
Name Generation and Linearity

Glynn Winskel, University of Cambridge Computer Laboratory, England

Abstract

A path-based domain theory for higher-order processes
is extended to allow name generation. The original domain
theory is built around the monoidal-closed categoryLin
consisting of path orders with join-preserving functions be-
tween their domains of path sets. Name generation is ad-
joined by forming the functor category[I,Lin], whereI
consists of finite sets of names and injections. The functor
category[I,Lin] is no longer monoidal-closed w.r.t. the
tensor inherited pointwise fromLin. However, conditions
are given under which function spaces exist. The conditions
are preserved by a rich discipline of linear types, includ-
ing those of new-HOPLA, a recent powerful language for
higher-order processes with name generation.

1. Introduction

The intricate models of distributed computation argue for
a new domain theory for concurrency based on computation
paths, in which processes denote generalised characteris-
tic functions [9]. This approach encompasses both the view
of processes as path sets (by taking truth values 0, 1) and
the much richer view of processes as presheaves (by taking
truth values to be sets). The ensuing categories of ‘domains’
are also models of linear logic, which exposes the central
role of linearity in distributed computation, where by their
very nature processes can often be run only once [2, 9].

A standard way to adjoin name generation (as in the pi-
Calculus) to a category of domains is to move to a func-
tor category, so both processes and their types are indexed
by the current set of names. But then, for path-based mod-
els, not all linear function spaces need exist. For a while
now [6, 1] there’s been the question of what restrictions are
needed both syntactically and mathematically on types and
their functor denotations to permit the formation of func-
tion spaces. Here a solution is given for the domain the-
ory based on path sets. Sufficient conditions are given for
linear function spaces to exist, and their need illustrated
through an example. The conditions are liberal enough
to allow a rich syntax of types, including those of new-
HOPLA [11]. The solution gives a concrete understand-

ing of higher-order paths, so it should facilitate proofs of
adequacy and full abstraction for new-HOPLA along the
lines of those for HOPLA in [9]. It should also lead the
way to understanding those linear function spaces that exist
for presheaf models with name generation, extending early
work on fully-abstract presheaf semantics of pi-Calculus to
higher-order [1] .

Domain theory from path sets

We give a quick review of the domain theory for processes
based on path sets [9]. The objects of the categoryLin, path
orders, are preordersP consisting of computation paths
with the preorderp ≤ p′ expressing how a pathp extends to
a pathp′. A path orderP determines a domain̂P, that of its
path sets, down-closed sets w.r.t.≤P, ordered by inclusion.
Such a domain is aprime-algebraic complete lattice[8], in
which the (complete)primesare precisely those path sets↓p
generated by individual pathsp. The arrows ofLin, linear
maps, fromP to Q are join-preserving functions from̂P to
Q̂. The categoryLin is monoidal-closed with a tensor given
the productP×Q of path orders and a corresponding func-
tion space byPop ×Q. Lin has enough structure to form a
model of Girard’s classical linear logic [5]. The exponential
!P consists of finite elements of̂P under inclusion—!P can
be thought of as consisting of compound paths associated
with several runs. Its coKleisli category consists of path or-
ders with Scott-continuous functions between the domains
of path sets. The idea is that a process denotes a path set, its
possible paths within its type, denoted by a path order.

Domain theory for name generation

To cope with name generation we move to a functor cate-
gory in which domains of path sets are indexed functorially
by the current set of names [3, 10]. The categoryI consists
of finite sets of names related by injections. The functor cat-
egory [I,Lin] has as objects functorsP : I → Lin, so
path ordersP(s) indexed by finite sets of namess standing
for the computation paths possible with that current set of
names; its arrows are natural transformations with compo-
nents inLin. One important object in[I,Lin] is the object
of namesN providing the current set of names, soN(s) is

the discrete orders at name sets. There is a tensor got point-
wise from the tensor ofLin. GivenP andQ in [I,Lin] we
defineP⊗Q in [I,Lin] so that ats ∈ I

P⊗Q(s) = P(s)×Q(s) .

The comonad! onLin lifts to a comonad on[I,Lin] whose
coKleisli category consists of the same objects but where
the natural transformations have continuous components.

To support higher-order processes we need function
spacesP (Q such that

[I,Lin](R, P (Q) ∼= [I,Lin](R⊗ P, Q)

natural inR andQ. But there is no reason to expect such
function spaces to exist in general—the obstacle is there not
necessarily being a path order(P (Q)s at each name set
s. This paper provides general conditions which ensure the
existence of linear function spaces, and moreover which are
preserved by linear function space. The conditions imply
that function spaces of the form

N⊗ · · · ⊗ N⊗!P1 ⊗ · · ·⊗!Pk (Q

will exist and satisfy the conditions; in particular, all the
types of new-HOPLA meet the conditions [11].

2. Towards the linear function space

We are interested in linear function spacesP (Q, for
which there is an isomorphism

[I,Lin](R, P (Q) ∼= [I,Lin](R⊗ P, Q) .

Using the Yoneda lemma, we can make an educated guess,
that for a name sets0

̂(P (Q)s0
∼= [I,Lin](I(s0,−), P (Q)
∼= [I,Lin](I(s0,−)⊗ P, Q)
∼= [I,Lin](P(s0 +), Q(s0 +)) ,

where the order is to be pointwise. Given a name sets the
hom-functorI(s0,−) yields the setI(s0, s) which we iden-
tify with a discrete path order. The last isomorphism comes
about by observing that natural transformations with com-
ponentsαs : I(s0, s)⊗ Ps → Qs are in bijection with nat-
ural transformations with componentsβs′ : P(s0 + s′) →
Q(s0 + s′) such thatβs′(p) = αs0+s′(in0, p), wherein0 :
s0 → s0 + s′ is the obvious injection.

The implied isomorphism

̂(P (Q)s0
∼= [I,Lin](P(s0 +), Q(s0 +))

provides an intuitive reading of the domain of the linear
function space. It consists of natural transformations be-
tween the functors denoting types updated with the cur-
rent set of namess0. But of course such isomorphisms

only tell us the form of the domain, and not the path order
(P (Q)s0 from which the domain is derived. Obtaining
the path order requires insight, or can be impossible, as the
following examples show.

Example 2.1 InstantiatingP to the type of namesN we ob-
tain (N (Q)s0

∼= [I,Lin](s0 + , Q(s0 +)) consisting
of natural transformations

s0 //

��

s0+1

��

// s0+s

···
��

Q(s0) // Q(s0+1) // Q(s0+s)

From their naturality, such natural transformations are de-
termined by the initial square, so in bijection with path
sets overs0 ×Q(s0) + Q(s0 + 1)—over the first compo-
nent the path set determines how names ins0 are mapped
and over the second component how a generic ‘new’ name
1 is mapped. We can realise(N → Q)s0 as the path order
s0 ×Q(s0) + Q(s0 + 1).

Example 2.2 In general[I,Lin](P, Q) need not be dis-
tributive, so definitely not representable by a path order
(P (Q)∅. For instance, supposeQ is constantly1, the
path order with one point. SupposeP∅ is the ordera0 < a1

andPs is the discrete order with two elementsb1, b2, for
s 6= ∅. Let P(∅ ↪→ s) : a1 7→ {b1, b2}; a0 7→ ∅;
and give the identity elsewhere. Then naturality constrains
[I,Lin](P, Q) ordered pointwise to have Hasse diagram

.
��.
.

.
��
. .
??

.
?? ��

.
?? , which is not distributive.

As Example 2.1 makes clear, it can be a matter of some
thought to determine the path order(P (Q)s0. Especially
so as the existence of this path order requires extra condi-
tions on the type functorP—Example 2.2. In future we will
use the characterisation

̂(P (Q)s0
∼= [I,Lin](I(s0,−)⊗ P, Q)

as this exposes the functorial action ofP (Q most clearly.
The first step is to exhibit a path order(P (Q)s0 with
domain of path sets isomorphic to the pointwise order on
natural transformationsI(s0,−) ⊗ P ⇒ Q. This will be
under the conditions thatP andQ aretype functors, where
P in additionrespects primes. (I presently have no example
to show that the latter additional restriction is necessary,i.e.
conceivablyP (Q exists for all type functorsP andQ.)

3. Type functors

Definition 3.1 SayQ : I → Lin is a type functorwhen
it respects finites, nonempty meets, and pullbacks, in the

sense of the following definitions:

Respects finites:The functionQf : Q̂s → Q̂s′ sends finite
elements of the domain̂Qs to finite elements of̂Qs′ for all
f : s → s′ in I; being an arrow inLin, the functionQf
preserves joins, so it is sufficient thatQf sends all primes
to finite elements.

Respects nonempty meets:The functionQf : Q̂s → Q̂s′

preserves nonempty meets for allf : s → s′ in I; the empty
meet, the maximum path set consisting of allQs need not
be sent to the maximum path set consisting of allQs′.

SupposingQ respects nonempty meets, and lettingy ∈
Q̂s′, we define

min(Qf, y) =
⋂
{x ∈ Q̂s | y ⊆ Qf(x)}

provided there existsx such thaty ⊆ Qf(x), and to be un-
defined otherwise. If defined,min(Qf, y) is the minimum
input toQf which yieldsy. We havemin(Qf,

⋃
j∈J yj) =⋃

j∈J min(Qf, yj), one side being defined iff the other is.
If y is prime, then if definedmin(Qf, y) is necessarily
also prime—this follows becauseQf is join preserving. If
min(Qf, ↓q′) is defined forq′ ∈ Qs′, then

min(Qf, ↓q′) = ↓q

for someq ∈ Qs. We often identify a pathq with its associ-
ated prime↓q, ande.g.write the above asmin(Qf, q′) = q.
The partial functionmin respects composition.

Respects pullbacks:Let

s0

h1 ??��

h2
��

??

s1 g1
��

??

s2
g2

??��
s3

be a pullback inI. If x1 ∈ Q̂s1, x2 ∈ Q̂s2, andx3 ∈ Q̂s3

where

x2 = min(Qg2, x3) andx3 = Qg1(x1) ,

then there existsx0 ∈ Q̂s0 such that

x0 = min(Qh1, x1) andx2 = Qh2(x0) .

Observe that ifx1 is a join then the pullback condition holds
for x1 iff it holds for every component of the join. Conse-
quently, in verifying the pullback condition it is sufficient
to assume thatx1 is prime—thenx0 will also have to be
prime. When verifying the pullback condition it is helpful
to note that under its assumptions it requires:

(1) the existence ofx0 = min(Qh1, x1)—this already en-
sures thatQh2(x0) ⊇ x2 asQg2(Qh2(x0)) includes
x3 and so must dominatemin(Qg2, x3);

(2) that x2 = Qh2(x0), for which it is now seen to be
sufficient to verify thatQh2(x0) ⊆ x2.

We will sometimes need to strengthen the conditions on
a functorQ : I → Lin and say it

Respects primes:The functionQf : Q̂s → Q̂s′ sends
primes of the domain̂Qs to primes of̂Qs′ for all f : s → s′

in I.

Proposition 3.2 Suppose a functorQ : I → Lin respects
pullbacks. Then,

(i) min(Qf, Qf(x)) = x for all arrows f : s → s′ in I
andx ∈ Q̂s;

(ii) for all arrows f : s → s′ in I andq ∈ Qs there exists
q′ ∈ Qs′ such thatmin(Qf, ↓q′) = ↓q;

(iii) Qf is an order monic for all arrowsf : s → s′ in I,
i.e. if Qf(x) ⊆ Qf(y), thenx ⊆ y for all x, y ∈ Q̂s;

(iv) Q preserves pullbacks.

Proposition 3.3 Let s0 be a name set. The Yoneda functor
I(s0,−) is a type functor which respects primes. IfR and
Q are type functors, so is the functorR ⊗ Q; if further R
and Q respect primes, then so doesR ⊗ Q. If Q is a type
functor, then so is!Q; moreover,!Q respects primes.

From Proposition 3.3,I(s0,−)⊗P is a prime-respecting
type functor if P is. For this reason finding a path order
for the linear function space at a name sets0 will involve
us with the path-order representation of natural transforma-
tions from a prime-respecting type functor to a type functor.

4. Natural transformations as path sets

Throughout this section letP and Q be type functors
where in additionP is assumed to respect primes. We first
concentrate on showing that[I,Lin](P, Q), natural trans-
formations fromP to Q ordered pointwise, can be repre-
sented as the domain of path sets of a path order(P ⇒ Q).

Definition 4.1 Let P andQ be type functors. An IO-tuple
for P, Q comprises(s, p, q) wheres is a name set,p ∈ Ps,
andq ∈ Qs. We shall often write such a tuple asspq.

Definition 4.2 Let spq be an IO-tuple forP, Q. Sayspq is
feasiblefor P, Q iff for all f : s′ → s in I, p′ ∈ Ps′

p ≤ Pf(p′) ⇒ ∃q′ ∈ Qs′. q ∈ Qf(q′) .

Let spq ands′p′q′ be IO-tuples forP, Q.

Definespq
f−→F s′p′q′ iff f : s → s′ in I and

↓p′ = Pf(p) & q′ ∈ Qf(q) .

Defines′p′q′ .F spq iff there existsf : s → s′ such that

spq
f−→F s′p′q′.

Defines′p′q′
f−→B spq iff f : s′ → s in I and

Pf(p′) = ↓p & ↓q′ = min(Qf, q) .

Defines′p′q′ .B spq iff there existsf : s′ → s such that

s′p′q′
f−→B spq.

Defines′p′q′ .M spq iff s = s′ & q = q′ & p ≤ p′ in Ps.
Define. to be the least preorder including.F , .B and.M .

Observe that ifs′p′q′
f−→B spq then automatically

s′p′q′
f−→F spq; so the relation.B is included in&F , the

converse of the relation.F . Note thatF -arrows compose,
as doB-arrows.

Proposition 4.3 Let spq and s′p′q′ be IO-tuples forP, Q
at s0. If spq is feasible ands′p′q′ . spq, thens′p′q′ is
feasible.

Proof. It suffices to show the required property for.F , .B

and.M . For.B and.M the proof is obvious, while for.F

we make use of the fact thatP respects pullbacks. 2

Definition 4.4 Define(P ⇒ Q) to be the path order con-
sisting of feasible IO-tuples forP, Q under..

Theorem 4.5

(i) Let α : P ⇒ Q. Then its graph

G(α) = {spq | q ∈ αs(p)}

is a.-down-closed subset of(P ⇒ Q).

(ii) Let U be a.-down-closed subset of(P ⇒ Q). Then
σ(U) comprising a familyσ(U)s : Ps → Qs such that

σ(U)s(p) = {q | spq ∈ U}

for s ∈ I, is a natural transformationσ(U) : P ⇒ Q.

(iii) The functionsG and σ are mutual inverses determin-
ing an order isomorphism between natural transfor-
mations[I, Lin](P, Q), ordered pointwise, and the do-

main ̂(P ⇒ Q), ordered by inclusion.

Proof.
(i) Let α : P ⇒ Q. First notice thatG(α) must consist of
feasible tuples; otherwise we would violate the naturality
of α. We checkG(α) is .-down-closed. For this it suffices

to show thatG(α) is down-closed w.r.t..B, .F and.M .

(.B) Let f : s′ → s. It is associated with the naturality
square

Ps′

f

��

αs′
// Qs′

Qf

��

Ps
αs // Qs .

Supposespq ∈ G(α), i.e. q ∈ αs(p), andPf(p′) = ↓p
and ↓q′ = min(Qf, q). Then q ∈ (αs ◦ Pf)(p′).
Hence by naturality,q ∈ (Qf)(αs′(p′)). But then
↓q′ = min(Qf, q) ⊆ αs′(p′). Hences′p′q′ ∈ G(α).

(.F) Let f : s → s′. Again it is associated with a naturality
square

Ps

f

��

αs // Qs

Qf

��

Ps′
αs′

// Qs′ .

Supposespq ∈ G(α) with ↓p′ = Pf(p) andq′ ∈ Qf(q).
This time,q′ ∈ (Qf) ◦ αs(p). So by naturality,

q′ ∈ αs′(p′).

Hences′p′q′ ∈ G(α).

(.M) Closure under this condition follows directly from
the monotonicity of each componentαs.

(ii) Let U be a.-down-closed subset of feasible tuples. By
.M -downclosure each componentσ(U)s is monotonic and
so (corresponds to) a linear map. We need naturality. Let
f : s → s′ in I. We require that

Ps

Pf

��

σ(U)s
// Qs

Qf

��

Ps′
σ(U)s′

// Qs′ .

commutes. Supposep ∈ Ps. Then, proceeding both ways
round the square,

σ(U)s′(Pf(p)) = {q′ | (s′, Pf(p), q′) ∈ U}, and

Qf(σ(U)s(p)) =
⋃
{Qf(q) | spq ∈ U} .

Hence, ifq′ ∈ σ(U)s′(Pf(p)), then(s′, Pf(p), q′) ∈ U
and is therefore a feasible tuple. Thusq = min(Qf, q′) ex-
ists. Consequently,

spq .B (s′, Pf(p), q′) ∈ U .

Thusspq ∈ U . It follows thatq′ ∈ Qf(σ(U)s(p)).

Conversely, ifq′ ∈ Qf(σ(U)s(p)), thenq′ ∈ Qf(q) and
spq ∈ U , for someq ∈ Qs. But now,

(s′, Pf(p), q′) .F spq ∈ U ,

where (s′, Pf(p), q′) is necessarily feasible by Proposi-
tion 4.3. It follows thatq′ ∈ σ(U)s′(Pf(p)).

Hence the required naturality square commutes and we
have established thatσ(U) : P ⇒ Q.
(iii) Directly from the definitions ofG andσ:

σ(G(α))s(p) = {q | spq ∈ G(α)}
= {q | q ∈ αs(p)}
= αs(p) , and

G(σ(U)) = {spq | q ∈ σ(U)s(p)}
= {spq | spq ∈ U}
= U .

Hence the functionsG andσ are mutual inverses.
Suppose for down-closed sets,U1 ⊆ U2. Then

σ(U1)s(p) ⊆ σ(U2)s(p) for all s ∈ I andp ∈ Ps, ensuring
σ(U1) v σ(U2) in the pointwise order.

Supposeα1 v α2 pointwise,i.e.for all s ∈ I andp ∈ Ps
we haveα1

s(p) ⊆ α2
s(p). Then clearly,G(α1) ⊆ G(α2).

Hence the pairG, σ forms an order isomorphism. 2

Corollary 4.6
(i) An IO-tuplespq for P, Q is feasible iff there is a natural
transformationα : P ⇒ Q for whichq ∈ αs(p).
(ii) Let spq and s′p′q′ be IO-tuples forP, Q. Let spq be
feasible. Then,

s′p′q′ . spq

iff for all natural transformationsα : P ⇒ Q

q ∈ αs(p) ⇒ q′ ∈ αs′(p′) .

4.1. Properties of.

The main result of this section is a standard form for.
in Lemma 4.11. It plays an important role later in showing
that the linear function space respects finites and pullbacks.

Definition 4.7 Let spq ands′p′q′ be IO-tuples forP, Q.

Defines′p′q′
f−→MB spq iff f : s′ → s in I and

p′ = min(Pf, p) & q′ = min(Qf, q) .

Defines′p′q′ .MB spq iff s′p′q′
f−→MB spq for somef :

s′ → s.

MB-arrows compose, and the relation.MB is a pre-

order included in.. An arrow t′
f−→MB t factors as

t′
f−→B t0 .M t, for somet0; as the following proposi-

tion makes precise,t0 is .M -maximum from which such a
B-arrow is possible.

Proposition 4.8 If t1 .M t and t′1
f−→B t1, then there ex-

ists a uniquet′ such thatt′1 .M t′ andt′
f−→MB t:

t′
MB

f
// t

t′1

.M

B

f
// t1

.M

Proof. Supposesp1q .M spq and s′p′1q
′ f−→B sp1q.

Then p ≤ p1 = Pf(p′1) and q′ = min(Qf, q). Hence
p′ = min(Pf, p) is defined, so thats′p′1q

′ .M s′p′q′ and

s′p′q′
f−→MB spq. The minimality constraints on tuplet′

for which t′
f−→MB spq ensures the uniqueness ofs′p′q′. 2

Proposition 4.8 gives the sense in whichB-moves con-
tributing to the order. are bounded by canonicalMB-
moves.

Lemma 4.9 Let s

h1 ??���

h2
��

???

s1 g1
��

??

s2
g2

??��
s3 be a pullback inI. Assume

thats1p1q1 ∈ (P ⇒ Q) and

s1p1q1
g1−→F s3p3q3 and s2p2q2

g2−→MB s3p3q3 .

Then, there is spq ∈ (P ⇒ Q) such that

spq
h1−→F s1p1q1 and spq

h2−→MB s2p2q2 :

s1p1q1

g1

F
%%KKKKKKKKKK

spq

h1 MB

::

h2
F

$$

s3p3q3

s2p2q2

g2

MB

99ssssssssss

Proof. The assumptions yield

Pg1(p1) = p3 andp2 = min(Pg2, p3) .

As P respects pullbacks, there isp ∈ Ps such that

Ph2(p) = p2 andp = min(Ph1, p1) .

Now the tuples1p1q1 is feasible. Hence there existsq ∈ Qs
such that

q = min(Qh1, q1) .

It follows that spq
h1−→MB s1p1q1. In addition, q2 =

min(Qg2, q3) while q3 ∈ (Qg1h1)(q) = Qg2(Qh2(q)),
which implies thatq2 ∈ Qh2(q). Thusspq

h2−→F s2p2q2.
2

Proposition 4.10 If t1 .M t and t1
f−→F t′1, then there

exists a uniquet′ such thatt′1 .M t′ andt
f−→F t′:

t
F

f
// t′

t1

.M

F

f
// t′1

.M

Proof. Supposesp1q .M spq andsp1q
f−→F s′p′1q

′. Then
p ≤ p1 andp′1 = Pf(p1) andq′ ∈ Qf(q). Takep′ = Pf(p).
By the monotonicity ofPf , we obtains′p′1q

′ .M s′p′q′,

while spq
f−→F s′p′q′. These two relations determines′p′q′

uniquely. 2

The next lemma gives an important standard form in
which the order. can be obtained.

Lemma 4.11 Assume tuplest, t′ ∈ (P ⇒ Q). Then,t′ . t
in (P ⇒ Q) iff there are arrowsg, f in I with a com-
mon source and tuplest1, t2 ∈ (P ⇒ Q) such that

t1
g−→MB t & t1

f−→F t2 & t′ .M t2:

t1

g
>>

>

MB
��

>>
>>

f
F

// t2

t & t′

.M

Proof. We show the property illustrated above by induction
along the length of the chain of.F , .B and.M links estab-
lishing t′ . t. The addition of a linkt′′ .M t′ clearly main-
tains the property. The addition of a linkt′′ .F t′ maintains
the property by Proposition 4.10. If the additional link is

t′′ .B t′, so t′′
h−→B t′ for someh, we first use Proposi-

tion 4.8 to obtain

t1

g
>>

>

MB
��

>>
>>

f
F

// t2 t3
MB

hoo

t & t′

.M

t′′
B

hoo

.M

whereupon we can use Lemma 4.9 w.r.t.t1
f−→F t2 and

t3
h−→MB t2 to obtain the desired property fort′′. 2

Definition 4.12 Let U ⊆ (P ⇒ Q). SayU0 ⊆ (P ⇒ Q)
FM -generatesU iff

U = {t′ ∈ (P ⇒ Q) | ∃t ∈ U0, t
′′. t′ .M t′′ .F t} .

Corollary 4.13 Let t ∈ (P ⇒ Q). There is a finite subset
of (P ⇒ Q) whichFM -generates↓t.

For a name sets′, thecontribution oft ats′,

Contrib(t, s′) =def {(p′, q′) | s′p′q′ . t}

is a finite element of the domain ̂(Ps′)op ×Qs′.

Proof. Supposet = spq. By Lemma 4.11, ifs′p′q′ . t,
then

s1p1q1

g
CC

CC

MB !!CC
CC

C

f
F

// s′p2q2

t & s′p′q′

.M

for suitable tuples and mapsf : s1 → s′, g : s1 →
s in I with a common source. For eachn, with 0 ≤
n ≤ |s|, choosen̄ a name set of sizen. For each name
set s1, with |s1| ≤ |s|, fix a choice of isomorphism
¯|s1| ∼= s1. In the diagram above, theMB-F -span of arrows

s1p1q1
g−→MB t ands1p1q1

f−→F s′p2q2 can be replaced

by a spann̄p̄1q̄1
ḡ−→MB t and n̄p̄1q̄1

f̄−→F s′p2q2 which
relocates the source ofg, f to a chosen name setn̄ via the
choice of isomorphism̄n ∼= s1:

n̄p̄1q̄1

ḡ
BBB

B

MB !!B
BBB

B

f̄
F

// s′p2q2

t & s′p′q′

.M

Define

U0 = {n̄p1q1 | 0 ≤ n ≤ |s| & n̄p1q1 .MB t} .

This is a finite set which clearlyFM -generates↓t.
Because↓t is .F - and.M -down-closed,Contrib(t, s′)

is a down-closed subset of(Ps′)op ×Qs′. It is generated by
the set

{(p2, q2) | ∃f̄ , n̄p1q1 ∈ U0. n̄p1q1
f̄−→F s′p2q2} .

EachQf̄(q1) is a finite element of̂Qs′. This, together with
U0 being finite, ensures thatContrib(t, s′) is a finite ele-
ment. 2

5. Linear function space

Let P and Q be type functors whereP also respects
primes. Lets0 be a name set. By Proposition 3.3,I(s0,−)⊗
P is a type functor which respects primes. Hence we can de-
fine the path order

(P (Q)s0 = (I(s0,−)⊗ P ⇒ Q) ,

and inherit many of its properties from the previous sec-
tions.

This section is devoted to the functorial action of the
function space, to the definition and properties of

(P (Q)g : (P (Q)s0 → (P (Q)s1

an arrow inLin, for g : s0 → s1 an arrow inI. Recall that

̂(P (Q)(s0) ∼= [I,Lin](I(s0,−)× P, Q)

which determines the functorial action. Regarded as a map
on natural transformations,(P (Q)g takes

α0 : I(s0,−)× P ⇒ Q

to
α1 : I(s1,−)× P ⇒ Q

with components ats ∈ I given by the commuting triangle

I(s1, s)× Ps

(−◦g)×id

��

α1
s // Qs .

I(s0, s)× Ps

α0
s

99rrrrrrrrrr

(†)

It is a routine matter to show that the mapα0 7→ α1 pre-
serves joins, but to complete the proof thatP (Q is itself
a type functor we require a more careful analysis of its func-
torial action.

The functorial action ofP (Q described above on nat-
ural transformations fixes the action of(P (Q)g on path
sets. Recall the isomorphismG between natural transfor-
mations and path sets of Theorem 4.5. From the commuting
triangle(†) we observe that

si1pq ∈ G(α1) iff si0pq ∈ G(α0) & i0 = i1 ◦ g ,

which is simply a rephrasing of the fact that

q ∈ α1
s(i1, p) iff q ∈ α0

s(i0, p) & i0 = i1 ◦ g .

So forg : s0 → s1 an arrow inI, we define

(P (Q)g(U) = {si1pq | i1 : s1 → s & s(i1g)pq ∈ U} ,

for any U ∈ ̂(P (Q)s0. Note that ifs(i1g)pq ∈ (P (
Q)s0, thensi1pq ∈ (P (Q)s1. This is because the feasi-
bility of si1pq ats1 follows from the feasibility ofs(i1g)pq
at s1. This is seen by considering the commuting trian-
gle (†) above defining the action of(P (Q)g on natu-
ral transformations, taking a natural transformationα0 to a
natural transformationα1. Clearly if q ∈ α1

s(i1g, p), then
q ∈ α0

s(i1, p).
We can understand the effect of(P (Q)g on a path set

U as an inverse image with respect to a partial functionFg:

(P (Q)g(U) = (Fg)−1U

where
Fg : (P (Q)s1 ⇀ (P (Q)s0

is the partial function takingsi1pq to s(i1g)pq provided
s(i1g)pq ∈ (P (Q)s0, and undefined otherwise—in the

case wheres(i1g)pq is not feasible ats0. This has two
immediate consequences. The first thatP (Q respects
nonempty meets is essential for being a type functor. The
second is a useful characterisation of themin-partial func-
tion for maps(P (Q)g.

Proposition 5.1 For g an arrrow in I, the function(P (
Q)g preserves non-empty meets.

Proof. From the general fact that inverse image of a partial
function preserves nonempty intersections. 2

Proposition 5.2 Let g be an arrrow inI. If min((P (
Q)g, si1pq) is defined, then

min((P (Q)g, si1pq) = ↓s(i1g)pq .

Proof. Clear from the definition of(P (Q)g. 2

Given an arrowg : s0 → s1 in I, an order relation,
whether it be.B,.F ,.M or ., in (P (Q)s1 projects un-
derFg to the corresponding order relation in(P (Q)s0.
The order. in (P (Q)s0 is generally more refined than
the image of that in(P (Q)s1.

6. Function space is a type functor

Let P andQ be type functors whereP respects primes.
The main result of this section is:

Theorem 6.1 The functorP (Q is a type functor.

We have already seen thatP (Q respects meets
(Proposition 5.1), so to prove this theorem it remains to
show that finites and pullbacks are respected.

6.1. Function space respects finites

In ‘bounding’ the images of finite elements we’ll make
use of Leifer and Milner’s relative pushouts [7]:

Proposition 6.2 A relative pushout (rpo)for arrowsg1, g2

relative to f1, f2, where f1 ◦ g1 = f2 ◦ g2, comprises
arrows h1, h2, h such thath1 ◦ g1 = h2 ◦ g2 andf1 =
h ◦ h1 andf2 = h ◦ h2

s0

g2 ??����

g1 ��
??

?

s2

h2 ��

f2

**UUUUUUUUUUU

s1

h1

??

f1

55jjjjjjjjjjj

s′′ h // s′ ,

with the universal property that for any arrowsh′1, h
′
2, h

′

such thath′1 ◦ g1 = h′2 ◦ g2 andf1 = h′ ◦ h′1 andf2 =

h′ ◦ h′2 there is a unique arrowu such thath = h′ ◦ u and
h′1 = u ◦ h1 andh′2 = u ◦ h2.

Above, h1, h2, id is itself an rpo for the commuting
square g1, g2 relative to h1, h2 called an idem pushout
(ipo).

Any commuting square inI has an rpo. Any pair of ar-
rows g1, g2 in I with a common source have only finitely
many ipos to within isomorphism.

Proof. The basic facts about rpos can be found in [7]. In
particular, by universality, an rpo is determined to within
isomorphism. The existence of rpos inI for g1, g2 relative
to f1, f2, as in the diagram above, follows bye.g. taking
s′′ to be the union of the images ofs1 and s2 in s′, and
h to be the inclusion map. Clearly, there are only finitely
many ways in which images ofs1 ands2 can overlap when
varying f1, f2. It follows that there are only finitely many
ipos forg1, g2, to within isomorphism. 2

Lemma 6.3 Letg : s0 → s1. Assume

si0pq
f−→F s′(fi0)p′q′ in (P (Q)s0 and

s′i′1p
′q′ ∈ (P (Q)g(s′(fi0)p′q′) .

As i′1g = fi0, there are arrowsg′ : s → s′′, i1 : s1 → s′′

andf ′ : s′′ → s′ forming an rpo ofi0, g relative tof, i′1 in
I. Thenmin(Qf ′, q′) is defined, and writingp′′ = Pg′(p)
andq′′ = min(Qf ′, q′),

si0pq
g′

−→F s′′(i1g)p′′q′′ in (P (Q)s0 and

s′′i1p
′′q′′

f ′

−→F s′i′1p
′q′ in (P (Q)s1 :

si0pq
f

F

//

g′

F %%

s′(fi0)p′q′

s′′(i1g)p′′q′′

f ′ F

77

s′i′1p
′q′

(P(Q)g

s′′i1p
′′q′′

(P(Q)g
f ′ F

77

Proof. The initial assumption of the lemma entails that the
following diagram inI commutes

s0

g

��

i0 // s
f

// s′

s1

i′1

77oooooooooooooo

as well as thatp ∈ Ps, q ∈ Qs, p′ ∈ Ps′, q′ ∈ Qs′ with
p′ = Pf(p) andq′ ∈ Qf(q).

Forming the rpo we obtain the diagram

s0

g

��

i0 // s
f

//

g′

��

s′

s1
i1

//
i′1nnn

77nnnnnnnnnnn

s′′
f ′

??~~~~~~~

in which all subdiagrams commute.
We write p′′ = Pg′(p) and q′′ = min(Qf ′, q′)—the

latter is defined asq′ ∈ Qf(q) and f ′g′ = f . Then
p′ = Pf ′(p′′), again asf ′g′ = f . So we get

si0pq
g′

−→F s′′(i1g)p′′q′′ in (P (Q)s0 ,

usingg′i0 = i1g and the minimality property ofq′′, and

s′′i1p
′′q′′

f ′

−→F s′i′1p
′q′ in (P (Q)s1 ,

usingi′1 = f ′i1 andq′ ∈ Qf ′(q′′). 2

Corollary 6.4 The functorP (Q respects finites.

Proof. Let g : s0 → s1 in I. Given a prime element
in the domain(P (Q)s0, Lemma 6.3 allows us to pro-
duce a finite set which generates the prime’s image under
(P (Q)g. Let ↓t be a prime in(P (Q)s0. By Corol-
lary 4.13, there is a finite subsetU0 of (P (Q)s0 which
FM -generates↓t. The tuples inU0 have the formsipq and
involve only finitely many name setss, so bounded by a
maximum sizeN . For each such name sets to within iso-
morphism there are finitely many ipo’s

s0

g

��

i0 // s

g′

��
s1

i1
// s′′ .

In such an ipo the name sets′′ can have size at mostN+|s1|.
Let n̄ be a choice of name set for eachn ≤ N + |s1|.

Recall from Corollary 4.13, thatContrib(t, s′′) is a fi-

nite element of ̂(I(s0, s′′)× Ps′′)op ×Qs′′. So there is a
finite subsetContrib0(t, s′′) generatingContrib(t, s′′)—
i.e.of which the downclosure in(I(s0, s

′′)× Ps′′)op×Qs′′

is Contrib(t, s′′). Define

Gen =
⋃

n≤N+|s1|

{n̄i′′p′′q′′ | i′′p′′q′′ ∈ Contrib0(t, n̄)} ,

which is clearly a finite set.
By Lemma 6.3, the image(P (Q)g(t) is FM -

generated by the set(Fg)−1Gen. Recall the partial func-
tion Fg such that(P (Q)g = (Fg)−1; when defined
(Fg)(s′′i1p′′q′′) = s′′(i1g)p′′q′′—see Section 5. Conse-
quently((Fg)−1Gen is finite and generates(P (Q)g(t),
which is therefore a finite element of ̂(P (Q)s1. 2

6.2. Function space respects pullbacks

Lemma 6.5 The functorP (Q respects pullbacks.

Proof. Assume a pullback square

s0

h1 ??��

h2
��

??

s1 g1
��

??

s2
g2

??��
s3

in I. Supposes′1i1pq ∈ (P (Q)s1, soi1 : s1 → s′1 in I,
has the following property: lettingx1 = ↓s′1i1pq, a prime

element of ̂(P (Q)s1, andx3 = ((P (Q)g1)(x1) there

is x2 = min((P (Q)g2, x3) ∈ ̂(P (Q)s2. We shall

show thatx0 = ↓s′1(i1h1)pq is an element of ̂(P (Q)s0

which meets the requirements for the function space to re-
spect pullbacks,viz.

(1) x0 = min((P (Q)h1, x1) and

(2) ((P (Q)h2)(x0) = x2 .

(1) The existence ofx0 presupposes thats′1(i1h1)pq ∈
(P (Q)s0. So we must check thats′1(i1h1)pq is feasi-
ble. Onces′1(i1h1)pq is known to be feasible, it will follow
directly from Proposition 5.2 thatx0 is the minimum input
yieldingx1.

In order to show thats′1(i1h1)pq is feasible, suppose that
arrowsi0 : s0 → s′0 andh′1 : s′0 → s′1 in I andp′ ∈ Ps′0
satisfy

i1h1 = h′1i0 & p ≤ (Ph′1)p
′ .

We need to exhibitq0 ∈ Qs′0 such thatq ∈ (Qh′1)q0.
The arrows introduced so far form a diagram inI, con-

sisting of the solid arrows below, in which the two solid
squares commute:

s′
1

g′
1

��

s′
3

s1
i1

..̂^^^^^

g1

��
??

??
??

??
??

s3
i3

..s′
0

h′
1

??��������

h′
2

��

s′
2

g′
2

??

s0

h1

??���������

i0
..̂^^^^^

h2

��
??

??
??

??
??

s2

g2

??���������

i2
..

Taking advantage of the special nature ofI, we have com-
pleted the diagram (the dotted arrows) to one in which all
squares commute ands′0, h

′
1, h

′
2 is a pullback.

Let q3 be an arbitrary path in the imageQg′1(q). Letp3 =
(Pg′1)(p). As

s′3(i3g1)p3q3 = s′3(g
′
1i1)p3q3 .F s′1i1pq ,

the image ofx1 under(P (Q)g1 containss′3i3p3q3. Thus
s′3i3p3q3 ∈ x3. By assumption,min((P (Q)g2, x3) ex-
ists. Hencemin((P (Q)g2, s

′
3i3p3q3) exists, and has to

be the prime generated bys′3(i3g2)p3q3 ∈ (P (Q)s2.
Now we use the feasibility of the tuples′3(i3g2)p3q3: let-
ting p2 = (Ph′2)(p

′) in Ps′2 and observing thatg′2i2 = i3g2,
there must existq2 = min(Qg′2, q3).

But q3 was an arbitrary path in the imageQg′1(q),
so min(Qg′2, Qg′1(q)) exists. Now asQ respects pull-
backs, there must existq0 such that in particularq0 =
min(Qh′1, q). A fortiori q ∈ (Qh′1)q0.

(2) It suffices to show that((P (Q)h2)(x0) ⊆ x2.
We first characterise certain tupless′2i2p2q2 ∈ ((P (

Q)h2)(x0) sufficient to generate((P (Q)h2)(x0).
Recall thatx0 = ↓s′1(i1h1)pq. By Lemma 4.11, any tu-

ple inx0 is .M -below somes′2(h
′
2i0)p2q2 such that

s′0i0p0q0
h′
2−→F s′2(h

′
2i0)p2q2 and

s′0i0p0q0
h′
1−→MB s′1(i1h1)pq in (P (Q)s0

for suitable tuples and arrowsh′1 : s′0 → s′1, h′2 : s′0 → s′2
in I. Consequently images of such tupless′2(h

′
2i0)p2q2 un-

der (P (Q)h2 generate((P (Q)h2)(x0). If i2 :
s2 → s′2 is an arrow inI for which i2h2 = h′2i0, then
s′2i2p2q2 ∈ ((P (Q)h2)(s′2(h

′
2i0)p2q2). The image

((P (Q)h2)(x0) is generated by tupless′2i2p2q2 obtained
in such a way. Without loss of generality we can assume
thatq2 is maximal in the finite elementQh′2(q0).

Thus it is suffices to show that every such tuples′2i2p2q2,
obtained as above withq2 maximal inQh′2(q0), is in x2.

It is helpful to summarise the name sets and maps as the
solid arrows in the following diagram inI:

s′
1

g′
1

��

s′
3

s1
i1

..̂^^^^^

g1

��
??

??
??

??
??

s3
i3

..s′
0

h′
1

??��������

h′
2

��
??

??
??

??
?

s′
2

g′
2

??

s0

h1

??���������

i0
..̂^^^^^

h2

��
??

??
??

??
??

s2

g2

??���������

i2
..̂^^^^^

We have filled out the diagram to one where all squares
commute ands′0, h

′
1, h

′
2 is a pullback.

Definep′ = Ph′1(p0), sop ≤ p′, andp3 = Pg′1(p
′), so

p3 = Pg′2(p2).
We first show the existence ofq3 ∈ Qg′1(q) such that

q2 = min(Qg′2, q3) .

As Q respects pullbacks,

Qh′2(q0) = min(Qg′2, Qg′1(q)) .

It follows that there existsq3 ∈ Qg′1(q) such that

q2 ≤ min(Qg′2, q3) .

But q2 is maximal inQh′2(q0). So the converse order also
holds, yielding the required equalityq2 = min(Qg′2, q3).

Now observe that

s′3(i3g1)p3q3 = s′3(g
′
1i1)p3q3 .F s′1i1p

′q ∈ x1 .

Thus
s′3i3p3q3 ∈ x3 ,

the image ofx1 under(P (Q)g1.
By assumptionmin((P (Q)g2, x3) = x2. So

min((P (Q)g2, s
′
3i3p3q3) must be defined and equal to

s′3(i3g2)p3q3. Therefores′3(i3g2)p3q3 ∈ x2. But

s′2i2p2q2 .B s′3(g
′
2i2)p3q3 = s′3(i3g2)p3q3 ,

from which we obtains′2i2p2q2 ∈ x2, as required. 2

6.3. The defining adjunction

To conclude it only remains to check the required ad-
junction for the linear function space:

Theorem 6.6 Let P be a type functor which respects
primes. Then,

[I,Lin](R, P (Q) ∼= [I,Lin](R⊗ P, Q) ,

natural in type functorsR andQ.

Proof. We can now identify path sets in ̂(P (Q)s with
natural transformations from(I(s,−) ⊗ P to Q. The iso-
morphismθ takesα : R ⇒ (P (Q) to θα : R ⊗ P ⇒ Q
such that(θα)s(r, p) = (αsr)s(ids, p), for all r ∈ Rs and
p ∈ Ps. Its inverseϕ, taking β : R ⊗ P ⇒ Q to φβ :
R ⇒ (P (Q), is defined to satisfy((ϕβ)s0r)s(f, p) =
βs(((Rf)r) ⊗ p), for all r ∈ Rs0, f : s0 → s in I and
p ∈ Ps. These can now be checked to give an isomorphism
natural in type functorsR andQ. 2

Concluding remarks

The explicit description of paths of the function space
paves the way for proofs of adequacy and full abstraction
for higher-order process languages like new-HOPLA, par-
alleling the proofs for HOPLA [9]. The construction of
the path orders for function space should guide us towards
analogous constructions for analogues ofLin such as the

bicategory of profunctors, or the biequivalent 2-category
Cont, which has colimit-preserving functors between pre-
sheaf categories as arrows [2]—this would solve the lim-
itation acknowledged in [1]. While it is not likely to help
proofs of adequacy and full abstraction, one could hope for
a more conceptually satisfying method to adjoin name gen-
eration to a domain theory,e.g. by defining the category
of domains internally within some topos like nominal sets
which copes with name generation in a global fashion [4].
The ‘obvious’ approach of definingLin internally in nomi-
nal sets only yields prime respecting type functors however,
ande.g.N (Q from Example 2.1 does not respect primes.

Acknowledgements

Thanks to Marcelo Fiore, Matthew Hennessy, Martin
Hyland, Andy Pitts, Sam Staton, Dave Turner, Francesco
Zappa Nardelli for advice and encouragement.

References

[1] G. L. Cattani, I. Stark and G. Winskel. Presheaf mod-
els for theπ-calculus. InProc. CTCS’97, 1997.

[2] G. L. Cattani and G. Winskel. Profunctors, open maps
and bisimulation. Accepted by MSCS, 2004. Avail-
able from http://www.cl.cam.ac.uk/ gw104/.

[3] M. Fiore, E. Moggi and D. Sangiorge. A fully-abstract
model for theπ-calculus. LICS 1996.

[4] M.J. Gabbay and A.M. Pitts. A new approach to ab-
stract syntax involving binders. LICS, 1999.

[5] J.-Y. Girard. Linear logic.Theoretical Computer Sci-
ence, 50(1):1–102, 1987.

[6] M. Hennessy. A fully abstract denotational seman-
tics for the pi-calculus.Tneoretical Computer Science:
53–89, 2001.

[7] J.J. Leifer and R. Milner. Deriving bisimulation con-
gruences for reactive systems. CONCUR, 2000.

[8] M. Nielsen, G. Plotkin and G. Winskel. Petri nets,
event structures and domains, part I.Theoretical Com-
puter Science, 13(1):85–108, 1981.

[9] M. Nygaard and G. Winskel. Domain theory for con-
currency. Theoretical Computer Science316: 153–
190, 2004.

[10] I. Stark. A fully-abstract domain model for theπ-
calculus. LICS 1996.

[11] G. Winskel and F. Zappa Nardelli. New-HOPLA: a
higher order process language with name generation.
TCS2004.

Appendix

Proof of Proposition 3.2:
(i) For f : s → s′ in I, consider the pullback square

s

id ??���

id
��

???

s f
��

??

s f

??���
s′

The fact thatmin(Qf, Qf(x)) = x now follows as a
special case of the pullback respecting property (withx1

set tox).

(ii) This follows as the special case of (i), whenx = ↓q as
min preserves joins in its second argument.

(iii) Let f : s → s′ in I. SupposeQf(x) ⊆ Qf(y), for
x, y ∈ Q̂s . Then

x = min(Qf, Qf(x)) ⊆ min(Qf, Qf(y)) = y ,

showingf is an order monic.

(iv) To show type functors preserve pullbacks we first

show that with respect to a pullback squares0

h1 ??��

h2
��

??

s1 g1
��

??

s2
g2

??��
s3

in I, that assumingQg1(x1) = Qg2(x2), for x1 ∈ Q̂s1,
x2 ∈ Q̂s2, there then exists a uniquex0 ∈ Q̂s0 such
that x1 = Qh1(x0) and x2 = Qh2(x0). Write x3 for
Qg1(x1) = Qg2(x2). Thenx2 = min(Qg2, x3). As Q re-
spects pullbacks, we deduce the existence ofx0 ∈ Q̂s0 such
thatx0 = min(Qh1, x1) andx2 = Qh2(x0). Similarly, as
x1 = min(Qg1, x3), we deduce the existence ofx′0 ∈ Q̂s0

such thatx′0 = min(Qh2, x2) and x1 = Qh1(x′0). But
by the minimality propertiesx0 ⊆ x′0 and x′0 ⊆ x0, so
x0 = x′0. Hencex1 = Qh1(x0) andx2 = Qh2(x0), as
required.

Assume arrowsl1 : P → Qs1 and l2 : P → Qs2

in Lin for which (Qg1) ◦ l1 = (Qg2) ◦ l2. Let p ∈ P.
Then clearlyQg1(l1(p)) = Qg2(l2(p)). Thus there exists
a uniquex0 ∈ Q̂s0 such thatl1(p) = Qh1(x0) and
l2(p) = Qh2(x0). Thus to eachp ∈ P we can associate
an x0 ∈ Q̂s0. Moreover, it is easy to check that this
association is monotonic inp. Letting p ≤ p′, analo-
gously we obtainx′0 such thatl1(p′) = Qh1(x′0) and
l2(p′) = Qh2(x′0). As l1(p) ≤ l1(p′), this in particular
yields Qh1(x0) ≤ Qh1(x′0), whencex0 ⊆ x′0, asQh1 is
an order monic. Thus we have determined a unique arrow
h : P → Qs0 in Lin for which l1 = (Qh1) ◦ h and
l2 = (Qh2) ◦ h. 2

Proof of Proposition 3.3:
Forf an arrow inI, the functorial actionI(s0, f) = f ◦

is an injection from primes to primes, so preserves primes
and nonempty meets. The remaining property required for
I(s0,) to be a type functor,viz.I(s0,) respects pullbacks,
follows straightforwardly from the properties of pullbacks.

It is easily checked that⊗ preserves the properties of
type functors, and results in a prime-respecting functor if
both components respect primes.

Because the finite elements of̂Qs become the primes
of !̂Qs, we see thatQ being a type functor, so respecting
finites, ensures that!Q respects primes. Forf : s → s′

an arrow inI, the functionQf : Q̂s → Q̂s′ is injective (by
Proposition 3.2 (iii)), so!Qf preserves nonempty meets. By
the earlier remarks, it sufficient to check the condition that
!Q respects pullbacks forx1 a prime, but then that!Q re-
spects pullbacks reduces toQ respecting pullbacks. 2

