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Abstract. In a distributed game we imagine a team Player engaging
a team Opponent in a distributed fashion. No longer can we assume
that moves of Player and Opponent alternate. Rather the history of a
play more naturally takes the form of a partial order of dependency be-
tween occurrences of moves. How are we to define strategies within such
a game, and how are we to adjoin probability to such a broad class of
strategies? The answer yields a surprisingly rich language of probabilis-
tic distributed strategies and the possibility of programming (optimal)
probabilistic strategies. Along the way we shall encounter solutions to:
the need to mix probability and nondeterminism; the problem of parallel
causes in which members of the same team can race to make the same
move, and why this leads us to invent a new model for the semantics of
distributed systems.

1 Introduction

I am working on a theory of distributed games and strategies. The games are
distributed in the sense that they involve a team Player in competition with
a team Opponent in widely-spread, possibly varying locations. It is no longer
sensible to regard the history of the play as a sequence of alternating moves,
the case in traditional games. Rather at a reasonable level of abstraction it is
sensible to view a history as a partial order showing the dependency of moves on
earlier moves. Of course the terms Player and Opponent are open to a variety
of interpretations so the intended application areas are very broad.

My own original motivation comes from the wish to generalise domain theory
as a basis for denotational semantics. While domain theory provides a beautiful
paradigm for formalising and analysing computation it has been increasingly
falling short in the burgeoning world of distributed, nondeterministic and prob-
abilistic computation we live in today. In brief, with the wisdom of hindsight,
domain theory abstracted from operational concerns too early. So one aim is to
repair the “little divide” between operational and denotational semantics. There
is also some hope that the common vocabulary and techniques games provide
will help bridge the “big divide” in theoretical computer science between the
fields of semantics and algorithmics.

One could summarise the enterprise as redoing traditional of games and
strategies as a theory based on histories as partial orders of moves. However,
the move from sequences to partial orders brings in its wake a lot of technical
difficulty and potential for undue complexity unless it’s done artfully. Here we
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have been in a good position to take advantage techniques from the early 1980’s
on a mathematical foundation for work of Hoare and Milner on synchronising
processes in categories of models for concurrency [1] and in particular the model
and techniques of event structures—an analogue of trees where branches have
the form of partial orders [2, 3]. The work on distributed strategies described
here could have been done then.

One surprise has been how adeptly distributed strategies fit with probability,
at least once a general enough definition of probabilistic event structures was
discovered and characterised. It was certainly an advantage to have started with
nondeterministic strategies [4]. But as we shall see in the move from nondeter-
ministic to probabilistic strategies new phenomena and an unexpected limitation
appear.

It has become clear recently that there is a built-in limitation in basing
strategies on traditional event structures. Sometimes a distributed strategy can
rely on certain “benign races” where, intuitively, several members of team Player
may race each other to make a common move. If we are to support benign races
in strategies there is a need to work with mathematical structures which support
parallel causes—in which an event can be enabled in several compatible ways.
This extension seems not to be needed for nondeterministic strategies. It was
only revealed in the extension to probabilistic strategies when it was realised
that certain intuitively natural probabilistic strategies could not be expressed,
with the event structures we were working with. Why, will be explained later.

Though event structures allowing parallel causes have been studied existing
structures do not support an operation of hiding central to the composition of
strategies. So to some extent we have had go back to the drawing board and
invent appropriate structures to support parallel causes and simultaneously a
hiding operation. We now know ways to do this. Fortunately the new structures
are not so removed from traditional event structures. They involve the objecti-
fication of cause, so that one can express e.g. that one cause is in parallel with
another or in conflict with another, and assign probabilities to causes—see the
final section which sketches recent work with Marc de Visme.

2 Event structures [3]

The behaviour of distributed games is based on event structures, rather than
trees. Instead of regarding a play in a game as a sequence of Player and Opponent
moves it is given the structure of a partial order of occurrences of moves.

Event structures describe a process, or system, in terms of its possible event
occurrences, their causal dependency and consistency. Just as it can be helpful to
understand the behaviour of a state-transition diagram in terms of its unfolding
to a tree, more detailed models, such as Petri nets, which make explicit the local
nature of events and their changes on state, unfold to an event structure [5]. In
this sense event structures are a concurrent, or distributed, analogue of trees;
though in an event structure the individual ‘branches’ are no longer necessarily
sequences but have the shape of a partial order of events.
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An event structure comprises (E,≤,Con), consisting of a set E of events
(really event occurrences) which are partially ordered by ≤, the causal dependency
relation, and a nonempty consistency relation Con consisting of finite subsets of
E. The relation e′ ≤ e expresses that event e causally depends on the previous
occurrence of event e′. That a finite subset of events is consistent conveys that its
events can occur together by some stage in the evolution of the process. Together
the relations satisfy several axioms:

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con implies Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X implies X ∪ {e} ∈ Con.

The first axiom says that an event causally depends on only a finite number of
events, the second that there are no redundant events, which are in themselves
inconsistent. The third axiom expresses the reasonable property that a subset
of consistent events is consistent, while the final axiom entails that the ≤-down-
closure of any consistent set of events is also consistent. Two events e, e′ are
considered to be concurrent if the set {e, e′} is in Con and neither event is
causally dependent on the other.

It is sometimes convenient to draw event structures. For example,

◯ ◯

◯
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◯

�ZZd _LLR

◯

illustrates an event structure consisting of five events where, in particular, the top
event on the left causally depends on the previous occurrences of two concurrent
events—the arrows express the causal dependency—one of which is inconsistent
with the event on the far right—we have indicated the inconsistency between
the two events by a wiggly line.

Given this understanding of an event structure, there is an accompanying
notion of state, or history, those events that may occur up to some stage in the
behaviour of the process described. A configuration is a, possibly infinite, set of
events x ⊆ E which is both consistent and down-closed w.r.t. causal dependency:

Consistent: X ⊆ x and X is finite implies X ∈ Con , and
Down-closed: e′ ≤ e ∈ x implies e′ ∈ x.

An individual configuration inherits a partial order from the ambient event struc-
ture, and represents one possible partial-order history.

It will be very useful to relate event structures by maps. A map of event
structures f ∶ E → E′ is a partial function f from E to E′ such that the image of
a configuration x is a configuration fx and any event of fx arises as the image
of a unique event of x. In particular, when f is a total function it restricts to a
bijection x ≅ fx between any configuration x and its image fx.
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A map f ∶ E → E′ preserves concurrency: if two events in E are concurrent,
then their images if defined are also concurrent. The map also reflects causal
dependency locally, in the sense that if e, e′ are events in a configuration x of E
for which f(e′) ≤ f(e) in E′, then e′ ≤ e also in E; the event structure E inherits
causal dependencies from the event structure E′ via the map f . In general a
map of event structures need not preserve causal dependency; when it does we
say it is rigid.

In describing distributed games and strategies we shall rely on two proper-
ties of maps. Firstly, any map of event structures f ∶ E → E′ factors into the
composition of a partial map of event structures followed by a total map of event
structures

E
pÐ→E0

tÐ→E′

in such a way that for any other factorisation E
p1Ð→E1

t1Ð→E′ with p1 partial and
t1 total, there is a unique (necessarily total) map h ∶ E0 → E1 such that

E1
t1

""
E

p1 <<

p // E0

h
OO

t // E′

commutes. The event structure E0 is obtained as the “projection,” or restriction,
of the relations of causal dependency and consistency of the event structure E
to the events on which f is defined. We call the total map t the defined part of
f .

Secondly we shall use pullbacks of total maps. Pullbacks are an important
construction in representing a process built from two processes sharing a common
interface. Maps f ∶ A → C and g ∶ B → C always have pullbacks in the category
of event structures, but they are more simple to describe in the case where f
and g are total, and this is all we shall need:

A
f
  

P

π1 >>

π2
  

C

B
g

>>

Roughly, configurations of the pullback P are matches between configurations
of A and B which satisfy the causal constraints of both. Precisely, finite config-
urations of P correspond to composite bijections

θ ∶ x ≅ fx = gy ≅ y

between finite configurations x of A and y of B such that fx = gy, for which the
transitive relation generated on θ by (a, b) ≤ (a′, b′) if a ≤A a′ or b ≤B b′ has no
non-trivial causal loops, and so forms a partial order.
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3 Distributed games and strategies—the definitions [4]

Often the behaviour of a game is represented by a tree in which the arcs corre-
spond to occurrences of moves by Player or Opponent. Instead we can represent
the behaviour of a distributed game more accurately by an event structure to-
gether with a polarity function from its events to + or − to signify whether they
are move occurrences of Player or Opponent, respectively.

A game might generally have winning conditions, a subset of configurations
at which Player is deemed to have won, or more generally a payoff function from
configurations to the reals.

There are two fundamentally important operations on two-party games. One
is that of forming the dual game in which the moves of Player and Opponent
are reversed. On an event structure with polarity A this amounts to reversing
the polarities of events to produce the dual A⊥. By a strategy in a game we will
mean a strategy for Player. A strategy for Opponent, or a counter-strategy, in a
game A will be identified with a strategy in A⊥. The other operation is a simple
parallel composition of games, achieved on event structures with polarity A and
B very directly by simply juxtaposing them, ensuring a finite subset of events is
consistent if its overlaps with the two games are individually consistent, to form
A∥B.

As an example of a strategy in a game consider the copy-cat strategy for
a game A. This is a strategy in the game A⊥∥A which, following the spirit
of a copy-cat, has Player moves copy the corresponding Opponent moves in the
other component. In more detail, the copy-cat strategy CCA is obtained by adding
extra causal dependencies to A⊥∥A so that any Player move in either component
causally depends on its copy, an Opponent move, in the other component. It can
be checked that this generates a partial order of causal dependency. A finite set is
taken to be consistent if its down-closure w.r.t. the order generated is consistent
in A⊥∥A. We illustrate the construction on the simple game comprising a Player
move causally dependent on a single Opponent move:

⊖ � ,,2⊕

A⊥ CCA A

⊕

_LLR

⊖

_LLR

�llr

In characterising the configurations of the copy-cat strategy an important
partial order on configurations is revealed. Clearly configurations of a game A
are ordered by inclusion ⊆. For configurations x and y, write x ⊆− y and x ⊆+ y
when all the additional events of the inclusion are purely Opponent, respectively,
Player moves. A configuration x of CCA is also a configuration of A⊥∥A and as
such splits into two configurations x1 on the left and x2 on the right. The extra
causal constraints of copy-cat ensure that the configurations of CCA are precisely
those configurations of A⊥∥A for which it holds that

x2 ⊑A x1 , defined as x2 ⊇− y ⊆+ x1 ,
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for some configuration y (necessarily x1∩x2). The relation ⊑A is in fact a partial
order on configurations. Increasing in the order ⊑A involves losing Opponent
moves and gaining Player moves. Because it generalises the pointwise order of
domain theory, initiated by Dana Scott, we call the order ⊑A the Scott order.

Strategies in a game are not always obtained by simply adding extra causal
dependencies to the game. For example, consider the game comprising two Oppo-
nent moves in parallel with a Player move and the strategy (for Player) in which
Player make their move if Opponent makes one of theirs. Here the strategy is
represented by

⊕ ⊕

⊖

_LLR

⊖ .

_LLR

We are forced to split the Player move of the game into two moves, each depen-
dent on different Opponent moves, and mutually inconsistent indicated by the
wiggly line. For reasons such as this we are led to separate the actual moves of
the strategy into an event structure with polarity S and, in order to track how
actual moves correspond to moves in the game, formalise a strategy in a game
A as a total map of event structures

σ ∶ S → A

which preserves polarity. (We have met a very special case of this in the copy-cat
strategy where the role of S is taken by CCA and σ acts as the identity function
on events.) The event structure S describes the possibly nondeterministic plays
of the strategy. Automatically a state of play of the strategy, represented by a
configuration x of S, determines a position of the game, a configuration σx of
A. Directly from the fact that σ is a map, we know that any move in σx is due
to the play of a unique move in x. The total map σ ∶ S → A really just expresses
that S represents a nondeterministic play in the game A. More is expected of a
strategy. For example, consider the game consisting of a Player move concurrent
with a move of Opponent and the two total maps indicated:

(i) S
σ ��

⊖ � ,,2
_

��

⊕_
��

A ⊖ ⊕

(ii) S
σ ��

⊕ � ,,2
_

��

⊖_
��

A ⊕ ⊖
The first map (i) seems reasonable as a strategy; Player awaits the move of
Opponent and then makes a move. However, the second map (ii) seems dubious;
Player forces Opponent to wait until they have made their move, inappropriate
in a distributed strategy.

Instead of guessing, we seek a principled way to determine what further prop-
erties a strategy should satisfy. In fact, the further conditions we shall impose
on strategies will be precisely those needed to ensure that the copy-cat strategy
behaves as an identity w.r.t. the composition of strategies.1 To do so we adapt

1 We consider two strategies σ ∶ S → A and σ′ ∶ S′ → A to be essentially the same if
there is an isomorphism f ∶ S ≅ S′ of event structures respecting polarity such that
σ = σ′f .
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an important idea of Conway followed up by Joyal, explaining how to extend
the notion of strategy in a game to that of a strategy between games [6, 7]. The
operations of dual and simple parallel composition of games are the key.

A strategy from a game A to a game B is a strategy in the compound game
A⊥∥B. In particular, copy-cat of a game A is now seen as a strategy from A to
A.

In composing two strategies one σ in A⊥∥B and another τ in B⊥∥C one firstly
instantiates the Opponent moves in component B by Player moves in B⊥ and
vice versa, and then secondly hides the resulting internal moves over B. The
first step is achieved efficiently via pullback. Temporarily ignoring polarities, the
pullback

A ∥ T
A∥τ

''
T ⊛ S

π2 88

π1 &&

A ∥ B ∥ C

S ∥ C
σ∥C

77

“synchronises” matching moves of S and T over the game B. But we require a
strategy over the game A⊥∥C and the pullback T ⊛ S has internal moves over
the game B. We achieve this via the projection of T ⊛ S to its moves over A
and C. We make use of the partial map from A∥B∥C to A∥C which acts as the
identity function on A and C and is undefined on B. The composite partial map

A ∥ T
A∥τ

''
T ⊛ S

π2 88

π1 &&

A ∥ B ∥ C // A ∥ C

S ∥ C
σ∥C

77

has defined part, yielding the composition

τ⊙σ ∶ T⊙S → A⊥∥C

once we reinstate polarities. The composition of strategies τ⊙σ is a form of
synchronised composition of processes followed by the hiding of internal moves, a
view promulgated by Abramsky within traditional game semantics of programs.

Two further conditions, receptivity and innocence, are demanded of strate-
gies. The conditions are necessary and sufficient to ensure that copy-cat strate-
gies behave as identities w.r.t. composition [4]. Receptivity expresses that any
Opponent move allowed from a reachable position of the game is present as a
move in the strategy. In more detail, σ ∶ S → A is receptive when for any con-
figurations x of S if σx extends purely by Opponent events to a configuration y
then there is a unique extension of x to a configuration x′ of S such that σx′ = y.
Innocence says a strategy can only adjoin new causal dependencies of the form
⊖ _ ⊕, where Player awaits moves of Opponent, beyond those already inherited
from the game.
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The literature is often concerned with deterministic strategies, in which
Player has at most one consistent response to Opponent. We can broaden the
concept of deterministic strategy to distributed strategies by taking such a strat-
egy to be deterministic if consistent moves of Opponent entail consistent moves
of Player—see [4, 8]. Formally, we say an event structure with polarity is deter-
ministic if any finite down-closed subset is consistent when its Opponent events
form a consistent subset. In general the copy-cat strategy for a game need not
be deterministic. Copy-cat is however deterministic precisely for games which
are race-free, i.e. such that at any configuration, if both a move of Player and
a move of Opponent are possible then they may occur together: if whenever x,
x∪ {⊕} and x∪ {⊖} are configurations of A, where the events ⊕ and ⊖ have the
opposing polarities indicated, then x ∪ {⊕,⊖} is a configuration. Deterministic
distributed strategies coincide with the receptive ingenuous strategies of Melliès
and Mimram [9].

Just as strategies generalise relations, deterministic strategies generalise func-
tions. In fact, multirelations and functions are recovered as strategies, respec-
tively deterministic strategies, in the special case where the games are composed
solely of Player moves with trivial causal dependency and where only the empty
set and singletons are consistent.

As would be hoped the concepts of strategy and deterministic strategy es-
poused here reduce to the expected traditional notions on traditional games.
There have also been pleasant surprises. In the extreme case where games com-
prise purely Player moves, strategies correspond precisely to the ‘stable spans’
used in giving semantics to nondeterministic dataflow [10], and in the determin-
istic subcase one recovers exactly the stable domain theory of Gérard Berry [11].

We now turn to how a strategy might be made probabilistic. We first address
an appropriately general way to adjoin probability to event structures.

4 Probabilistic event structures [12]

The extension of distributed strategies to probabilistic strategies required a new
general definition of probabilistic event structure. A probabilistic event structure
essentially comprises an event structure together with a continuous valuation on
the Scott-open sets of its domain of configurations.2 The continuous valuation
assigns a probability to each open set and can then be extended to a probability
measure on the Borel sets [13]. However open sets are several levels removed from
the events of an event structure, and an equivalent but more workable definition
is obtained by considering the probabilities of basic open sets, generated by single

2 A Scott-open subset of configurations is upwards-closed w.r.t. inclusion and such that
if it contains the union of a directed subset S of configurations then it contains an
element of S. A continuous valuation is a function w from the Scott-open subsets of
C∞(E) to [0,1] which is (normalized) w(C∞(E)) = 1; (strict) w(∅) = 0; (monotone)
U ⊆ V Ô⇒ w(U) ≤ w(V ); (modular) w(U ∪ V ) + w(U ∩ V ) = w(U) + w(V ); and
(continuous) w(⋃i∈I Ui) = supi∈Iw(Ui), for directed unions. The idea: w(U) is the
probability of a result in open set U .
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finite configurations; for each finite configuration this specifies the probability of
obtaining a result which extends the finite configuration. Such valuations on con-
figurations determine the continuous valuations from which they arise, and can
be characterised through the device of “drop functions” which measure the drop
in probability across certain generalised intervals. The characterisation yields a
workable general definition of probabilistic event structure as event structures
with configuration valuations, viz. functions from finite configurations to the unit
interval for which the drop functions are always nonnegative.

In detail, a probabilistic event structure comprises an event structure E with
a configuration valuation, a function v from the finite configurations of E to the
unit interval which is

(normalized) v(∅) = 1 and has
(non−ve drop) dv[y;x1,⋯, xn] ≥ 0 when y ⊆ x1,⋯, xn for finite configurations
y, x1,⋯, xn of E,

where the “drop” across the generalized interval starting at y and ending at one
of the x1,⋯, xn is given by

dv[y;x1,⋯, xn] =def v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi)

—the index I ranges over nonempty I ⊆ {1,⋯, n} such that the union ⋃i∈I xi is
a configuration. The “drop” dv[y;x1,⋯, xn] gives the probability of the result
being a configuration which includes the configuration y and does not include
any of the configurations x1,⋯, xn.3

5 Probabilistic strategies [15]

The above has prepared the ground for a general definition of distributed prob-
abilistic strategies, based on event structures. One hurdle is that in a strategy
it is impossible to know the probabilities assigned by Opponent. We need to
address the problem—notorious in domain theory—of how to mix probability
(which Player attributes to their moves) and nondeterminism (ensuing from
Player’s ignorance of the probabilities assigned to Opponent moves). A proba-
bilistic strategy in a game A, presented as a race-free event structure with polar-
ity, is a strategy σ ∶ S → A in which we endow S with probability, while taking
account of the fact that in a strategy Player can’t be aware of the probabilities
assigned by Opponent. We do this by extending the notion of configuration val-
uation so that: causal independence between Player and Opponent moves entails
their probabilistic independence, or equivalently, so probabilistic dependence of

3 Samy Abbes has pointed out that the same “drop condition” appears in early work
of the Russian mathematician V.A.Rohlin [14](as relation (6) of Section 3, p.7).
Its rediscovery in the context of event structures was motivated by the need to tie
probability to the occurrences of events; it is sufficient to check the ‘drop condition’
for y−Ð⊂x1,⋯, xn, in which the configurations xi extend y with a single event.
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Player on Opponent moves will presuppose their causal dependence (the effect
of the condition of “±-independence” below); the “drop condition” only applies
to moves of Player. Precisely, a configuration valuation is now a function v, from
finite configurations of S to the unit interval, which is

(normalized) v(∅) = 1, has

(±-independence) v(x) = v(y) when x ⊆− y for finite configurations x, y of S,
and satisfies the

(+ve drop condition) dv[y;x1,⋯, xn] ≥ 0 when y ⊆+ x1,⋯, xn for finite con-
figurations of S.

One can think of the value v(x), where x is a finite configurations of S, as the
probability of obtaining a result which extends x conditional on the Opponent
moves in x.

We return to the point that “±-independence” expresses that causal inde-
pendence between Player and Opponent moves entails their probabilistic inde-
pendence. Consider two moves, ⊕ of Player and ⊖ of Opponent able to occur
independently, i.e. concurrently, at some finite configuration x, taking it to the
configuration x∪{⊕,⊖}. There are intermediate configurations x∪{⊕} and x∪{⊖}
associated with just one additional move. The condition of “±-independence” en-
sures v(x ∪ {⊕,⊖}) = v(x ∪ {⊕}), i.e. the probability of ⊕ with ⊖ is the same
as the probability of ⊕ at configuration x. At x the probability of the Player
move conditional on the Opponent move equals the probability of the Player
move—the moves are probabilistically independent.

5.1 A bicategory of probabilistic strategies

Probabilistic strategies compose. Assume probabilistic strategies σ ∶ S → A⊥∥B
with configuration valuation vS and τ ∶ T → B⊥∥C with configuration valuation
vT . Recall how the composition τ⊙σ is obtained via pullback, to synchronise the
strategies over common moves, followed by projection, to hide the synchronisa-
tions.

Given z a finite configuration of the pullback T ⊛ S its image π1z under
the projection π1 is a finite configuration of S∥C; taking its left component we
obtain (π1z)1, a finite configuration of S. Similarly, taking the right component
of the image π2z we obtain a finite configuration (π2z)2 of T . It can be shown
that defining v(z) = vS((π1z)1)×vT ((π2z)2) for z a finite configuration of T ⊛S
satisfies the conditions of a configuration valuation (with the proviso that we
treat synchronisation and Player events alike in the drop condition). In the
proof ‘drop functions’ come into their own. A finite configuration x of T⊙S,
after hiding, is a subset of T ⊛ S so we can form its down-closure there to
obtain [x], a finite configuration of T ⊛ S. The assignment of value v([x]) to x
a finite configuration of T⊙S yields a configuration valuation to associate with
the composition τ⊙σ.
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Above, notice in the special case where σ ∶ S → B and τ ∶ T → B⊥, i.e. of a
strategy and a counter-strategy in the game B, that the resulting probabilistic
play is captured by T ⊛ S, which is now a probabilistic event structure.4

Because we restrict to race-free games, copy-cat strategies are deterministic
ensuring that the assignment of one to each finite configuration of copy-cat is a
configuration valuation; this provides us with identities w.r.t. composition.

We don’t have a category however, as the laws for categories are only true
up to isomorphism. Technically we have a bicategory of games and probabilistic
strategies in which the objects are race-free games and the arrows are probabilis-
tic strategies. The 2-cells, the maps between strategies, require some explana-
tion.5 Without the presence of probability it is sensible to take a 2-cell between
two strategies σ ∶ S → A⊥∥B and σ′ ∶ S′ → A⊥∥B to be a map f ∶ S → S′ making

S

σ ""

f // S′

σ′

��
A⊥∥B

commute. However, in the situation where the strategies are probabilistic, when
σ is accompanied by a configuration valuation v and σ′ by configuration valua-
tion v′, we need a further constraint to relate probabilities. Normally probability
distributions can be “pushed forward” across measurable functions. But config-
uration valuations don’t correspond to probability distributions in the presence
of Opponent moves and in general we can’t push forward the configuration val-
uation v of S to a configuration valuation fv of S′. We can however do so when
f is rigid: then defining

(fv)(y) =def ∑{v(x) ∣ fx = y} ,

for y ∈ C(S′), yields a configuration valuation fv of S′ —the push-forward of v.
So finally we constrain 2-cells between probabilistic strategies, from σ with v to
σ′ with v′, to those rigid maps f for which σ = σ′f and the push-forward fv is
pointwise less than or equal to v′.

The vertical composition of 2-cells is the usual composition of maps. Hori-
zontal composition is given by the composition of strategies ⊙ (which extends
to a functor on 2-cells via the universal properties of pullback and factorisation
used in its definition).

2-cells include rigid embeddings preserving the value assigned by configura-
tion valuations.6 Amongst these are those 2-cells in which the rigid embedding is
an inclusion—providing a very useful order for defining probabilistic strategies

4 The use of “schedulers to resolve the probability or nondeterminism” in earlier work
is subsumed by that of probabilistic and deterministic counter-strategies. Determin-
istic strategies coincide with those with assignment one to each finite configuration.

5 Their treatment in [15] is slapdash.
6 One way to define a rigid embedding is as a rigid map whose function is injective

and reflects consistency.
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recursively. Let σ ∶ S → A⊥∥B with configuration valuation v and σ′ ∶ S′ → A⊥∥B
with v′ be two probabilistic strategies. Define σ ⊴ σ′ when S ⊆ S′ and the asso-
ciated inclusion map is a rigid embedding and a 2-cell for which v(x) = v′(x) for
all finite configurations of S. This enables us to exploit old techniques to define
strategies recursively: the substructure order on event structures, of which we
have an example, forms a “large complete partial order” on which continuous
operations possess least fixed points—see [2, 3].

5.2 Extensions: payoff and imperfect information

We can add payoff to a game as a function from its configurations to the real
numbers [16, 15]. For such quantitative games, determinacy is expressed in terms
of the game possessing a value, a form of minimax property. The interest is now
focussed on optimal strategies which achieve the value of the game. In games
of imperfect information some moves are masked, or inaccessible, and strategies
with dependencies on unseen moves are ruled out. It is straightforward to extend
probabilistic distributed games with payoff and imperfect information in way
that respects the operations of distributed games and strategies [17]. Blackwell
games [18], of central importance in logic and computer science, become a special
case of probabilistic distributed games of imperfect information with payoff [15].

6 Constructions on probabilistic strategies [19]

There is a richness of constructions in the world of distributed strategies and
games. The language of games and strategies that ensues is largely stable under
the addition of probability and extra features such as imperfect information and
payoff. Though for instance we shall need to restrict to race-free games in order
to have identities w.r.t. the composition of probabilistic strategies.

In the language for probabilistic strategies, race-free games A,B,C,⋯ will
play the role of types. There are operations on games of forming the dual A⊥, sim-
ple parallel composition A∥B, sum Σi∈IAi as well as recursively-defined games
—the latter rest on well-established techniques [2] and will be ignored here. The
operation of sum of games is similar to that of simple parallel composition but
where now moves in different components are made inconsistent; we restrict its
use to those cases in which it results in a game which is race-free.

Terms have typing judgements:

x1 ∶ A1,⋯, xm ∶ Am ⊢ t ⊣ y1 ∶ B1,⋯, yn ∶ Bn ,

where all the variables are distinct, interpreted as a probabilistic strategy from
the game A⃗ = A1∥⋯∥Am to the game B⃗ = B1∥⋯∥Bn. We can think of the term
t as a box with input and output wires for the variables:

-

--

-A1

Am

B1

Bn
⋮⋮
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The idea is that t denotes a probabilistic strategy S → A⃗⊥∥B⃗ with configura-
tion valuation v. The term t describes witnesses, finite configurations of S, to
a relation between finite configurations x⃗ of A⃗ and y⃗ of B⃗, together with their
probability conditional on the Opponent moves involved.
Duality The duality, that a probabilistic strategy from A to B can equally well
be seen as a probabilistic strategy from B⊥ to A⊥, is caught by the rules:

Γ,x ∶ A ⊢ t ⊣∆
Γ ⊢ t ⊣ x ∶ A⊥,∆

Γ ⊢ t ⊣ x ∶ A,∆
Γ,x ∶ A⊥ ⊢ t ⊣∆

Composition The composition of probabilistic strategies is described in the
rule

Γ ⊢ t ⊣∆ ∆ ⊢ u ⊣ H

Γ ⊢ ∃∆. [ t ∥ u ] ⊣ H

which, in the picture of strategies as boxes, joins the output wires of one strategy
to input wires of the other.
Probabilistic sum For I countable and a sub-probability distribution pi, i ∈ I,
we can form the probabilistic sum of strategies of the same type:

Γ ⊢ ti ⊣∆ i ∈ I
Γ ⊢ Σi∈Ipiti ⊣∆.

In the probabilistic sum of strategies, of the same type, the strategies are glued
together on their initial Opponent moves (to maintain receptivity) and only
commit to a component with the occurrence of a Player move, from which com-
ponent being determined by the distribution pi, i ∈ I. We use � for the empty
probabilistic sum, when the rule above specialises to

Γ ⊢ � ⊣∆,

which denotes the minimum strategy in the game Γ ⊥∥∆—it comprises the initial
segment of the game Γ ⊥∥∆ consisting of its initial Opponent events.
Conjoining two strategies The pullback of a strategy across a map of event
structures is itself a strategy [15]. We can use the pullback of one strategy against
another to conjoin two probabilistic strategies of the same type:

Γ ⊢ t1 ⊣∆ Γ ⊢ t2 ⊣∆
Γ ⊢ t1 ∧ t2 ⊣∆

Such a strategy acts as the two component strategies agree to act jointly. In
the case where t1 and t2 denote the probabilistic strategies σ1 ∶ S1 → Γ ⊥∥∆
with configuration valuation v1 and σ2 ∶ S2 → Γ ⊥∥∆ with v2 the strategy t1 ∧ t2
denotes the pullback

S1 ∧ S2π1

yy
π2

%%
σ1∧σ2

��
S1

σ1
$$

S2

σ2
zz

Γ ⊥∥∆
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with configuration valuation x↦ v1(π1x) × v2(π2x) for x ∈ C(S1 ∧ S2).
Copy-cat terms Copy-cat terms are a powerful way to lift maps or relations
expressed in terms of maps to strategies. Along with duplication they introduce
new “causal wiring.” Copy-cat terms have the form

x ∶ A ⊢ gy ⊑C fx ⊣ y ∶ B ,

where f ∶ A→ C and g ∶ B → C are maps of event structures preserving polarity.
(In fact, f and g may even be “affine” maps, which don’t necessarily preserve
empty configurations, provided g∅ ⊑C f∅—see [19].) This denotes a determinis-
tic strategy—so a probabilistic strategy with configuration valuation constantly
one—provided f reflects −-compatibility and g reflects +-compatibility. The map
g reflects +-compatibility if whenever x ⊆+ x1 and x ⊆+ x2 in the configurations
of B and fx1 ∪ fx2 is consistent, so a configuration, then so is x1 ∪ x2. The
meaning of f reflecting −-compatibility is defined analogously.

A term for copy-cat arises as a special case,

x ∶ A ⊢ y ⊑A x ⊣ y ∶ A,

as do terms for the jth injection into and jth projection out of a sum Σi∈IAi
w.r.t. its component Aj ,

x ∶ Aj ⊢ y ⊑Σi∈IAi jx ⊣ y ∶ Σi∈IAi

and
x ∶ Σi∈IAi ⊢ jy ⊑Σi∈IAi x ⊣ y ∶ Aj ,

as well as terms which split or join ‘wires’ to or from a game A∥B.
In particular, a map f ∶ A → B of games which reflects −-compatibility lifts

to a deterministic strategy f! ∶ A + //B:

x ∶ A ⊢ y ⊑B fx ⊣ y ∶ B .

A map f ∶ A→ B which reflects +-compatibility lifts to a deterministic strategy
f∗ ∶ B + //A:

y ∶ B ⊢ fx ⊑B y ⊣ x ∶ A.

The construction f∗⊙t denotes the pullback of a strategy t in B across the map
f ∶ A → B. It can introduce extra events and dependencies in the strategy. It
subsumes the operations of prefixing by an initial Player or Opponent move on
games and strategies.
Trace A probabilistic trace, or feedback, operation is another consequence of
such “wiring.” Given a probabilistic strategy Γ,x ∶ A ⊢ t ⊣ y ∶ A,∆ represented
by the diagram

t

Γ ∆

A A
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we obtain
Γ,∆⊥ ⊢ t ⊣ x ∶ A⊥, y ∶ A

which post-composed with the term

x ∶ A⊥, y ∶ A ⊢ x ⊑A y ⊣ ,

denoting the copy-cat strategy γA⊥ , yields

Γ ⊢ ∃x ∶ A⊥, y ∶ A. [ t ∥ x ⊑A y ] ⊣∆,

representing its trace:

t

Γ ∆

A

The composition introduces causal links from the Player moves of y ∶ A to the
Opponent moves of x ∶ A, and from the Player moves of x ∶ A to the Opponent
moves of y ∶ A—these are the usual links of copy-cat γA⊥ as seen from the left of
the turnstyle. If we ignore probabilities, this trace coincides with the feedback
operation which has been used in the semantics of nondeterministic dataflow
(where only games comprising solely Player moves are needed) [10].
Duplication Duplications of arguments is essential if we are to support the
recursive definition of strategies. We duplicate arguments through a probabilistic
strategy δA ∶ A + //A∥A. Intuitively it behaves like the copy-cat strategy but
where a Player move in the left component may choose to copy from either of
the two components on the right. In general the technical definition is involved,
even without probability—see [19]. The introduction of probability begins to
reveal a limitation within probabilistic strategies as we have defined them, a
point we will follow up on in the next section. We can see the issue in the second
of two simple examples. The first is that of δA in the case where the game A
consists of a single Player move ⊕. Then, δA is the deterministic strategy

⊕
⊖

1 44=

 !!*⊕

in which the configuration valuation assigns one to all finite configurations —we
have omitted the obvious map to the game A⊥∥A∥A. In the second example, as-
sume A consists of a single Opponent move ⊖. Now δA is no longer deterministic
and takes the form

⊕ ⊖�llr

⊕ ⊖�llr

and the strategy is forced to choose probabilistically between reacting to the
upper or lower move of Opponent in order to satisfy the drop condition of its
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configuration valuation. Given the symmetry of the situation, in this case any
configuration containing a Player move is assigned value a half by the configu-
ration valuation associated with δA. (In the definition of the probabilistic du-
plication for general A the configuration valuation is distributed uniformly over
the different ways Player can copy Opponent moves.) But this is odd: in the
second example, if the Opponent makes only one move there is a 50% chance
that Player will not react to it! There are mathematical consequences too. In the
absence of probability δA forms a comonoid with counit � ∶ A + //∅. However, as
a probabilistic strategy δA is no longer a comonoid—it fails associativity. It is
hard to see an alternative definition of a probabilistic duplication strategy within
the limitations of the event structures we have been using. We shall return to
duplication, and a simpler treatment through a broadening of event structures
in the next section.

Recursion Once we have duplication strategy we can treat recursion. Recall
that 2-cells, the maps between probabilistic strategies, include the approximation
order ⊴ between strategies. The order forms a ‘large complete partial order’ with
a bottom element the minimum strategy �. Given x ∶ A,Γ ⊢ t ⊣ y ∶ A, the
term Γ ⊢ µx ∶A. t ⊣ y ∶ A denotes the ⊴-least fixed point amongst probabilistic
strategies X ∶ Γ + //A of the ⊴-continuous operation F (X) = t⊙(idΓ∥X)⊙δΓ .
(With one exception, F is built out of operations which it’s been shown can be
be defined concretely in such a way that they are ⊴-continuous; the one exception
which requires separate treatment is the ‘new’ operation of projection, used to
hide synchronisations.) With probability, as δΓ is no longer a comonoid not all
the “usual” laws of recursion will hold, though the unfolding law will hold by
definition.

7 A limitation

One limitation that is not seen when working with purely nondeterministic
strategies has revealed itself when strategies are made probabilistic. The simple
event structures on which we have based games and strategies do not support
“parallel causes” and this has the consequence that certain informal but intu-
itively convincing strategies are not expressible. We met this in the previous
section in our treatment of a probabilistic duplication strategy δA ∶ A + //A∥A.

Probabilistic strategies, as presented, do not cope with stochastic behaviour
such as races as in the game

⊖ ⊕ .

To do such we would expect to have to equip events in the strategy with stochas-
tic rates (which isn’t hard to do if synchronisation events are not hidden). So
this is to be expected. But at present probabilistic strategies do not cope with
benign Player-Player races either! Consider the game

⊕
⊖ ⊖
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where Player would like a strategy in which they play a move iff Opponent
plays one of theirs. We might stipulate that Player wins if a play of any ⊖ is
accompanied by the play of ⊕ and vice versa. Intuitively a winning strategy
would be got by assigning watchers (in the team Player) for each ⊖ who on
seeing their ⊖ race to play ⊕. This strategy should win with certainty against
any counter-strategy: no matter how Opponent plays one or both of their moves
at least one of the watchers will report this with the Player move. But we cannot
express this with event structures. The best we can do is a probabilistic strategy

⊕ ⊕

⊖

_LLR

⊖

_LLR

with configuration valuation assigning 1/2 to configurations containing either
Player move and 1 otherwise. Against a counter-strategy with Opponent playing
one of their two moves with probability 1/2 this strategy only wins half the time.
In fact, the strategy together with the counter-strategy form a Nash equilibrium
when a winning configuration for Player is assigned payoff +1 and a loss −1.
This strategy really is the best we can do presently in that it is optimal amongst
those expressible using the simple event structures of Section 2.

8 A solution

If we are to be able to express the intuitive strategy which wins with certainty
we need to develop distributed probabilistic strategies which allow such parallel
causes as in ‘general event structures’ (E,⊢,Con) which permit e.g. two distinct
compatible causes X ⊢ e and Y ⊢ e (see [3]). In the informal strategy described in
the previous section both Opponent moves would individually enable the Player
move, with all events being consistent. But it can be shown that general event
structures do not support an appropriate operation of hiding. Nor is it clear how
within general event structures one could express a variant of the strategy above,
in which the two watchers succeed in reporting the Player move with different
probabilities.

It is informative to see why general event structures are not closed under
hiding. The following describes a general event structure.

Events: a, b, c, d and e.

Enablings: (1) b, c ⊢ e and (2) d ⊢ e, with all events other than e being
enabled by the empty set.

Consistency: all subsets are consistent unless they contain the events a and
b; in other words, the events a and b are in conflict.

Any configuration will satisfy the assertion

(a ∧ e) Ô⇒ d
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because if e has occurred it has to have been enabled by (1) or (2) and if a has
occurred its conflict with b has prevented the enabling (1), so e can only have
occurred via enabling (2).

Now imagine the event b is hidden, so allowed to occur invisibly in the back-
ground. The “configurations after hiding” are those obtained by hiding (i.e. re-
moving) the invisible event b from the configurations of the original event struc-
ture. The assertion above will still hold of the configurations after hiding. There
isn’t a general event structure with events a, c, d and e, and configurations those
which result when we hide (or remove) b from the configurations of the original
event structure. One way to see this is to observe that amongst the configura-
tions after hiding we have {c} ⊆ {c, e} and {c} ⊆ {a, c} where both {c, e} and
{a, c} have upper bound {a, c, d, e}, and yet {a, c, e} is not a configuration after
hiding as it fails to satisfy the assertion. (In a general event structure it would
have to also be a configuration.)

The first general event structure can be built out of the composition without
hiding of strategies described by general event structures, one from a game A to
a game B and the other from B to C; the second structure, not a general event
structure, would arise when hiding the events over the intermediate game B.

To obtain a bicategory of strategies with disjunctive causes we need to sup-
port hiding. We need to look for structures more general than general event
structures. The example above gives a clue: the inconsistency is one of inconsis-
tency between complete enablings rather than events.

Marc de Visme and I have explored the space of possibilities and discov-
ered a refinement of event structures into which general event structures embed,
which supports hiding, and provides a basis on which to develop probabilistic
distributed strategies with disjunctive and parallel causes. One is led to introduce
structures in which we objectify cause: a minimal causal enabling is no longer
an instance of a relation but an object that realises that instance (cf. a proof
in contrast to a judgement of theorem-hood). This is in order to express incon-
sistency between complete enablings, inexpressible as inconsistencies on events,
that can arise when hiding.

An event structure with disjunctive causes (an edc) is a structure

(P,≤,ConP ,≡)

where (P,≤,ConP ) satisfies the axioms of a event structure and ≡ is an equiva-
lence relation on P such that

∀p1, p2 ≤ p. p1 ≡ p2 Ô⇒ p1 = p2 .

The events of P represent prime causes while the ≡-equivalence classes of P
represent disjunctive events: p in P is a prime cause of the event {p}

≡
. Notice

there may be several prime causes of the same event and that these may be
parallel causes in the sense that they are consistent with each other and causally
independent. A configuration of the edc is a configuration of (P,≤,ConP ). An edc
dissociates the two roles of enabling and atomic action conflated in the events
of an event structures. The elements of P are to be thought of as complete
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minimal enablings and the equivalence classes as atomic actions representing
the occurrence of at least one prime cause.

When the equivalence relation ≡ of an edc is the identity it is essentially
an event structure. This view is reinforced in our choice of maps. A map from
(P,≤P ,ConP ,≡P ) to (Q,≤Q,ConQ,≡Q) is a partial function f ∶ P ⇀ Q which
preserves ≡ (i.e. if p1 ≡P p2 then either both f(p1) and f(p2) are undefined or
both defined with f(p1) ≡Q f(p2)) such that for all x ∈ C(P )

(i) the direct image fx ∈ C(Q), and
(ii) ∀p1, p2 ∈ x. f(p1) ≡Q f(p2) Ô⇒ p1 ≡P p2 .

Edc’s support a hiding operation along the same lines as event structures.
There is an adjunction expressing the sense in which general event structures
embed within edc’s. There is also an adjunction (in fact a coreflection) from
event structures to edc’s which helps give a tight connection between strategies
based on event structures and their generalisation to edc’s. Probability extends
straightforwardly to strategies based on edc’s. The work is recent and in the
process of being written up [20]. We conclude by presenting the deterministic
strategy in the game

⊕
⊖ ⊖

in which Player makes a move iff Opponent does:

⊕ ≡ ⊕

⊖

_LLR

⊖

_LLR

(In the deterministic case each watcher succeeds with certainty. We can also
represent the situation where one watcher succeeds with probability p ∈ [0,1] and
the other with probability q ∈ [0,1] through the obvious configuration valuation.)
The same strategy serves as the duplication strategy for the game comprising a
single Opponent event. This indicates how within the broader framework of edc’s
there are deterministic duplication strategies δA ∶ A + //A∥A in which a Player
move in the left component is alerted in parallel by a corresponding Opponent
move in either of the two components on the right. The fact that the duplication
strategies are now deterministic obviates the difficulties we encountered earlier:
duplication now forms a comonoid and we recover the usual laws for recursive
definitions of strategies.
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