(HB(yB), HC(yC)) ,

for a decomposition yB‖yC = τy. Define

Qτ~σ(y ~ x) =def Qτ (y) ◦Qσ(x) ∈ CPM(HA(xA), HC(yC)) .
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The composition is well-defined because for y~ x to be defined configurations x
and y must share a common image, xB = yB , in the game B.

The composition τ�σ : T�S → A⊥‖C has quantum valuation Qτ�σ(z) =
Qτ~σ([z]T~S) for z a finite configuration of T�S.

In particular, the interaction τ ~ σ : T ~ S → B0, of a strategy σ : S → B
against a counterstrategy τ : T → B⊥, has Qτ~σ assign a non-negative real
to each finite configuration of T ~ S to form a probability valuation, making
T ~ S into a probabilistic event structure. We can push forward the probability
valuation of T ~S to a probability valuation of B (via the continuous valuation
induced on the Scott open sets of C∞(T ~S)) and consequently to a probability
distribution over C∞(B), the possible resulting end positions of the play.

The proof that composition yields a quantum strategy mimics that in the
probabilistic case, but generalising from the reals to quantum operations.

Theorem 4. The composition of two quantum strategies is a quantum strategy
and, up to isomorphism, has quantum copycat is its identity.

6.4 A bicategory of quantum strategies

In analogy with the probabilistic case, 2-cells between quantum strategies are
rigid maps of strategies which relate quantum valuations across 2-cells via a
push-forward result:

Lemma 5. Let f : σ ⇒ σ′ be a rigid 2-cell between strategies σ : S → A and
σ′ : S′ → A. Let Q be a quantum valuation for σ. Taking, for y ∈ C(S′),

(fQ)(y) =def

∑
x:fx=y

Q(x)

defines a quantum valuation fQ for σ′, the quantum push-forward.

A bicategory of quantum strategies on race-free quantum games ensues. Its maps
are quantum strategies. A 2-cell between quantum strategies from σ,Q to σ′,Q′

is a rigid 2-cell f : σ ⇒ σ′ of strategies for which Q′(x′)− (fQ)(x′) is completely
positive for all configurations x′ ∈ C(S′). The bicategory of quantum strategies
inherits compact-closure from that of plain strategies and CPM.

There are notable special cases.

Proposition 4. The sub-bicategory of quantum strategies on games (A,HA), in
which HA is constantly the one-dimensional Hilbert space, is isomorphic to the
bicategory of probabilistic strategies.

Consider the sub-(bi)categories in which the games consist purely of Player
moves. When there is no additional quantum structure, the strategies in this
case yield a sub-bicategory equivalent to stable spans, a model which underlies
treatments of nondeterministic dataflow [19]; restricting to deterministic strate-
gies on countable games, the sub-bicategory is equivalent to Berry’s dI-domains
and stable functions. Broadened to quantum games and quantum strategies, all
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the quantum assignments Q(x) will be a superoperators and we obtain a frame-
work for quantum dataflow and, in particular, for the semantics of quantum
flowcharts [20]. Of more interest though, are interpretations of higher-order lan-
guages such as quantum λ-calculi where interactions are more complicated and
in which polarities play a more intricate role [13].
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