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Abstract. A mathematical theory of probabilistic and quantum event
structures is developed. It has some claim to providing fundamental mod-
els of distributed probabilistic and quantum systems, and has formed the
basis for distributed probabilistic and quantum games.

1 Introduction

Prakash Panangaden has been drawn to conceptual problems in computer sci-
ence, logic and computation, how to structure and understand probabilistic com-
putation, and the boundaries of computer science with physics. I hope here to
be dealing with subjects close to Prakash’s heart.

Event structures have emerged as a fundamental model of distributed com-
putation, a model in which the traditional view of a history as a sequence of
events is replaced by a view of a history as a partial order of events. This ar-
ticle studies the mathematics needed to take event structures into the realm of
distributed probabilistic and distributed quantum computation. The lack of a
sufficiently general definition of probabilistic event structure became apparent in
work on concurrent games and strategies, in extending concurrent strategies to
probabilistic strategies—see the companion work [1]. The description of a prob-
abilistic event structure here meets that need and extends previous definitions,
summarised in [2].

A probabilistic event structure essentially comprises an event structure to-
gether with a continuous valuation on the Scott open sets of its domain of config-
urations. The continuous valuation assigns a probability to each open set. How-
ever open sets are several levels removed from the events of an event structure, so
a more workable definition is obtained by considering the probabilities of basic
open sets, generated by single finite configurations; for each finite configuration
this specifies the probability of a result which extends the finite configuration.
Such valuations on configuration determine the continuous valuations from which
they arise, and can be characterised through the device of “drop functions.” The
characterisation yields a workable definition of probabilistic event structure.

In a quantum event structure events are interpreted as unitary or projection
operators in a Hilbert space. Unitary operators are associated with events of
preparation, such as a change of coordinates with which to make a measure-
ment or a time period over which the system is allowed to evolve undisturbed.
Projection operators are associated with events of elementary tests. Causally
independent (i.e. concurrent) events are interpreted by commuting operators. A
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configuration of the event structure is thought of as a distributed quantum ex-
periment; it describes which events of preparation and tests to perform and their
(partial) order of dependency. Once given an initial state as a density operator, a
quantum event structure assigns an intrinsic weight to each finite configuration.
This does not make the whole event structure into a probabilistic event structure,
but it does do so locally: under each configuration there is a probabilistic event
structure giving the probabilities over the outcomes of the experiment the con-
figuration describes. Quantum theory is often described as a contextual theory,
in that it is only sensible to consider outcomes w.r.t. a specified measurement
context [3]. In a quantum event structure configurations assume the role of mea-
surement contexts; w.r.t. a measurement context expressed as a configuration,
the sub-configurations constitute the possible outcomes.

2 Event structures

An event structure comprises (E,≤,Con), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty con-
sistency relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The configurations C∞(E) of an event structure E consist of those subsets x ⊆ E
which are

(Consistent) ∀X ⊆ x. X is finite⇒X ∈ Con x ∈ Con, and
(Down-closed) ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations, C(E).
We say an event structure is elementary when the consistency relation con-

sists of all finite subsets of events. Two events e, e′ which are both consistent and
incomparable w.r.t. causal dependency in an event structure are regarded as con-
current, written eco e′. We shall occasionally say events are in conflict when they
are they are not consistent. For X ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′},
the down-closure of X; note if X ∈ Con, then [X] ∈ Con so is a configuration.

Notation 1 Let E be an event structure. We use x−⊂y to mean y covers x in

C∞(E), i.e. x ⊊ y in C∞(E) with nothing in between, and x
e−Ð⊂ y to mean

x∪{e} = y for x, y ∈ C∞(E) and event e ∉ x. We use x
e−Ð⊂ , expressing that event

e is enabled at configuration x, when x
e−Ð⊂ y for some y. We write {xi ∣ i ∈ I}↑

to indicate that a subset of configurations is compatible, i.e. bounded above by
a configuration.
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3 Probabilistic event structures

A probabilistic event structure comprises an event structure (E,≤,Con) with a
continuous valuation on its Scott open sets of configurations. Recall a continuous
valuation is a function w from the Scott-open subsets of C∞(E) to [0,1] which
is

(normalized) w(C∞(E)) = 1; (strict) w(∅) = 0;
(monotone) U ⊆ V Ô⇒ w(U) ≤ w(V );
(modular) w(U ∪ V ) +w(U ∩ V ) = w(U) +w(V ); and
(continuous) w(⋃i∈I Ui) = supi∈Iw(Ui) for directed unions ⋃i∈I Ui.

The value w(U) of a continuous valuation w specifies the probability of a result
in open set U . Continuous valuations traditionally play the role of elements in
probabilistic powerdomains [4]. Continuous valuations are determined by their
restrictions to basic open sets

x̂ =def {y ∈ C∞(E) ∣ x ⊆ y} ,

for x a finite configuration. A characterisation of such restrictions yields an equiv-
alent, more workable definition of probabilistic event structure, that we present
in Section 3.2. As preparation we first develop some machinery for assigning
values to “general intervals.”

3.1 General intervals and drop functions

Throughout this section assume E is an event structure and v ∶ C(E) → R.
Extend C(E) to a lattice C(E)⊺ by adjoining an extra top element ⊺. Write its
order as x ⊑ y and its finite join operations as x ∨ y and ⋁i∈I xi. Extend v to
v⊺ ∶ C(E)⊺ → R by taking v⊺(⊺) = 0.

We are concerned with drops in value across general intervals [y;x1,⋯, xn],
where y, x1,⋯, xn ∈ C(E)⊺ with y ⊑ x1,⋯, xn in C(E)⊺. The interval is thought of
as specifying the set of configurations ŷ ∖ (x̂1 ∪⋯∪ x̂n), viz. those configurations
above or equal to y and not above or equal to any x1,⋯, xn. As such the intervals
form a basis of the Lawson topology on C∞(E)⊺.

Define the drop functions d
(n)
v [y;x1,⋯, xn] ∈ R for y, x1,⋯, xn ∈ C(E)⊺ with

y ⊑ x1,⋯, xn in C(E)⊺, by induction, taking

d(0)v [y; ] =def v⊺(y) and

d(n)v [y;x1,⋯, xn] =def d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn] ,

for n > 0.
The following proposition shows how drop functions assign to general inter-

vals [y;x1,⋯, xn] the value of being in ŷ minus the value of being in x̂1 ∪⋯∪ x̂n,
and that the latter is calculated using the inclusion-exclusion principle for sets;
notice that an overlap ⋂i∈I x̂i equals ⋁̂i∈I xi, where ∅ ≠ I ⊆ {1,⋯, n}.
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Proposition 1. Let n ∈ ω. For y, x1,⋯, xn ∈ C(E)⊺ with y ⊑ x1,⋯, xn,

d(n)v [y;x1,⋯, xn] = v(y) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) .

For y, x1,⋯, xn ∈ C(E) with y ⊆ x1,⋯, xn,

d(n)v [y;x1,⋯, xn] = v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi) ,

where the index I ranges over sets satisfying ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑.

Proof. We prove the first statement by induction on n. For the basis, when n = 0,

d
(n)
v [y; ] = v(y), as required. For the induction step, with n > 0, we reason

d(n)v [y;x1,⋯, xn] =def d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]
= v(y) − ∑

∅≠I⊆{1,⋯,n−1}

(−1)∣I ∣+1v(⋁
i∈I

xi)

− v(xn) + ∑
∅≠J⊆{1,⋯,n−1}

(−1)∣I ∣+1v(⋁
j∈J

xi ∨ xn) ,

making use of the induction hypothesis. Consider subsets K for which ∅ ≠ K ⊆
{1,⋯, n}. Either n ∉ K , in which case ∅ ≠ K ⊆ {1,⋯, n − 1}, or n ∈ K, in
which case K = {n} or J =def K ∖ {n} satisfies ∅ ≠ J ⊆ {1,⋯, n − 1}. From this
observation, the sum above amounts to

v(y) − ∑
∅≠K⊆{1,⋯,n}

(−1)∣K∣+1v(⋁
k∈K

xk) ,

as required to maintain the induction hypothesis.
The second expression of the proposition is got by discarding all terms

v(⋁i∈I xi) for which ⋁i∈I xi = ⊺ which leaves the sum unaffected as they con-
tribute 0. ◻

Corollary 1. Let n ∈ ω and y, x1,⋯, xn ∈ C(E)⊺ with y ⊑ x1,⋯, xn. For ρ an
n-permutation,

d(n)v [y;xρ(1),⋯, xρ(n)] = d(n)v [y;x1,⋯, xn] .

Proof. As by Proposition 1, the value of d
(n)
v [y;x1,⋯, xn] is insensitive to per-

mutations of its arguments. ◻

In the following results we lay out the fundamental properties of drop func-
tions for later use.

Proposition 2. Assume n ≥ 1 and y, x1,⋯, xn ∈ C(E)⊺ with y ⊑ x1,⋯, xn. If

y = xi for some i with 1 ≤ i ≤ n then d
(n)
v [y;x1,⋯, xn] = 0.
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Proof. By Corollary 1, it suffices to show d
(n)
v [y;x1,⋯, xn] = 0 when y = xn. In

this case,

d(n)v [y;x1,⋯, xn] =d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]
=d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [y;x1,⋯, xn−1]
=0 .

◻

Corollary 2. Assume n ≥ 1 and y, x1,⋯, xn ∈ C(E)⊺ with y ⊑ x1,⋯, xn. If
xi ⊑ xj for distinct i, j with 1 ≤ i, j ≤ n then

d(n)v [y;x1,⋯, xn] = d(n−1)v [y;x1,⋯, xj−1, xj+1,⋯, xn] .

Proof. By Corollary 1, it suffices to show

d(n)v [y;x1,⋯, xn−1, xn] = d(n−1)v [y;x1,⋯, xn−1]

when xn−1 ⊑ xn. Then,

d(n)v [y;x1,⋯, xn] =d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]
=d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [xn;x1 ∨ xn,⋯, xn−2, xn]
=d(n−1)v [y;x1,⋯, xn−1] − 0 ,

by Proposition 2. ◻

Proposition 3. Assume n ∈ ω and y, x1,⋯, xn ∈C(E)⊺ with y ⊑ x1,⋯, xn. Then,

d
(n)
v [y;x1,⋯, xn] = 0 if y = ⊺ and d

(n)
v [y;x1,⋯, xn] = d(n−1)v [y;x1,⋯, xi−1, xi+1,⋯, xn]

if xi = ⊺ with 1 ≤ i ≤ n.

Proof. When n = 0, d
(0)
v [⊺; ] = v⊺(⊺) = 0. When n ≥ 1, d

(n)
v [⊺;x1,⋯, xn] = 0 by

Proposition 2 as e.g. xn = ⊺. For the remaining statement, w.l.og. we may assume
i = n and that xn = ⊺, yielding

d(n)v [y;x1,⋯,⊺] =
d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [⊺;x1 ∨ ⊺,⋯, xn−1 ∨ ⊺] = d(n−1)v [y;x1,⋯, xn−1] .

◻

It will be important that drops across general intervals can be reduced to
sums of drops across intervals based on coverings, as explained in the next two
results.

Lemma 1. Let n ≥ 1. Let y, x1,⋯, xn, x′n ∈ C(E)⊺ with y ⊑ x1,⋯, xn. Assume
xn ⊑ x′n. Then,

d(n)v [y;x1,⋯, x′n] = d(n)v [y;x1,⋯, xn] + d(n)v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn, x′n] .
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Proof. By definition,

the r.h.s. = d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]
+ d(n−1)v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn] − d(n−1)v [x′n;x1 ∨ x′n,⋯, xn−1 ∨ x′n]

= d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [x′n;x1 ∨ x′n,⋯, xn−1 ∨ x′n]
= d(n)v [y;x1,⋯, xn−1, x′n]
= the l.h.s..

◻

Lemma 2. Let y ⊆ x1,⋯, xn in C(E). Then, d
(n)
v [y;x1,⋯, xn] is expressible as

a sum of terms d
(k)
v [u;w1,⋯,wk] where y ⊆ u−⊂wi in C(E) and wi ⊆ x1 ∪⋯∪xn,

for all i with 1 ≤ i ≤ k. (The set x1 ∪⋯ ∪ xn need not be in C(E).)

Proof. Define the weight of a term d
(n)
v [y;x1,⋯, xn], where y ⊆ x1,⋯, xn in C(E),

to be the product ∣x1 ∖ y∣ ×⋯ × ∣xn ∖ y∣.
Assume y ⊆ x1,⋯, x′n in C(E). By Proposition 2, if y equals x′n or some

xi, then d
(n)
v [y;x1,⋯, x′n] = 0, so may be deleted as a contribution to a sum.

Otherwise, if y ⊊ xn ⊊ x′n, by Lemma 1 we can rewrite d
(n)
v [y;x1,⋯, x′n] to the

sum
d(n)v [y;x1,⋯, xn] + d(n)v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn, x′n] ,

where we further observe

∣xn ∖ y∣ < ∣x′n ∖ y∣ , ∣x′n ∖ xn∣ < ∣x′n ∖ y∣

and
∣(xi ∪ xn) ∖ xn∣ ≤ ∣xi ∖ y∣ ,

whenever xi ∨xn ≠ ⊺. Using Proposition 3 we may tidy away any mentions of ⊺.

This reduces d
(n)
v [y;x1,⋯, x′n] to the sum of at most two terms, each of lesser

weight. For notational simplicity we have concentrated on the nth argument in

d
(n)
v [y;x1,⋯, x′n], but by Corollary 1 an analogous reduction is possible w.r.t. any

argument.

Repeated use of the reduction, rewrites d
(n)
v [y;x1,⋯, xn] to a sum of terms

of the form
d(k)v [u;w1,⋯,wk]

where k ≤ n and u−⊂w1,⋯,wk ⊆ x1 ∪ ⋯ ∪ xn. This justifies the claims of the
lemma. ◻

3.2 Probabilistic event structures

A probabilistic event structure is an event structure associated with a [0,1]-
valuation on configurations, normalised to 1 at the emptyset, such that no general
interval has a negative drop.
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Definition 1. Let E be an event structure. A configuration-valuation on E is
function v ∶ C(E) → [0,1] such that v(∅) = 1 and which satisfies the drop
condition

d(n)v [y;x1,⋯, xn] ≥ 0

for all n ≥ 1 and y, x1,⋯, xn ∈ C(E) with y ⊆ x1,⋯, xn. A probabilistic event
structure comprises an event structure E together with a configuration-valuation
v ∶ C(E)→ [0,1].1

Proposition 4. Let E be an event structure. Let v ∶ C(E) → [0,1]. Then, v is

a configuration-valuation iff d
(n)
v [y;x1,⋯, xn] ≥ 0 for all n ∈ ω and y, x1,⋯, xn ∈

C(E)⊺ with y ⊑ x1,⋯, xn. If v is a configuration-valuation, then

y ⊑ x Ô⇒ v⊺(y) ≥ v⊺(x) ,

for all x, y ∈ C(E)⊺.

Proof. By Proposition 3 and as d
(1)
v [y;x] = v⊺(y) − v⊺(x). ◻

By Lemma 2, in showing we have a probabilistic event structure it suffices
to verify the “drop condition” only for special general intervals [y;x1,⋯, xn] in
which the configurations x1,⋯, xn cover y.

Proposition 5. Let E be an event structure. Let v ∶ C(E) → [0,1]. v is a
configuration-valuation iff v(∅) = 1 and

d(n)v [y;x1,⋯, xn] ≥ 0

for all n ≥ 1 and y−⊂x1,⋯, xn in C(E).

4 The characterisation

Our goal is to prove that probabilistic event structures correspond to event struc-
tures with a continuous valuation. It is clear that a continuous valuation w on the
Scott-open subsets of an event structure E gives rise to a configuration-valuation
v on E: take v(x) =def w(x̂), for x ∈ C(E). We will show that this construction
has an inverse, that a configuration-valuation determines a continuous valuation.

For this we need a combinatorial lemma:2

1 Samy Abbes has pointed out that the “drop condition” appears in early work of the
Russian mathematician V.A.Rohlin [5](as relation (6) of Section 3, p.7), and Klaus
Keimel that functions satisfying the “drop condition” are called “totally convex” or
“completely monotone” in the literature [6]. The rediscovery of the “drop condition”
and its reuse in the context of event structures was motivated by Lemma 2, tying it
to occurrences of events.

2 The proof of the combinatorial lemma, due to the author, appears with acknowl-
edgement as Lemma 6.App.1 in [7], the PhD thesis of my former student Daniele
Varacca, whom I thank, both for the collaboration and the latex.
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Lemma 3. For all finite sets I, J ,

∑
∅≠K⊆I×J

π1(K)=I,π2(K)=J

(−1)∣K∣ = (−1)∣I ∣+∣J ∣−1 .

Proof. W.l.o.g. we can take I = {1, . . . , n} and J = {1, . . . ,m}. Also observe that
a subset K ⊆ I × J such that π1(K) = I, π2(K) = J is in fact a surjective and
total relation between the two sets, pictured below.

n

m

Let
tn,m =def ∑

∅≠K⊆I×J

π1(K)=I,π2(K)=J

(−1)∣K ∣ ;

ton,m =def ∣{∅ ≠K ⊆ I × J ∣ ∣K ∣ odd, π1(K) = I, π2(K) = J}∣ ;
ten,m ∶= ∣{∅ ≠K ⊆ I × J ∣ ∣K ∣ even, π1(K) = I, π2(K) = J}∣ .

Clearly tn,m = ten,m − ton,m. We want to prove that tn,m = (−1)n+m+1. We do
this by induction on n. It is easy to check that this is true for n = 1. In this case,
if m is even then te1,m = 1 and to1,m = 0, so that te1,m − to1,m = (−1)1+m+1. Similarly
if m is odd.

Now assume that tn,p = (−1)n+p+1, for every p, and compute tn+1,m. To
evaluate tn+1,m we count all surjective and total relations K between I and J
together with their“sign.” Consider the pairs in K of the form (n+1, h) for h ∈ J .
The result of removing them is a a total surjective relation between {1, . . . , n}
and a subset JK of {1, . . . ,m}.

n ●

m s

Consider first the case where JK = {1, . . . ,m}. Consider the contribution of
such K’s to tn+1,m. There are (m

s
) ways of choosing s pairs of the form (n+1, h).

For every such choice there are tn,m (signed) relations. Adding the pairs (n+1, h)
possibly modifies the sign of such relations. In all the contribution amounts to

∑
1≤s≤m

(m
s
)(−1)stn,m .

Suppose now that JK is a proper subset of {1, . . . ,m} leaving out r elements.

n ●

s r
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Since K is surjective, all such elements h must be in a pair of the form
(n + 1, h). Moreover there can be s pairs of the form (n + 1, h′) with h′ ∈ JK .
What is the contribution of such K’s to tn,m? There are (m

r
) ways of choosing

the elements that are left out. For every such choice and for every s such that
0 ≤ s ≤ m − r there are (m−r

s
) ways of choosing the h′ ∈ JK . And for every

such choice there are tn,m−r (signed) relations. Adding the pairs (n + 1, h) and
(n + 1, h′) possibly modifies the sign of such relations. In all, for every r such
that 1 ≤ r ≤m − 1, the contribution amounts to

(m
r
) ∑
1≤s≤m−r

(m
s
)(−1)s+rtn,m−n .

The (signed) sum of all these contribution will give us tn+1,m. Now we use
the induction hypothesis and we write (−1)n+p+1 for tn,p.

Thus,

tn+1,m = ∑
1≤s≤m

(m
s
)(−1)stn,m

+ ∑
1≤r≤m−1

(m
r
) ∑
0≤s≤m−r

(m − r
s

)(−1)s+rtn,m−r

= ∑
1≤s≤m

(m
s
)(−1)s+n+m+1

+ ∑
1≤r≤m−1

(m
r
) ∑
0≤s≤m−r

(m − r
s

)(−1)s+n+m+1

= (−1)n+m+1 ( ∑
1≤s≤m

(m
s
)(−1)s

+ ∑
1≤r≤m−1

(m
r
) ∑
0≤s≤m−r

(m − r
s

)(−1)s) .

By the binomial formula, for 1 ≤ r ≤m − 1 we have

0 = (1 − 1)m−r = ∑
0≤s≤m−r

(m − r
s

)(−1)s .

So we are left with

tn+1,m = (−1)n+m+1 ( ∑
1≤s≤m

(m
s
)(−1)s)

= (−1)n+m+1 ( ∑
0≤s≤m

(m
s
)(−1)s − (m

0
)(−1)0)

= (−1)n+m+1 (0 − 1)
= (−1)n+1+m+1 ,

as required. ◻
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Theorem 1. A configuration-valuation v on an event structure E extends to a
unique continuous valuation wv on the open sets of C∞(E), so that wv(x̂) = v(x),
for all x ∈ C(E).

Conversely, a continuous valuation w on the open sets of C∞(E) restricts to
a configuration-valuation vw on E, assigning vw(x) = w(x̂), for all x ∈ C(E).

Proof. The proof is inspired by the proofs in the appendix of [2] and the thesis [7].
First, a continuous valuation w on the open sets of C∞(E) restricts to a

configuration-valuation v defined as v(x) =def w(x̂) for x ∈ C(E). Note that any
extension of a configuration-valuation to a continuous valuation is bound to be
unique by continuity.

To show the converse we first define a function w from the basic open sets
Bs =def {x̂1 ∪⋯ ∪ x̂n ∣ x1,⋯, xn ∈ C(E)} to [0,1] and show that it is normalised,
strict, monotone and modular. Define

w(x̂1 ∪⋯ ∪ x̂n) =def 1 − d(n)v [∅;x1,⋯, xn]
= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi)

—this can be shown to be well-defined using Corollaries 1 and 2.
Clearly, w is normalised in the sense that w(C∞(E)) = w(∅̂) = 1 and strict

in that w(∅) = 1 − v(∅) = 0.
To see that it is monotone, first observe that

w(x̂1 ∪⋯ ∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n+1)

as

w(x̂1 ∪⋯ ∪ x̂n+1) −w(x̂1 ∪⋯ ∪ x̂n) =d(n)v [∅;x1,⋯, xn] − d(n+1)v [∅;x1,⋯, xn+1]
=d(n)v [xn+1;x1 ∨ xn+1,⋯, xn ∨ xn+1] ≥ 0 .

By a simple induction (on m),

w(x̂1 ∪⋯ ∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm) .

Suppose that x̂1∪⋯∪x̂n ⊆ ŷ1∪⋯∪ ŷm. Then ŷ1∪⋯∪ ŷm = x̂1∪⋯∪x̂n∪ ŷ1∪⋯∪ ŷm.
By the above,

w(x̂1 ∪⋯ ∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm)
= w(ŷ1 ∪⋯ ∪ ŷm) ,

as required to show w is monotone.
To show modularity we require

w(x̂1 ∪⋯ ∪ x̂n) +w(ŷ1 ∪⋯ ∪ ŷm)
=w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm) +w((x̂1 ∪⋯ ∪ x̂n) ∩ (ŷ1 ∪⋯ ∪ ŷm)) .
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Note

(x̂1 ∪⋯ ∪ x̂n) ∩ (ŷ1 ∪⋯ ∪ ŷm) = (x̂1 ∩ ŷ1) ∪⋯ ∪ (x̂i ∩ ŷj)⋯∪ (x̂n ∩ ŷm)
= x̂1 ∨ y1 ∪⋯ ∪ x̂i ∨ yj⋯∪ ̂xn ∨ ym .

From the definition of w we require

w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm)
= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) + ∑
∅≠J⊆{1,⋯,m}

(−1)∣J ∣+1v(⋁
j∈J

yj)

− ∑
∅≠R⊆{1,⋯,n}×{1,⋯,m}

(−1)∣R∣+1v( ⋁
(i,j)∈R

xi ∨ yj) . (1)

Consider the definition of w(x̂1∪⋯∪x̂n∪ŷ1∪⋯∪ŷm) as a sum. Its components are
associated with indices which either lie entirely within {1,⋯, n}, entirely within
{1,⋯,m}, or overlap both. Hence

w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm)
= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) + ∑
∅≠J⊆{1,⋯,m}

(−1)∣J ∣+1v(⋁
j∈J

yj)

+ ∑
∅≠I⊆{1,⋯,n},∅≠J⊆{1,⋯,m}

(−1)∣I ∣+∣J ∣+1v(⋁
i∈I

xi ∨ ⋁
j∈J

yj) . (2)

Comparing (1) and (2), we require

− ∑
∅≠R⊆{1,⋯,n}×{1,⋯,m}

(−1)∣R∣+1v( ⋁
(i,j)∈R

xi ∨ yj)

= ∑
∅≠I⊆{1,⋯,n},∅≠J⊆{1,⋯,m}

(−1)∣I ∣+∣J ∣+1v(⋁
i∈I

xi ∨ ⋁
j∈J

yj) . (3)

Observe that

⋁
(i,j)∈R

xi ∨ yj =⋁
i∈I

xi ∨ ⋁
j∈J

yj

when I = R1 =def {i ∈ I ∣ ∃j ∈ J. (i, j) ∈ R} and J = R2 =def {j ∈ J ∣ ∃i ∈ I. (i, j) ∈ R}
for a relation R ⊆ {1,⋯, n}×{1,⋯,m}. With this observation we see that equality
(3) follows from the combinatorial lemma, Lemma 3 above. This shows modu-
larity.

Finally, we can extend w to all open sets by taking an open set U to
supb∈Bs& b⊆Uw(b). The verification that w is indeed a continuous valuation ex-
tending v is now straightforward. ◻

The above theorem also holds (with the same proof) for Scott domains. Now,
by [8], Corollary 4.3:

Theorem 2. For a configuration-valuation v on E there is a unique probability
measure µv on the Borel subsets of C∞(E) extending wv.
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When x a finite configuration has v(x) > 0 and µv({x}) = 0 we can under-
stand x as being a transient configuration on the way to a final with probability
v(x). In general, there is a simple expression for the probability of terminating
at a finite configuration, helpful in the examples that follow.

Proposition 6. Let E,v be a probabilistic event structure. For any finite config-
uration y ∈ C(E), the singleton set {y} is a Borel subset with probability measure

µv({y}) = inf{d(n)v [y;x1,⋯, xn] ∣ n ∈ ω & y ⊊ x1,⋯, xn ∈ C(E)} .

Proof. Let y ∈C(E). Then {y} = ŷ ∖Uy is clearly Borel as Uy =def {x ∈ C∞(E) ∣ y ⊊ x}
is open. Let w be the continuous valuation extending v. Then

w(Uy) = sup{w(x̂1 ∪⋯ ∪ x̂n) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

as Uy is the directed union ⋃{x̂1 ∪⋯ ∪ x̂n ∣ y ⊊ x1,⋯, xn ∈ C(E)}. Hence

µv({y}) = v(y) −w(Uy) =v(y) − sup{w(x̂1 ∪⋯ ∪ x̂n) ∣ y ⊊ x1,⋯, xn ∈ C(E)}
=inf{v(y) − ∑

∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

=inf{d(n)v [y;x1,⋯, xn] ∣ n ∈ ω & y ⊊ x1,⋯, xn ∈ C(E)} .

◻

Example 1. Consider the event structure comprising two concurrent events e1, e2
with configuration-valuation v for which v(∅) = 1, v({e1}) = 1/3, v({e2}) = 1/2
and v({e1, e2}) = 1/12. This means in particular that there is a probability of
1/3 of a result within the Scott open set consisting of both the configuration
{e1} and the configuration {e1, e2}. In other words, there is a probability of 1/3
of observing e1 (possibly with or possibly without e2). The induced probability
measure p assigns a probability to any Borel set, in this simple case any subset of
configurations, and is determined by its value on single configurations: p(∅) = 1−
4/12−6/12+1/12 = 3/12, p({e1}) = 4/12−1/12 = 3/12, p({e2}) = 6/12−1/12 = 5/12
and p({e1, e2}) = 1/12. Thus there is a probability of 3/12 of observing neither
e1 nor e2, and a probability of 5/12 of observing just the event e2 (and not e1).

There is a drop d
(0)
v [∅;{e1},{e2}] = 1−4/12−6/12+1/12 = 3/12 corresponding to

the probability of remaining at the empty configuration and not observing any
event. Sometimes it’s said that probability “leaks” at the empty configuration,
but it’s more accurate to think of this leak in probability as associated with a
non-zero chance that the initial observation of no events will not improve. ◻

Example 2. Consider the event structure with events N+ with causal dependency
n ≤ n + 1, with all finite subsets consistent. It is not hard to check that all
subsets of C∞(N+) are Borel sets. Consider the ensuing probability distributions
w.r.t. the following configuration-valuations:
(i) v0(x) = 1 for all x ∈ C(N+). The resulting probability distribution assigns
probability 1 to the singleton set {N+}, comprising the single infinite configura-
tion N+, and 0 to ∅ and all other singleton sets of configurations.
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(ii) v1(∅) = v1({1}) = 1 and v1(x) = 0 for all other x ∈ C(N+). The resulting prob-
ability distribution assigns probability 0 to ∅ and probability 1 to the singleton
set {1}, and 0 to all other singleton sets of configurations.
(iii) v2(∅) = 1 and v2({1,⋯, n}) = (1/2)n for all n ∈ N+. The resulting proba-
bility distribution assigns probability 1/2 to ∅ and (1/2)n+1 to each singleton
{{1,⋯, n}} and 0 to the singleton set {N+}, comprising the single infinite con-
figuration N+. ◻

Remark. There is a seeming redundancy in the definition of purely probabilistic
event structures, in that there are two different ways to say, for example, that

events e1 and e2 do not occur together at a finite configuration y where y
e1−Ð⊂x1

and y
e2−Ð⊂x2: either through y∪{e1, e2} ∉ Con; or via the configuration-valuation

v through v(x1 ∪ x2) = 0. However, when we mix probability with nondetermin-
ism [1], we make use of both consistency and the valuation. In the next section,
for a quantum event structure, consistency will be important in determining
when there is a sensible intrinsic probability distribution on a family of configu-
rations, even though the probability of the union of the configurations ends up
being zero.

5 Quantum event structures

Event structures are a model of distributed computation in which the causal
dependence and independence of events is made explicit. By associating events
with the most basic operators on a Hilbert space, viz. projection and unitary
operators, so that independent (i.e. concurrent) events are associated with in-
dependent (i.e. commuting) operators, we obtain quantum event structures.

An event associated with a projection is thought of as an elementary positive
test; its occurrence leaves the system in the eigenspace associated with eigenvalue
1 (rather than 0) of the projection. An event associated with a unitary operator
is an event of preparation; the preparation might be a change of the direction in
which to make a measurement, or the undisturbed evolution of the system over a
time interval. A configuration is thought of as specifying a distributed quantum
experiment. As we shall see, w.r.t. an initial state given as a density operator,
each configuration w of a quantum event structure determines a probabilistic
event structure, giving a probability distribution on its sub-configurations—the
possible results of the experiment w.

Throughout let H be a separable Hilbert space over the complex numbers.
For operators A,B on H we write [A,B] =def AB −BA.

5.1 Events as operators

Formally, we obtain a quantum event structure from an event structure by inter-
preting its events as unitary or projection operators which must commute when
events are concurrent.
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Definition 2. A quantum event structure (overH) comprises an event structure
(E,≤,Con) together with an assignment Qe of projection or unitary operators
on H to events e ∈ E such that for all e1, e2 ∈ E,

e1 co e2 Ô⇒ [Qe1 ,Qe2] = 0 .

Given a finite configuration, x ∈ C(E), define the operator Ax to be the
composition QenQen−1⋯Qe2Qe1 for some covering chain

∅ e1−Ð⊂x1
e2−Ð⊂x2⋯

en−Ð⊂xn = x

in C(E). This is well-defined as for any two covering chains up to x the sequences
of events are Mazurkiewicz trace equivalent, i.e. obtainable, one from the other,
by successively interchanging concurrent events. In particular A∅ is the identity
operator on H. An initial state is given by a density operator ρ on H.

Interpretation Consider first the simpler situation where in a quantum event
structure E,Q the event structure E is elementary (i.e. all finite subsets are
consistent). We regard E,Q as specifying a, possibly distributed, quantum ex-
periment. The experiment says which unitary operators (events of preparation)
and projection operators (elementary positive tests) to apply and in which order.
The order being partial permits commuting operators to be applied concurrently,
independently of each other, perhaps in a distributed fashion.

For a quantum event structure, E,Q, in general, an individual configura-
tion w ∈ C∞(E) inherits the order of the ambient event structure E to become
an elementary event structure, and can itself be regarded as a quantum exper-
iment. The quantum event structure E,Q represents a collection of quantum
experiments which may extend or overlap each other: when w ⊆ w′ in C∞(E) the
experiment w′ extends the experiment w, or equivalently w is a restriction of the
experiment w′. In this sense a quantum event structure in general represents a
nondeterministic quantum experiment. The extra generality will be crucial later
in interpreting probabilistic quantum experiments.

5.2 From quantum to probabilistic

Consider a quantum event structure with initial state. A configuration w stands
for an experiment and specifies which tests and preparations to try and in which
order. In general, not all the tests in w need succeed, yielding as final result a
possibly proper sub-configuration x of w. Theorem 3 below explains how there is
an inherent probability distribution qw over such final results. So an experiment
provides a context for measurement w.r.t. which there is an intrinsic probability
distribution over the possible outcomes. In particular, when the event structure
is elementary it itself becomes a probabilistic event structure. (Below, by an
unnormalised density operator we mean a positive, self-adjoint operator with
trace less than or equal to one.)
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Theorem 3. Let E,Q be a quantum event structure with initial state ρ. Each
configuration x ∈ C(E) is associated with an unnormalised density operator
ρx =def AxρA†

x and a value in [0,1] given by v(x) =def Tr(ρx) = Tr(A†
xAxρ).

For any w ∈ C∞(E), the function v restricts to a configuration-valuation vw on
the elementary event structure w (viz. the event structure with events w, and
causal dependency and (trivial) consistency inherited from E); hence vw extends
to a probability measure qw on Fw =def {x ∈ C∞(E) ∣ x ⊆ w}.

Proof. We show v restricts to a configuration-valuation on Fw. As A∅ = idH,

v(∅) = Tr(ρ) = 1. By Lemma 2, we need only to show d
(n)
v [y;x1,⋯, xn] ≥ 0 when

y
e1−Ð⊂x1,⋯, y

en−Ð⊂xn in Fw.
First, observe that if for some event ei the operator Qei is unitary, then

d
(n)
v [y;x1,⋯, xn] = 0. W.l.o.g. suppose en is assigned the unitary operator U .

Then, Axn = UAy so

v(xn) = Tr(A†
xn
Axnρ) = Tr(A†

yU
†UAyρ) = Tr(A†

yAyρ) = v(y) .

Let ∅ ≠ I ⊆ {1,⋯, n}. Then, either ⋃i∈I xi = ⋃i∈I xi∪xn or ⋃i∈I xi
en−Ð⊂ ⋃i∈I xi∪xn.

In the either case—in the latter case by an argument similar to that above,

v(⋃
i∈I

xi) = v(⋃
i∈I

xi ∪ xn) .

Consequently,

d(n)v [y;x1,⋯, xn] =d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn]
=v(y) −∑

I

(−1)∣I ∣+1v(⋃
i∈I

xi) − v(xn) +∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi ∪ xn)

= 0

—above index I is understood to range over sets for which ∅ ≠ I ⊆ {1,⋯, n}.
It remains to consider the case where all events ei are assigned projection

operators Pei . As x1,⋯, xn ⊆ w we must have that all the projection operators
Pe1 ,⋯, Pen commute.

As [Pei , Pej ] = 0, for 1 ≤ i, j ≤ n, we can assume an orthonormal basis which
extends the sub-basis of eigenvectors of all the projection operators Pei , for
1 ≤ i ≤ n. Let y ⊆ x ⊆ ⋃1≤i≤n xi. Define Px to be the projection operator got as the
composition of all the projection operators Pe for e ∈ x ∖ y—this is a projection
operator, well-defined irrespective of the order of composition as the relevant
projection operators commute. Define Bx to be the set of those basis vectors
fixed by the projection operator Px. In particular, Py is the identity operator
and By the set of all basis vectors. When x,x′ ∈ C(E) with y ⊆ x ⊆ ⋃1≤i≤n xi and
y ⊆ x′ ⊆ ⋃1≤i≤n xi,

Bx∪x′ = Bx ∩Bx′ .
Also,

Px∣ψ⟩ = ∑
i∈Bx

⟨i∣ψ⟩ ∣i⟩ ,
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so
⟨ψ∣Px∣ψ⟩ = ∑

i∈Bx

⟨i∣ψ⟩⟨ψ∣i⟩ = ∑
i∈Bx

∣⟨i∣ψ⟩∣2 ,

for all ∣ψ⟩ ∈H.
Assume ρ = ∑k pk ∣ψk⟩⟨ψk ∣, where the ψk are normalised and all the pk are

positive with sum ∑k pk = 1. For x with y ⊆ x ⊆ ⋃1≤i≤n xi,

v(x) =Tr(A†
xAxρ)

=Tr(A†
yP

†
xPxAyρ)

=Tr(A†
yPxAy∑

k

pk ∣ψk⟩⟨ψk ∣)

=∑
k

pk Tr(A†
yPxAy ∣ψk⟩⟨ψk ∣)

=∑
k

pk⟨Ayψk ∣Px∣Ayψk⟩

= ∑
i∈Bx

∑
k

pk ∣⟨i∣Ayψk⟩∣2 = ∑
i∈Bx

ri ,

where we define ri =def ∑k pk ∣⟨i∣Ayψk⟩∣
2
, necessarily a non-negative real for i ∈

Bx.
We now establish that

d(n)v [y;x1,⋯, xn] = ∑
i∈By∖Bx1

∪⋯∪Bxn

ri ,

for all n ∈ ω, by mathematical induction—it then follows directly that its value
is non-negative.

The base case of the induction, when n = 0, follows as

d(0)v [y; ] = v(y) = ∑
i∈By

ri ,

a special case of the result we have just established.
For the induction step, assume n > 0. Observe that

By ∖Bx1 ∪⋯ ∪Bxn−1 = (By ∖Bx1 ∪⋯ ∪Bxn) ⋅∪ (Bxn ∖Bx1∪xn ∪⋯ ∪Bxn−1∪xn) ,
where as signified the outer union is disjoint. Hence,

∑
i∈By∖Bx1

∪⋯∪Bxn−1

ri = ∑
i∈By∖Bx1

∪⋯∪Bxn

ri + ∑
i∈Bxn∖Bx1∪xn∪⋯∪Bxn−1∪xn

ri ,

By definition,

d(n)v [y;x1,⋯, xn] =def d(n−1)v [y;x1,⋯, xn−1] − d(n−1)v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn]
—making use of the fact that we are only forming unions of compatible config-
urations. From the induction hypothesis,

d(n−1)v [y;x1,⋯, xn−1] = ∑
i∈By∖Bx1

∪⋯∪Bxn−1

ri

and d(n−1)v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn] = ∑
i∈Bxn∖Bx1∪xn∪⋯∪Bxn−1∪xn

ri .



Probabilistic and Quantum Event Structures 17

Hence

d(n)v [y;x1,⋯, xn] = ∑
i∈By∖Bx1

∪⋯∪Bxn

ri ,

ensuring d
(n)
v [y;x1,⋯, xn] ≥ 0, as required.

By Theorem 2, the configuration-valuation vw extends to a unique probability
measure on Fw. ◻

Corollary 3. Let E,Q be a quantum event structure in which E is elemen-
tary. Assume an initial state ρ. Then, x ↦ Tr(A†

xAxρ), for x ∈ C(E), is a
configuration-valuation on E. It extends to a probability measure on the Borel
sets of C∞(E).

Theorem 3 is reminiscent of the consistent-histories approach to quantum
theory [9] once we understand configurations as partial-order histories. The tra-
ditional decoherence/consistency conditions on histories, saying when a fam-
ily of histories supports a probability distribution, have been replaced by ⊆-
compatibility.

Example 3. Let E comprise the quantum event structure with two concurrent
events e0 and e1 associated with projectors P0 and P1, where necessarily [P0, P1] =
0. Assume an initial state ∣ψ⟩⟨ψ∣, corresponding to the pure state ∣ψ⟩. The con-
figuration {e0, e1} is associated with the following probability distribution. The
probability that e0 succeeds is ∣∣P0∣ψ⟩∣∣2, that e1 succeeds ∣∣P1∣ψ⟩∣∣2, and that
both succeed is ∣∣P1P0∣ψ⟩∣∣2.

In the case where P0 and P1 commute because P0P1 = P1P0 = 0, the events e0
and e1 are mutually exclusive in the sense that there is probability zero of both
events e0 and e1 succeeding, probability ∣∣P0∣ψ⟩∣∣2 of e0 succeeding, ∣∣P1∣ψ⟩∣∣2 of
e1 succeeding, and probability 1 − ∣∣P0∣ψ⟩∣∣2 − ∣∣P1∣ψ⟩∣∣2 of getting stuck at the
empty configuration where neither event succeeds.

A special case of this is the measurement of a qubit in state ψ, the measure-
ment of 0 where P0 = ∣0⟩⟨0∣, and the measurement of 1 where P1 = ∣1⟩⟨1∣, though
here ∣∣P0∣ψ⟩∣∣2 + ∣∣P1∣ψ⟩∣∣2 = 1, as a measurement of the qubit will determine a
result of either 0 or 1. ◻

Example 4. Let E comprise the event structure with three events e1, e2, e3 with
trivial causal dependency and consistency relation generated by taking {e1, e2} ∈
Con and {e2, e3} ∈ Con—so {e1, e3} ∉ Con. To be a quantum event structure
we must have [Qe1 ,Qe2] = 0, [Qe2 ,Qe3] = 0. The maximal configurations are
{e1, e2} and {e2, e3}. Assume an initial state ∣ψ⟩⟨ψ∣. The first maximal configu-
ration is associated with a probability distribution where e1 occurs with proba-
bility ∣∣Qe1 ∣ψ⟩∣∣2 and e2 occurs with probability ∣∣Qe2 ∣ψ⟩∣∣2. The second maximal
configuration is associated with a probability distribution where e2 occurs with
probability ∣∣Qe2 ∣ψ⟩∣∣2 and e3 occurs with probability ∣∣Qe3 ∣ψ⟩∣∣2. ◻
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5.3 Measurement

To support measurements yielding values we associate values with configurations
of a quantum event structure E,Q, in the form of a measurable function, V ∶
C∞(E) → R. If the experiment results in x ∈ C∞(E) we obtain V (x) as the
measurement value resulting from the experiment. By Theorem 3, assuming an
initial state given by a density operator ρ, we obtain a probability measure
qw on the sub-configurations of w ∈ C∞(E). This is interpreted as giving a
probability distribution on the final results of an experiment w. Accordingly,
w.r.t. an experiment w ∈ C∞(E), the expected value is

Ew(V ) =def ∫
x∈Fw

V (x) dqw(x) .

Traditionally quantum measurement is associated with an Hermitian opera-
tor A onH where the possible values of a measurement are eigenvalues of A. How
is this realized by a quantum event structure? Suppose the Hermitian operator
has spectral decomposition

A =∑
i∈I

λiPi

where orthogonal projection operators Pi are associated with eigenvalue λi. The
projection operators satisfy ∑i∈I Pi = idH and PiPj = 0 if i ≠ j.

Form the quantum event structure with concurrent events ei, for i ∈ I, and
Q(ei) = Pi. Because the projection operators are orthogonal, [Pi, Pj] = 0 when
i ≠ j, so we do indeed obtain a quantum event structure. Let V ({ei}) = λi, and
take arbitrary values on all other configurations. The event structure has a single,
maximum configuration w =def {ei ∣ i ∈ I}. It is the experiment w which will cor-
respond to traditional measurement via A. Assume an initial state ∣ψ⟩⟨ψ∣. It can
be checked that the probability ascribed to each of the singleton configurations
{ei} is ⟨ψ∣Pi∣ψ⟩, and is zero elsewhere. Consequently,

Ew(V ) =∑
i∈I

λi⟨ψ∣Pi∣ψ⟩ = ⟨ψ∣A∣ψ⟩

—the well-known expression for the expected value of the measurement A on
pure state ∣ψ⟩.

Example 5. The spin state of a spin-1/2 particle is an element of two-dimensional
Hilbert space, H2. Traditionally the Hermitian operator for measuring spin in a
particular fixed direction is

∣↑⟩⟨↑∣ − ∣↓⟩⟨↓∣ .

It has eigenvectors ∣↑⟩ (spin up) with eigenvalue +1 and ∣↓⟩ (spin down) with
eigenvalue −1. Accordingly, its quantum event structure comprises the two con-
current events u associated with projector ∣↑⟩⟨↑∣ and d with projector ∣↓⟩⟨↓∣. Its
configurations are: ∅, {u}, {d} and {u, d}. The value associated with the config-
uration {u} is +1, and that with {d} is −1. Given an initial pure state a∣↑⟩+ b∣↓⟩,
the probability of the experiment {u, d} yielding value +1 is ∣a∣2 and that of
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yielding −1 is ∣b∣2. The probability that the experiment ends in configurations ∅
or {u, d} is zero. Its expected value is ∣a∣2 − ∣b∣2. This would be the average value
resulting from measuring the spin of a large number of particles initially in the
pure state. ◻

An event logic One way to assign values to configurations is via logic of which
the assertions will be true (taken as 1) or false (0) at a configuration. Given a
countable event structure E, we can build terms for events and assertions in a
straightforward way. Event terms are given by ε ∶∶= e ∈ E ∣ v ∈ Var, where Var is
a set of variables over events, and assertions by

L ∶∶= ε ∣ T ∣ F ∣ L1 ∧L2 ∣ L1 ∨L2 ∣ ¬L ∣ ∀v.L ∣ ∃v.L .

W.r.t. an environment ζ ∶ Var → E, an assertion L denotes JLKζ, a Borel subset
of C∞(E), for example:

JeKζ = {x ∈ C∞(E) ∣ e ∈ x} JvKζ = {x ∈ C∞(E) ∣ ζ(v) ∈ x}
J∀v.LKζ = {x ∈ C∞(E) ∣ ∀e ∈ x. x ∈ JLKζ[e/v]}
J∃v.LKζ = {x ∈ C∞(E) ∣ ∃e ∈ x. x ∈ JLKζ[e/v]}

with T, F, ∧, ∨ and ¬ interpreted standardly by the set of all configurations,
the emptyset, intersection, union and complement. In this logic, for example,
¬(a↓ ∧ b↓)∧¬(a↑ ∧ b↑) could express the anti-correlation of the spin of particles
a and b.

W.r.t. a quantum event structure with initial state, for an experiment the
configuration w, the probability of the result of the quantum experiment satis-
fying L, a closed assertion of the logic, is

qw(L ∩Fw) ,

which coincides with the expected value of the characteristic function for L.

5.4 Probabilistic quantum experiments

It can be useful, or even necessary, to allow the choice of which quantum mea-
surements to perform to be made probabilistically. For example, experiments
to invalidate the Bell inequalities, to demonstrate the non-locality of quantum
physics, may make use of probabilistic quantum experiments.

Formally, a probability distribution over quantum experiments can be real-
ized by a total map of event structures f ∶ P → E where P, v is a probabilistic
event structure and E,Q is a quantum event structure; the configurations of E
correspond to quantum experiments assigned probabilities through P . Through
the map f we can integrate the probabilistic and quantum features. Via the
map f , the event structure E inherits a configuration valuation, making it itself
a probabilistic event structure; we can see this indirectly by noting that if vo is a
continuous valuation on the open sets of P then vof

−1 is a continuous valuation
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on the open sets of E. On the other hand, via f the event structure P becomes
a quantum event structure; an event p ∈ P is interpreted as operation Q(f(p)).
Of course, f can be the identity map, as is so in Example 6 below.

Suppose E,Q is a quantum event structure with initial state ρ and a measur-
able value function V ∶ C∞(E) → R. Recall, from Section 5.3, that the expected
value of a quantum experiment w ∈ C∞(E) is

Ew(V ) =def ∫
x∈Fw

V (x) dqw(x) ,

where qw is the probability measure induced on Fw by Q and ρ. The expected
value of a probabilistic quantum experiment f ∶ P → E, where P, v is a proba-
bilistic event structure is

∫
w∈C∞(E)

Ew(V ) dµf−1(w) ,

where µ is the probability measure induced on C∞(P ) by the configuration-
valuation v. Specialising the value function to the characteristic function of a
Borel subset L ⊆ C∞(E), perhaps given by an assertion of the event logic of
Section 5.3, the probability of the result of the probabilistic experiment satisfying
L is

∫
w∈C∞(E)

qw(L ∩Fw) dµf−1(w) .

The following example illustrates how a very simple form of probabilistic
quantum experiment (in which the event structure has a discrete partial order
of causal dependency) provides a basis for the analysis of Bell and EPR experi-
ments.

Example 6. Imagine an observer who randomly chooses between measuring spin
in a first fixed direction a1 or in a second fixed direction a2. Assume that the
probability of measuring in the a1-direction is p1 and in the a2-direction is p2,
where p1 + p2 = 1. The two directions a1 and a2 correspond to choices of bases
∣↑a1⟩, ∣↓a1⟩ and ∣↑a2⟩, ∣↓a2⟩ in H2. We describe this scenario as a probabilistic
quantum experiment. The quantum event structure has four events, ↑a1, ↓a1, ↑
a2, ↓a2, in which ↑a1, ↓a1 are concurrent, as are ↑a2, ↓a2; all other pairs of events
are in conflict. The event ↑a1 is associated with measuring spin up in direction
a1 and the event ↓a1 with measuring spin down in direction a1. Similarly, events
↑a2 and ↓a2 correspond to measuring spin up and down, respectively, in direction
a2. Correspondingly, we associate events with the following projection operators:

Q(↑a1) = ∣↑a1⟩⟨↑a1∣ , Q(↓a1) = ∣↓a1⟩⟨↓a1∣ ,
Q(u2) = ∣↑a2⟩⟨↑a2∣ , Q(d2) = ∣↓a2⟩⟨↓a2∣ .
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The configurations of the event structure take the form

⋅
↓a1

o O

⋅
↓a2

� o⋅ ∅

↑a1

O/

↓a1
oO

↑a2

/�

↓a2
� o

⋅

⋅
↑a1

O/

⋅
↑a2

/�

where we have taken the liberty of inscribing the events just on the cover-
ing intervals. Measurement in the a1-direction corresponds to the configuration
{↑a1, ↓a1}—the configuration to the far left in the diagram—and in the a2-
direction to the configuration {↑a2, ↓a2}—that to the far right. To describe that
the probability of the measurement in the a1-direction is p1 and that in the
a2-direction is p2, we assign a configuration valuation v for which

v({↑a1, ↓a1}) = v({↑a1}) = v({↓a1}) = p1 ,
v({↑a2, ↓a2}) = v({↑a2}) = v({↓a2}) = p2 and v(∅) = 1 .

Such a probabilistic quantum experiment is not very interesting on its own.
But imagine that there are two similar observers A and B measuring the spins
in directions a1, a2 and b1, b2, respectively, of two particles created so that
together they have zero angular momentum, ensuring they have a total spin
of zero in any direction. Then quantum mechanics predicts some remarkable
correlations between the observations of A and B, even at distances where their
individual choices of what directions to perform their measurements could not
possibly be communicated from one observer to another. For example, were both
observers to choose the same direction to measure spin, then if one measured
spin up then other would have to measure spin down even though the observers
were light years apart.

We can describe such scenarios by a probabilistic quantum experiment which
is essentially a simple parallel composition of two versions of the (single-observer)
experiment above. In more detail, make two copies of the single-observer event
structure: that for A, the event structure EA, has events ↑ a1, ↓ a1, ↑ a2, ↓ a2,
while that for B, the event structure EB , has events ↑ b1, ↓ b1, ↑ b2, ↓ b2. Assume
they possess configuration valuations vA and vB , respectively, determined by the
probabilistic choices of directions made by A and B. Write QA and QB for the
respective assignments of projection operators to events of EA and EB . The prob-
abilistic event structure for the two observers together is got as EA∥EB , their
simple parallel composition got by juxtaposition, with configuration valuation
v(x) = vA(xA) × vB(xB), for x ∈ C(EA∥EB), where xA and xB are projections
of x to configurations of A and B. In this compound system an event such as
e.g. ↑a1 is interpreted as the projection operator QA(↑a1)⊗ idH2 on the Hilbert
space H2 ⊗H2, where the combined state of the two particles belongs. We can
capture the correlation or anti-correlation of the observers’ measurements of spin
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through a value function on configurations, given by

V ({↑ai, ↑bj}) = V ({↓ai, ↓bj}) = 1 , V ({↑ai, ↓bj}) = V ({↓ai, ↑bj}) = −1 , and

V (x) = 0 otherwise,

and study their expectations under various initial states and choices of mea-
surement. In this way probabilistic quantum experiments, as formalised through
probabilistic and quantum event structures, provide a basis for the analysis of
Bell or EPR experiments. ◻

The ideas of probabilistic and quantum event structures carry over to prob-
abilistic and quantum games and their strategies [1]; the result of the play of
quantum strategy against a counterstrategy is a probabilistic event structure.
This is yielding operations and languages which should be helpful in a struc-
tured development and analysis of experiments on quantum systems.
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