
Forgetting causality in the concurrent game
semantics of probabilistic PCF

Simon Castellan1, Pierre Clairambault1, Hugo Paquet2, and Glynn Winskel2

1Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
2Computer Laboratory, University of Cambridge, Cambridge, U.K.

Abstract—We enrich thin concurrent games with symmetry,
recently introduced by Castellan et al, with probabilities, and
build on top of it a cartesian closed category with an interpreta-
tion of Probabilistic PCF (PPCF). Exploiting that the strategies
obtained from PPCF terms have a deadlock-free interaction, we
deduce that there is a functor preserving the interpretation from
our games to the probabilistic relational model recently proved
fully abstract by Ehrhard et al. It follows that our model is
intensionally fully abstract, without the need for a probabilistic
notion of innocence. This holds both for a sequential and a parallel
interpretation of PPCF in the style of Castellan et al.

I. INTRODUCTION

One may separate denotational models of programming
languages into two distinct families, static and dynamic. Static
models represent a program in terms of the states it may
reach. The states can take different forms and static models
are many and various. Organised as a category, a model may
be well-pointed (i.e. extensional, as in Scott domains [25]) or
not (as in the relational model of linear logic [16]). States
may come annotated with additional quantitative information
(as in the probabilistic relational model [17]), and a model
may even allow multiple witnesses for the same states (as
in spans or profunctors). All those cases have in common
that composition is an elaboration of relational composition; it
collects information about the states reached, with no concern
for the causal history of those states.

On the other hand, in a dynamic model one remembers
some temporal or causal information from the execution of the
source programs. Most dynamic semantics have been given
within game semantics [18], [3], but one should not forget
an early precursor, sequential algorithms [8]. The additional
intensional information of game semantics makes it well-
suited to accommodate non-commutative effects, dependent
on the evaluation order; one may cite various games models
of stateful languages [4], [2]. This intensionality also makes
such models more modular, as powerfully illustrated by the so-
called Abramsky cube [1], describing programming language
features in terms of abstract conditions on strategies. Com-
position in such models is dramatically different from that in
static models: for two strategies to synchronise they must not
only agree on the state to be reached, but also have compatible
requirements as to how it is going to be reached – otherwise
the composition will deadlock.

Accordingly, time-forgetting operations from games to re-
lations are naturally lax functorial [7], [31]; but become

functorial for well-behaved programs [23], [9] – expressed by
Melliès as, innocent strategies are positional [23].

In this paper, we are interested in both types of models
for PPCF, i.e. PCF [25] extended with probabilistic choice.
On the dynamic side, Danos and Harmer [15] gave a games
model for Probabilistic Idealized Algol, which includes PPCF.
On the static side, Danos and Ehrhard gave a model for PPCF
in probabilistic coherence spaces, based on the probabilistic
relational model [14]. Strikingly their model is fully abstract
for PPCF [17], i.e. two programs have the same denotation if
and only if they cannot be distinguished.

But again, the time-forgetting operation from Danos and
Harmer’s model to the probabilistic relational model is only
lax functorial. This is inevitable since the games model sup-
ports references, which are time-sensitive. But how may we
adapt it so that it still supports the interpretation of PPCF and
yet has a functorial time-forgetting operation, i.e. how do we
construct a deadlock-free games model of PPCF? To achieve
an absence of deadlocks, we move to a games model that takes
causality more seriously.

Our first contribution is the construction of a causal games
model of PPCF. It draws on two recent developments in
concurrent game semantics: the thin concurrent games with
symmetry of [12], [13] used to build a parallel model for PCF
[12], and the probabilistic concurrent strategies of [30]. Our
second contribution is a collapse operation to the probabilistic
relational model. We prove a deadlock-free property for visible
[12] concurrent strategies, which entails that the collapse is
functorial and preserves the interpretation of PPCF. From that
it follows that the model is intensionally fully abstract: it is
adequate, and strategies have the same distinguishing power
as terms – just as in the original HO and AJM games models
with respect to PCF. Interestingly, the result does not require
any notion of probabilistic innocence or definability result.
Moreover, it holds both for a sequential interpretation of PPCF
(compatible with its interpretation in Danos and Harmer’s
model) and a parallel interpretation in the style of [12].

Related work: Our probabilistic game semantics is re-
lated to Tsukada and Ong’s sheaf-based non-deterministic
and probabilistic innocence [27], although precise connections
have not been investigated. That innocent strategies have a
deadlock-free composition is implicit in Melliès’ work on
game semantics for linear logic [5], [22], and exploited in
Boudes’ work on relating games with the relational model –

our deadlock-free property for visible strategies generalises
that to a non-sequential and non-innocent setting.

Outline: In Section II we introduce PPCF, its rela-
tional semantics, and describe statically the probabilistic event
structures used to represent it. In Section III we introduce
probabilistic thin concurrent games, the setting on which
the compositional interpretation of PPCF relies. Finally, in
Section IV, we give our collapse operation to the probabilistic
relational model and deduce intensional full abstraction.

II. SEMANTICS FOR PROBABILISTIC PROGRAMS

A. Probabilistic PCF

We present the language PPCF, the extension of Plotkin’s
PCF [25] with a probabilistic primitive coin : Bool. Its types
are those obtained from the basic types Bool and Nat, and
the arrow ⇒. Its terms are the following

M,N ::= λx.M |M N | x | tt | ff | ifM N1 N2 | Y
n | pred M | succ M | iszero M | coin

The typing rules are standard and omitted – we assume that
in ifM N1N2, N1 and N2 have ground type (Bool or Nat),
a general if can be defined as syntactic sugar.

The usual call-by-name operational semantics for PCF gen-
eralises to a probabilistic reduction relation

p−→, for p ∈ [0, 1].
All rules are straightforward, with the primitive coin repre-
senting a fair coin: coin → 1

2 b for all b ∈ {tt, ff}. Because
reduction is non-deterministic, there can be countably many
reduction paths from M to N , i.e. sequences of the form
M = M0

p1−→ . . .
pn−→ Mn = N . Given such a path π,

its weight w(π) is
∏

1≤i≤n pi, and we define the coefficient
Pr(M → N) as

∑
{w(π) | π is a path from M to N}.

Definition 1. Let M and N be PPCF terms such that Γ `
M : A and Γ ` N : A. We write M .ctx N if for every
context C[·] such that ` C[P] : Bool for every Γ ` P : A,

Pr(C[M]→ b) ≤ Pr(C[N]→ b)

for all b ∈ {tt, ff}. The equivalence induced by this preorder,
contextual equivalence, is denoted 'ctx.

B. The weighted relational model

In [17], Ehrhard et al proved that probabilistic coherence
spaces (PCoh) are fully abstract for PPCF – in other words,
two PPCF terms are contextually equivalent iff they have
the same denotation in PCoh. In fact, PCoh is cut down
(via biorthogonality) from a more liberal model PRel, the
probabilistic relational model, on which we will now focus.

1) The relational model of PCF: Ignoring probability for
now, the relational model of PCF records the input-output
behaviour of a term, along with the multiplicity of resources.

Write B = {tt, ff} and Mf(X) for the set of finite
multisets of elements of a set X . Objects of Mf(X) are
written with square brackets with elements annotated with
their multiplicity; e.g. we have [tt2, ff] ∈Mf(B), where tt has
multiplicity 2 and ff has multiplicity 1. Using this notation,
the term b1 : Bool, b2 : Bool ` if b1 b1 b2 : Bool will be
represented as the subset of Mf(B)×Mf(B)×B containing:

Mf(B) × Mf(B) × B
([tt2], [], tt)

([tt, ff], [], ff)
([ff], [tt], tt)
([ff], [ff], ff)

The model is non-uniform: it shows how the term behaves if
its argument ever changes its mind.

The interpretation of PCF in the relational model follows the
usual methodology of denotational semantics, and in particular
the interpretation of the simply-typed λ-calculus in a cartesian
closed category, see e.g. [20] for an introduction. To construct
the target cartesian closed category, we start with one of the
simplest models of linear logic: the category Rel of sets and
relations. In Rel the linear logic connectives are interpreted
as follows: given X and Y , X ⊗ Y = X (Y = X × Y ,
X&Y = X+Y (the tagged disjoint union) and !X =Mf(X).
The cartesian closed category Rel! is then the Kleisli category
for the comonad !, see e.g. [24]. We delay the details of the
interpretation of PCF in Rel!, which we will cover in the
presence of probabilities.

2) The weighted relational model: Because the model is
non-uniform, it supports non-deterministic primitives. The idea
behind the probabilistic relational model is to enrich this non-
uniform model with quantitative information: each element
comes with a weight, as shown for instance in the interpreta-
tion of M+ = b : Bool ` if b (if coin b⊥) (if b ff tt) : Bool,
where ⊥ is a diverging term, e.g. Y (λx. x):

Mf(B) × B
([tt2], tt)

1
2

([tt, ff], ff)
3
2

([ff2], tt)1

The weights can be greater than 1, because a multiset may
correspond to several execution traces. In the example above
the pair ([tt, ff], ff) has weight 3

2 = 1
2 + 1, summing over the

different orders in which b can take its values from [tt, ff].
The pure relational interpretation from before was based on

the category Rel with objects sets and morphisms from X
to Y relations ϕ ⊆ X × Y , i.e. “matrices” (ϕx,y)x,y∈X×Y ∈
{0, 1}(X×Y). Accordingly, the composition of relations can be
regarded as matrix multiplication:

(ψ ◦ ϕ)x,z =
∨
y∈Y

(ϕx,y ∧ ψy,z)

So naively, one might try to construct a probabilistic variant
of Rel by simply replacing the boolean semiring ({0, 1},∨,∧)
above by the semiring (R+,+,×) where R+ denotes non-
negative real numbers; except that the composition formula

(ψ ◦ ϕ)x,z =
∑
y∈Y

(ϕx,y × ψy,z)

for ϕ ∈ RX×Y+ , ψ ∈ RY×Z+ , will not in general satisfy that
(ψ ◦ ϕ)x,z ∈ R+ as there is no reason for it to converge.

So instead, we will consider the interpretation of PPCF in
a quantitative generalization of Rel weighted by elements of

R+ = R+] {∞}, the infinity added to ensure convergence
of the (potentially) infinite sum above. There is a category
PRel with sets as objects, and as morphisms from X to Y the
(potentially) infinite matrices ϕ ∈ RX×Y+ , composed as above.
The identity on X is the diagonal matrix (δx1,x2)x1,x2∈X
where δx1,x2

is 1 whenever x1 = x2, and 0 otherwise.
Now, just like Rel, PRel supports the structure of a model

of linear logic with the constructions on objects the same as in
Rel and analogous constructions on morphisms. We proceed
to define the interpretation of PPCF in PRel!. As for Rel
the interpretation of the λ-calculus combinators follows from
the cartesian closed structure of the Kleisli category PRel!,
which we do not detail further [20]. The interpretation of Y
is also obtained in a standard way as a least upper bound of
finite approximations, using that homsets of PRel are dcpos
when ordered pointwise. We now focus on the interpretation
of ground types and associated combinators.

The types Bool and Nat are interpreted by the sets
JBoolK = B and JNatK = N, respectively. For n ∈ N, the
constant n has semantics given by (JnK)k = δk,n for k ∈ N.
The boolean constants tt and ff are interpreted in the same
way. The semantics of succ and pred are defined by

JsuccK : Mf(N) × N → R+

([n] , n+ 1) 7→ 1
(,) 7→ 0

JpredK : Mf(N) × N → R+

([n+ 1] , n) 7→ 1
([0] , 0) 7→ 1
(,) 7→ 0

The morphism JiszeroK ∈ PRel!(N,B) is defined similarly.
Finally given terms M : Bool, N : X, P : X (where X denotes
any ground type, i.e. Bool or Nat), the term ifM N P has
semantics 〈JMK, 〈JNK, JP K〉〉◦if, where if ∈ PRel!(B&(JXK&
JXK), JXK) ∼= PRel(!B⊗ !JXK⊗ !JXK, JXK) is defined by

if : Mf(B) × Mf(JXK) × Mf(JXK) × JXK → R+

([tt] , [x] , [] , x) 7→ 1
([ff] , [] , [x] , x) 7→ 1
(, , ,) 7→ 0

Finally, the probabilistic primitive coin is interpreted as
expected as having JcoinKtt = 1

2 and JcoinKff = 1
2 , com-

pleting the interpretation of PPCF. One may however question
how satisfactory this model is – it is quite obviously very
far from full completeness, as witnessed by the presence of
infinite weights. And indeed, the authors of [17] do not stop
with PRel. Instead they cut it down by a biorthogonality
construction to obtain another weighted model of linear logic,
PCoh. In PCoh weights remain finite, and the interpretation
of M : X yields a sub-probability distribution on JXK. In fact,
the main result of [17] is that PCoh is fully abstract, i.e. for
any M,N we have that M 'ctx N iff JMKPCoh = JNKPCoh.

But this has the interesting immediate corollary that despite
its drawbacks, PRel is itself already fully abstract! Indeed
there is an obvious faithful forgetful functor PCoh ↪→ PRel
preserving all the structure on the nose – in fact a term M has
exactly the same interpretation in PRel and PCoh, the only

q
(−,Q)
2
��

q
(+,Q)
1

xx ��
tt

(−,A)
1
��

ff
(−,A)
1

��

q
(+,Q)
1′
�� ��

tt
(−,A)
1′
��

ff
(−,A)
1′
��

tt
(+,A)
2 ff

(+,A)
2 ff

(+,A)
2

q
(−,Q)
2

|| ""
q

(+,Q)
1

�� ��

q
(+,Q)
1′

�� ��
tt

(−,A)
1

�� ""

ff
(−,A)
1

&&

tt
(−,A)
1′

vv

ff
(−,A)
1′

uu
tt

(+,A)
2 ff

(+,A)
2 ff

(+,A)
2

Fig. 1. Two strategies for b : Bool1 ` M : Bool2.

difference being that the interpretation is more informative as
it carries correctness information w.r.t. biorthogonality.

So we state the main theorem of [17] as:

Theorem 2. For any terms Γ ` M : A and Γ ` N : A of
PPCF, M 'ctx N iff JMKPRel = JNKPRel.

Although proving this requires PCoh, it can be forgotten
when using the result. Accordingly, in the rest of this paper,
we will only work with PRel and ignore biorthogonality.

C. Game semantics and event structures

The interpretation of a term in PRel “flattens out” its be-
haviour: it only displays the multiplicity of its use of resources,
but forgets in what order these resources are being evaluated.
This is as opposed to game semantics, which also records
the order in which computational events are performed, or at
least the causal dependencies between them. In the concurrent
game semantics presented here (very close to [12]), the term
b : Bool ` M = if b b ff : Bool can be represented by
either of the two diagrams in Figure 1 (i.e. there will be two
interpretation functions, sending M to one or the other).

These diagrams, read from top to bottom, represent di-
alogues (or collections of dialogues) between two players
Player and Opponent, respectively playing for a program and
its execution environment. Nodes, called moves, are computa-
tional events. Each one is due to either Player (+) or Opponent
(−), as indicated by their polarity. Moves are annotated by a
Question/Answer labelling (Q/A): questions correspond to
variable calls, whereas answers correspond to calls returning.
The wiggly lines denote incompatible branchings: moves
related by them cannot occur together in an execution.

The diagram on the left is a tree, and each of its branches
denotes a dialogue between Player (playing for M) and
Opponent (playing for the environment) tracing one possible
execution path of M . For instance, the leftmost path reads:

q
(−,Q)
2 Opponent: “What is the output of M (on Bool2)?”

q
(+,Q)
1 Player: “What is the value of b (on Bool1)?”
tt

(−,A)
1 Opponent: “The value of b is tt.”

q
(+,Q)
1 Player: “Then, what is, again, the value of b?”
tt

(−,A)
1 Opponent: “The value of b is tt.”

tt
(+,A)
2 Player: “Then, the output of M is tt.”

In particular, this dialogue explicitly displays the several
consecutive calls to b, leaving Opponent the opportunity to
change his mind. The full diagram on the left-hand side
of Figure 1 appends all such dialogues together in a single
picture, the wiggly lines separating incompatible branches.

But beyond simple sequential execution, our framework for
game semantics, as it is based on an independence model of
concurrency, also supports a partial order-based representation
of parallel executions. The diagram on the right-hand side of
Figure 1 represents another implementation strategy for M .
Taking advantage that the order of evaluation is irrelevant in
PPCF, the diagram expresses that one can evaluate the two
occurrences of b in parallel. For each pair of results for the two
independent calls to b, there is a Player answer to the original
Opponent question q

(−,Q)
2 . Rather than just chronological

contiguity, the arrows there describe the causal dependency
of a move, i.e. the events that must have occurred before.
We will see later that both diagrams denote (up to minor
details, explained later) objects called strategies, representing
terms. We will describe later two interpretations of PPCF as
strategies: one sequential, one parallel, respectively computing
the two strategies of Figure 1 from M .

Diagrams such as in Figure 1, that convey information about
both causal dependency and incompatibility, are naturally
formalised as event structures, a concurrent analogue of trees.

Definition 3. An event structure is (E,≤E ,ConE) with a set
E of events, ≤E a partial order stipulating causal dependency,
and Con a non-empty set of consistent subsets of E, s.t.

[e] = {e′ | e′ ≤ e} is finite for all e ∈ E
{e} ∈ ConE for all e ∈ E
Y ⊆ X ∈ ConE =⇒ Y ∈ ConE
X ∈ ConE and e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ ConE .

With an eye to game semantics, we equip an event structure
with a function pol : E → {−,+}. Then (E,≤E ,ConE , polE)
is called an event structure with polarity (esp).

Let us fix some notation. Write e _ e′ for immediate
causality, i.e. e < e′ with no events in between. Write C(E)
for the set of finite configurations of E, i.e. those finite x ⊆ E
such that x ∈ Con and x is down-closed, i.e. if e ≤ e′ ∈ x
then e ∈ x. Given an event e, write [e] for {e′ ∈ E | e′ ≤ e} –
such configurations, those with a top element, are called prime
configurations. If E has polarity, we might give information
about the polarity of events by simply annotating them as in
e+, e−. If x, y ∈ C(E), write x ⊆+ y (resp. x ⊆− y) if x ⊆ y
and every event in y \ x has positive (resp. negative) polarity.

If for an event structure E there is a binary relation #E

such that for all X ⊆ E finite, X ∈ Con iff ∀e 6= e′ ∈
X,¬(e#Ee

′), we say that E has binary conflict. In that case
we automatically have that if e#e′ and e′ ≤ e′′ then e#e′′ as
well (the conflict is inherited). If e#e′ and the conflict is not
inherited (meaning that for all e0 < e and e′0 < e′ we have
¬(e0#e′0)), we say that e#e′ is a minimal conflict, written
e e′. With all that in place, it should now be clear how

q
(−,Q)
2
��

1q
(+,Q)
1

vv ''
tt

(−,A)
1
��

ff
(−,A)
1
��

1
2 q

(+,Q)
1
}} !!

1q
(+,Q)
1
~~

tt
(−,A)
1
��

ff
(−,A)
1
��

tt
(−,A)
1
��

ff
(−,A)
1
��

1
2 tt

(+,A)
2

1
2 ff

(+,A)
2

1ff
(+,A)
2

1tt
(+,A)
2

Fig. 2. A probabilistic strategy for b : Bool1 ` M+ : Bool2

the diagrams of Figure 1 denote event structures (with binary
conflict) where rather than ≤E and #E , we draw immediate
causality _ and minimal conflict .

As strategies, we will see later that the esps of Figure 1
also come with a labelling function to a game representing
the typing judgment Bool ` Bool, labelling from which the
annotations q

(−,Q)
2 , tt

(−,A)
1 , . . . follow. But let us first discuss

how probability is adjoined to event structures.

D. Event structures with probability

1) Probabilistic sequential esps: Sequential esps (such as
that on the left of Figure 1) are those for which the causal
dependency is forest-shaped, and for every configuration x ∈
C(E), if x has several distinct extensions x∪{e+

1 }, x∪{e
+
2 } ∈

C(E) with positive events, then x ∪ {e1, e2} 6∈ C(E). This
means that for every x ∈ C(E), there is a set of positive
extensions ext+

E(x) = {e+
i | i ∈ I}, all pairwise incompatible.

Sequential esps are easily enriched with probabilities, in the
spirit of the game semantics of probabilistic Idealized Algol
of Danos and Harmer [15]. The basic idea is that for each x ∈
C(E), Player adjoins to his set of extensions ext+

E(x) a sub-
probability distribution on ext+

E(x). But rather than having a
sub-distribution for each probabilistic branching in an esp, it
is more convenient to carry a single valuation

v : C(E)→ [0, 1]

putting together all the local probabilistic choices: the valua-
tion assigned to x records all the Player probabilistic choices
performed in order to reach x. Because v only records Player’s
probabilistic choices, it is then natural to require that (1)
v(∅) = 1 and (2) v(x ∪ {e−}) = v(x) for any negative
extension e− of x. So as to enforce that local choices give sub-
probability distributions, we also have (3) for all x ∈ C(E),

v(x)−
∑

e∈ext+(x)

v(x ∪ {e}) ≥ 0

Furthermore, v is then entirely determined by the data of
v([e+]) for all positive e ∈ E, hence a probabilistic sequential
esp can be represented by annotating positive events with the
valuation of their prime configuration. Figure 2 displays the
esp to be later obtained as the interpretation of the term M+

(given in II-B2), with the probabilistic valuation written on the
left of events.

2) General probabilistic esps: For non-sequential esps the
axioms (1) and (2) still make sense, but finding the analogue
of (3) is trickier, as there may be overlap between all positive
extensions. This overlap leads to a redundancy in the valuation,
that has to be corrected following the inclusion-exclusion
principle. Following Winskel [30], we define:

Definition 4. A probabilistic esp consists of an esp
(E,≤E ,ConE , polE) and a valuation v : C(E) → [0, 1]
satisfying (1), (2) above, plus (3) if y ⊆+ x1, . . . , xn, then

dv[y;x1, . . . , xn] ≥ 0

where the drop dv is defined as

dv[y;x1, . . . , xn] = v(y)−
∑
I

(−1)|I|+1 v

(⋃
i∈I

xi

)
where I ranges over nonempty subsets of {1, . . . , n} such that⋃
i∈I xi is a configuration.

We pointed out in the beginning of Section II-C that the
deterministic term M can be interpreted by either esp in Figure
1 – likewise, the probabilistic term M+ can be interpreted
by the probabilistic esp of Figure 2, or by some probabilistic
version of the right hand side diagram of Figure 1. However,
unlike for sequential probabilistic esps, for general ones the
valuation cannot always be pushed to events and has to remain
on configurations. Therefore we have to adjoin to the diagram
on the right of Figure 1 the value of v for all configurations: in
the case of M+ a configuration has valuation 1

2 if it contains
the right occurrence of q

(+,Q)
1 , and 1 otherwise.

E. Games and strategies-as-esps

Until now, we have explained the formal nature of the
strategies interpreting terms as (probabilistic) esps, but we
have not said what games they play on. As usual in game
semantics, the games will be abstract representation of types.
and will describe the causal dependencies between computa-
tional events made available by a type.

1) Arenas and pre-strategies: The games (arenas) will
themselves be certain esps – a type A will be interpreted
by a arena JAK, listing all the computational events existing
in a call-by-name execution on this type and specifying the
causality and compatibility constraints on these events. The
arena will also remember the polarity of each event, and
whether it is a question or an answer.

Consider the ground types Bool and Nat. There are only
two events available between an execution environment and a
term of ground type: the environment starting the evaluation
of the term (Opponent question) and the evaluation finishing
(Player answer). Accordingly, the corresponding arenas are:

JBoolK =
q(−,Q)

tt(+,A) ff (+,A)

JNatK =
q(−,Q)

0(+,A) 1(+,A) ... n(+,A)...

Again, the diagrams are read from top to bottom – imme-
diate causality in arenas is represented by dashed lines rather

than arrows, to keep it easily distinguishable from causality
in strategies. Although the two notions have the same formal
nature, they play a different role in the development.

In a typing judgment such as Bool1 ` Bool2 there are
more computational events available: upon receiving the initial
question on Bool2, Player might (as in Figures 1 and 2)
interrogate Bool1, where polarity is reversed. In fact, in our
running examples Player interrogates Bool1 twice, showing
the need to create copies of Bool1. Accordingly, the sequent
Bool1 ` Bool2 will get interpreted by the arena:

JBool1 ` Bool2K =
q

0,(+,Q)
1

... q
n,(+,Q)
1

... q
(−,Q)
2

tt
(−,A)
1 ff

(−,A)
1 tt

(−,A)
1 ff

(−,A)
1 tt

(+,A)
2 ff

(+,A)
2

Note the new annotations qi,(+,Q) in copies of the initial
question of the argument. This copy index i is implicit in the
moves q

(+,Q)
1 in Figures 1 and 2. They will be introduced

formally via an exponential modality.
We now give the general definition of arenas.

Definition 5. An arena consists of a esp A, and a labelling
function λA : A→ {Q,A} such that:
A is a forest: if a1 ≤ a3 and a2 ≤ a3, a1 ≤ a2 or a2 ≤ a1.
A is alternating: if a1 _ a2 then pol(a1) 6= pol(a2).
Questions: if a1 is minimal or if a1 _ a2 then λA(a1) = Q.
Answering is affine: every x ∈ C(A) is affine, i.e. for every
a1 ∈ x with λA(a1) = Q, there is at most one a2 ∈ x such
that a1 _ a2 and λA(a2) = A.

An arena A (or esp in general) is negative if every minimal
event in A is negative.

2) Strategies: Now that we have our notion of games, we
can finish making formal the diagrams of Figures 1 and 2 and
define what is a (probabilistic) strategy on an arena.

As pointed out before, the diagrams of Figure 1 have to be
understood as representing esps labelled by the arena, here
JBool1 ` Bool2K. Modulo the (arbitrary) choice of copy
indices for occurrences of q

(+,Q)
1 , this labelling function is

implicit in the name of nodes of the diagram. However, not
all such labelled esps make sense as strategies. In order to have
a well-behaved notion of strategy, we will now give a number
of further constraints, best introduced in multiple stages.

First, we introduce pre-strategies.

Definition 6. A (probabilistic) pre-strategy on arena A is a
(probabilistic) esp S along with a labelling function

σ : S → A

such that (1) for all x ∈ C(S), the direct image σ x ∈ C(A)
is a configuration of the game, and (2) σ is locally injective:
for all s1, s2 ∈ x ∈ C(S), if σ s1 = σ s2 then s1 = s2.

Conditions (1) and (2) amount to the fact that the function
on events σ : S → A is also a map of event structures [28]
from S to A (ignoring here the further structure on S and A).

Although pre-strategies give a reasonable mathematical de-
scription of concurrent processes performed under the rules

of a game (or protocol) A, it is too general: in particular,
the current definition ignores polarity. Even in a sequential
world, we expect of a definition of strategy that e.g. Player
cannot constrain the behaviour of Opponent further than what
is specified by the rules of the game. For our strategies on
event structures, Rideau and Winskel [26] proved that we need
more in order to get a category. They define:

Definition 7. A pre-strategy σ : S → A is a strategy iff it is
receptive: for x ∈ C(S), if σx ⊆− y ∈ C(A), there is a unique
x ⊆ x′ ∈ C(S) s.t. σx′ = y; and courteous: for s, s′ ∈ S, if
s _S s

′ and if pol(s) = + or pol(s′) = −, then σs _A σs
′.

Thus a strategy can only pick the positive events it wants
to play, and for each of those, which Opponent moves need
to occur before. It was proved in [26] and further detailed in
[10] that strategies can be composed, and form a category (up
to isomorphism) whose structure we will revisit in the next
section, aiming for an interpretation of PPCF.

But for now we still have some definitions to give on
strategies. Indeed although at this point the causal structure
of strategies is well-behaved enough to fit in a compositional
setting, as per usual in game semantics strategies have to be
restricted further to ensure that they “behave like terms of
PPCF”. Typically, a set of further conditions on strategies is
deemed adequate when it induces a definability result, leading
to full abstraction. Here instead, our conditions will ensure
that there is a functorial collapse operation from games to the
already fully abstract probabilistic relational model.

Our further conditions are a subset of those of [12]. They
crucially rely on the following definition.

Definition 8. A grounded causal chain (gcc) on an esp S is
ρ = {ρ1, . . . , ρn} ⊆ S s.t. ρ1 ∈ min(S) (ρ1 is minimal), and

ρ1 _S ρ2 _S ρ3 _S . . . _S ρn

Note that some ρi may have dependencies that are not met
in ρ. We write gcc(S) for the set of gccs in S.

Grounded causal chains give a notion of thread in this
concurrent setting. The following definition ensures that each
thread can be regarded as a standalone sequential program:

Definition 9. A strategy σ : S → A is visible iff for all
ρ ∈ gcc(S), we have σ ρ ∈ C(A).

As arenas are forest-shaped, any non-minimal a ∈ A
has a unique predecessor just(a) _A a. Likewise, by local
injectivity of σ, for any s ∈ S whose image is non-minimal
there is a unique s′ ∈ S such that σ s′ _A σ s, which we also
refer to as just(s) = s′ its justifier.

With that in mind, the visibility of σ : S → A can be
equivalently stated by asking that for all ρ ∈ gcc(S), for each
ρi ∈ ρ, we have just(ρi) ∈ ρ as well. This is reminiscent of the
visibility condition in HO games, which states that the justifier
of a Player move always happens within the P-view [18]. In
our setting however, visibility means that a visible strategy
can be regarded as a bag of sequential threads, sometimes
forking with each other, sometimes merging, and sometimes

Bool1 ‖ Bool1′

q
(−,Q)
1 ��

q
(−,Q)
1′
��vv

tt
(+,A)
1 tt

(+,A)
1′

Fig. 3. A non-visible strategy on Bool1 ‖ Bool1′ .

conflicting. The strategy pictured in Figure 3 is non-visible,
since the gcc q1′ _ tt1 does not contain the justifier of tt1.

Each of these sequential threads needs to respect the call-
return discipline, in order to forbid strategies behaving like
e.g. call/cc [19]. In a set X ⊆ S, we say that an answer
sA2 ∈ X (which is shortcut for λA(σ s2) = A) answers a
question sQ1 ∈ X iff σ s1 _A σ s2 (i.e., just(s2) = s1). If a
gcc ρ ∈ gcc(S) has some unanswered questions, we say that
its pending question is the latest unanswered question, i.e.
the maximal unanswered question for ≤S .

We import from HO games [18]:

Definition 10. A visible strategy σ : S → A is well-bracketed
iff for all ρ = {ρ1 _S . . . _S ρ

A
n+1} ∈ gcc(S), ρn+1 answers

the pending question of {ρ1 _S . . . _S ρn}.

The games model of [12] had these notions of visibility
and well-bracketing, but also required a few others in order to
achieve intensional full abstraction: determinism, innocence,
and a further well-bracketing condition. Here we do not have
determinism for obvious reasons. It is perhaps more surprising
that we do not need either of innocence, the further well-
bracketing conditions, or to restrict at all the shape of conflict.
We would need them if we aimed for a definability result; but
this is avoidable here as intensional full abstraction will not
be proved via definability but instead via a collapse to PRel.

III. PROBABILISTIC THIN CONCURRENT GAMES

In the previous section we introduced strategies as static ob-
jects. However, in order to build a compositional interpretation
of PPCF we need a cartesian closed category of probabilistic
strategies. This means that we need to compose strategies,
but also to overcome the intrinsically linear nature of basic
concurrent strategies. So as to authorize multiple accesses to
resources, as pointed out before we will duplicate them by
adjoining copy indices – but as usual with copy indices [3]
we will then need to consider strategies up to symmetry, i.e.
quotient out the specific choice of copy indices.

Hence the main goal of this section is to marry the
probabilistic strategies of [30] presented before with the thin
concurrent games with symmetry developed in [12], [13] as
a foundation for a cartesian closed category of concurrent
games. We will then build on top of it a symmetric monoidal
closed category, with a linear exponential comonad [24].

A. Concurrent games with symmetry

1) Symmetry in event structures: We first review the basics
of event structures with symmetry [29], presented here as in
[12] via isomorphism families.

Definition 11. An isomorphism family on an event structure
E is a set Ẽ of bijections θ : x ∼= y, where x, y ∈ C(E), s.t.
(1) For all x ∈ C(E), idx : x ∼= x ∈ Ẽ.
(2) If θ : x ∼= y ∈ Ẽ then θ−1 : y ∼= x ∈ Ẽ.
(3) If θ : x ∼= y and η : y ∼= z ∈ Ẽ then η ◦ θ : x ∼= z ∈ Ẽ.
(4) If θ : x ∼= y ∈ Ẽ and x ⊆ x′ ∈ C(E), then there exists

y ⊆ y′ ∈ C(E) and θ′ : x′ ∼= y′ ∈ Ẽ such that θ ⊆ θ′.
(5) If θ : x ∼= y ∈ Ẽ and x′ ⊆ x ∈ C(E), then there exists

y′ ⊆ y ∈ C(E) and θ′ : x′ ∼= y′ ∈ Ẽ such that θ′ ⊆ θ.
An event structure with symmetry (ess) is a pair E =

(E, Ẽ) where Ẽ is an isomorphism family on E. If E addition-
ally has polarities, then the bijections in Ẽ are furthermore
required to preserve them; E is then an essp.

Conditions (1), (2) and (3) give Ẽ a groupoid structure,
while (4) and (5) ensure that symmetric configurations have
bisimilar future and isomorphic past. We regard bijections as
sets of pairs, justifying the notation θ ⊆ θ′ (or ⊆+ and ⊆− if
E has polarities). If E and F are ess, a map of es f : E → F
preserves symmetry if for every θ : x ∼=Ẽ y (shorthand for
θ : x ∼= y ∈ Ẽ), the bijection fθ = {(fe, fe′) | (e, e′) ∈ θ} is
in F̃ ; we write f : E → F .

Symmetry and probability can be combined:

Definition 12. A probabilistic essp is an essp (E, Ẽ) and a
valuation v on E such that v(x) = v(y) whenever θ : x ∼=Ẽ y.

In other words, symmetric configurations of a probabilistic
essp must have the same probability valuation.

2) Thin concurrent games: We use A,B,S, T , . . . to de-
note essps, keeping the underlying event structures (A,B, . . .)
and isomorphism families (Ã, B̃, . . .) implicit.

The construction on games introducing symmetry, and
which drives the notion of essps, is the exponential !A. It
is a symmetric, infinitary form of parallel composition:

Definition 13. Given a family (Ei)i∈I of event structures, we
define their simple parallel composition to have events:

‖i∈I Ei =
⋃
i∈I
{i} × Ei

with componentwise causal ordering. The consistent sets are
the finite sets of the form ‖i∈I0 Xi for I0 ⊆ I and Xi ∈ ConEi

for all i ∈ I0. Polarity, if present, is inherited componentwise.
Symmetry, if present, is given by ‖i∈I Ẽi, i.e. with bijections
θ :‖i∈I0 xi ∼=‖i∈I0 yi induced by a family (θi : xi ∼=Ẽi

yi)i∈I0
such that for all (i, e) ∈ ‖i∈I0 xi, θ((i, e)) = (i, θi ei).

We often write ‖i xi ∈ C(‖i Ei) for configurations of a
parallel composition, or x ‖ y ∈ C(A ‖ B) in the binary case.

Definition 14. Let A be a negative essp, i.e. A is negative.
Then, !A is defined as ‖i∈ω A, with isomorphism family
enriched to comprise the bijections θ : ‖i∈I xi ∼= ‖j∈J yj
such that there exists a permutation π : I ∼= J and a family
(θi ∈ Ã)i∈I , with θ((i, a)) = (π i, θi a) for all (i, a) ∈ ‖i∈Ixi.

This is very similar to the equivalence relation on the game
!A in AJM games [3], and was also considered in [11]. Note

that this ! operation is not the same as the one used in [12] and
which duplicates all moves of the game “in depth” rather than
just at the surface – in the spirit of HO games [18]. We prefer
here this “surface” version, which allows an easier connection
with the relational model as both cartesian closed categories
are then obtained as Kleisli categories.

Very soon, strategies will be considered up to the choice of
copy indices. But this is naively not preserved under compo-
sition – for it to be a congruence, strategies also have to be
uniform: the behaviour of a strategy should not depend on the
copy indices used by Opponent, although his choice of copy
indices will. Constructing a framework of concurrent games
where being “the same up to copy indices” is a congruence is
quite challenging, see e.g. [13] for a discussion. One solution,
used in [11], is to ask that all strategies are saturated, and
play non-deterministically all possible copy indices. Another,
introduced in [12] and detailed in [13], requires instead that
strategies pick copy indices deterministically (are thin, see
Definition 16). For thin strategies to behave well we also must
constrain the games, and separate Player permutations and
Opponent permutations, in a way that is very reminiscent of
Melliès’ notion of uniformity [21] by bi-invariance under the
action of two groups of Opponent and Player permutations.

Definition 15. A thin concurrent game (tcg) is A =
(A, Ã, Ã−, Ã+) where A is an esp, and Ã, Ã− and Ã+ are
isomorphism families on A included in Ã, such that:
(1) If θ ∈ Ã+ ∩ Ã− then θ = idx for some x ∈ C(A),
(2) If θ ∈ Ã− and θ ⊆− θ′ ∈ Ã then θ′ ∈ Ã−,
(3) If θ ∈ Ã+ and θ ⊆+ θ′ ∈ Ã then θ′ ∈ Ã+.

When A is a negative tcg, Opponent is responsible for the
first layer of symmetry in !A: the family !̃A− comprises all
θ : x ∼= y such that for all i ∈ ω, θi : xi ∼= yπ(i) ∈ Ã−. On
the other hand the family !̃A+ comprises all θ : x ∼= y such
that for all i ∈ I , π i = i and θi ∈ Ã+.

While the dual definition could also be given for positive
A, candidates of !̃A− and !̃A+ for A with minimal events of
mixed polarities inevitably fail some axioms of tcgs (and their
intended consequences) – building an exponential without any
assumption on polarity requires saturation [6], [11].

3) Probabilistic ∼-strategies: We now add probability to
the uniform strategies of [12], [13], called ∼-strategies.

Definition 16. A probabilistic ∼-strategy on a tcg A is a map
of essps σ : S → A (where A = (A, Ã), ignoring Ã+ and
Ã−) s.t. S is a probabilistic essp, σ : S → A a strategy, and:
(1) σ is strong-receptive: if θ ∈ S̃ and σθ ⊆− η ∈ Ã, then

there exists a unique θ ⊆ θ′ ∈ S̃ such that σθ′ = η.
(2) S is thin: for θ : x ∼=S̃ y s.t. x′ = x ∪ {s} ∈ C(S) with

pol(s) = +, there is a unique t ∈ S s.t. θ∪{(s, t)} ∈ S̃.

The remaining concepts of Section II-C extend in the pres-
ence of symmetry: a ∼-arena is a tcg A with a Q/A labelling
λ on A, such that (A, λ) is an arena and every bijection in Ã
preserves the action of λ. A ∼-strategy σ : S → A on a ∼-
arena A is visible (resp. well-bracketed) when the underlying
strategy S → A is visible (resp. well-bracketed).

We will first develop the categorical structure of∼-strategies
without Q/A labelling, visibility and well-bracketing, which
will only be reinstated in Section III-C when modelling PPCF.

B. A category

To define the morphisms of our category, we first give some
constructions on tcgs. The dual of a tcg A = (A, Ã, Ã−, Ã+)
is the tuple A⊥ = (A⊥, Ã, Ã+, Ã−) where A⊥ is the esp
whose events, causality and consistency are exactly those of
A, but polarity is reversed: polA⊥(a) = −polA(a). If A and
B are tcgs, then A ‖ B is a tcg with negative (resp. positive)
isomorphism family set to Ã− ‖ B̃− (resp. Ã+ ‖ B̃+).

A ∼-strategy from A to B is defined to be a ∼-strategy
on the tcg A⊥ ‖ B; we now investigate how to compose ∼-
strategies. As usual in game semantics composing strategies
involves two steps: interaction and hiding. We will first spell
them out without probabilities, and then add it back.

1) Interaction of ∼-strategies: Let A,B and C be tcgs, and
σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C be ∼-strategies. As
a first approximation, states of the interaction τ ~ σ should
correspond to so-called sychronised pairs:

{(xS , xT) | σ xS = xA ‖ xB & τ xT = xB ‖ xC}

According to this, the interaction of σ of Figure 3 with either
τl or τr from Figure 1 (regarded as strategies on (Bool1 ‖
Bool1′)⊥ ‖ Bool2) would have the same maximal state

({q1, q1′ , tt1, tt1′}, {q2, q1, q1′ , tt1, tt1′ , tt2})

However this seems inaccurate, because while σ wants to
play tt1 after q1′ , τl will only ask q1′ after σ plays tt1: there is
a causal loop. To get an ess whose configurations correspond
to causally reachable pairs of synchronised configurations, we
use the following pullback in the category of event structures
with symmetry, which we know exists from [12], [13]:

T ~ SΠ1xx
Π2&&

S ‖ C
σ‖C

%%
A ‖ T
A‖τ

yy
A ‖ B ‖ C

From either path of the pullback we get the interaction
τ ~σ : T ~S → A ‖ B ‖ C, a labelled ess, whose underlying
event structure is charaterised in e.g. [13]:

Lemma 17. Configurations of T ~ S are in one-to-one
correspondence with the synchronised pairs

{(xS , xT) | σ xS = xA ‖ xB & τ xT = xB ‖ xC}

that are causally reachable. Formally, the induced bijection

ϕ : xS ‖ xC ' xA ‖ xT

is secured, i.e. the relation on the graph of ϕ generated by
(s, t) /ϕ (s′, t′) if s ≤ s′ or t ≤ t′ is a partial order.

The maximal state in the interaction of σ and τl above is
({q1}, {q2, q1}). It cannot be extended further, as we have a

deadlock: both strategies are waiting for the other. Likewise,
the isomorphisms between (xS , xT) and (yS , yT) are found
to coincide with pairs (θS , θT) such that θS : xS ∼=S̃ yS ,
θT : xT ∼=T̃ yT , σ θS = θA ‖ θB and τ θT = θB ‖ θC .

This process of eliminating causal loops is the main dif-
ference between game semantics and relational semantics;
and the reason why typically mapping game semantics to
relational-like models is not functorial, as in e.g. [31]. Accord-
ingly our main result will rely on Lemma 24, which states that
the composition of visible strategies is always deadlock-free.

2) Composition of ∼-strategies: Following [12], [13], from
τ ~ σ : T ~ S → A ‖ B ‖ C, we set T � S to comprise the
events of T ~ S mapped to either A or C, with the data of
an event structure inherited. Thus, each x ∈ C(T � S) has a
unique witness [x]T~S ∈ C(T ~ S). Polarities in T � S are
set so that the restriction τ � σ : T � S → A⊥ ‖ C preserves
them. The isomorphism family T̃ � S is set to comprise the
bijections θ : x ∼= y (x, y ∈ C(T � S)) such that θ ⊆ θ′ for
θ′ : [x]T~S

∼=T̃~S [y]T~S . From this we get the composition
of σ and τ , a ∼-strategy τ � σ : T � S → A⊥ ‖ C [13].

3) Composition of probabilistic ∼-strategies: Assume now
that σ and τ are probabilistic ∼-strategies. First, we make the
interaction T ~ S probabilistic by setting, for x ∈ C(T ~ S)

vT~S(x) = vS(xS)× vT (xT)

where Π1 x = xS ‖ xC and Π2 x = xA ‖ xT . For x ∈
C(T � S), we set vT�S(x) = vT~S([x]T~S). From [30], we
know that this makes τ�σ a probabilistic strategy – it remains
to check that the valuation vT�S is invariant under symmetry,
which is immediate. We have defined

τ � σ : T � S → A⊥ ‖ C,

a probabilistic ∼-strategy from A to C.
4) The probabilistic copycat ∼-strategy: The identity strat-

egy on a tcg A is a map ccA : CCA → A⊥ ‖ A called
the copycat ∼-strategy. The event structure CCA has events,
consistent subsets and polarity those of A⊥ ‖ A, and causality
relation ≤CCA

defined as the transitive closure of

≤A⊥‖A ∪{((1, a), (2, a)) | polA⊥(1, a) = −}
∪ {((2, a), (1, a)) | polA(2, a) = −}.

Configurations of CCA are certain configurations x1 ‖ x2 ∈
C(A⊥ ‖ A). The isomorphism family CCA comprises all

θ = θ1 ‖ θ2 : x1 ‖ x2
∼= y1 ‖ y2

such that θ1, θ2 ∈ Ã and such that θ is an order-isomorphism.
Finally copycat is made probabilistic. In fact copycat is

deterministic [30], hence the constant function assigning prob-
ability 1 to every configuration is a valid valuation [30].
Under these definitions the map ccA : CCA → A⊥ ‖ A is
a probabilistic ∼-strategy.

5) Equivalences of strategies: It is often not sensible to
compare ∼-strategies up to strict equality; for instance the
associativity and identity laws for composition only hold up to
isomorphism of ∼-strategies. Let σ : S → A and τ : T → A
be probabilistic ∼-strategies on a tcg A. A strong morphism
from σ to τ is a map of essp f : S → T such that τ ◦ f = σ,
and such that for all x ∈ C(S), vS(x) ≤ vT (fx). The
probabilistic ∼-strategies σ and τ are strongly isomorphic
if there are morphisms f : S → T and g : T → S of
probabilistic ∼-strategies which are inverses as maps of essp.

Tcgs, ∼-strategies, and strong morphisms form a bicategory
[13], which extends to probabilistic ∼-strategies. But strong
isomorphisms do not exploit symmetry, and distinguish be-
tween strategies playing the same moves up to copy indices.
We aim for a weaker notion of isomorphism of ∼-strategy
which we will use to quotient our bicategory. We recall:

Definition 18. Two maps f, g : S → A of ess are symmetric,
written f ∼ g, if for all x ∈ C(S), the bijection θx : {(fs, gs) |
s ∈ x} is in Ã. If moreover A is a tcg, say f and g are
positively symmetric, written f ∼+ g, if θx ∈ Ã+ for all x.

A weak morphism of probabilistic ∼-strategies from σ :
S → A to τ : T → A is a map of ess f : S → T such that
τ ◦ f ∼+ σ, and such that for all x ∈ C(S), vS(x) ≤ vT (fx).
The induced notion of weak isomorphism yields a weaker
notion of equivalence between ∼-strategies which we use to
quotient our bicategory. A key result of [12], [13] is that weak
isomorphism is preserved under composition, which crucially
depends on the thinness axiom for ∼-strategies.

Hence there is a category PTCG with as objects the tcgs, and
as morphisms from A to B the probabilistic ∼-strategies on
A⊥ ‖ B, up to weak isomorphism. In fact, PTCG is compact
closed – but we skip this construction, and restrict its tcgs and
strategies to get a model of ILL.

C. A model of Intuitionistic Linear Logic and PPCF

We now build a subcategory PG of PTCG, adequate to
interpret PPCF and perform the collapse operation. Its objects
are negative ∼-arenas, and its morphisms from A to B are the
probabilistic ∼-strategies σ : S → A⊥ ‖ B (up to weak iso-
morphism), which are visible and well-bracketed (see Section
II-E2), but also negative (i.e. S is negative) and well-threaded
(for all s ∈ S, [s] has exactly one initial move). Negativity
is needed for the cartesian structure, and well-threadedness
for monoidal closure. From [30], [12], these are stable under
composition. We will sometimes write σ : A PG

+→ B for
σ : S → A⊥ ‖ B, keeping the S anonymous.

1) Monoidal structure: The tensor A⊗B is simply defined
as A ‖ B, with unit 1 the ∼-arena with no events. From
σ1 : S1 → A⊥1 ‖ B1 and σ2 : S2 → A⊥2 ‖ B2, form

σ1 ⊗ σ2 : S1 ‖ S2 → (A1 ⊗A2)⊥ ‖ (B1 ‖ B2)

as obvious from σ1 ‖ σ2; with the valuation vS1⊗S2
(x1 ‖

x2) = vS1(x1)×vS2(x2). Without probabilities, we know from
[12], [13] that this yields a symmetric monoidal structure; the
extension with probabilities offers no difficulty.

2) Cartesian structure: The empty ∼-arena 1 is a terminal
object. The cartesian product of ∼-arenas A and B, written
A & B, has events, causality, and polarity those of A ‖ B,
and consistent subsets those X = XA ‖ ∅ with XA ∈ ConA
or X = ∅ ‖ XB with XB ∈ ConB . The isomorphism family
Ã&B, and its negative and positive subfamilies are obtained
as restrictions of those of Ã ‖ B. We have two projections:

$A : CCA → (A& B)⊥ ‖ A $B : CCB → (A& B)⊥ ‖ B

where one component of the & is not reached – this is
compatible with receptivity since A,B are negative.

From σ : S → A⊥ ‖ B and τ : T → A⊥ ‖ C, their pairing

〈σ, τ〉 : S & T → A⊥ ‖ (B & C)

is obtained from σ and τ in the obvious way. The valuation
is vS&T (xS ‖ ∅) = vS(xS) and vS&T (∅ ‖ xT) = vT (xT).
The incompatibility between B and C is key in ensuring local
injectivity. Compatibility of pairing and projections, along with
surjective pairing, are easy verifications.

3) Closed structure: A difficulty here, is that because our
objects are negative ∼-arenas, A⊥ ‖ B usually lies outside
of PG. So, inspired by the usual arena construction in HO
game semantics, we shall deviate from A⊥ ‖ B by having A
depend on the set min(B) of minimal events of B. If there
are several of them, we will copy A accordingly. But unlike
HO games, our setting is sensitive to linearity – hence we will
use consistency to ensure that this copying remains linear.

Definition 19. Consider A, B two negative ∼-arenas. The
∼-arena has as events A (B = (‖b∈min(B) A

⊥) ‖ B and
polarity induced. The causal order is that above, enriched with
pairs ((2, b), (1, (b, a))) for each b ∈ min(B) and a ∈ A.

Notice that there is a function

χA,B : A(B → A⊥ ‖ B
(1, (b, a)) 7→ (1, a)

(2, b) 7→ (2, b)

collapsing all copies. We set ConA(B so as to make χA,B a
map of esps, i.e. (‖b∈min(XB) Xb) ‖ XB ∈ ConA(B iff XB ∈
ConB ,

⋃
b∈min(XB)Xb ∈ ConA, and this union is disjoint.

Finally, its isomorphism family comprises those order-
isomorphisms θ : x ∼= y such that χA,B θ ∈ Ã⊥ ‖ B. The
families Ã(B+ and Ã(B− are defined in the same way.

The fact that this indeed defines a closed structure with
respect to the tensor relies on the following proposition, which
informs directly the currying isomorphism.

Proposition 20. For any σ : S → A⊥ ⊗ B⊥ ‖ C, there exists
a unique σ′ : S → A⊥ ‖ B(C s.t. σ = (A⊥ ‖ χB,C) ◦ σ′.

The subtlety here is to determine, if σ maps s ∈ S to
B, which copy of B the event σ′s should be in. But this is
uniquely determined by well-threadedness: the unique minimal
s0 ∈ [s] maps to σs0 ∈ min(C), specifying a unique copy.

4) A linear exponential comonad: We already defined the
action of ! on negative tcgs in Definition 14, we now define
it on morphisms. From σ : S → A⊥ ‖ B, we define

!σ : !S → (!A)⊥ ‖ !B

as the obvious map (easily checked to satisfy the conditions
for a ∼-strategy), with probability valuation given by

v!S(‖i∈I xi) =
∏
i∈I

vS(xi)

yielding a probabilistic ∼-strategy !σ from !A to !B. This
construction yields a functor ! : PG→ PG.

By adjoining deterministic ∼-strategies corresponding to the
standard copycat strategies of AJM games, ! has a comonad
structure (!, δ, ε) satisfying the Seely axioms [24], turning PG
into a model of ILL. In the next subsection, we show how to
interpret PPCF into the Kleisli category PG!.

5) Interpretation of PPCF: The interpretation of ground
types as ∼-arenas was given in Section II-E1. It is extended
to all types by setting JA⇒ BK = !JAK (JBK. As a cartesian
closed category, PG! supports the interpretation of the simply-
typed λ-calculus [20]: as usual, a typed term Γ `M : B, with
Γ = x1 : A1, . . . , xn : An, is interpreted as a morphism:

JMK : !(
¯

1≤i≤n
JAiK)

PG
+→ JBK

For each ∼-arena A, there is a fixpoint combinator YA on
(!(!A(A))⊥ ‖ A allowing us to interpret Y . It is obtained
as a supremum of a chain of finite approximations, see [12],
[13] for details. It remains to interpret the primitives of PPCF.
From Γ ` M : Bool, Γ ` N1 : Bool, Γ ` N2 : Bool,
we define JifM N1 N2K via composition with a deterministic
∼-strategy if : JBoolK & JBoolK & JBoolK

PG!
+→ JBoolK.

There are in fact two possibilities for if. As in Figure 1, one
is sequential and compatible with the usual interpretation of if
in game semantics, while the other is the parallel strategy from
[12]. We omit the specific diagrams by lack of space, hoping
that they are easy to generalize from those of Figure 1. As both
∼-strategies will collapse to the same weighted relation, the
actual choice does not matter for the results to come. Finally
constants are interpreted as in the following examples:

JttK =

Bool

q(−,Q)

��
tt(+,A)

JcoinK =

Bool

q(−,Q)

{{ ##
1
2 tt(+,A) 1

2 ff (+,A)

where we use the notation introduced in Section II-D2 for
probabilities – no annotation means that the probability is one
for all configurations. From the collapse operation presented
in the next section, we will deduce that the interpretation just
defined is sound, adequate, and intensionally fully abstract.

IV. RELATIONAL COLLAPSE AND FULL ABSTRACTION

In this section we show how to project games and prob-
abilistic ∼-strategies to sets and weighted relations. We aim
for a functor PG! → PRel! preserving the interpretation of
PPCF, making the following diagram commute (up to iso):

PPCF
J KPG

xx
J KPRel

''
PG!

↓ () // PRel!

Our notation ↓ () emphasises that its purpose is to flatten
out strategies, that is, forget the causal dependencies and the
order in which events (e.g. argument calls) occurred.

A. Collapsing games and strategies

1) Mapping arenas to sets: The relational model does not
record function calls, but only the trace of the data returned
at the end of a successful execution. We first extract from
games the corresponding configurations: a configuration x of
a ∼-arena is complete if every question in x has an answer
in x.

Likewise, the relational model records the multiplicity of
calls, but not specific copy indices; to replicate that using the
information in games we need to consider configurations up to
symmetry. The isomorphism family Ã induces an equivalence
relation on configurations: we say that configurations x and y
are symmetric if there is a bijection θ : x ∼= y in Ã. In this
case, because θ must preserve the Q/A labelling, x is complete
iff y is complete. Therefore the following is well-defined:

Definition 21. Let A be a ∼-arena. Define ↓A to be the set
of nonempty, complete configurations of A, up to symmetry.

Consider for instance the ∼-arena JBoolKPG for booleans.
It has two nonempty and complete configurations, {q−, tt+}
and {q−, ff+}, and trivial symmetry, so the set ↓JBoolKPG

is isomorphic to the two-element set {tt, ff} = JBoolKPRel.
2) Mapping strategies to matrices: Let σ : S → A be a

(negative, well-threaded, visible, well-bracketed) probabilistic
∼-strategy. Our goal is to define a “vector” ↓σ ∈ R↓A+

indexed by the nonempty and complete symmetry classes of
configurations of A. We use bold letters x,y, . . . to denote
the symmetry classes of configurations x, y, . . . respectively.

Given x ∈ ↓A, to compute the coefficient (↓σ)x we
intuitively count the number of ways of playing x in S, and
sum up the probability coefficients for each of them. This is
formalised using the notion of witness:

Definition 22. Let σ : S → A be a ∼-strategy and x ∈ C(A).
A witness for x in σ is z ∈ C(S) such that σz = x.

This extends to symmetry classes: if z is a witness for x
we say that z is a witness for x. Then, because σ preserves
symmetry, each z′ ∈ z is a witness for some x′ ∈ x.

Not every complete configuration is relevant: for instance
the following ∼-strategy on the game B⇒ B, in which Player
calls its argument and returns independently:

B ⇒ B

q(−,Q)

uu ��
q(+,Q)

��
tt(+,A)

tt(−,A)

Such a behaviour is not definable in PPCF, but this strategy
nonetheless exists in our model and needs to be accounted
for. When “flattening out” this strategy we must take care
not to include ([tt], tt) as a possible execution – this would
cause functoriality to fail. In fact when defining ↓σ we do not
consider all configurations of S, but only the +-covered ones,
i.e. those whose maximal moves have positive polarity. In a
+-covered configuration, any argument supplied by Opponent
must be used (i.e. some Player action must depend on it). Since
the property of being +-covered is preserved by symmetry, it
extends to symmetry classes. We can finally define the action
of ↓() on strategies.

Definition 23. Let σ : S → A be a (negative, visible, well-
bracketed) probabilistic ∼-strategy and let x ∈ ↓A. Define
(↓σ)x =

∑
{vS(z) | z is a +-covered witness for x}, where

vS(z) is well-defined (vS is invariant under symmetry).

B. Functoriality

According to the above a morphism σ : A PG
+→ B collapses

to a vector ↓σ indexed by elements of ↓(A⊥ ‖ B). This is not
quite a an element of PRel(↓A, ↓B), which would instead
be indexed by elements of ↓A × ↓B, i.e. pairs of nonempty
configurations. For x ‖ y ∈ C(A⊥ ‖ B) to be nonempty it
is enough for only one of x, y to be nonempty. And indeed
it is possible for σ to output a value without inspecting its
argument: there may be witnesses to ∅ ‖ y in σ, so the
coefficient (↓σ)∅‖y may be non-zero. However because A,B
and σ are negative, there can be no witnesses for x ‖ ∅ in σ,
and the coefficient (↓σ)x‖∅ is always zero.

These observations are consequences of the fact that PG
is affine, whereas PRel is linear: a strategy can ignore its
argument – and so can a morphism in the Kleisli category
PRel!, but not in PRel. Therefore the target of our collapse
functor will not be PRel but an affine version of it introduced
below. Later, moving on to the cartesian closed category PG!,
we will recover the usual relational model PRel! of PPCF.

We will first describe the affine version of PRel and
its relationship with PRel!. After that, we will prove the
crucial property that visible ∼-strategies have a deadlock-free
interaction, eventually leading to functoriality of the collapse.

1) The affine relational model: We follow [24, §8.10]
and decompose the exponential modality ! of PRel into a
weakening modality !w and a duplication modality !c , each a
comonad on PRel. For any set X , !cX contains its nonempty
finite multisets: !cX =Mne

f (X), while !wX has the set X along
with the empty multiset: !wX = X + {[]}. We omit the details
of their structure, induced from those of ! (found e.g. in [17]).

The Kleisli category PRel !w is now a model of affine logic,
with structure defined in terms of the structure of PRel:
Products: the same as in PRel, X & Y = X + Y .
Monoidal structure: X ⊗w Y = X ⊗Y +X +Y , with unit ∅.
Closed structure: X (w Y = !wX (Y .
Exponential modality: the comonad !c lifted to PRel !w.

Lifting the comonad !c to PRel !w exploits a distributive law
!w !c → !c !w, and the Kleisli category (PRel !w)!c is isomorphic

to PRel!. With this in place, the collapse will be a functor:

↓ : PG→ PRel !w

preserving the structure required for the interpretation.

We can now define the action of ↓ on a strategy σ : APG
+→ B:

for x ∈ !w(↓A),y ∈ ↓B, we set (↓σ)[],y as (↓σ)∅‖y and
(↓σ)x,y as (↓σ)x‖y. We will now check that it is a functor,
leaving the preservation of further structure for later.

2) A functor: Consider τ : B PG
+→ C. To show the functori-

ality of ↓ we must relate ↓(τ � σ) to the Kleisli composition
↓ τ ◦ ↓σ. For x ∈ !w ↓A and z ∈ ↓C, the latter is given as:

(↓ τ ◦ ↓σ)x,z = δx,[](↓ τ)[],z +
∑
y∈↓B

(↓σ)x,y(↓ τ)y,z,

For ↓(τ � σ)x,z = (↓ τ ◦ ↓σ)x,z, we use a bijection between:

(1) +-covered witnesses w for x ‖ z in τ � σ, and
(2) Pairs (wS ,wT), where wS is a +-covered witness for

x ‖ y in σ, and wT for y ‖ z in τ , for some y ∈ !w ↓B,

satisfying vT�S(w) = vS(wS)×vT (wT). There are subtleties
in both directions, treated separately below. We ignore sym-
metry in the argument – all steps extend straightforwardly.

a) From (2) to (1): This direction is the most subtle, as
it bumps against the reason why traditionally operations from
dynamic to static semantics are just lax functorial. Indeed,
recall from Lemma 17 that configurations of the interaction
T~S correspond to synchronised pairs (wS , wT) for which the
induced bijection is secured. This is in contrast with (2), where
witnessed are synchronised with no securedness condition.

The following crucial lemma states that, actually, when
composing visible strategies, securedness is redundant.

Lemma 24. Let xS ∈ C(S) and xT ∈ C(T) such that σ xS =
xA ‖ xB and τ xT = xB ‖ xC . Then the induced bijection
xS ‖ xC ' xA ‖ xT is secured.

Proof. In Appendix A.

So, composing visible strategies is inherently relational,
from which the direction from (2) to (1) is direct.

b) From (1) to (2): This direction is easier: given a
witness w for x ‖ z in τ�σ, its down-closure [w] ∈ C(T ~S)
satisfies (τ ~ σ)[w] = x ‖ y ‖ z for some y ∈ C(B). It
may look like we are done: writing Π1[w] = wS ‖ z and
Π2[w] = x ‖ wT we obtain a pair (wS , wT) of +-covered
witnesses for x ‖ y and y ‖ z. But it remains to check that
y ∈ !w ↓B, i.e. that it is complete. Well-bracketing ensures this.

Lemma 25. If w ∈ C(T � S) is a witness for x ‖ z in the
composition of well-bracketed visible strategies σ and τ , where
x and z are complete, then the unique y ∈ C(B) such that
(τ ~ σ)[w] = x ‖ y ‖ z is also complete.

c) Summing up: That this is bijective follows from +-
coverdness; and the required equality is obtained by sum-
ming up on both sides following this bijection. The collapse
preserves identities: for any ∼-arena A, ↓ ccA is the Kleisli
identity !w(↓A)→ (↓A) (i.e. the counit for !w). Therefore,

Theorem 26. ↓ : PG→ PRel !w is a functor.

3) Preservation of structure: This functor is well-behaved:

Lemma 27. We have the natural isomorphisms in PRel !w:

↓(A& B) ∼= ↓A& ↓B, ↓(A ‖ B) ∼= ↓A ⊗w ↓B, ↓(!A) ∼= !c (↓A)

Moreover, if B has a unique initial move, then additionally
↓(A (B) ∼= ↓A (w ↓B. All associated structural
morphisms are also preserved by the collapse.

The collapse also preserves the interpretation of PPCF
ground types. Since all ∼-arenas for PPCF types have a unique
initial move, the interpretation of all types is preserved, so that
there is an iso θA : ↓JAKPG

∼= JAKPRel for any type A.

Because ↓ takes σ : !A PG
+→ B to ↓σ ∈ PRel !w(↓ !A, ↓B) ∼=

PRel(!w !c ↓A, ↓B) ∼= PRel(! ↓A, ↓B) we can lift it to
PG! → PRel!. The functor preserves the interpretation of
all PPCF primitives, so that:

Theorem 28. For any PPCF term Γ ` M : A, ↓JMKΓ
PG =

JMKΓ
PRel, up to the isomorphism θ induced by Lemma 27.

For instance, the probabilistic strategy for M+ from Figure 2
collapses to its relational interpretation, given in Section II-B2.

C. Full abstraction for PPCF

Finally, we import adequacy and intensional full abstraction
from PRel! to PG!. Let σ : S → B be a probabilistic
∼-strategy. Its probability of convergence Pr(σ → b) is∑
{vS(x) | x ∈ C(S) and ∃e ∈ x s.t. σe = b}, for any b.

Applying Theorem 28 we immediately get:

Theorem 29 (Adequacy). Let `M : Bool. Then, for b ∈ B,

Pr(M → b) = Pr(JMKPG → b)

In fact, PG! is intensionally fully abstract. We say that
σ : S → B and τ : T → B are observationally equivalent at
ground type, written σ ≡ τ , when Pr(σ → b) = Pr(τ → b)
for any b ∈ B. Observe that σ ≡ τ just in case ↓σ = ↓ τ . If
σ and τ are probabilistic ∼-strategies on an arbitrary ∼-arena
A, σ and τ are observationally equivalent, written σ u τ , if
α� Λ(σ) ≡ α� Λ(τ) for every ‘test’ morphism α : A +→ B.

From Theorems 28, 29, using standard reasoning, we get:

Theorem 30 (Intensional full abstraction). Let M and N be
PPCF terms such that Γ ` M : A and Γ ` N : A. Then
M 'ctx N if and only if JMKΓ

PG!
u JNKΓ

PG!
.

In particular, after quotienting the homsets in PG! by the
relation u, we get a fully abstract model.

REFERENCES

[1] Samson Abramsky. Game semantics for programming languages (ab-
stract). In MFCS’97, Bratislava, Slovakia, August 25-29, 1997.

[2] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract
game semantics for general references. In Proceedings, LICS’98,
Indianapolis, Indiana, USA, June 21-24, 1998, pages 334–344, 1998.

[3] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full
abstraction for PCF. Inf. Comput., 163(2):409–470, 2000.

[4] Samson Abramsky and Guy McCusker. Linearity, sharing and state: a
fully abstract game semantics for idealized algol with active expressions.
Electr. Notes Theor. Comput. Sci., 3:2–14, 1996.

[5] Samson Abramsky and Paul-André Melliès. Concurrent games and full
completeness. In LICS’99, Trento, Italy, July 2-5, 1999, pages 431–442.

[6] Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier.
Believe it or not, AJM games model is a model of classical linear logic.
In LICS ’97, Warsaw, Poland, June 29 - July 2, 1997, pages 68–75.

[7] Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier.
Timeless games. In Proceedings, CSL ’97, Aarhus, Denmark, August
23-29, 1997, Selected Papers, pages 56–77, 1997.

[8] G. Berry and Pierre-Louis Curien. Sequential algorithms on concrete
data structures. Theor. Comput. Sci., 20:265–321, 1982.

[9] Pierre Boudes. Thick subtrees, games and experiments. In TLCA 2009,
Brasilia, Brazil, July 1-3, 2009., pages 65–79, 2009.

[10] Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn
Winskel. Games and strategies as event structures. 2016. Submitted,
https://hal.inria.fr/hal-01302713.

[11] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Symmetry in
concurrent games. In CSL-LICS ’14, Vienna, 2014, pages 28:1–28:10.

[12] Simon Castellan, Pierre Clairambault, and Glynn Winskel. The parallel
intensionally fully abstract games model of PCF. In Proceedings, LICS
2015, Kyoto, Japan, July 6-10, 2015, pages 232–243, 2015.

[13] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Concurrent
hyland-ong games. 2016. https://arxiv.org/abs/1409.7542.

[14] Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces
as a model of higher-order probabilistic computation. Inf. Comput.,
209(6):966–991, 2011.

[15] Vincent Danos and Russell Harmer. Probabilistic game semantics. ACM
Trans. Comput. Log., 3(3):359–382, 2002.

[16] Thomas Ehrhard. The Scott model of linear logic is the extensional
collapse of its relational model. Theor. Comput. Sci., 424:20–45, 2012.

[17] Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic
coherence spaces are fully abstract for probabilistic PCF. In Proceed-
ings, POPL ’14, San Diego, USA, January 20-21, 2014, pages 309–320.

[18] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: i,
ii, and III. Inf. Comput., 163(2):285–408, 2000.

[19] James Laird. Full abstraction for functional languages with control. In
LICS’97, Warsaw, Poland, June 29 - July 2, 1997, pages 58–67, 1997.

[20] Joachim Lambek and Philip J Scott. Introduction to higher-order
categorical logic, volume 7. Cambridge University Press, 1988.

[21] Paul-André Mellies. Asynchronous games 1: A group-theoretic formu-
lation of uniformity. Manuscript, Available online, 2003.

[22] Paul-André Melliès. Asynchronous games 4: A fully complete model
of propositional linear logic. In Proceedings, LICS 2005, 26-29 June
2005, Chicago, IL, USA, pages 386–395, 2005.

[23] Paul-André Melliès. Asynchronous games 2: The true concurrency of
innocence. Theor. Comput. Sci., 358(2-3):200–228, 2006.

[24] Paul-André Melliès. Categorical semantics of linear logic. Panoramas
et syntheses, 27:15–215, 2009.

[25] Gordon D. Plotkin. LCF considered as a programming language. Theor.
Comput. Sci., 5(3):223–255, 1977.

[26] Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS ’11,
June 21-24, 2011, Toronto, Canada, pages 409–418, 2011.

[27] Takeshi Tsukada and C.-H. Luke Ong. Innocent strategies are sheaves
over plays - deterministic, non-deterministic and probabilistic innocence.
CoRR, abs/1409.2764, 2014.

[28] Glynn Winskel. Event structures. In Advances in Petri Nets, pages
325–392, 1986.

[29] Glynn Winskel. Event structures with symmetry. Electr. Notes Theor.
Comput. Sci., 172:611–652, 2007.

[30] Glynn Winskel. Distributed probabilistic and quantum strategies. Electr.
Notes Theor. Comput. Sci., 298:403–425, 2013.

[31] Glynn Winskel. Strategies as profunctors. In Proceedings, FOSSACS
’13, 16-24 March 2013, Rome, Italy, pages 418–433, 2013.

APPENDIX

In this section, we provide a detailed proof of the deadlock-
free lemma (Lemma 24). The key property of visible strategies
that we use to prove this result is the following lemma:

Lemma 31. Let σ : S → A be a visible strategy and let
s < s′ be events of S. Then the justifier of s′ is comparable
to s.

Proof. Since s < s′, there exists a gcc ρ of S such that s and
s′ occur in ρ. By visibility of σ, just(s′) occurs in ρ. Since ρ
is a total-order, just(s′) must be comparable to s.

We first prove the lemma for dual visible strategies, on
a game A with only negative minimal events. So consider
visible σ : S → A (necessarily negative), and τ : T → A⊥

(necessarily non-negative). We assume moreover that events
in S (resp. T) that map to minimal events of A are minimal.

In such a situation, we have:

Lemma 32. In a situation as above, for any x ∈ C(S), y ∈
C(T) such that σ x = τ y, the bijection ϕ : x ' σx = τy ' y,
induced by local injectivity, is secured.

Proof. Observe first that because σs = τ(ϕ(s)), it follows that
ϕ preserves justifier: ϕ(just(s)) = just(ϕs). We recall that ϕ
is secured when the relation (s, t) /ϕ (s′, t′) defined on graph
of ϕ as s <S s′ or t <T t′ is acyclic. Suppose it is not, and
consider a cycle ((s1, t1), . . . , (sn, tn)) with

(s1, t1) /ϕ (s2, t2) /ϕ . . . /ϕ (sn, tn) /ϕ (s1, t1)

Let us first give a measure on such cycles. The length of a
cycle as above is n. For a ∈ A, the depth depth(a) of a is
the length of the path to a minimal event of the arena – so the
depth of a minimal event is 0. Then, the depth of the cycle
above is the sum:

d =
∑

1≤i≤n

depth(σ si)

Cycles are well-ordered by the lexicographic ordering on
(n, d); let us now consider a cycle which is minimal for this
well-order. Note: in this proof, all arithmetic computations on
indices are done modulo n (the length of the cycle).

Since ≤S and ≤T are transitive we can assume that s2k ≤
s2k+1 and t2k+1 ≤ t2k+2 for all k. But then it follows by
minimality that polS(s2k) = − and polS(s2k+1) = + so that
the cycle is alternating. Indeed, assume

(s2k+1, t2k+1) /ϕ (s+
2k+2, t

−
2k+2) /ϕ (s2k+3, t2k+3)

with t2k+1 ≤T t2k+2 and s2k+2 ≤S s2k+3. The causal
dependency t2k+1 ≤T t−2k+2 decomposes into t2k+1 ≤T t _T

t−2k+2, with by courtesy τ t _A τ t2k+2. Note that as A is
alternating, this entails that polT (t) = +. There must be some
(s, t) ∈ ϕ, with polS(s) = −. But since σ s ≤A σ s2k+2, we
must have s ≤S s2k+2 as well, therefore we can replace the
cycle fragment above with

(s2k+1, t2k+1) /ϕ (s−, t+) /ϕ (s2k+3, t2k+3)

which has the same length but smaller depth, absurd. By the
dual reasoning, events with odd index must have polarity as
in (s+

2k+1, t
−
2k+1) as well.

Now, we remark that the cycle cannot contain events that
are minimal in the game. Indeed, by hypothesis a synchronised
event (s, t) such that σ s = τ t ∈ A is minimal in A is such
that s ∈ S and t ∈ T are minimal as well, so (s, t) is a root
for /ϕ and cannot be in a cycle. Therefore, all events in the
cycle have a predecessor in the game, i.e. a justifier.

Since s2k <S s2k+1, by Lemma 31, just(s2k+1) is compa-
rable with s2k in S. They have to be distinct, as otherwise
we would have σs2k _A σs2k+1 which in turn implies
t2k <T t2k+1. This gives t2k−1 <T t2k+2 hence (sk, tk) and
(sk+1, tk+1) can be removed without breaking the cycle, con-
tradicting its minimality. By a similar reasoning, just(t2k+2)
is comparable and distinct from t2k+1.

Assume that we have s2k < just(s2k+1) for some k. Since
just(s2k+1) < s2k+1 and just(t2k+1) < t2k+1 < t2k+2.
Therefore, we can replace the cycle fragment

(s2k, t2k) /ϕ (s2k+1, t2k+1) /ϕ (s2k+2, t2k+2)

with the cycle fragment

(s2k, t2k) /ϕ (just(s2k+1), just(t2k+1)) /ϕ (s2k+2, t2k+2)

which has the same length but smaller depth, absurd. So
we must have just(s2k+1) < s2k. Similarly, we must have
just(t2k+2) < t2k+1 for all k.

So we have that for all k, just(s2k+1) < s2k with
polS(s2k) = −. By courtesy and the fact that A is alternating,
this has to factor as

just(s2k+1) <S just(s2k)+ _S s
−
2k

By the dual reasoning, we have that just(t2k+2) <T
just(t2k+1) (note that just(s2k+1) 6= just(s2k) and
just(t2k+1) 6= just(t2k+2) as they have different polarities).

So we have proved that we always have just(s2k+1) <S
just(s2k) and just(t2k+2) <t just(t2k+1). That means that we
can replace the full cycle

(s1, t1) /ϕ (s2, t2) /ϕ . . . /ϕ (sn, tn) /ϕ (s1, t1)

with the cycle

(just(s1), just(t1)) /ϕ (just(sn), just(tn))/ϕ
(just(sn−1), just(tn−1)) /ϕ · · · /ϕ (just(s1), just(t1))

which has the same length but smaller depth, absurd.

The lemma above is the core of the proof. However, some
more bureaucratic reasoning is necessary to reduce Lemma
24, which does not talk of two dual visible strategies on one
arena of fixed polarity, to the one above.

Consider σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C which
are both visible, well-threaded negative strategies with A,B
and C negative arenas. We cannot use transparently the lemma
above, because the interaction of σ and τ involves the closed
interaction of σ ‖ C⊥ : S ‖ C⊥ → A⊥ ‖ B ‖ C⊥ and

A ‖ τ : A ‖ T → A ‖ B⊥ ‖ C, and the arena A ‖ B⊥ ‖ C is
not negative.

Instead, we will use that the same interaction can be
replayed in the arena with enriched causality (A(B) (C.
Remark that as in Definition 19, we have a map:

χA,B,C : ((A(B) (C)→ A ‖ B⊥ ‖ C

Using the fact that σ and τ are well-threaded, these ad-
ditional causal links in the games are compatible with the
interaction:

Lemma 33. Let xS ∈ C(S) and xT ∈ C(T) such that σ xS =
xA ‖ xB and τ xT = xB ‖ xC , and consider the induced
bijection (not yet known to be secured):

ϕ : xS ‖ xC ' xA ‖ xT

Then, there is w ∈ C((A (B) (C) such that
χA,B,C w = xA ‖ xB ‖ xC and the induced bijections:

xS ‖ xC ' w xA ‖ xT ' w

are secured.

Proof. By well-threadedness, each t ∈ xT mapping to B has
a unique minimal causal dependency mapping to C, informing
the copy of A (B, hence the event of (A (B) (C it
should be sent to. Likewise, each s ∈ xS has a unique minimal
causal dependency s′ ∈ S mapping to B, and there is some
synchronisation ((1, s′), (2, t′)) where t′ in turn has a unique
minimal causal dependency mapping to C – this informs the
event of (A(B) (C that s should be sent to.

Securedness is immediate from the observation that the only
immediate causal links added have the form c _ b or b _
a for a, b, c minimal respectively in A,B,C; in both cases
spanning a parallel composition in S ‖ C or A ‖ T .

We now need to modify σ ‖ C⊥ and A ‖ τ so that they
are dual playing on ((A (B) (C)⊥ and (A (B) (C
respectively. We do that via the following two pullbacks:

S′
χS //

σ′
��

S ‖ C⊥

σ‖C⊥
��

((A(B) (C)⊥
χA,B,C

// A⊥ ‖ B ‖ C⊥

T ′
χT //

τ ′
��

A ‖ T
A‖τ��

(A(B) (C
χA,B,C

// A ‖ B⊥ ‖ C

One can see σ′ : S′ → ((A (B) (C)⊥ and τ ′ : T ′ →
(A (B) (C simply as σ ‖ C⊥ and A ‖ τ , but with
the added causality as in (A (B) (C, so that the games
C,B,A are opened in that order. We have:

Lemma 34. So defined, σ and τ satisfy the conditions of
Lemma 32, i.e. they are visible and events mapping to minimal
events of (A(B) (C are minimal.

Proof. Immediate from standard arguments on the analysis of
immediate causality in a pullback, see e.g. [10].

We can finally wrap up:

Lemma 24. Let xS ∈ C(S) and xT ∈ C(T) such that σ xS =
xA ‖ xB and τ xT = xB ‖ xC . Then, the induced bijection

xS ‖ xC ' xA ‖ xT

is secured.

Proof. By Lemma 33, we get w ∈ C((A (B) (C), and
pairing w and xS ‖ xC (resp. w and xA ‖ xT), along with the
securedness property from Lemma 33, gives us xS′ ∈ C(S′)
(resp. xT ′ ∈ C(T ′) such that σ′ xS′ = τ ′ xT ′ . By Lemma 32,
the induced bijection

xS′ ' xT ′

is secured. But this entails that the composite bijection

xS ‖ xC
χS' xS′ ' xT ′

χT' xA ‖ xT

is secured as well, as the constraints are weaker.

	Introduction
	Semantics for Probabilistic Programs
	Probabilistic PCF
	The weighted relational model
	The relational model of PCF
	The weighted relational model

	Game semantics and event structures
	Event structures with probability
	Probabilistic sequential esps
	General probabilistic esps

	Games and strategies-as-esps
	Arenas and pre-strategies
	Strategies

	Probabilistic Thin Concurrent Games
	Concurrent games with symmetry
	Symmetry in event structures
	Thin concurrent games
	Probabilistic -strategies

	A category
	Interaction of -strategies
	Composition of -strategies
	Composition of probabilistic -strategies
	The probabilistic copycat -strategy
	Equivalences of strategies

	A model of Intuitionistic Linear Logic and PPCF
	Monoidal structure
	Cartesian structure
	Closed structure
	A linear exponential comonad
	Interpretation of PPCF

	Relational Collapse and Full Abstraction
	Collapsing games and strategies
	Mapping arenas to sets
	Mapping strategies to matrices

	Functoriality
	The affine relational model
	A functor
	Preservation of structure

	Full abstraction for PPCF

	References
	Appendix

