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The Locker
Puzzle
Eugene Curtin and Max Warshauer

Suppose I take the wallets from you
and ninety-nine of your closest

friends. We play the following game
with them: I randomly place the wal-
lets inside one hundred lockers in a
locker room, one wallet in each locker,
and then I let you and your friends in-
side, one at a time. Each of you is al-
lowed to open and look inside of up to
fifty of the lockers. You may inspect
the wallets you fmd there, even check-
ing the driver's license to see whose it
is, in an attempt to find your wallet.
Wlietheryou succeed or not, you leave
all hundred wallets exactly where you
found them, and leave all hundred
lockei-s closed, just as they were when
you entered the room. You exit through
a different door, and never communi-
cate in any way with the other people
waiting to enter the room. Your team
of 100 players wins only \f enery team
member finds his or her own wallet. If
you discuss your strategy beforehand,
can you win with a probability that
isn't vanishingly small?

We develop a more mathematical
formulation to facilitate a precise dis-
cussion of the problem. This consists
of numbering our players, atid replac-
ing wallets by player numbers! Our
game is played between a single Player
A against a Team B with 100 members,
^1 , B>. . . . , fiioo- Player A places the
numbers 1,2,..., 100 randomly in lock-
ers 1 ,2 , . . . , 100 with one number per
locker. The members of Team B are ad-
mitted to the locker room one at a time.
Each team member is allowed to open
and examine the contents of exactly 50
lockers. Team B wins if every team
member discovers the locker contain-
ing his own number. Team B is allowed

an initial strategy meeting. No com-
munication is allowed after the initial
meeting, and each team member must
leave the locker room exactly as he
found it. It is important to realize that
the solution does not involve some
trick to pass information from one
player to another. We could equally
well make 100 copies of the room and
make an identical distribution of num-
bers into lockers for each room, then
ask the members of Team B to perform
their searches simultaneously, with
one person per room.

Each individual will succeed in find-
ing his own number with probability
V2. If they act independently, they must
get lucky 100 times in a row, and the
team will win with probability only
l̂/̂ yoo jpaj^, g needs some help! Amaz-

ingly there is a strategy which gives sig-
nificant probability of success for
Team B. Even if we give the problem
with 2H players on Team B each of
whom can examine u out of 2n lock-
ers, Team B can apply the strategy
to succeed with probability over 30%
regardless of how large a value we
take for n. Your problem is to find this
strategy.

Searching For Ideas
Let's play with some ideas using a more
manageable number of players. To be
as concrete as possible, let's switch to
the case of 10 players on Team B, each
of whom can examine .5 out of 10 lock-
ers. Here random guessing by each
player is already somewhat hopeless and
succeeds with probability (Vi)'" = —'—.
A first try to improve the probability of
success is to search for a clever way to
assign a set of lockers for each person
to examine. Certainly we can improve
over random guessing in this manner.
For example if team members 1-5 ex-
amined lockers 1-5, and team mem-
bers 6-10 examined lockers 6-10, they
would succeed provided numbers 1-5
are placed in lockers 1-5. Number 1 is
placed somewhere in the fu-st 5 lock-
ers with probability 5/10, then given
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that number 1 is so placed, nutnber 2
is also in the first 5 with probability 4/9
and so on. Following this plan, Team B
wili succeed with probabihty

5 4 3 2 1 _ 1
10 !( fi 7 fi 242'

While this is an improvement over ran-
dom guessing, it still leaves Team B
with slim chances. Although the
scheme fails, it is worth noticing lhat
if Bl fmds his number in this scheme,
then /in will find his number with prob-
ability 5/9 (as he will iook in 5 lockers
not including the one containing the
number 1), but B' will fmd his with
probability only 4/9. The success or
failure of B^ can influence the proba-
bilities of success of the other mem-
bers. This is the first clue!

An ideal strategy would be one
where if B] succeeds then eveiyone
else does too. Note that this would al-
low the whole team to succeed half the
time even though each individual
member fails half the time. This ideal
is not attainable, but perhaps you can
fmd a strategy where if Bi succeeds,
then everyone else is more likely to
succeed. No method of preassigning
lockers will accomplish this, as if Bi
finds his number in locker k anyone
with locker A- in their preassigned set
has his chances reduced. This suggests
that the locker choices will have to de-
pend on infonnation not available at
the initial meeting. The only such in-
fontiation available is the mmibers a
player fmds inside the lockers he
opens. With this further hint try one
more time to find a good strategy be-
fore we proceed to the solution!

Developing the Solution
Oiue we realize that tlie locker Bi
opens at any stage can depend on what
he has found inside the lockers he has
already opened, the number of possi-
ble strategies to consider is enormous,
even in the 10-player case. The strategy
must tell Bl which locker to open first
(10 choices), which locker to open
next if he is not lucky on the firet try
(9 choices for each of the possible 9
numbers he may see), which to open
third if he is not lucky on his second
attempt either (8 choices for each
of the 9 x 8 possible sequences of
2 numbers he has seen so far), and so

on. So Bl alone has 10 X 9" x 8^^« x
7!»x8x7 X 69x8x7x(5 possible strategies.

To compute the number of strategy
choices for the whole team, we raise
this to the 10th power and get a num-
ber 28,537 digits long! How aie we to
choose one?

In this section we will show that one
very simple strategy lels the team win
with remarkably high probability. The
strategy for any one player is entirely un-
reniiirkable; the magic arises from the
fact that the chances of the different
players winning are highly correlated.
Moreover, in the next section, we will
show that tlie strategy is in fact optimal.

Fortunately the good strategy is
simple to implement and the choice of
the next locker does not depend on the
entire sequence of numbers seen but
only on the most recent number. The
good strategy has player Bj start by
opening locker ;. Then if he finds num-
ber k at any stage and k + /, he opens
locker k next. Notice that player /?;,
never ojjens a locker (other than locker
i) without first finding its number, so
each time be opens a new locker he
must fuid either his own number or the
number of another unopened locker.

Again let's look at a paiticular case
with 10 players and suppose, for exam-
ple, that the munbers are distributed in
the order 6,8,9,7,2,4,1,5,10,3. Player Bi
first examines locker 1 and finds the
nimiber 6. So he looks in locker 6 find-
ing the nmnber 4, then locker 4 fmding
the number 7, then finally in locker 7
finding his number. When he fmds his
number, B\ will now know that ^o- ^4-
and B-, will look in exactly the same
lockers in tlie san\e cyclic order, each
fmding his number on the 4th try! He
also knows that none of tiie other i)lay-
ers will waste any tries on these lockers.

We may represent any pennutation
of numbers into lockers by listing the
cycles. The permutation 6,8,9,7,2,4,1,5,
10,3 gives the cycles (6, 4, 7, 1) (8, 5, 2)
(9, 10, 3), and Team B succeeds be-
cause there is no long cycle. To fmd the
probability that Team B wins, we coimt
the number of permutations of 10 num-
bers with a cycle of length 6 or longer.
First let's count how many have a 6-cy-
cle. Choose which 6 elements go into
the 6-cycle, arrange them in cyclic or-
der, and then pick an arbitrary permu-

tation ofthe remaining 4 elements. The
number of ways to do this is

10!5!4! 10!
5!4! = 6

So 1/6 ofthe 10! permutations have
a 6-cycle, and a random pennutation
has a 6-cycle with probability 1/6. The
same argument can be used to find the
probability of a pemiutation of 1-10
having a cycle of any length longer than
6. (We warn that 1 he argument does not
work for counting the number of per-
mutations of 1-10 with a 5-cycle (or
shorter) as the permutation could have
two 5-cycles.) A pemiutation of 10
numbers has a 7-cycle with probability
1/7 and so on, and the probability of a
cycle of length 6 or larger is 1/6 -(- 1/7 +
1/8 + 1/9 + 1/10 = 1627/2520 =
0.645635. This gives the probability
that Team B will fail, so of couree Team
B wins with probabihty 1 - 1627/
2520 = 893/2520 - 0.354365. Over 35%
of the time, all 10 members of Team B
find their own wallets!

Will this idea be good enough for the
initial version with 100 players? We can
do the analogous computation and see
that this pointer-following strategy
works with probability 1 - (1/51 -I-
1/52 -H • • • + 1/100) - .311828.

Notice that while our strategy has
still performed remarkably well for 100
players, the probability of sm cess was
still less than in the 10-piayer version.
As we increase the number of players,
does the success rate decrease to zero,
or does it always stay above a certain
positive number? With 2n players and
'In lockers. Team B will win provided
that the permutation of numbers in
lockers has no cycle of length (̂ -h 1 or
longer. The probability of such a long
cycle is 2 '̂= i ^ . By viewing this ex-
pression as cm upper Riemaim sum for
J;'" —^ tir and a lower Riemium sum
for /"" - dx we obtain

In 2 -
1

n + 1
1

x+ 1
dx

So SI'.. 1

n + k
r = in 2.

In 2 as =c; moreover
the sum increases monotonically with
u. So the expression 1 - SA'=I --T giv-
ing the probability of success is
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monotonically decreasing to 1 - In2 =
0.306853. Team B wins witii the pointer-
following strategy with probability ex-
ceeding 30%, regardless of the nmnber
of players and lockers. Now that we
have found a good strategy, we tum
our attention to whether it provides the
best possible solution.

Is Pointer-Following Optimal?
We establish the optimality of pointer-
following by comparing the game con-
sidered above (Game 1) with a now
game (Game 2) between the same ad-
versaries, Player A and Team B. For
simplicity wo give the argument in
terms of the 10-playor versions. Recall
that in Game 1 we are allowing each
player to examine 5 lockers. We first
modify tliis mie and say tliat each player
must continue examining lockers imtil
he has openefl tlie locker containing his
number, and then he is not allowed to
opon any further lockors. Team B wins
if no player opens more than 5 lockers.
Tliis change makes no difference lo who
wins in Game 1, but it will clarify the
comparison with Game 2.

In Game 2, Player A again distrib-
utes the 10 numbers at random in the
10 lockers. Then all of t emu B is invited
into the locker room together. Team
member Bi is required by the rules to
start opening lockers and continue un-
til she reveals the number 1. Once she
has opened the locker containing the
number 1, sho may not open any fur-
ther lockers; then, tbo lowest-num-
bered member of Team B whose num-
ber has not yet been revoalod is
roquired to take ovor oponing lockers
until he finds his number and so on.
Team B continues until all lockers arc
opened. Again Team 13 wins if no indi-
vidual team member opens more than
5 lockors. Beforo procooding, we invite
you to consider the following ques-
tions: With what probability can Team
B win Game 2? What strategy should
tho toam members omploy? Does their
choice of strategy even matter?

Lot's sit in the locker room and ob-
serve Team B in the process of playing
Game 2. We record tho progress, list-
ing the nmnbers in tho order in which
they are rovealod. Our list of numbers
is sufficiont to determine how many
lockors were opened by each player.

For example, if we record the list 2,6,1,
4,9,7,10,8,3,5, we know that player /i,
rovoaled the numbors 2, G, and 1. Then
playor B,i was required to take ovor,
and he opened the lockers containing
the numbers 4, 9, 7, 10, 8, and 3, in that
order. Then playor Br, oponod the re-
maining locker containing tho number
5. In this example Team B lost, as
player B.i oponod 6 lockers. Notice that
we will record any given ordering of
tho numbers 1-10 with probability
1/10!. The first number revealed is 2
with probability 1/10, no matter which
lockor is opened, given that the first is
2 the second will be fi with probability
1/9, and so on. What strategy' is Toam
B following horo? It makes absolutely
no difference! Team B can choose lock-
ors at random or follow the most so-
phisticated plan; we still get probabil-
ity 1/10! for each of tho 10! possible
orders in whicb the numbers could be
rovealed. In Gamo 2 Toam B's proba-
bility of success is completely indo-
pondent of strategy.

To find the probability that Team B
wins, we must counl how many of the
10! possible orders of the numbers
1-10 ropresont wins. Wo omploy a vor-
sion of the classical records-to-cycles
bijoction [fi, pl7] to assign a permuta-
tion written in cycle notation to each
ordering. Tho first cycle of our permu-
tation consists of tho numbors oponod
l)y B[ in order; the second cycle, tho
numbers opened by the second locker
opener; and so on. So, for example, 2,fi,
1,4,9,7,10,8,3,5 -^ (2,fi,l}(4,9,7,10,8,3)
(5). Furthermore we see that each per-
mutation arises in tiiis manner from a
unique ordering of the numbors 1-10.
We first write the poniiutation in cycle
notation, rotate each cycle so that tho
lowest number in the cycle is written
last, and then ordor the cycles so
that tiieir last numbers are in ascend-
ing order. For example (9,7,8)C1,3,1O,5)
(2,4,6) - (3,10,5,l)(4,6,2)(8,9,7}^
3,10,5,l,4,fi,2,8,9,7. We have established
a one-to-one correspondence between
lists for which Team B wins and the
permutations of 1-10 with no cycles of
length greater than 5. Thus the proba-
bility that Teimi B wins Game 2 is tho
probability that a randoni permutation
of 1-10 has no cycle of length greater
than 5, and we have already computed

this as 893/2520 - 0.354365. Tliis is ex-
actly the probability of success for
Toam B in Gamo 1 using pointer fol-
lowing!

Our analysis has a significant con-
sequence for Game 1. Team B can take
any Game 1 strategy and adapt it to
Game 2 as follows: If player B, is open-
ing lockers in Game 2, he can use his
Gamo 1 strategy- for choosing lockers
to open, simply observing the contents
without wasting a tum if the indicated
lockor is already opon. Thus if a strat-
egy .succeeds in Gamo 1 for a particu-
lar distribution of numbers into lock-
ors it will also succeed in Game 2. Tf
there were a better strategy for Game
1 we could apply it in Game 2 and get
a better chance to win this game al.so.
But this is impossible, as all strategies
for Game 2 lead to the same probabil-
ity of success.

We have one final small puzzle;
Happy with their optimal strategy for
Game 1, Team B began a sequence of
matches with Player A, but they .soon
found themselves down 10 to 0. What
do you su.spoct Player A is doing? (It
seems that Player A subscribes to tho
Intelligencer and has dovised a plan to
defeat Team B.) What can Team B do
to counter Player A"s plan?

History of The Locker Puzzle
Our problem was initially considered
by Peter Bro Miltersen. and it appealed
in his paper [4] with Anna Gal. which
won a best paper award at the ICALP
conference in 2003. Miltersen says of
the problem, "I think it started spread-
ing whon I pre.sented it to several peo-
ple at Complexity 2003, which was held
in Aarhns, where 1 was a local orga-
nizer." In their version there is one
numbered slip of paper for each player
on the team. Player A then colors each
slip either rod or blue. Each member of
Team B may examine up to balf the
lockers. He is then required to state or
guess the color of the slip of paper with
his number. Again every toam momber
must state or guoss his color correctly
for the team to win. Initially Miltereen
expected that Team B s probability of
success would approach zero rapidly
as the number of players increased.
However, Sven Skymn, a colleague of
Miltersen's at tho University of Aarhus,
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brought his attention to tho boautiful
pointer-following strategy. Finding this
is left as an exorcise in the paper.

Miltersen and Gal originally consid-
ered the case where there are n team
members and 2// lockers, half of them
empty; each team member still gets to
opon up to half of the iockers. This is
a more <lifficult problem. Clearly sim-
ple pointer following will not work as
empty lockers do not point anywhere.
It is an open question whether the win-
ning probability must tend to zero for
large n.

In [5] Navin Goyal and Michael Saks
build on Skyum's pointer-following to
devise a strategy for Team B in a more
general setting, varying both the pro-
portion of empty lockers and the frac-
tion of lockors each toam member may
open. As tho numbor of players in-
creases, their probability of success for
Team B approachos zero less rapidly
than conjectured in {4]. And fixing the
number of players and fraction of lock-
ers each may open, their probability of

winning remains nonzero even as more
empty lockers are added.

Tlie problem also appeared in Joe
Buhler and Elwyn Borlokamp's puzzle
column in the Spring, 2004 issue of The
Emis.sarij [3], with lockers replaced by
ROM locations antl colored numbers re-
placed by signed numbers. Horo it is
pointed out that the team benefits from
tho members caiofuliy planning their
guessing strategy as well as thoir lockor
searching strategy. For exampio, if
thoro aro 2n lockers and the longest cy-
cle has length n + i, tho team mombers
caught in the */ + 1 cycle can guess in
sucii a manner that they all guess cor-
rectiy or all guess incorrectly. The trick
is the same as that employed in tho hat
problom of Todd Ebeii [2]. Variations of
tho hat problem are doscribod in Joe
Bulilor's article in Ihis column [ I ] and in
Peter Winkler's book [7, p66, pl20]. The
locker problem will bo discussed in a fu-
ture oditiou of Winkler's book also.

We thank Joel Spencer for intro-
ducing us to the problem, and wo tiiank

Ravi Vakil and Michael Kleber for en-
couraging us to write this note and pro-
viding many useful suggestions.
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