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Abstract. In the simplest form of event structure, a prime event struc-
ture, an event is associated with a unique causal history, its prime cause.
However, it is quite common for an event to have disjunctive causes in
that it can be enabled by any one of multiple sets of causes. Sometimes
the sets of causes may be mutually exclusive, inconsistent one with an-
other, and sometimes not, in which case they coexist consistently and
constitute parallel causes of the event. The established model of gen-
eral event structures can model parallel causes. On occasion however
such a model abstracts too far away from the precise causal histories of
events to be directly useful. For example, sometimes one needs to asso-
ciate probabilities with different, possibly coexisting, causal histories of
a common event. Ideally, the causal histories of a general event struc-
ture would correspond to the configurations of its causal unfolding to a
prime event structure; and the causal unfolding would arise as a right
adjoint to the embedding of prime in general event structures. But there
is no such adjunction. However, a slight extension of prime event struc-
tures remedies this defect and provides a causal unfolding as a universal
construction. Prime event structures are extended with an equivalence
relation in order to dissociate the two roles, that of an event and its
enabling; in effect, prime causes are labelled by a disjunctive event, the
equivalence class of its prime causes. With this enrichment a suitable
causal unfolding appears as a pseudo right adjoint. The adjunction relies
critically on the central and subtle notion of extremal causal realisation
as an embodiment of causal history.

1 Introduction

Work on probabilistic distributed strategies based on event structures brought
us face to face with a limitation in existing models of concurrent computation,
and in particular with the theory of event structures as it had been developed.
In order to adequately express certain intuitively natural optimal probabilis-
tic strategies, it was necessary to simultaneously support: probability on event
structures with opponent moves, itself rather subtle; parallel causes, in which an
event may be enabled in several distinct but compatible ways; and a hiding op-
eration crucial in the composition of strategies. The difficulties did not show up
in the less refined development of nondeterministic strategies; there the simplest
form of event structure, prime event structures, sufficed. The “obvious” remedy,
to base strategies on more general event structures, which do support parallel
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causes, failed to support probability and hiding adequately. The problems and
a solution are documented in a recent article [3].

That work uncovered a central construction, what we here call the causal
unfolding of a model with parallel causes. It is based on the notion of extremal
causal realisation and attendant extremal prime realisation which plays a role
analogous to that of complete prime in distributive orders. Both concepts de-
serve to be better known and are expanded on comprehensively with full proofs
here. Intuitively, an extremal prime realisation is a finite partial order express-
ing a minimal causal history for an event to occur, even in the presence of
several parallel causes for the event. Extremal realisations provide us with a
way to unfold a model supporting parallel causes (general event structures—
Section 2.2, or equivalence families—Section 3) into a structure describing all its
causal histories—its causal unfolding. As is to be hoped, the unfolding will be
a form of right adjoint giving the causal unfolding and extremal realisations a
categorical significance.3

The new adjunction, with its right adjoint the causal unfolding, supplies a
missing link in the landscape of models for concurrency [12], connecting models
with parallel causes to those based on partial orders of events. In systems with
parallel causes it is often necessary to associate probabilities with causal histo-
ries, and the causal unfolding provides a suitable structure on which to do this
systematically [3]. Outside probability, there is a similar need for causal unfold-
ings, for example, when reversible computing encounters parallel causes [1, 4],
and in extracting biochemical pathways, forms of causal history in biochemical
systems where parallel causes are rife [2].

2 Event structures and their maps

We briefly review two well-established forms of event structure and explain the
absence of an adjunction associated with the embedding of prime into general
event structures. It is through such an adjunction one might otherwise have
thought to find a causal unfolding of general event structures to prime event
structures. The absence motivates a new model.

2.1 Prime event structures

The causal unfolding essentially produces a prime event structure as the un-
folding. A prime event structure comprises (E,≤,Con), consisting of a set E of
events which are partially ordered by ≤, the causal dependency relation, and a
nonempty consistency relation Con consisting of finite subsets of E. The rela-
tion e′ ≤ e expresses that event e causally depends on the previous occurrence
of event e′. Write [X] for the ≤-down-closure of a subset of events X. That a

3 A forewarning: only in very special circumstances do extremal prime realisations co-
incide with complete irreducibles, a customary generalisation of complete primes
to the nondistributive orders such as those of configurations of general event
structures—see Example 2.
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finite subset of events is consistent conveys that its events can occur together by
some stage in the evolution of the process. Together the relations satisfy several
axioms:

[e] = {e′ | e′ ≤ e} is finite, for all e ∈ E,
{e} ∈ Con, for all e ∈ E,
X ⊆ Y ∈ Con =⇒ X ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

A configuration is a, possibly infinite, set of events x ⊆ E which is: consistent,
X ⊆ x and X is finite implies X ∈ Con ; and down-closed, [x] = x. It is part
and parcel of prime event structures that an event e is associated with a unique
causal history [e].

2.2 General event structures

A general event structure [10, 11] permits an event to be caused disjunctively
in several ways, possibly coexisting in parallel, as parallel causes. A general
event structure comprises (E,Con,`) where E is a set of event occurrences, the
consistency relation Con is a non-empty collection of finite subsets of E, and the
enabling relation ` is a relation in Con× E such that

X ⊆ Y ∈ Con =⇒ X ∈ Con , and
Y ∈ Con & Y ⊇ X & X ` e =⇒ Y ` e .

A configuration is a subset x of E which is: consistent, X ⊆fin x =⇒ X ∈ Con;
and secured, ∀e ∈ x∃e1, · · · , en ∈ x. en = e & ∀i ≤ n.{e1, · · · , ei−1} ` ei . We
write C∞(E) for the configurations of E and C(E) for its finite configurations.

An event e being enabled in a configuration has been expressed through the
existence of a securing chain e1, · · · , en, with en = e, within the configuration.
The chain represents a complete enabling of e in the sense that every event in
the chain is itself enabled by earlier members of the chain. Just as mathemat-
ical proofs need not be sequences, so later complete enablings expressed more
generally as partial orders—“causal realisations”—will play a central role.

A map f : (E,Con,`)→ (E′,Con′,`′) of general event structures is a partial
function f : E ⇀ E′ such that

∀X ∈ Con . fX ∈ Con′ ,

∀e1, e2 ∈ X ∈ Con. f(e1) = f(e2) =⇒ e1 = e2 , and

X ` e & f(e) is defined =⇒ fX `′ f(e) .

Maps compose as partial functions. Write G for the category of general event
structures.

We can characterise those families of configurations arising from a general
event structure [11]. W.r.t. a family of subsets F , a subset X of F is compatible
(in F), written X ↑, if there is y ∈ F such that x ⊆ y for all x ∈ X; we write
x ↑ y for {x, y} ↑. Say a subset is finitely compatible iff every finite subset is
compatible.
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A family of configurations comprises a family F of sets such that if X ⊆ F
is finitely compatible in F then

⋃
X ∈ F ; and if e ∈ x ∈ F there is a securing

chain e1, · · · , en = e in x such that {e1, · · · , ei} ∈ F for all i ≤ n.4 Its events are
elements of the underlying set

⋃
F . A map between families of configurations

from A to B is a partial function f :
⋃
A⇀

⋃
B between their events such that

fx ∈ B if x ∈ A and any event of fx arises as the image of a unique event of x.
Maps compose as partial functions.

2.3 A coreflection and non-coreflection

There is a forgetful functor taking a general event structure to its family of
configurations. It has a left adjoint, which constructs a canonical general event
structure from a family: given A, a family of configurations with underlying
events A, construct a general event structure (A,Con,`) with X ∈ Con iff
X ⊆fin y, for some y ∈ A; and with X ` a iff a ∈ A, X ∈ Con and a ∈ y ⊆
X ∪ {a}, for some y ∈ A.

The above yields a coreflection5 of families of configurations in general event
structures. It cuts down to an equivalence between families of configurations and
replete general event structures. A general event structure (E,Con,`) is replete
iff

∀e ∈ E ∃X ∈ Con. X ` e , ∀X ∈ Con∃x ∈ C(E). X ⊆ x and

X ` e =⇒ ∃x ∈ C(E). e ∈ x & x ⊆ X ∪ {e} .

A map of prime event structures is a map of their families of configurations.
(A map need not preserve causal dependency; when it does and is total it is
called rigid.) There is an obvious “inclusion” functor from the category of prime
event structures into the category of families of configurations. We might ex-
pect this to form a coreflection, with right adjoint unfolding a (replete) general
event structure to a prime event structure [11, 12]. However under reasonable
assumptions this cannot exist, as the following example indicates.

Example 1. Consider a general event structure comprising three events a, b and
d with all subsets consistent and minimal enablings ∅ ` a, b and {a} ` d and
{b} ` d. Imagine concurrent treatments a and b of two doctors which sadly lead to

the death d of the patient. d

OR

a

0 44<

b


aaj

As its unfolding it is hard to avoid a prime event structure with events and
causal dependency a < da and b < db—the event da representing “death by a”
and the event db “death by b”—with the counit of the adjunction collapsing da
and db to the common event d. (If we are to apportion blame to the doctors
we shall need the probabilities of da and db given a and b [8].) In order for the

4 The latter condition is equivalent to: (i) if e ∈ x ∈ F there is a finite x0 ∈ F s.t. e ∈
x0 ∈ F and (ii) for distinct e, e′ ∈ x, there is y ∈ F with y ⊆ x s.t. e ∈ y ⇐⇒ e′ 6= y.

5 A coreflection is an adjunction where the left adjoint is full and faithful, or equiva-
lently the unit is iso.
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counit to be a map we are forced to make {da, db} inconsistent. This is one
issue: why should death by one doctor’s treatment be in conflict with death by
the other’s—they could be jointly responsible. But even more damningly the
tentative counit fails the universal property required of it! Consider another
prime event structure with three events comprising a < d and b < d (“death due
to both doctors’ treatments”). The obvious map to the family of configurations
of the general event structure—the identity on events—fails to factor uniquely
through the putative counit: d can be sent to either da or db; the event “death
by both doctors” can be sent to either “death by a” or “death by b.” This raises
the second issue: if we are to obtain the required universal property we have to
regard these two maps as essentially the same. 2

The two issues raised in the example suggest a common solution: to enrich
prime event structures with equivalence relations. This will allow a broader class
of maps, settling the first issue, and introduce an equivalence on maps, settling
the second. The causal unfolding of the “doctors example” will be very simple
and comprise the prime event structure a < da and b < db with da and db
equivalent events; with all events consistent. The construction of the unfolding
in general is surprisingly involved; causal histories can be much more intricate
than in the simple example.

3 Events with an equivalence, categories E≡ and Fam≡

We build causal unfoldings in a new model, based on the obvious extension to
events with an equivalence relation. An event structure with equivalence (an ese)
is a structure

(P,≤,Con,≡)

where (P,≤,Con) satisfies the axioms of a prime event structure and ≡ is an
equivalence relation on P . The intention is that the events of P represent prime
causes while the ≡-equivalence classes of P represent disjunctive events: p in P
is a prime cause of the event {p}≡. Notice there may be several prime causes of
the same event and that these may be parallel causes in the sense that they are
consistent with each other and causally independent.

The extension by an equivalence relation on events is accompanied by an
extension to families of configurations. An equivalence-family (ef) is a family of
configurations A with an equivalence relation ≡A on its underlying set A =def⋃
A (with no further axioms). Equivalence-families are the most general model

we shall consider; they support parallel causes and, later, a causal unfolding.

Let (A,≡A) and (B,≡B) be ef’s, with respective underlying sets A and B.
A map f : (A,≡A) → (B,≡B) is a partial function f : A ⇀ B which preserves
≡, if a1 ≡A a2 then either both f(a1) and f(a2) are undefined or both defined
with f(a1) ≡B f(a2), such that

x ∈ A =⇒ fx ∈ B & ∀a1, a2 ∈ x. f(a1) ≡B f(a2) =⇒ a1 ≡A a2 .
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Composition is composition of partial functions. We regard two maps

f1, f2 : (A,≡A)→ (B,≡B)

as equivalent, and write f1 ≡ f2, iff they are equidefined and yield equivalent
results, i.e. if f1(p) is defined then so is f2(p) and f1(p) ≡Q f2(p), and if f2(p)
is defined then so is f1(p) and f1(p) ≡Q f2(p). Composition respects ≡. This
yields a category of equivalence families Fam≡; it is enriched in the category of
sets with equivalence relations (also called setoids).6

Clearly from an ese (P,≡P ) we obtain an ef (C∞(P ),≡P ) and we take a map
of ese’s to be a map between their associated ef’s. Write E≡ for the category
of ese’s; it too is enriched in the category of sets with equivalence relations.
When the equivalence relation ≡ of an ese is the identity we essentially have
prime event structures and their maps. One virtue of ese’s is that they support
a hiding operation, associated with a factorisation system [3].

We sometimes use an alternative description of their maps:

Proposition 1 A map of ese’s from P to Q is a partial function f : P ⇀ Q
which preserves ≡ such that

(i) for all X ∈ ConP the direct image fX ∈ ConQ and
∀p1, p2 ∈ X. f(p1) ≡Q f(p2) =⇒ p1 ≡P p2 , and

(ii) whenever q ≤Q f(p) there is p′ ≤P p such that f(p′) = q .

While an ese determines an ef, the converse, how to construct the causal
unfolding of an ef to an ese, is much less clear. To do so we follow up on the idea
of Section 2.2 of basing minimal complete enablings on partial orders. A minimal
complete enabling will correspond to a prime extremal realisations. Realisations
and extremal realisations are our next topic.

4 Causal histories as extremal realisations

Extremal causal realisations formalise the notion of causal history in models
with parallel causes, viz. general event structures and the most general model
of equivalence-families. They will be the central tool in constructing the causal
unfoldings of such models.

4.1 Causal realisations

Let A be a family of configurations with underlying set A. A (causal) real-
isation of A comprises a partial order (E,≤), its carrier, such that the set
{e′ ∈ E | e′ ≤ e} is finite for all events e ∈ E, together with a function ρ : E → A
for which the image ρx ∈ A when x is a down-closed subset of E. We say a re-
alisation is injective when it is injective as a function.

6 The Appendix provides background in categories enriched in equivalence relations.
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A map between realisations (E,≤), ρ and (E′,≤′), ρ′ is a partial surjective
function f : E ⇀ E′ which preserves down-closed subsets and satisfies ρ(e) =
ρ′(f(e)) for all e ∈ E where f(e) is defined. It is convenient to write such a map
as ρ �f ρ′. Occasionally we shall write ρ � ρ′, or the converse ρ′ � ρ, to mean
there is a map of realisations from ρ to ρ′. Such a map factors into a “projection”
followed by a total map

ρ �f11 ρ0 �f22 ρ′ ,

where ρ0 stands for the realisation (E0,≤0), ρ0 where E0 = {e ∈ E | f(e) is defined}
is the domain of definition of f ; ≤0 is the restriction of ≤; f1 is the inverse rela-
tion to the inclusion E0 ⊆ E; and f2 : E0 → E′ is the total part of function f .
We are using �1 and �2 to signify the two kinds of maps. Notice that �1-maps
are reverse inclusions. Notice too that �2-maps are exactly the total maps of
realisations. Total maps ρ �f2 ρ′ are precisely those functions f from the carrier
of ρ to the carrier of ρ′ which preserve down-closed subsets and satisfy ρ = ρ′f .

4.2 Extremal realisations

Let A be a configuration family with underlying set A. We shall say a realisation
ρ is extremal when ρ �f2 ρ′ implies f is an isomorphism, for any realisation
ρ′; it is called prime extremal when it in addition has a top element, i.e. its
carrier contains an element which dominates all other elements in the carrier.
Intuitively, an extremal realisation is a most economic causal history associated
with its image, a configuration of A; it is extremal in being a realisation with
minimal causal dependencies.

Any realisation in A can be coarsened to an extremal realisation.

Lemma 1. For any realisation ρ there is an extremal realisation ρ′ with ρ �f2 ρ′.

Proof. The category of realisations with total maps has colimits of total-order
diagrams. A diagram d from a total order (I,≤) to realisations, comprises a
collection of total maps of realisations di,j : d(i) → d(j) when i ≤ j s.t. di,i is
always the identity map and if i ≤ j and j ≤ k then di,k = dj,k ◦di,j . We suppose
each realisation d(i) has carrier (Ei,≤i) with d(i) : Ei → A. We construct the
colimit realisation of the diagram as follows.

The elements of the colimit realisation consist of equivalence classes of ele-
ments of the disjoint union E =def

⊎
i∈I Ei under the equivalence

(i, ei) ∼ (j, ej) ⇐⇒ ∃k ∈ I. i ≤ k & j ≤ k & di,k(ei) = dj,k(ej) .

Consequently we may define a function ρE : E → A by taking ρE({ei}∼) =
ρi(ei). Because every di,j is a surjective function, every equivalence class in E
has a representative in Ei for every i ∈ I. Moreover, for any e ∈ E there is k ∈ I
s.t.

{e′ ∈ E | e′ ≤E e} = {{e′k}∼ | e
′
k ≤k ek} ,

where e = {ek}∼, so is finite. It follows that ρE is a realisation. The maps
fi : ρi �2 ρE , where i ∈ I, given by fi(ei) = {ei}∼ form a colimiting cone.
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Suppose ρ is a realisation. Consider all total-order diagrams d from a total
order (I,≤) to realisations starting from ρ with di,j not an isomorphism if i < j.
Amongst them, by Zorn’s lemma, there is a maximal diagram w.r.t. extension.
From the maximality of the diagram its colimit is necessarily extremal. 2

For example, as a corollary, a countable configuration of a family of configu-
rations always has an injective extremal realisation. By serialising the countable
configuration, a1 ≤ a2 ≤ · · · ≤ an ≤ · · · , where {a1, · · · , an} ∈ A for all n, we
obtain an injective realisation ρ. By Lemma 1 we can coarsen ρ to an extremal
realisation ρ′ with ρ �f2 ρ′. As ρ = ρ′f the surjective function f is also injective,
so a bijection, ensuring that the extremal realisation ρ′ is injective.

The following rather technical lemma and corollary are crucial.

Lemma 2. Assume (R,≤), ρ, (R0,≤0), ρ0 and (R1,≤1), ρ1 are realisations.

(i) Suppose f : ρ �f11 ρ0 �f22 ρ1. Then there are maps so that f : ρ �g22 ρ′ �g11 ρ1:

ρ

f1

��

g2 // ρ′

g1

��
ρ0

f2 // ρ1

(ii) Suppose ρ �f11 ρ0 where R0 is not a down-closed subset of R. Then there are
maps so f1 = ρ �g22 ρ′ �g11 ρ0 with g2 not an isomorphism:

ρ

f1

��

g2 // ρ′

g1
��

ρ0

Proof. (i) Construct the realisation (R′,≤′), ρ′ as follows. Define

R′ = (R \R0) ∪R1

where w.l.o.g. we assume the sets R\R0 and R1 are disjoint. Define g2 : R→ R′

to act as the identity on elements of R \R0 and as f2 on elements of R0.
When b ∈ R \R0, define

a ≤′ b iff ∃a0 ∈ R. a0 ≤ b & g2(a0) = a .

When b ∈ R1, define
a ≤′ b iff a ∈ R1 & a ≤1 b .

To see ≤′ is a partial order observe that reflexivity and antisymmetry follow
directly from the corresponding properties of ≤ and ≤1. Transitivity requires an
argument by cases. For example, in the most involved case, where

c ≤′ a with a ∈ R1 and a ≤′ b with b ∈ R \R0
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we obtain

c ≤1 a and a0 ≤ b

for some a0 ∈ R0 with f2(a0) = a. As f2 is surjective and preserves down-closed
subsets,

c0 ≤0 a0 and a0 ≤ b

for some c0,∈ R0 with f2(c0) = c. Consequently, c0 ≤ b with g2(c0) = c, making
c ≤′ b, as required for transitivity.

Define ρ′ to act as ρ on elements of R\R0 and as ρ1 on elements of R1. Then
ρ = ρ′g2 directly. We check ρ′ preserves down-closed subsets, so is a realisation.
Let b ∈ R′. If b ∈ R1 then ρ′[b]′ = ρ1[b]1 ∈ C(A). If b ∈ R \ R0 then ρ′[b]′ =
ρg2[b] the image under ρ of the down-closed subset g2[b], so in C(A). Because
f2 preserves down-closed subsets so does g2. We already have ρ = ρ′g2, making
g2 a map of realisations ρ �g22 ρ′. Define g1 : R′ ⇀ R1 to be the reverse of
the inclusion R1 ⊆ R′. Because ρ1 is the restriction of ρ′ to R1, g1 is a map of
realisations ρ′ �g11 ρ1. By construction f = g1g2.
(ii) This follows from the construction of (R′ ≤′), ρ′ used in (i) but in the special
case where f2 is the identity map (with R0 = R1). Then R′ = R but ≤′ 6=≤ as
there is e ∈ R0 with [e]0 ( [e] ensuring that [e]′ = [e]0 6= [e]. 2

Corollary 1. If ρ is extremal and ρ �f ρ′, then ρ′ is extremal and there is ρ0

s.t. f : ρ �1 ρ0
∼= ρ′. Moreover, the carrier R0 of ρ0 is a down-closed subset of

the carrier R of ρ, with order the restriction of that on R.

Proof. Directly from Lemma 2. Assume ρ is extremal and ρ �f ρ′. We can
factor f into ρ �f11 ρ0 �f22 ρ′. From (i), if ρ0 were not extremal nor would ρ
be—a contradiction; hence f2 is an isomorphism. From (ii), the carrier R0 of
ρ0 has to be a down-closed subset of the carrier R of ρ, as otherwise we would
contradict the extremality of ρ. 2

It follows that if ρ is extremal and ρ �f ρ′ then ρ′ is extremal and the inverse
relation g =def f

−1 is an injective function preserving and reflecting down-closed
subsets, i.e. g[r′] = [g(r′)] for all r′ ∈ R′. In other words:

Corollary 2. If ρ is extremal and ρ �f ρ′, then ρ′ is extremal and the inverse
g =def f

−1 is a rigid embedding from the carrier of ρ′ to the carrier of ρ such
that ρ′ = ρf .

Lemma 3. Let (R,≤), ρ be an extremal realisation. Then

(i) if r′ ≤ r and ρ(r) = ρ(r′) then r = r′;
(ii) if [r) = [r′) and ρ(r) = ρ(r′) then r = r′. Here [r) =def [r] \ {r}.

Proof. (i) Suppose r′ ≤ r and ρ(r) = ρ(r′). By Corollary 2, we may project to [r]
to obtain an extremal realisation ρ0 : [r] → A. Suppose r and r′ were unequal.
We can define a realisation as the restriction of ρ0 to [r). The function from [r]
to [r) taking r to r′ and otherwise acting as the identity function is a map of
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realisations from the realisation ρ0 and clearly not an isomorphism, showing ρ0

to be non-extremal—a contradiction. Hence r = r′, as required.
(ii) Suppose [r) = [r′) and ρ(r) = ρ(r′). Projecting to [{r, r′}] we obtain an
extremal realisation. If r and r′ were unequal there would be a non-isomorphism
map to the realisation obtained by projecting to [r], viz. the map from [{r, r′}]
to [r] sending r′ to r and fixing all other elements. 2

In fact, by modifying condition (i) in the lemma above a little we can obtain
a characterisation of extremal realisations—see the Appendix for the proof:

Lemma 4. Let (R,≤), ρ be a realisation. Then ρ is extremal iff

(i) if X ⊆ [r), with X down-closed and r ∈ R, and ρ(X∪{r}) ∈ A then X = [r);
and

(ii) if [r) = [r′) and ρ(r) = ρ(r′) then r = r′.

Lemma 5. There is at most one map between extremal realisations.

Proof. Let (R,≤), ρ and (R′,≤′), ρ′ be extremal realisations. Let f, f ′ : ρ → ρ′

be maps with converse relations g and g′ respectively. We show the two functions
g and g′ are equal, and hence so are their converses f and f ′. Suppose otherwise
that g 6= g′. Then there is an ≤-minimal r′ ∈ R′ for which g(r′) 6= g′(r′) and
g[r) = g′[r′). Hence [g(r′)) = [g′(r′)) and ρ(g(r′)) = ρ′(r′) = ρ(g′(r′)). As ρ is
extremal, by Lemma 3(ii) we obtain g(r′) = g′(r′)—a contradiction. 2

Hence extremal realisations of A under � form a preorder. The order of ex-
tremal realisations has as elements isomorphism classes of extremal realisations
ordered according to the existence of a map between representatives of isomor-
phism classes. Alternatively, we could take a choice of representative from each
isomorphism class and order these according to whether there is a map from
one to the other. Recall an prime extremal realisation is an extremal realisation
with a top element, i.e. when its carrier contains an element which dominates all
other elements in the carrier. The following is a direct corollary of Proposition 4
in the next section.

Proposition 2 The order of extremal realisations of a family of configurations
A forms a prime-algebraic domain [7] with complete primes the prime extremal
realisations.

The proofs of the following observations are straightforward consequences of
the definitions. They emphasise that prime extremal realisations are a generali-
sation of (complete) primes.

Proposition 3 Let (A,≤A,ConA) be a prime event structure. For an extremal
realisation (R,≤R), ρ of C∞(A), the function ρ : R → ρR is an order iso-
morphism between (R,≤R) and the configuration ρR ∈ C∞(A) ordered by the
restriction of ≤A. The function taking an extremal realisation (R,≤R), ρ to the
configuration ρR is an order isomorphism from the order of extremal realisations
of C∞(A) to the configurations of A; prime extremal realisations correspond to
complete primes of C∞(A).
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A configuration x ∈ F , of a family of configurations F , is irreducible iff there
is a necessarily unique e ∈ x such that ∀y ∈ F , e ∈ y ⊆ x implies y = x. Irre-
ducibles coincide with complete join irreducibles w.r.t. the order of inclusion. It
is tempting to think of irreducibles as representing minimal complete enablings.
But, as sets, irreducibles both (1) lack sufficient structure: in the formulation we
are led to, of minimal complete enabling as prime extremal realisations, several
prime realisations can have the same irreducible as their underlying set; and (2)
are not general enough: there are prime realisations whose underlying set is not
an irreducible. We conclude with examples illustrating the nature of extremal re-
alisations; it is convenient to describe families of configurations by general event
structures.

Example 2. This example shows that prime extremal realisations do not corre-
spond to irreducible configurations. First, we show a general event structure E0

(all subsets consistent) with irreducible configuration {a, b, c, d} and two (injec-
tive) prime extremals E1 and E2 with tops d1 and d2 which both have the same
irreducible configuration {a, b, c, d} as their image. The lettering indicates the
functions associated with the realisations, e.g. events d1 and d2 in the partial
orders map to d in the general event structure.

E0 E1 E2 F0 F1

d

c
AND

_LLR

OR

a

J??I

6 66@

b

sUU^

�^^h d1

c1

_LLR

a

_LLR

b

pTT\
d2

c2

_LLR

a

MAAJ

b

_LLR

d

c
AND

_LLR

OR

a

J??I

b

sUU^

�^^h d1

c1

_LLR

a

_LLR

b

pTT\

On the other hand there are prime extremal realisations of which the image is
not an irreducible configuration. Consider the general event structure F0. The
prime extremal F1 describes a situation where d is enabled by b and c is enabled
by a. It has image the configuration {a, b, c, d} which is not irreducible, being
the union of the two incomparable configurations {a} and {b, c, d}. 2

Example 3. It is possible to have extremal realisations in which an event depends
on an event of the family having been enabled in two distinct ways, as in the
following prime extremal realisation, on the left; it is clearly not injective.

f f

AND

d

MAAJ

e

qTT]

d

E<<G

e

yWWb

c1

_LLR

c2

_LLR

c

< 99C�[[f

OR

a

_LLR

b

_LLR

a

C;;F

b

zXXb

The extremal describes the event f being enabled by d and e where they are in
turn enabled by different ways of enabling c. We assume all subsets consistent.2
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5 The causal unfolding: an adjunction from E≡ to Fam≡

Furnished with the concept of extremal realisation, we can now exhibit an
adjunction (precisely, a very simple case of biadjunction) from E≡, the cate-
gory of ese’s, to Fam≡, the category of equivalence families. The left adjoint
I : E≡ → Fam≡ is the full and faithful functor which takes an ese to its family
of configurations with the original equivalence.

The right adjoint, the causal unfolding, er : Fam≡ → E≡ is defined on objects
as follows. Let A be an equivalence family with underlying set A. Define er(A) =
(P,ConP ,≤P ,≡P ) where

– P consists of a choice from within each isomorphism class of the prime
extremals p of A —we write top(p) for the image of the top element in A;

– Causal dependency ≤P is � on P ;
– X ∈ ConP iff X ⊆fin P and top [X]P ∈ A —the set [X]P is the ≤P -

downwards closure of X, so equal to {p′ ∈ P | ∃p ∈ X. p′ � p};
– p1 ≡P p2 iff p1, p2 ∈ P and top(p1) ≡A top(p2).

Proposition 4 The configurations of P , ordered by inclusion, are order-isomorphic
to the order of extremal realisations: an extremal realisation ρ corresponds, up
to isomorphism, to the configuration {p ∈ P | p � ρ} of P ; conversely, a config-
uration x of P corresponds to an extremal realisation top : x → A with carrier
(x,�), the restriction of the order of P to x.

Proof. It will be helpful to recall, from Corollary 2, that if ρ �f ρ′ between
extremal realisations, then the inverse relation f−1 is a rigid embedding of (the
carrier of) ρ′ in (the carrier of) ρ; so ρ′ � ρ stands for a rigid embedding. Suppose
x ∈ C∞(P ). Then x determines an extremal realisation

θ(x) =def top : (x,�)→ A .

The function θ(x) is a realisation because each p in x is, and extremal because,
if not, one of the p in x would fail to be extremal, a contradiction. Clearly ρ′ � ρ
implies θ(ρ′) ⊆ θ(ρ). Conversely, it is easily checked that any extremal realisation
ρ : (R,≤)→ A defines a configuration {p ∈ P | p � ρ}. If x ⊆ y in C∞(P ) then
φ(x) � φ(y). It can be checked that θ and φ are mutual inverses, i.e. φθ(x) = x
and θφ(ρ) ∼= ρ for all configurations x of P and extremal realisations ρ. 2

From the above proposition we see that the events of er(A) correspond to
the order-theoretic completely-prime extremal realisations [7]. This justifies our
use of the term ‘prime extremal’ for extremal with top element.

The component of the counit of the adjunction εA : I(er(A)) → A is given
by the function

εA(p) = top(p) .

It is a routine check to see that εA preserves ≡ and that any configuration x of
P images under top to a configuration in A, moreover in a way that reflects ≡.
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Theorem 5. Let A ∈ Fam≡. For all f : I(Q) → A in Fam≡, there is a map
h : Q→ er(A) in E≡ such that f = εA ◦ I(h), i.e. so the diagram

A I(er(A))
εAoo

I(Q)

f

cc

I(h)

OO

commutes. Moreover, if h′ : Q → er(A) is a map in E≡ s.t. f ≡ εA ◦ I(h′),
i.e. the diagram above commutes up to ≡, then h′ ≡ h.

Proof. Let Q = (Q,ConQ,≤Q,≡Q) be an ese and f : I(Q)→ A a map in Fam≡.
We shall define a map h : Q → er(A) s.t. f = εAh. (As here, in the proof we
shall elide the composition symbol ◦, and I on maps which it leaves unchanged.)

We define the map h : Q→ er(A) by induction on the depth of Q. The depth
of an event in an event structure is the length of a longest ≤-chain up to it—so
an initial event has depth 1. We take the depth of an event structure to be the
maximum depth of its events. (Because of our reliance on Lemma 1, we use the
axiom of choice implicitly.)

Assume inductively that h(n) defines a map from Q(n) to er(A) where Q(n)

is the restriction of Q to depth below or equal to n such that f (n) the restriction
of f to Q(n) satisfies f (n) = εAh

(n). (In particular, Q(0) is the empty ese and
h(0) the empty function.) Then, by Proposition 4, any configuration x of Q(n)

determines an extremal realisation ρx : h(n)x→ A with carrier (h(n)x,�).
Suppose q ∈ Q has depth n+1. If f(q) is undefined take h(n+1)(q) to be unde-

fined. Otherwise, note there is an extremal realisation ρ[q) with carrier (h[q),�).

Extend ρ[q) to a realisation ρ>[q) with carrier that of ρ[q) with a new top element

> adjoined, and make ρ>[q) extend the function ρ[q) by taking > to f(q). By

Lemma 1, there is an extremal realisation ρ such that ρ>[q) �2 ρ. Because ρ[q) is
extremal, ρ �1 ρ[q), so ρ only extends the order of ρ[q) with extra dependencies of
>. (For notational simplicity we identify the carrier of ρ with the set h[q)∪{>}.)
Project ρ to the extremal with top >. Define this to be the value of h(n+1)(q).
In this way, we extend h(n) to a partial function h(n+1) : Q(n+1) → er(A) such
that f (n+1) = εAh

(n+1). To see that h(n+1) is a map we can use Proposition 1.
By construction h(n+1) satisfies property (ii) of Proposition 1 and the other
properties are inherited fairly directly from f via the definition of er(A).

Defining h =
⋃
n∈ω h

(n) we obtain a map h : Q→ er(A) such that f = εAh.
Suppose h′ : Q→ er(A) is a map s.t. f ≡ εAh

′. Then, for any q ∈ Q,

top(h′(q)) = εAh
′(q) ≡A f(q) = εAh(q) = top(h(q)) ,

so h′(q) ≡P h(q) in er(A). Thus h′ ≡ h. 2

The theorem does not quite exhibit a traditional adjunction, because the
usual cofreeness condition specifying an adjunction is weakened to only having
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uniqueness up to ≡. However the condition it describes does specify an exceed-
ingly simple case of a biadjunction (or pseudo adjunction) between 2-categories—
a set together with an equivalence relation (a setoid) is a very simple example
of a category. As a consequence, whereas with the usual cofreeness condition
allows us to extend the right adjoint to arrows, so obtaining a functor, in this
case following that same line will only yield a pseudo functor er as right adjoint:
thus extended, er will only preserve composition and identities up to ≡.

The map (P,≡) → er(C∞(P ),≡) which takes p ∈ P to the realisation with
carrier ([p],≤), the restriction of the causal dependency of P , with the inclusion
function [p] ↪→ P is an isomorphism; recall from Proposition 3 that the configu-
rations of a prime event structure correspond to its extremal realisations. Such
maps furnish the components of the unit of the adjunction.

Example 4. On the right we show a general event structure (all subsets con-
sistent) and on its left its causal unfolding to an ese under er ; the unfolding’s
events are the prime extremals.

d1 d2 d

c1

OO

c2

OO

c
AND
OO

OR

a

OO

GG

b

OO

WW

a

EE

;;

b

YY

cc

2

6 Unfolding general event structures

Recall G is the category of general event structures. We obtain an adjunction
from E≡ to G via an adjunction from Fam≡ to G. The right adjoint fam : G →
Fam≡ is most simply described. Given (E,Con,`) in G it returns the equivalence
family (C∞(E),=) in Fam≡ comprising the configurations together with the
identity equivalence between events that appear within some configuration; the
partial functions between events that are maps in G are automatically maps in
Fam≡—the action of fam on maps.

For the effect of the left adjoint col : Fam≡ → G on objects, define the
collapse

col(A) =def (E,Con,`)

where

– E = A≡, the equivalence classes of events in A =def

⋃
A ;

– X ∈ Con iff X ⊆fin y≡, for some y ∈ A ; and
– X ` e iff e ∈ E, X ∈ Con and e ∈ y≡ ⊆ X ∪ {e}, for some y ∈ A.

Let (A,≡) ∈ Fam≡. Assume that A has underlying set A. The unit of the
adjunction is defined to have typical component ηA : (A,≡) → fam(col(A,≡))
given by ηA(a) = {a}≡ . It is easy to check that ηA is a map in Fam≡.
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Theorem 6. Suppose that B = (B,ConB ,`B) ∈ G and that g : (A,≡) →
(C∞(B),=) is a map in Fam≡. Then, there is a unique map k : col(A,≡)→ B
in G s.t. the diagram

(A,≡)
ηA//

g
''

fam(col(A,≡))

fam(k)

��
(C∞(B),=)

commutes.

Proof. The map k : col(A,≡)→ B is given as the function k(e) = g(a) where e =
{a}≡ . It is easily checked to be a map in G and moreover to be the unique map
from col(A,≡) to B making the above diagram commute. 2

Theorem 6 determines an adjunction from Fam≡ to G. The construction col
automatically extends from objects to maps; maps in Fam≡ preserve equiva-
lence so collapse to functions preserving equivalence classes. The counit of the
adjunction has components εE : col((C∞(E),=)) → E which send singleton
equivalence classes {e} to e. The counit is an isomorphism at precisely those
general event structures E which are replete.

Composing E≡
I

> 22 Fam≡
er

ss

col

> 33 G
fam

rr
we obtain a pseudo

adjunction E≡ > 33 G .ss
Its right adjoint constructs the causal unfolding

of a general event structure.
The composite adjunction from E≡ to G cuts down to a reflection, in which

the counit is a natural isomorphism, when we restrict to the subcategory of G
where all general event structures are replete. Then the right adjoint provides a
full and faithful embedding of replete general event structures (and so families
of configurations) in ese’s.

7 Conclusion

This concludes the construction of causal unfoldings of (very general) equivalence-
families, and so, in particular, general event structures. In applications it has
been useful to cut down the unfolding to subcategories. In particular, while
the category of event structures with equivalence, E≡, does have bipullbacks (in
which commutations and uniqueness are only up to the equivalence ≡ on maps)
it doesn’t always have the pseudo pullbacks or pullbacks, used in defining the
composition of strategies. However, an important subcategory does: define EDC
to be the subcategory of E≡ with objects, event structures with disjunctive causes
(edc’s), satisfying: p1, p2 ≤ p & p1 ≡ p2 =⇒ p1 = p2 . In an edc an event cannot
causally depend on two distinct prime causes of a common disjunctive event,
and so rules out realisations such as that mentioned in Example 3. EDC provides
a suitable foundation for strategies with parallel causes and is handily related
by adjunctions to general and prime event structures [3].
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A Equiv-enriched categories

Here we explain in more detail what we mean when we say “enriched in the
category of sets with equivalence relations” and employ terms such as “enriched
adjunction,” “pseudo adjunction” and “pseudo pullback.” The classic text on
enriched categories is [5], but for this paper the articles [6] and [9] provide short,
accessible introductions to the notions we use from Equiv-enriched categories
and 2-categories, respectively.

Equiv is the category of equivalence relations. Its objects are (A,≡A) compris-
ing a set A and an equivalence relation ≡A on it. Its maps f : (A,≡A)→ (B,≡B)
are total functions f : A→ B which preserve equivalence.

We shall use some basic notions from enriched category theory [5]. We shall
be concerned with categories enriched in Equiv, called Equiv-enriched categories,
in which the homsets possess the structure of equivalence relations, respected by
composition [6]. This is the sense in which we say categories are enriched in (the
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category of) equivalence relations. We similarly borrow the concept of an Equiv-
enriched functor between Equiv-enriched categories which preserve equivalence
in acting on homsets. An Equiv-enriched adjunction is a usual adjunction in
which the natural bijection preserves and reflects equivalence.

Because an object in Equiv can be regarded as a (very simple) category,
we can regard Equiv-enriched categories as (very simple) 2-categories to which
notions from 2-categories apply [9].

A pseudo functor between Equiv-enriched categories is like a functor but the
usual laws only need hold up to equivalence. A pseudo adjunction (or biadjunc-
tion) between 2-categories permits a weakening of the usual natural isomorphism
between homsets, now also categories, to a natural equivalence of categories. In
the special case of a pseudo adjunction between Equiv-enriched categories the
equivalence of homset categories amounts to a pair of ≡-preserving functions
whose compositions are ≡-equivalent to the identity function. With traditional
adjunctions by specifying the action of one adjoint solely on objects we determine
it as a functor; with pseudo adjunctions we can only determine it as a pseudo
functor—in general a pseudo adjunction relates two pseudo functors. Pseudo
adjunctions compose in the expected way. An Equiv-enriched adjunction is a
special case of a 2-adjunction between 2-categories and a very special case of
pseudo adjunction. In this article there are many cases in which we compose
an Equiv-enriched adjunction with a pseudo adjunction to obtain a new pseudo
adjunction.

Similarly we can specialise the notions pseudo pullbacks and bipullbacks from
2-categories to Equiv-enriched categories. Let f : A→ C and g : B → C be two
maps in an Equiv-enriched category. A pseudo pullback of f and g is an object
D and maps p : D → A and q : D → B such that f ◦ p ≡ g ◦ q which satisfy the
further property that for any D′ and maps p′ : D′ → A and q′ : D′ → B such
that f ◦ p′ ≡ g ◦ q′, there is a unique map h : D′ → D such that p′ = p ◦ h and
q′ = q ◦ h. There is an obvious weakening of pseudo pullbacks to the situation
in which the uniqueness is replaced by uniqueness up to ≡ and the equalities by
≡—these are simple special cases of bilimits called bipullbacks.

Right adjoints in a 2-adjunction preserve pseudo pullbacks whereas right
adjoints in a pseudo adjunction are only assured to preserve bipullbacks.

B Additional proof

The following characterisation of extremal realisations is not strictly necessary
for the rest of of the paper.

I Lemma 4. Let (R,≤), ρ be a realisation. Then ρ is extremal iff

(i) if X ⊆ [r), with X down-closed and r ∈ R, and ρ(X∪{r}) ∈ A then X = [r);
and

(ii) if [r) = [r′) and ρ(r) = ρ(r′) then r = r′.
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Proof. “Only if”: Assume ρ is extremal. We have already established (ii) in
Lemma 3. To show (i), suppose X is down-closed and X ⊆ [r) in R with ρ(X ∪
{r}) ∈ A. By Corollary 2, we may project to [r] to obtain an extremal realisation
ρ0 : [r]→ A. Modify the restricted order [r] to one in which r′ ≤ r iff r′ ∈ X, and
is otherwise unchanged. The same underlying function ρ0 remains a realisation,
call it ρ′0, on the modified order. The identity function gives us a map f : ρ0 �2 ρ

′
0

which is an isomorphism between realisations iff X = [r).
“If”: Assume (i) and (ii). Suppose f : ρ �2 ρ

′, where R′, ρ′ is a realisation. We
show f is injective and order-preserving. As f is presumed to be surjective and
to preserve down-closed subsets we can then conclude it is an isomorphism.

To see f is injective suppose f(r1) = f(r2). W.l.o.g. we may suppose r1 and
r2 are minimal in the sense that

r′1 ≤ r1 & r′2 ≤ r2 & f(r′1) = f(r′2) =⇒ r′1 = r1 & r′2 = r2 .

Define r′ =def f(r1) = f(r2). Then

[r′] ⊆ f [r1] & [r′] ⊆ f [r2] .

Furthermore, by the minimality of r1, r2,

[r′) ⊆ f [r1) & [r′] ⊆ f [r2) .

It follows that
[r′) ⊆ f [r1) ∩ f [r2) = f([r1) ∩ [r2))

where the equality is again a consequence of the minimality of r1, r2. Taking
X =def [r1) ∩ [r2) we have (fX) ∪ {r′} is down-closed in R′. Therefore

ρ(X ∪ {r1}) = ρ′f(X ∪ {r1}) = ρ′(fX ∪ {r′}) ∈ A .

By condition (ii), X = [r1). Similarly, X = [r2), so [r1) = [r2). Obviously
ρ(r1) = ρ′f(r1) = ρ′f(r1) = ρ(r2), so we obtain r1 = r2 by (i).

We now check that f preserves the order. Let r ∈ R. Define

X =def [{r1 ≤ r | f(r1) < f(r)}] ,

where the square brackets signify down-closure in R. Then X is down-closed in
R by definition and X ⊆ [r). We have [f(r)] ⊆ f [r] whence

fX = f [r] ∩ [f(r)) = [f(r)) .

Therefore fX ∪ {f(r)} is down-closed in R′, so

ρ(X ∪ {r}) = ρ′f(X ∪ {r}) = ρ′(fX ∪ {f(r)}) ∈ A .

Hence X = [r), by (ii). It follows that

r1 _ r =⇒ r1 ∈ X =⇒ f(r1) < f(r) in R′ .

As the order on R is the transitive closure of immediate dependency, this in turn
shows that f preserves the order. 2


