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Preface

These notes introduce a theory of two-party games still under development.
A lot can be said for a general theory to unify all manner of games found in
the literature. But this has not been the main motivation. That has been the
development of a generalized domain theory, to lift the methodology of domain
theory and denotational semantics to address the highly interactive nature of
computation we find today.

There are several arguments why the next generation of domain theory
should be an intensional theory, one which pays careful attention to the ways
in which output is computed from input. One is that if the theory is to be
able to reason about operational concerns it had better address them, albeit
abstractly. Another is that sometimes the demands of compositionality force
denotations to be more intensional than one would at first expect; this occurs
for example with nondeterministic dataflow—see the Introduction. These notes
take seriously the idea that intensional aspects be described by strategies, and,
to fit computational needs adequately, try to understand the concept of strategy
very broadly.

This idea comes from game semantics where the domains and continuous
functions of traditional domain theory and denotational semantics are replaced
by games and strategies. Strategies supercede functions because they give a
much better account of interaction extended in time. (Functions, if you like,
have too clean a separation of interaction into input and output.) In traditional
denotational semantics a program phrase or process term denotes a continuous
function, whereas in game semantics a program phrase or process term denotes
a strategy.

However, traditional game semantics is not always general enough, for in-
stance in accounting for nondeterministic or concurrent computation. Rather
than extending traditional game semantics with various bells and whistles, these
notes attempt to carve out a general theory of games within a general model
of nondeterministic, concurrent computation. The model chosen is the partial-
order model of event structures, and for technical reasons, its enlargement to
stable families. Event structures have the advantage of occupying a central po-
sition within models for concurrency, and the development here should suggest
analogous developments for other ‘partial-order’ models such as Mazurkiewicz
trace languages, Petri nets and asynchronous transition systems, and even ‘in-
terleaving’ models based on transition systems or sequences.

In their present state, these notes are inadequate in several ways. First,
they don’t account for games with back-tracking, games where play can revisit
previous positions. While a little odd from the point of view of everyday games,
this feature is very important in game semantics, for instance in order to re-
evaluate the argument to a function.! Second, the notes don’t have enough
examples. Third, the notes say too little on the uses of games and strategies in

IThe theory has been extended to allow back-tracking and copying via event structures
with symmetry, which support a rich variety of pseudo (co)monads to achieve this—see the
paper on “Games with Symmetry” with Castellan and Clairambault on my homepage.



semantics, types, logic and verification. I hope to some extent to make up for
these inadequacies in the lectures. What I claim the notes do do, is begin to
unify a variety of approaches and provide canonical general constructions and
results, which leave the student better placed to structure and analyse critically
the often arcane world of games and strategies in the literature.

Such was the preface to the first version of these notes for a lecture course
at Aarhus University in the late summer of 2011. The subject of concurrent
games has grown since that first version of these motes. The notes ended up
being my partial summary of research within the ERC-funded ECSYM project
(“Bvents, Causality and Symmetry”) concentrating on the situation as I saw
it and a way to consolidate my understanding at the time. They were very
helpful in inducting postdocs and students working on ECSYM. Subsequently
progress on the notes has often been outstripped by work done with my ECSYM
colleagues. A consequence of their development is that the notes follow the line
of discovery rather than what is possibly the most natural conceptual line. Latest
developments are presented in papers on my Computer Lab home page.
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Chapter 1

Introduction

Games and strategies are everywhere, in logic, philosophy, computer science,
economics, in leisure and in life.

Slogan: Processes are nondeterministic concurrent strategies.

1.1 Motivation

We summarise some reasons for developing a theory of nondeterministic con-
current games and strategies.

1.1.1 What is a process?

In the earliest days of computer science it became accepted that a computation
was essentially an (effective) partial function f : N - N between the natural
numbers. This view underpins the Church-Turing thesis on the universality of
computability.

As computer science matured it demanded increasingly sophisticated mathe-
matical representations of processes. The pioneering work of Strachey and Scott
in the denotational semantics of programs assumed a view of a process still as a
function f: D — D’ but now acting in a continuous fashion between datatypes
represented as special topological spaces, ‘domains’ D and D’; reflecting the
fact that computers can act on complicated, conceptually-infinite objects, but
only by virtue of their finite approximations.

In the 1960’s, around the time that Strachey started the programme of de-
notational semantics, Petri advocated his radical view of a process, expressed
in terms of its events and their effect on local states—a model which addressed
directly the potentially distributed nature of computation, but which, in com-
mon with many other current models, ignored the distinction between data and
process implicit in regarding a process as a function. Here it seems that an
adequate notion of process requires a marriage of Petri’s view of a process and

11



12 CHAPTER 1. INTRODUCTION

the vision of Scott and Strachey. An early hint in this direction came in answer
to the following question.

What is the information order in domains? There are essentially two answers
in the literature, the ‘topological,’” the most well-known from Scott’s work, and
the ‘temporal,’ arising from the work of Berry:

e Topological: the basic units of information are propositions describing fi-
nite properties; more information corresponds to more propositions being true.
Functions are ordered pointwise.

e Temporal: the basic units of information are events; more information corre-
sponds to more events having occurred over time. Functions are restricted to
‘stable’ functions and ordered by the intensional ‘stable order,” in which com-
mon output has to be produced for the same minimal input. Berry’s specialized
domains ‘dI-domains’ are represented by event structures.

In truth, Berry developed ‘stable domain theory’ by a careful study of how to
obtain a suitable category of domains with stable rather than all continuous
functions. He arrived at the axioms for his ‘dI-domains’ because he wanted
function spaces (so a cartesian-closed category). The realization that dI-domains
were precisely those domains which could be represented by event structures,
came a little later.

1.1.2 From models for concurrency

Causal models are alternatively described as: causal-dependence models; in-
dependence models; non-interleaving models; true-concurrency models; and
partial-order models. They include Petri nets, event structures, Mazurkiewicz
trace languages, transition systems with independence, multiset rewriting, and
many more. The models share the central feature that they represent processes
in terms of the events they can perform, and that they make explicit the causal
dependency and conflicts between events.

Causal models have arisen, and have sometimes been rediscovered as the
natural model, in many diverse and often unexpected areas of application:
Security protocols: for example, forms of event structure, strand spaces, sup-
port reasoning about secrecy and authentication through causal relations and
the freshness of names;

Systems biology: ideas from Petri nets and event structures are used in taming
the state-explosion in the stochastic simulation of biochemical processes and in
the analysis of biochemical pathways;

Hardware: in the design and analysis of asynchronous circuits;

Types and proof: event structures appear as representations of propositions as
types, and of proofs;

Nondeterministic dataflow: where numerous researchers have used or rediscov-
ered causal models in providing a compositional semantics to nondeterministic
dataflow;

Network diagnostics: in the patching together local of fault diagnoses of com-
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munication networks;

Logic of programs: in concurrent separation logic where artificialities in Brookes’
pioneering soundness proof are obviated through a Petri-net model,

Partial order model checking: following the seminal work of McMillan the un-
folding of Petri nets (described below) is exploited in recent automated analysis
of systems;

Distributed computation: event structures appear both classically,e.g. in early
work of Lamport, and recently in the Bayesian analysis of trust and modelling
multicore memory.

To illustrate the close relationship between Petri nets and the ‘partial-order
models’ of occurrence nets and event structures, we sketch how a (1-safe) Petri
net can be unfolded first to a net of occurrences and from there to an event
structure [1]. The unfolding construction is analogous to the well-known method
of unfolding a transition system to a tree, and is central to several analysis tools
in the applications above. In the figure, the net on top has loops. The net below
it is its occurrence-net unfolding. It consists of all the occurrences of conditions
and events of the original net, and is infinite because of the original repetitive
behaviour. The occurrences keep track of what enabled them. The simplest
form of event structure, the one we shall consider here, arises by abstracting
away the conditions in the occurrence net and capturing their role in relations
of causal dependency and conflict on event occurrences.

The relations between the different forms of causal models are well under-
stood [2]. Despite this and their often very successful, specialized applications,
causal models lack a comprehensive theory which would support their systematic
use in giving semantics to a broad range of programming and process languages,
in particular we lack an expressive form of ‘domain theory for causal models
with rich higher-order type constructions needed by mathematical semantics.

1.1.3 From semantics

Denotational semantics and domain theory of Scott and Strachey set the stan-
dard for semantics of computation. The theory provided a global mathematical
setting for sequential computation, and thereby placed programming languages
in connection with each other; connected with the mathematical worlds of alge-
bra, topology and logic; and inspired programming languages, type disciplines
and methods of reasoning. Despite the many striking successes it has become
very clear that many aspects of computation do not fit within the traditional
framework of denotational semantics and domain theory. In particular, classical
domain theory has not scaled up to the more intricate models used in interac-
tive/distributed computation. Nor has it been as operationally informative as
one could hope.

While, as Kahn was early to show, deterministic dataflow is a shining appli-
cation of simple domain theory, nondeterministic dataflow is beyond its scope.
The compositional semantics of nondeterministic dataflow needs a form of gen-
eralized relation which specifies the ways input-output pairs are realized.A com-
pelling example comes from the early work of Brock and Ackerman who were
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A Petri net and its occurrence-net unfolding
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the first to emphasize the difficulties in giving a compositional semantics to non-
deterministic dataflow, though our example is based on simplifications in the
later work of Rabinovich and Trakhtenbrot, and Russell.

Nondeterministic dataflow—Brock-Ackerman anomaly

—

ClA] = CAi F >

There are two simple nondeterministic processes A; and A, which have the
same input-output relation, and yet behave differently in the common feedback
context C[-], illustrated above. The context consists of a fork process F' (a
process that copies every input to two outputs), through which the output of
the automata A; is fed back to the input channel, as shown in the figure. Process
Aj has a choice between two behaviours: either it outputs a token and stops, or
it outputs a token, waits for a token on input and then outputs another token.
Process A, has a similar nondeterministic behaviour: Either it outputs a token
and stops, or it waits for an input token, then outputs two tokens. For both
automata, the input-output relation relates empty input to the eventual output
of one token, and non-empty input to one or two output tokens. But C[A;]
can output two tokens, whereas C[As] can only output a single token. Notice
that A; has two ways to realize the output of a single token from empty input,
while As only has one. It is this extra way, not caught in a simple input-output
relation, that gives A; the richer behaviour in the feedback context.

Over the years there have been many solutions to giving a compositional
semantics to nondeterministic dataflow. But they all hinge on some form of
generalized relation, to distinguish the different ways in which output is pro-
duced from input. A compositional semantics can be given using stable spans
of event structures, an extension of Berry’s stable functions to include nonde-
terminism [3]—see Section 6.2.1.

How are we to extend the methodology of denotational semantics to the
much broader forms of computational processes we need to design, understand
and analyze today? How are we to maintain clean algebraic structure and
abstraction alongside the operational nature of computation?

Game semantics advanced the idea of replacing the traditional continuous
functions of domain theory and denotational semantics by strategies. The rea-
son for doing this was to obtain a representation of interaction in computation
that was more faithful to operational reality. It is not always convenient or
mathematically tractable to assume that the environment interacts with a com-
putation in the form of an input argument. It is built into the view of a process
as a strategy that the environment can direct the course of evolution of a pro-
cess throughout its duration. Game semantics has had many dramatic successes.
But it has developed from simple well-understood games, based on alternating
sequences of player and opponent moves, to sometimes arcane extensions and
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generalizations designed to fit the demands of a succession of additional pro-
gramming or process features. It is perhaps time to stand back and see how
games fit within a very general model of computation, to understand better
what current features of games in computer science are simply artefacts of the
particular history of their development.

1.1.4 From logic

An informal understanding of games and strategies goes back at least as far as
the ancient Greeks where truth was sought through debate using the dialectic
method; a contention being true if there was an argument for it that could
survive all counter-arguments. Formalizing this idea, logicians such as Lorenzen
and Blass investigated the meaning of a logical assertion through strategies
in a game built up from the assertion. These ideas were reinforced in game
semantics which can provide semantics to proofs as well as programs. The
study of the mathematics and computational nature of proof continues. There
are several strands of motivation for games in logic. Along with automata games
constitute one of the tools of logic and algorithmics; often a logical or algorithmic
question can be reduced to the question of whether a particular game has a
winning/optimal strategy or counterstrategy. Games are used in verification
and, for example, the central equivalence of bisimulation on processes has a
reading in terms of strategies.



Chapter 2

Event structures

Event structures are a fundamental model of concurrent computation and, along
with their extension to stable families, provide a mathematical foundation for
the course.

2.1 Event structures

Event structures are a model of computational processes. They represent a
process, or system, as a set of event occurrences with relations to express how
events causally depend on others, or exclude other events from occurring. In
one of their simpler forms they consist of a set of events on which there is
a consistency relation expressing when events can occur together in a history
and a partial order of causal dependency—writing e’ < e if the occurrence of e
depends on the previous occurrence of e’

An event structure comprises (E,<,Con), consisting of a set E, of events
which are partially ordered by <, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e' | ' < e} is finite for all e € E,

{e} eCon for all e € E,

YcXeCon =— Y eCon, and
XeCon&e<e'e X = Xu{e}eCon.

The events are to be thought of as event occurrences without significant dura-
tion; in any history an event is to appear at most once. We say that events e,
e’ are concurrent, and write e coe’ if {e,e’} e Con & ef e’ & €’ £ e. Concurrent
events can occur together, independently of each other. The relation of imme-
diate dependency e — €’ means e and e’ are distinct with e < ¢’ and no event in
between. Clearly < is the reflexive transitive closure of —».

An event structure represents a process. A configuration is the set of all
events which may have occurred by some stage, or history, in the evolution of

17



18 CHAPTER 2. EVENT STRUCTURES

the process. According to our understanding of the consistency relation and
causal dependency relations a configuration should be consistent and such that
if an event appears in a configuration then so do all the events on which it
causally depends.

The configurations of an event structure E consist of those subsets x ¢ E
which are

Consistent: YX € x. X is finite = X € Con, and
Down-closed: Ve,e'. e’ <eex = ¢’ ex.

We shall largely work with finite configurations, written C(E). Write C*(E)
for the set of finite and infinite configurations of the event structure E.

The configurations of an event structure are ordered by inclusion, where
x €x', i.e. T is a sub-configuration of z’, means that = is a sub-history of z’.
Note that an individual configuration inherits an order of causal dependency on
its events from the event structure so that the history of a process is captured
through a partial order of events. The finite configurations correspond to those
events which have occurred by some finite stage in the evolution of the process,
and so describe the possible (finite) states of the process.

For X ¢ E we write [X] for {e€ E' | 3¢’ € X. e < €'}, the down-closure of X.
The axioms on the consistency relation ensure that the down-closure of any finite
set in the consistency relation s a finite configuration, and that any event appears
in a configuration: given X € Con its down-closure {e' € F | Jee X. ¢’ <e} is a
finite configuration; in particular, for an event e, the set [e] =qot {¢' € E | €' < e}
is a configuration describing the whole causal history of the event e. We shall
sometimes write [€) =qer {€' € E | €’ < e}.

When the consistency relation is determined by the pairwise consistency of
events we can replace it by a binary relation or, as is more usual, by a comple-
mentary binary conflict relation on events (written as # or -).

Remark on the use of “cause.” In an event structure (E,<,Con) the rela-
tion €’ < e means that the occurrence of e depends on the previous occurrence
of the event €’; if the event e has occurred then the event e’ must have occurred
previously. In informal speech cause is also used in the forward-looking sense of
one thing arising because of another. Often when used in this way the history
of events is understood or presupposed. According to the history around my
life, the meeting of my parents caused my birth. But the history might have
been very different: in an alternative world the meeting of my parents might
not have led to my birth. More formally, w.r.t. a configuration = in which an
event e occurs while it seems sensible to talk about the events [e) causing e, it
is so only by virtue of the understood configuration zx.

We also encounter events which in a history may have been caused in more
than one way. There are generalisations of the current event structures which
do this—see Chapter 17, on “disjunctive causes.” But for now we will work with
the simple definition above in which an event, or really an event occurrence, e is
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causally dependent on a unique set of events [e). Much of the mathematics we
develop around these simpler forms of event structures (sometimes called prime
event structures in the literature) will be reusable when we come to consider
events with several causes. Roughly the simpler event structures will suffice in
considering nondeterministic strategies. Where their limitations will first show
up is in our treatment of probabilistic strategies.

Example 2.1. The diagram below illustrates an event structure representing
streams of Os and 1s:

000 ~~~~ 001 010 ~~~— 011 110 ~~~ 111

N7 L7

N

Above we have indicated conflict (or inconsistency) between events by . The
event structure representing pairs of 0/1-streams and a/b-streams is represented
by the juxtaposition of two event structures:

—

aam{T 5717}]
@ o~

Exercise 2.2. Draw the event structure of the occurrence net unfolding in the
introduction. O
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2.2 Maps of event structures

Let E and E’ be event structures. A (partial) map of event structures f : E - E’
is a partial function on events f: E —~ E’ such that for all x € C*°(FE) its direct
image fz e C*(E") and

if er,e0 €ex and f(e1) = f(ez2) (with both defined), then e; = es.

(Those maps defined is unaffected if we replace possibly infinite configurations
C*=(F) by finite configurations C(FE) above; this is because any configuration is
the union of finite configurations and direct image preserves such unions.) The
map expresses how the occurrence of an event e in F induces the coincident
occurrence of the event f(e) in E' whenever it is defined. The map f respects
the instantaneous nature of events: two distinct event occurrences which are
consistent with each other cannot both coincide with the occurrence of a com-
mon event in the image. Partial maps of event structures compose as partial
functions, with identity maps given by identity functions.

Proposition 2.3. Let f: E - E’ be a map of event structures. Then,

(i) f locally reflects causal dependency: whenever e, e’ € x, a configuration of F,
and f(e) and f(e') are both defined with f(e') < f(e), then e’ <e;

(i) [ preserves the concurrency relation, when defined: if ecoe’ in E and f(e)
and f(e') are both defined then f(e) co f(e').

Proof. (i) Let x € C*(FE),e, e’ € E with f(e') < f(e) (both being defined). The
map f: E - E’ must send the configuration [e] to the configuration f[e]. As
fle] is down-closed there must be e” € [e] such that f(e”) = f(e'). But because
f is locally injective on z and both ¢, e” € x we see that ¢ = ¢” so ¢’ € [e],
i.e. ¢’ < e. Consequently the map f locally reflects causal dependency: when-

ever e,e’ € x, a configuration of F, and f(e) and f(e’) are both defined with
f(e") < f(e), then €’ <e.

(ii) Suppose e co e’ in E and f(e) and f(e’) are both defined. Then {e, e’} €
Cong. Hence their down-closure [e,e’] € C(E). It follows that f[e,e’] € C(E")
making {f(e), f(e')} € Conp with f(e) and f(e’) incomparable w.r.t. <z by
(i); this ensures f(e) co f(€'). O

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration = of the domain the restriction of f to a function from x
is injective; the restriction of f to a function from x to fz is thus bijective. Say
a total map of event structures is rigid when it preserves causal dependency.

Proposition 2.4. Let f: E - E’ be a total map of event structures. Then, for
€1,€e2 € E,

e1 — ey = f(e1)co f(ez) or f(e1) — f(e2).
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Proof. Assume e; — e5 and not f(e;) co f(e2). Then as {f(e1), f(e2)} € Con,
we have f(e1) < f(ez2) or f(ea) < f(e1). As f reflects causal dependency locally
w.r.t. the configuration [es], the dependency f(es) < f(e1) would entail the
es < e1, contradicting e; — eo. Hence f(e1) < f(e2). As a consequence,

fer) = — f(e2)

for some chain of immediate causal dependencies in E’. As f is total and reflects
causal dependency locally w.r.t. the configuration [e3], we obtain a chain

€] —> - —> €9

in E of equal length. However, e; — e so the chain must be of length one,
ensuring f(e1) — f(e2). O

Definition 2.5. Write £ for the category of event structures with (partial)
maps. Write & and &, for the categories of event structures with total, respec-
tively rigid, maps.

Exercise 2.6. Show a map f: A —~ B of € is mono if the function C(A) - C(B)
taking configuration x to its direct image fx is injective. [Recall a map f: A — B
is mono iff for all maps g,h:C - A if fg= fh then g = h.] Show the converse
does not hold, that it is possible for a map to be mono but not injective on
configurations. O

Proposition 2.7. Let E and E’ be event structures. Suppose
0, :x 20z, indexed by x € C(E),

is a family of bijections such that whenever 8, :y = 0,y is in the family then its
restriction 0, : z 2 0,z is also in the family, whenever z € C(E) and z Cy. Then,

0 =det Uzec(r) O is the unique total map of event structures from E to E" such
that 0 x = 0, for all x € C(E).

Proof. The conditions ensure that  =qet Uzec(a) 0z is a function 6 : A - B such
that the image of any finite configuration z of A under 6 is a configuration of
B and local injectivity holds. O

2.2.1 Partial-total factorisation

Let (E,<,Con) be an event structure. Let V' € E be a subset of ‘visible’ events.
Define the projection of E on V to be E|V =get (V,<y,Cony ), where v <y
v iffv<yv & v, eV and X eCony iff X eCon & X cV.

Consider a partial map of event structures f: F - E’. Let

V =qet {€€ E| f(e) is defined} .
Then f clearly factors into the composition

E fo BV f1 B
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of fo, a partial map of event structures taking e € E to itself if e € V and
undefined otherwise, and f;, a total map of event structures acting like f on V.
We call this the partial-total factorisation of f. We call f; the defined part of
the partial map f. We say a map f: E — E’ is a projection if its defined part
is an isomorphism. Observe that fiz = f[z]g for any x € C(E|V).

The partial-total factorisation is characterised to within isomorphism by the
following universal property: for any factorisation

fELsp Lo p

where go is partial and g; is total there is a (necessarily total) unique map
h:E|lV — Eq such that

E fo BV f1 B

|
x | %
\
Ey
commutes.

Proposition 2.8. (i) A map f: E - E' is a projection iff E' ~ E\V where V
1s the subset of E at which f is defined.

(ii) Consider a pair consisting of a partial map fo : E - Ey and a total map
f1: Eg -~ E'. It forms a partial-total factorization of f = f1fo in the sense of
the universal property above iff fo is a projection.

(ii)) A map f: E — E' is a projection iff f is partial injective, i.e. if f(e1) =
f(e2) (both sides being defined) then ey = ea, and surjective on configurations,
i.e. for ally e C(E") there is x € C(E) s.t. fx =y.

Proof. (i) Directly from the definition of projection.

(ii) Tt is easy to show that the partial-total factorisation f : E - E|V — E'
satisfies the universal property. Consequently, via universality, a pair fy, fi
satisfies the universal property iff £y 2 E|V where V is the domain of definition
of f, i.e. by (i), iff fy is a projection.

(iii) “Only if:” Obvious. “If:” As f is surjective on configurations it is surjective
on events. Consequently f determines a bijection between the subset f~'FE’
and E’. As f is surjective on configurations it reflects consistency; as a map it
automatically preserves consistency. Were f not to preserve causal dependency,
there would be eg < ey in E with f(eg) £ f(e1) in E’; but then f could not map
onto the configuration [ f(e;)] of E’. As a partial-injective map, f automatically
reflects causal dependency. It follows that f preserves and reflects consistency
and causal dependency, ensuring E’ = E|(f 'E’) as required. O

Proposition 2.9. Let f : S - A and p: A - B be partial maps of event
structures. Let fo:Sqg — A be the defined part of f. Then, the defined part of
pfo is the defined part of pf.

Proof. Directly from the definition of ‘defined part’ of a partial map of event
structures. O
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2.3 Rigid maps

Recall a map f is rigid iff it is total and f preserves causal dependency, i.e., if
e’ <ein E then f(e') < f(e) in E'.

Proposition 2.10. A total map f: E - E' of event structures is rigid iff for
all z e C(E) and y e C(E')

yCfx = 3zeC(F). zCz and fz=y .

The configuration z is necessarily unique by the local injectivity of f. (The
class of maps would be unaffected if we allow all configurations in the definition
above. )

Proof. “Only if’: Total maps locally reflect causal dependency. So, if f preserves
causal dependency, then for any configuration x of E, the bijection f:xz — fx
preserves and reflects causal dependency. Hence for any subconfiguration y
of fx, the bijection restricts to a bijection f : z — y with z a down-closed
subset of z. But then z must be a configuration of E. “If’: Let e € E. Then
[f(e)] c f[e]. Hence there is a subconfiguration z of [e] such that fz =[f(e)].
By local injectivity, e € z, so z = [e]. Hence f[e] = [f(e)]. It follows that if
e’ <e then f(e') < f(e). O

A rigid map of event structures preserves the causal dependency relation
“rigidly,” so that the causal dependency relation on the image fz is a copy of
that on a configuration x of F—in this sense f is a local isomorphism. This is not
so for general maps where x may be augmented with extra causal dependency
over that on fx.

Proposition 2.11. The inclusion functor &. < & has a right adjoint. The
category & is isomorphic to the Kleisli category of the monad for the adjunction.

Proof. The right adjoint’s action on objects is given as follows. Let B be an
event structure. For x € C(B), an augmentation of = is a partial order (z,a)
where Vb,b' € . b <p b’ = bab'. We can regard such augmentations as
elementary event structures in which all subsets of events are consistent. Order
all augmentations by taking (z,«) € (2/,’) iff 2 ¢ 2’ and the inclusion i : x >
2’ is a rigid map i : (z,a) —» (2/,a’). Augmentations under £ form a prime
algebraic domain; the complete primes are precisely the augmentations with a
top element. Define aug(B) to be its associated event structure.

There is an obvious total map of event structures ep : aug(B) — B taking
a complete prime to the event which is its top element. It can be checked that
post-composition by ep yields a bijection

epo_: & (A aug(B)) =2 E(A,B) .

Hence aug extends to a right adjoint to the inclusion &, < &;.
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Write aug also for the monad induced by the adjunction and Kl(aug) for
its Kleisli category. Under the bijection of the adjunction

Kl(aug)(A, B) =get £-(4A, aug(B)) 2 E(A, B) .

The categories Kl(aug) and £ share the same objects, and so are isomorphic. [

2.3.1 Rigid image

Rigid maps f : A — B have a useful image given by restricting the causal
dependency of B to the set of events in the image of A under f and taking a
finite set of events to be consistent if they are the image of a consistent set in
A. More generally, a total map f: A - B has a rigid image given by the image
of its corresponding Kleisli map, the rigid map f: A - aug(B). A total map
f A — B has a rigid image comprising a factorisation f = f; fo where fj is rigid
epi and f; is a total map,

A% B,

N

B,

with the following universal property: for any factorisation of f = fi f where f
is rigid epi, there is a unique map h such that the diagram

commutes; the map h is necessarily also rigid and epi. If we don’t specify further
we shall take the rigid image of a total map f: A — B to be a substructure of
aug(B). (By a substructure of B we mean an event structure By with events
included in those of B so that the inclusion is a rigid map.)

2.3.2 Rigid embeddings and inclusions

Special forms of rigid maps appeared as rigid embeddings in Kahn and Plotkin’s
work on concrete domains [?]. Their extension to event structures can be used
in defining event structures recursively.

A total map f: E — E’ is a rigid embedding iff it is rigid and an injective
function on events for which the inverse relation f°P is a (partial) map of event
structures f°P : ' - FE. (There are several alternative equivalent definitions.)

Rigid embeddings include as a special case those in which the function f
is an inclusion. These give the well-known approximation order < on event
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structures:
(E',<',Con’) 9 (E,<,Con) <= E'cE &
ve'e E'. [€] =[] &
VX'cFE' X'eCon' <= X ¢Con.

The order < forms a ‘large cpo,” with bottom the empty event structure, and
is useful when defining event structures recursively [4, 5, 2]. With some care in
defining the precise constructions on event structures they can be ensured to be
continuous w.r.t. <; for this it suffices to check that they are <-monotonic and

continuous on event sets. Further details can be found in [4, 5].

2.3.3 Rigid families

It is occasionally useful to build an event structure out of a non-empty family
Q of finite partial orders. We can do so provided the family is rigid.

For Q to be a rigid family we require that its is closed under rigid inclusions,
or equivalently, that any down-closed subset of any element ¢, with order the
restriction of that of ¢, is itself an element of Q. (In this case rigid inclusions
coincide with rigid embeddings.)

From a rigid family Q we construct an event structure as follows. Its events
are those partial orders in Q with a top element. Its causal dependency is given
by rigid inclusion. We say a finite subset of partial orders with top is consistent
iff all its members are rigidly included in a common member of Q.

2.4 Products of event structures

The category of event structures has products, which essentially allow arbitrary
synchronizations between their components. For example, here is an illustration
of the product of two event structures a — b and ¢, the later comprising just a

single event named c: /M\f\_\\

b (b, *) (b, *) (b, )

(a,¢) (+,0)

The original event b has split into three events, one a synchronization with c,
another b occurring unsynchronized after an unsynchronized a, and the third b
occurring unsynchronized after a synchronizes with c. The splittings correspond
to the different histories of the event.

It can be awkward to describe operations such as products, pullbacks and
synchronized parallel compositions directly on the simple event structures here,

a ¢ (a,*)
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essentially because an event determines its whole causal history. One closely
related and more versatile, though perhaps less intuitive and familiar, model is
that of stable families. Stable families will play an important technical role in
establishing and reasoning about constructions on event structures.



Chapter 3

Stable families

Stable families support a form of disjunctive causes in which an event may be
enabled in several different but incompatible ways. Stable families, their basic
properties and relations to event structures are developed.!

3.1 Stable families

The notion of stable family extends that of finite configurations of an event
structure to allow an event can occur in several incompatible ways.

Notation 3.1. Let F be a family of subsets. Let X ¢ F. We write X1 for
JyeF. Ve e X.x €y and say X s compatible. When z,y € F we write x 1 y

for {z,y}1.

A stable family comprises F, a nonempty family of finite subsets, satisfying:
Completeness: VZ C F. Z1 = UZ e F;
Stability: VZcF. Z+ a3 & 21t = NZ e F;
Coincidence-freeness: For all z € F, e, e’ € x with e # €,

JyeF. ycax & (ecy < €' ¢y).

We call the elements of UF of a stable family F its events.
An alternative characterisation of stable families:

Proposition 3.2. A stable family comprises F, a family of finite subsets, sat-
isfying:
Completeness: g e F & Ve,ye F. xty — axuyeF;
Stability: Ve,ye F. zty = znyeF;
Coincidence-freeness: For all x € F, e,e’ € x with e # €,

JyeF. ycax & (ecy = ¢ ¢y).

1A useful reference for stable families is the report “Event structure semantics for
CCS and related languages,” a full version of the ICALP’82 article, available from
www.cl.cam.ac.uk/~gw104, though its terminology can differ from that here.

27
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Proof. Simple inductions show that the reformulations of “Completeness” and
“Stability” are equivalent to their original formulations. O

Proposition 3.3. The family of finite configurations of an event structure
forms a stable family.

On the other hand stable families are more general than finite configurations
of an event structure, as the following example shows.

Example 3.4. Let F be the stable family, with events E = {0, 1,2},

{0,2} {0,1} {1,2}

U < O U

{0} {1}

or equivalently

{0,2} {0,1} {1,2}

{0} {1}

L

1%}

where —c is the covering relation representing an occurrence of one event.
The events 0 and 1 are concurrent, neither depends on the occurrence or non-
occurrence of the other to occur. The event 2 can occur in two incompatible
ways, either through event 0 having occurred or event 1 having occurred. This
possibility can make stable families more flexible to work with than event struc-
tures.

A (partial) map of stable families f : F — G is a partial function f from the
events of F to the events of G such that for all x € F,

fxeG & (Ver,eaex. f(er) = flex) = e1=¢€3).

Maps of stable families compose as partial functions, with identity maps given
by identity functions. We call a map f : F - G of stable families total when it
is total as a function; the f restricts to a bijection z = fz for all x € F.

Definition 3.5. Let F be a stable family. We use x—y to mean y covers x in
F,i.e. xcyin F with nothing in between, and z—cy to mean z U {e} = y
for z,y € F and event e ¢ . We sometimes use sc—ec, expressing that event e is
enabled at configuration x, when r—c y for some y.
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Exercise 3.6. Let F be a nonempty family of finite sets satisfying the Com-
pleteness axiom in the definition of stable families. Show F is coincidence-free
iff

Ve,ye F.x Gy = 3z € Fe;. x—elcxl cy.

[Hint: For ‘only if’ use induction on the size of y \ z.] o

3.1.1 Stable families and event structures

Finite configurations of an event structure form a stable family. Conversely, a
stable family determines an event structure:

Proposition 3.7. Let x be a configuration of a stable family F. For e,e’ € x
define
< eiff VyeF.ycx & eey = e ey.

When e € x define the prime configuration
lele=({yeF |ycaz &eey} .
Then <, is a partial order and [e], is a configuration such that
[e)o=1{c ca | < eh

Moreover the configurations y € x are exactly the down-closed subsets of <.

Exercise 3.8. Prove Proposition 3.7. |

Lemma 3.9. Let F be a stable family. Then,

whenever e€ x and z in F.

Proof. “=” From e € [e], € z we get [e], € [e],. Hence e € [e], € z ensuring
the converse inclusion [e], € [e]., so [e], = [e].. “«<" Trivial. O

Proposition 3.10. Let F be a stable family. Then, Pr(F) =ger (P,Con, <) is
an event structure where:

P={le]ls |ecx & zecF},
ZeConiff ZcP & | JZeF and,
p<p iffp,p' e P &pcy.

There is an order isomorphism

0:(C(Pr(F)),c) = (F,c)

where 0(y) = Uy for y € C(Pr(F)); its mutual inverse is ¢ where p(x) =
{[e]s | e€x} forxeF.
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Proof. Tt is easy to check that Pr(F) is an event structure. Clearly, both 6 and
( preserve C.
Firstly, Op(x) =U{[e]s | e € z} =z, for all z € F, by an obvious argument.
Secondly, ¢0(y) = {[eluy | e€ Uy}, for y € C(Pr(F)). To show rhs =y we
use Lemma 3.9 repeatedly:

whenever e € z and z in F.

From e € [e], € z we get [e], € [e],. Hence e € [e], € x ensuring the converse
inclusion [e], € [e]., so [e]. = [€].-

“ycrhs’: [ely, ey =[els Uy = [els = [e]yy € rhs.

“rhs € y: Assume p € rhs. Then p = [e]y, with e € Uy. We have e € [¢'], ey
for some €', with ¢’ € z. So [e], € [€’]. € y ensuring [e], €y. As [e]. SUy we
obtain p = [e]y, = [€]s, sO p e y. O

Remark The above proposition ensures that the partial orders comprising sta-
ble families ordered by inclusion and the orders of configurations of event struc-
tures are the same to within isomorphism; both coincide with the orders of finite
elements of “prime algebraic domains” in which every finite, or isolated, element
dominates only finitely many elements.

The operation Pr is right adjoint to the “inclusion” functor, taking an event
structure E to the stable family C(E). The unit of the adjunction at an event
structure E is a map E — Pr(C(F)) which takes an event e to the prime
configuration [e] =qcf {€’ € E | €’ < e}. The counit at a stable family F is a map
topr : C(Pr(F)) -» F which takes a prime configuration [e], to e; this is well-
defined as a function by coincidence-freeness (see the proof of Theorem 3.11.

Theorem 3.11. There is a map topg : Pr(F) — F given by topr([e].) = € for
ecx e F. In fact, Pr(F), topr is cofree over F i.e. for any map g:C(E’) - F
of stable families with E' a prime event structure, there is a unique map f :

E’ — Pr(F) such that g = topsf.

Proof. By Proposition 3.10, Pr(F) is a prime event structure. We require that
topr : C(Pr(F)) — F above is a map. Firstly we need top is well-defined as
a function top : P - E where P = {[e], | e € z € F}. Suppose [e], = [¢']y
for e € z and x € F and e’ € y and y € F. Then by the coincidence-freeness
of F we have e = ¢/, giving top well-defined as a (total) function. From the
definition, if z is a configuration of Pr(F) then z = {[e], | e € 2} for some x € F;
thus top(z) =Uz =z € F. Let z be a configuration of Pr(F) so p,p’ € z and
top(p) = top(p’) = e say. Then p = p’ = [e]y.. Thus top is a map of stable
families.

We show Pr(F), topr is cofree over F. Let g : C(E’) — F be a map of stable
families where E’ is a prime event structure E’ = (E’,Con’,<’"). We require a
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unique map f: E' - Pr(F) s.t. the following diagram commutes:

F<Te(Pr(F))
UL
|
C(E")

Define f: E' - P by

£le) = { [g(e)]gre if g(€") is defined,

undefined  otherwise.
Above [€'] is the downwards closure of €’ in E’. Let z € C(E’). Then

fr={[g(e")]gren €' €z & g(€’) is defined}
={[elgz | e € gz}

where we have observed that [g(e)]ge) € g2 when e’ € x, so [g(e')]ge =
[g(e')]ge. Hence fxz is a configuration of Pr(F'). If e,e’ € x and f(e) = f(e')
(both defined) then g(e) = g(e’) (both defined) so e = €', as g is a map. Thus f
is a map. Clearly topf = g so f makes the diagram commute.

Let f': E' - Pr(F) be a map such that the diagram commutes i.e. topf = g.
We require f’' = f. Let ¢’ € E'. Firstly note if g(¢’) is defined then because top is
a total function we must have f’(e) defined which agrees with f. So suppose that
g(e) defined. Then f’(e) is a prime configuration of F' s.t. top(f'(e)) = g(e).
Now top is just union so using the assumed commutation we get

f'(e) cUf'[e] = topf'[e] = gle]

As f'(e) is a prime configuration in g[e] and top(f'(e)) = g(e) we have f'(e) =
[g(€)]gfe): i-e f'(e) = f(e).

Consequently f is the unique map making the diagram commute. O

Theorem 3.11 gives a bijection between maps g : C(E) — F of stable families
and maps f: E - Pr(F) of event structures where F is an event structure and
F is a stable family. The bijection is natural in E. As is well-known there is a
unique extension of Pr to a functor so that the bijection is also natural in F.
Once extended in this way we obtain the natural bijection of an adjunction.

Corollary 3.12. The functor C(_) from the category of event structures to the
category of stable families has a right adjoint the functor which acts as Pr on
stable families and as follows on a map f: A — B of stable families: the map
Pr(f) : Pr(A) —» Pr(B) takes [a]., an event of Pr(A), where a € v € A, to the
event [f(a)]zof Pr(B) if f(a) is defined, and to undefined otherwise.

The unit of the adjunction at an event structure E is the isomorphism E =
Pr(C(E)) taking e to [e]. The counit at a stable family F is given by tops :
C(Pr(F)) - F.
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Proof. Let f: A — B be a map of stable families. We must first be sure that
Pr(f) is well-defined as a partial function. Suppose [a], = [a'], for a € z € A
and b e y € B. We require Pr(f)([a],s) = Pr(f)([e'],) when either is defined.
Firstly, a = a’ by the coincidence-freeness of A. Suppose f(a) is defined. Then,

[f(a)]se € flale = flaly € fy.

Hence by Lemma 3.9, [£(a)] 7. = [f(a)] 1y, i.c. Pr(/)([al.) = Pr(f)([a'],)-
We should check that Pr(f) is a map of event structures. By Proposi-

tion 3.10, a configuration y of Pr(.A) has the form {[a], | a € 2} for some z € A.
Under Pr(f) it is sent to

{[f(@)]je acx & f(a) is defined} = {[b] s | b€ fo},

a configuration of Pr(B). Moreover, if [a],[a']+ € y and Pr(f)([a].) = Pr(f)([a]+),
then [f(a)]fs = [f(a')]far. But now f(a) = f(a") as B is coincidence-free and
a,a’ € Uy € A which implies a = a’. As [a]s,[a]r € Uy from Lemma 3.9 we
deduce [a], = [a]yy = [a]s, as required.

The map Pr(f) clearly makes the diagram

topn

B <""%¢(Pr(B))
Vi TPr(f)
A<"P0(Pr(A))

commute Hence, Pr(f) gives the unique extension of Pr to a functor which makes
the bijection (between maps g : C(E) - F of stable families and maps f: E —
Pr(F) of event structures) given by the cofreeness property of Theorem 3.11
natural, so forming an adjunction.

It is easily checked that the putative unit and counit maps do indeed corre-
spond to the identities on C(E) and Pr(F), respectively, as required for their
to be unit and counit. O

Remark. The fact that the unit is an isomorphism and the fact that the left
adjoint is full and faithful are in fact equivalent and say that the adjunction is in
a coreflection. Later it will play a role in obtaining products of event structures
from those of stable families.

Definition 3.13. Let F be a stable family. W.rt. z € F, write [€); =def
{/e E|e <, e& e #e}. The relation of immediate dependence of event struc-
tures generalizes: with respect to x € F, the relation e —, ¢’ means e <, ¢
with e # ¢’ and no event in between. For e, e’ € z € F we write e co, ¢/ when
neither e <, ¢ nor ¢’ <, e. Note the relations <., —, and co,, ‘local’ to a

configuration z, coincide with the ‘global’” versions <, — and co when the stable
family comprises the finite configurations of an event structure.
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We shall use the following property of maps repeatedly, both for stable fam-
ilies and the special case of event structures. It says that their maps locally
reflect causal dependency.

Proposition 3.14. Let f : F - G be a map of stable families. Let e e’ € x,
a configuration of F. If f(e) and f(e') are defined and f(e) <sn f(€') then

!
e<; €.

Proof. Let e,e’ e x € F. Suppose f(e) and f(e') are defined and f(e) <z, f(e’).
Suppose y is a subconfiguration of z, i.e. y € F and y € x, which contains ¢’.
Then clearly fy is a subconfiguration of fx which contains f(e’). We have
f(e) e fy as f(e) <f f(e'). Hence there is €” € y such that f(e”) = f(e). But
now e, e” € x with f(e) = f(e”), so e =¢€”. We deduce e € y. The argument was
for an arbitrary y, so e <, ¢’ as required. O

The next two propositions relate immediate causal dependency between
events to the covering relation between configurations.

Proposition 3.15. Let F be a stable family. Let e,e’ e v € F.

By, €F. gy Ca & y—cy—< <> e, € or ecoy e, (1)
and e—y e’ < y,y eF. yy1 Sz & y—cy—c & —ecoy € (i7)
— Iy eF. gy Cx & y—cy—c & ~y—c . (iii)

The proposition simplifies in the special case of event structures:

Proposition 3.16. Let E be an event structure. Let e,e’ € E.

Jy,y1 €C¥(E). y—cyi—c <> e—¢€' or ecoe’,
and e— ¢’ <= y,y €C®(E). y—cy1—c & -ecoe,

7

<~ Jy,y1 €CT(E). y—ecyl—ec & —.y—cc .

3.2 Completed stable families

We can extend a stable family to include infinite configurations, by constructing
its “ideal completion.”

Definition 3.17. Let F be a stable family. Define F*°, a completed stable
family, to comprise all UI where I € F is an ideal (i.e., I is a nonempty subset
of F closed downwards w.r.t. € in F and such that if z,y € I then zuyeT).

Exercise 3.18. For an event structure E, show C*(E) =C(E)>. ]

Exercise 3.19. Let F be a stable family. Show F*° satisfies:
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Completeness: VZ c F*. (VX ¢4, Z. X 1) = UZ e F>;
Stability: VZcF®. Z+@ & Z1 = NZeF>;
Coincidence-freeness: For all x € F*, e,e’ e x with e # €/,

JyeFP. ycax & (eey < € ¢y);
Finiteness: For all x € F*,

VeexdyeF.ecy & ycx & y is finite .

Show that F consists of precisely the finite sets in F. O

Remark Above the conditions of Finiteness and Coincidence-freeness together
can be replaced by the equivalent condition

Secured: if e € x € F then there exists a securing chain e1,---,e, = e in x
s.t. {e1,-,e;} € F for all i <n.

3.3 Process constructions

3.3.1 Products

Let A and B be stable families with events A and B, respectively. Their
product, the stable family A x B, has events comprising pairs in A x, B =g
{(a,*)|ae A} u{(a,b) |ac A& be B} u{(*Db)|be B}, the product of sets
with partial functions, with (partial) projections m; and me—treating * as
‘undefined’'—with configurations

e AxBiff
x is a finite subset of A x, B such that
(a) mz e A& mx e B,
(b) Ve,e' ex. mi(e) =m1(€') or ma(e) =ma(e) =>e=¢", &
(c)Ve,e'ex.ete’ = Fyca. mye A& myeB& (ecy — € ¢y).
Note how (a) and (b) express that the projections are maps while (c) says
the structure A x B is coincidence-free.
In checking that A x B, 1, w2 is a product in the category of stable families

we shall use the following lemma showing that the direct image under a partial
function preserves intersections when the function is locally injective.

Lemma 3.20. Let 0 : Eg — E1 be a partial function between sets Eg and E1.
Let X ¢ P(Ey). Then if

Ve,e' e[ JX .0(e)=0(e') = e=¢

then 6N X =N6X.



3.3. PROCESS CONSTRUCTIONS 35

Proof. Suppose 0(e) = 0(e’) (both defined) implies e = ¢’ for every e,e’ € Uz.
Clearly 6 is monotonic w.r.t. € so 6N X c NOX. Take e € NOX and x € X.
For some e’ € x we have 0(e’) = e. Take y € X. Then for some e, € y we have
6(ey) = e. However e,,e € UX and 0(e,) = 6(e’). Thus by hypothesis e, = ¢’
Therefore ¢/ € N X so e € N X. This establishes the converse inclusion; so
ANX =N06X, as required. O

Theorem 3.21. For stable families A and B the construction AxB with projec-
tions m and mo described above is the product in the category of stable families.

Proof. Suppose © € Ax B and e, e’ € x. We shall say “y is a separating set for
e,e’ in ” when ycx and m(y) € A and my(y) e Band ecy < €' ¢y.

We first check F =q¢r A x B is a stable family.
Complete. Suppose X ¢ F and X 1. We require U X satisfies (a)-(c) in the
definition of product.

(a) Clearly m;UX = UmX. As X is compatible in F' so are m X in 4 and
moX € B. Thus m(UX) € A and mo(UX) € B.

(b) By the compatibility of X, if e,e’ € UX and m;(e) = m;(e’), both being
defined, for i =1 or 2, then e = ¢€'.

(c) Suppose e,e’ e UX and e # /. Then Jz,y e X . ecx & € € y. If either
e ¢y or € ¢ x we have respectively either y or z is a separating set for e, e’
in UX. Otherwise e,e’ € z or e,e’ € y. Then as both x and y satisfy (c)
we obtain the required separating set.

Stable. Suppose @ # X ¢ F and X 1. We require X satisfies (a)-(c).

(a) By lemma 3.20, m;NX =NmX. But Nm X € A, as m X is a compatible
set in A, and similarly Nm X € B, so we have 71 (N X) € A and m2(NX) €
B.

(b) As any x € X satisfies (b) and NX <z certainly N X satisfies (b).

(¢) Suppose e,e¢’ e N X and e # ¢'. Choose x € X. Because x € F there is a
separating set y for e,e’ in x. Take v = ynNX. Clearly y,NX € x so
because A and B are stable, by lemma 3.20%** mv = mynm NX)e A
and mov = mayNmo (X € B. This makes v a separating set for e,e’ in N X.

Coincidence-free. Suppose e,e’ € x € F and e # e/. As x satisfies (¢) there is a
separating set y for e, e’ in z. We further require y € F. Clearly y satisfies (a),
(b). To Show y satisfies (c), assume €, €' € y and € # ¢/. Take a separating set v
for €,¢ in z. Take u=vny. Then, just as in the proof of stability, part (c), we
get u is a separating set for €, €’ in x.

Thus we have shown A x B is a stable family. It remains to show that
with projections 71, o it forms the product in the category of stable families.
First note 71 and 7y are maps by (a), (b) in the construction of the product .
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Suppose there are maps f1: F — A and fo : F — B are maps of stable families.
We require a unique map h such that the following diagram commutes:

AxB
A
T |\
/'
A I'h B
[
[
f

Take h so that

niey = | (1(€). f2(€)) if fi(e) is defined or fa(e) is defined
(e) = undefined otherwise

In a pair (f1(e), f2(e)) we shall identify undefined with x.

Obviously m; o h = f; in the category of sets with partial functiosn, for i = 1,2
so provided h is a map of stable families it is unique so the diagram commutes.
To show h is a map we need:

VreF .hreF D
VoeFVe,e ex. h(e)=h(e) = e=¢ (11)

We prove (II) first:

Suppose e, e’ € x € F. Then if h(e) = h(e) then f;(e) = fi(¢'), both being
defined, for either ¢ = 1 or ¢ = 2. As each f; is a map e = €', as required to
prove (II).

Now we prove (I). Let z € F. We need hx satisfies (a)-(c) in the construction
of the product. Both (a) and (b) follow from the commutations 7; o h = f; using
the map properties of f; and fas. To prove (c), suppose e,e’ € hx and e # €.
Then e = h(e) and e’ = h(€") for some €,€ € z. We must have € # ¢’. Thus as F
is coincidence-free we have some y € F such that y Cx and eey < € ¢y. As
we know h satisfies (II) above it follows that one and only one of e, e’ is in hy.
The commutations m; o h = f; give m hy € A and mohy € B . Thus hy separates
e, e in x.

Thus finally we have shown A x B with projections 71,7 is a product in the
category of stable families. O

Proposition 3.22. Let x € A x B, a product of stable families with projections
m and wy. Then, for all y C x,

yeAxB < myec A& myeB.
Proof. Straightforwardly from the definition of A x B. O

Right adjoints preserve products. Hence if AxB, 71, w2 is a product of stable
families then Pr(A) x Pr(B), Pr(m ), Pr(ms) is a product of event structures.
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Consequently we obtain a product of event structures A and B by first regarding
them as stable families C(A) and C(B), forming their product

C(A)xC(B),m,m
and then constructing the event structure
A x B =q¢t Pr(C(A) xC(B))
with projections the composite maps

M :AxB " pre(A)) = A and Th:AxB "2 prc(B)) = B

—the isomorphisms are inverses to those of the unit of the adjunction. The
projections can be simplified:

Proposition 3.23. Let A and B be event structures.
AxB =def PI‘(C(A) X C(B))
and its projections as Iy =gt mtop: Ax B - A and Iy =gof matop: Ax B - B.

Proof. For example,

M Ax B2 pre(a)) = 4

takes an event [e], € A x B via Pr(m) to [m1(e)]r if m1(e) is defined, by
Corollary 3.12, whence to 71 (€) under the isomorphism, i.e. to myotop([e];). O

Exercise 3.24. Let A be the event structure consisting of two distinct events
a1 < as and B the event structure with a single event b. Following the method
above describe the product of event structures A x B. |

Later we shall use the following properties of — in a product of stable families
or event structures.

Lemma 3.25. Let x € AxB, a product of stable families with projections 7y, ms.

Lete,e’ ex. If e —, €', then
either

(i) m1(e) and wi(e") are both defined with 71 (€) —x,. m1(e') in A and

if ma(e), ma(€') are defined then wa(€) —>r,. ma(€') or ma(e) cor,. ma(e') in B,
or

(ii) m2(e) and mo(e’) are both defined with wa(€) —>r,z m2(€’) in B and

if m1(e), m(e") are defined then mi(e) —r,» m1(e") or mi(e) cor,» m1(e") in A.

Proof. By Proposition 3.15(iii), e —, e’ iff (I) y—ec yl—ec and (IT) —|y—ec, for
subconfigurations y,y; of x. From (I),

(a) if w1 (e), m1(e") are defined then myTL(ce:)myluf:)
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and

(b) if ma(e), m2(e") are defined then 7r2y71(<e:)7r2ygﬁec)_

Suppose both (71 (e") defined = ﬂlyﬂ—liz) and (m2(e’) defined = 7r2yﬂ—2f: ).
Then yu {e'} ¢ x with m(yu{e'}) € A and ma(yu {e’'}) € B. So, by Proposi-

tion 3.22, yu{e’'} € Ax B—contradicting (IT). Hence, either —TY—c , with 7€
defined, or —|7r2y36c, with mae’ defined.
Assume the case —|7r1y7r—1?:7 with 7€’ defined. Supposing m(e) is unde-

fined, from (I) we obtain the contradictory my = myi—c. Hence, in this

. (e) (e") '
case, both mye and e’ are defined with 7y~ my; —< and ~my—c. So

m1(e) = m1(e’) in A, by Proposition 3.15(iii). Meanwhile from (b), this time
by Proposition 3.15(1), if m2(e), ma(e’) are defined then may(€) —>nye m2(€’) or
mo(€e) Conyy m2(e’) in B. Hence (i), above.

Similarly, the case —mmyEec, with mee’ defined, yields (ii).
O

Corollary 3.26. Let Ax B, IIy, IIy be a product of event structures. If p — p’
i Ax B, then
either
(i) Iy (p) and 111 (p’) are both defined with 11y (p) — 1 (p’) in A and
if a(p), Ma(p') are defined then Ilz(p) — Il2(p") or Ila(p) coIl2(p") in B,
or
(1i) Ua(p) and M2(p") are both defined with Ia(p) — Ma(p') in B and
if Iy (p), Ty (p") are defined then Iy (p) — 111 (p") or M1(p) co 1 (p") in A.

Proof. Directly by Lemma 3.25, because p — p’ in A x B implies top(p) —>,
top(p’) in C(A) xC(B). O

The converse to Lemma 3.25, above, is false. A more explicit, case-by-case,
form of the above Lemma 3.25 is helpful:

Lemma 3.27. Suppose ¢ —, €' in a product of stable families A x B, my,ms.
(i) If e = (a,*) then ¢’ = (a’,b) or e’ = (a',*) with a —,,, a’ in A.
(i1) If e’ = (a’, *) then e = (a,b) ore=(a,*) with a —,, a’ in A.
(i11) If e = (a,b) and €' = (a’,b") then a —,,, a’ in A or b —,,,. b in B.
Furthermore both (@ —x, . @' or a cop za') and (b —>p,n b 01 b coryy b').

The obuvious analogues of (i) and (ii) hold for e = (*,b) and e’ = (x,b").

Proof. A restatement of Lemma 3.25, writing a = m1(e), b = ma(e), a’ = m1(e’)
and b = ma(e’) when these results of projections are defined. O

Exercise 3.28. Let z € A x B, the product of stable families. For any chain
(aa *) >, €1 Py P, Ey = (*ab)

show there is e; = (a;,b;) for some events a; of A and b; of B.
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Corollary 3.29. Let f: A— A" and g: B — B’ be rigid maps of event struc-
tures. Then the map (f,g): Ax B - A’ x B’ is rigid.

Proof. Write II;, I and II{, IT), for the projections of Ax B and A’ x B’ respec-
tively. It is easy to check that the totality of f and g above implies (f, g) is total.
To show that their rigidity implies ( f, g) is rigid we use Corollary 3.26 above. As-
suming p — p’ in Ax B the corollary implies IT; (p) — II; (p”) or Ia(p) — M2 (p’).
From the rigidity of f and g, we obtain fII; (p) — fII;(p") or glla(p) — gIla(p).
But IT}(f, g)(p") = fI11 (p") and TI5(f, g)(p") = fT2(p") whence as (f, g) is a map
so reflects causal dependency locally we deduce (f,g)(p) < (f,g)(p’) (or in fact
(f,9)(p) = (f.9)(p")), showing (f, g} is rigid. O

3.3.2 Restriction

The restriction of F to a subset of events R is the stable family F | R =qef
{r e F|xzcR}. Defining E | R, the restriction of an event structure F to a
subset of events R, to have events E' = {e € FE | [e] ¢ R} with causal dependency
and consistency induced by E, we obtain C(E | R) =C(E) I R.

Proposition 3.30. Let F be a stable family and R a subset of its events. Then,
Pr(F ' R) = Pr(F) ttop™ ' R.

We remark that we can regard restriction as arising as an equaliser. FE.g. for
an event structure E and a subset R of events, the inclusion map E' | R - F is
the equaliser of the two maps idg, the identity map on F, and r : E — F, which
acts as identity on events with down-closure in R and is undefined elsewhere.

3.3.3 Synchronized compositions

Synchronized parallel compositions are obtained as restrictions of products to
those events which are allowed to synchronize or occur asynchronously. For
example, the synchronized composition of Milner’s CCS on stable families A and
B (with labelled events) is defined as A x B | R where R comprises events which
are pairs (a, *), (*,b) and (a,b), where in the latter case the events a of A and b
of B carry complementary labels. Similarly, synchronized compositions of event
structures A and B are obtained as restrictions A x B | R. By Proposition 3.30,
we can equivalently form a synchronized composition of event structures by
forming the synchronized composition of their stable families of configurations,
and then obtaining the resulting event structure—this has the advantage of
eliminating superfluous events earlier.

Products of stable families within the subcategory of total maps can be
obtained by restricting the product (w.r.t. partial maps). Construct

Ax;B=AxBAxB

where we restrict to the cartesian product of the sets of events of A and B,
called A and B respectively; projection maps are obtained from the projection
functions from the cartesian product. Products of stable families within the
subcategory of total maps have a particularly simple characterisation:
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Proposition 3.31. Finite configurations of a product A x; B of stable families
with total maps are secured bijections 6 : x 2 y between configurations x € A and
y € B, such that the transitive relation generated on 0 by taking (a,b) < (a',d")
ifa<ya orb<, b is a partial order.

Proof. Let z € A x; B. By Proposition3.14 the projections m; and ms locally
reflect causal dependency. Hence the partial order <, satisfies: (a,b) <, (a’,b")
if a <z aorb<, b, for all (a,b),(a’,b’) € z. Thus the transitive relation on z
generated by taking (a,b) < (a',b") if a <, a’ or b <, V' is certainly a partial order;
failure of antisymmetry for the relation generated would imply its failure for <,
a contradiction. To see that <, is precisely the transitive relation generated in
this way, let 6 be the elementary event structure comprising events the set z
with causal dependency the least transitive relation < for which (a,b) < (a’,b")
if a<ya’ or b<, b'. Let © be its stable family of configurations with 71 : © - A
and ry : © - B the obvious projection maps. By the universal properties of the
product A x; B, 71, m there is a unique map h: © — A x; B s.t. r{ = mh and
ro = moh. As a function on the underlying sets of events h : § — z acts as the
identity on events and reflects causal dependency. Hence <,c<,. It follows that
<. and <, coincide, so that <, is a secured bijection.

Conversely, suppose 6 is a secured bijection between x € A and y € B with
generated partial order <. Regard 6,< as an elementary event structure with
stable family of configurations ©. From the way < is generated, there are pro-
jection maps r1 : © - A and 19 : © - B. Hence by universality, there is a unique
map h: © - Ax; B s.t. r1 = mh and r9 = moh. But then A must act as the
identity function, ensuring 6 € A x; B. O

3.3.4 Pullbacks

The construction of pullbacks can be viewed as a special case of synchronized
composition. Once we have products of event structures pullbacks are obtained
by restricting products to the appropriate equalizing set. Pullbacks of event
structures can also be constructed via pullbacks of stable families, in a similar
manner to the way we have constructed products of event structures. We obtain
pullbacks of stable families as restrictions of products. Suppose f1 : F; - G and
fo: Fo — G are maps of stable families. Let F1, E5 and C be the sets of events
of F1, F» and G, respectively. The set P =qor {(e1,€2) | f(e1) = f(e2)} with
projections 7y, mo to the left and right, forms the pullback, in the category of
sets, of the functions f; : E1 —» C, fy : E5 - C. We obtain the pullback in
stable families of f1, fo as the stable family P, consisting of those subsets of P
which are also configurations of the product F; x Fo—its associated maps are
the projections 71, mo from the events of P. When f; and f> are total maps we
obtain the pullback in the subcategory of stable families with total maps.

As a corollary of Proposition 3.31 we obtain a simple characterization of
pullbacks of total maps within stable families:

Lemma 3.32. Let P,my,ma form a pullback of total maps f : A - C and g :
B — C in the category of stable families. Configurations of P are precisely



3.3. PROCESS CONSTRUCTIONS 41

those composite bijections 0 : x = fx = gy = y between configurations x € A and
y € B s.t. fx = gy for which the transitive relation generated on 6 by taking
(a,b) < (a',V') if a <y a’ orb<, b is a partial order.

For future reference we give the detailed construction of pullbacks of to-
tal maps in stable families. Let f : A - C and g : B - C be total maps
of stable families. Assume A and B have underlying sets A and B. Define
D =q4et {(a,b) e Ax B | f(a) =g(b)} with projections 7, and 72 to the left and
right components. Define a family of configurations of the pullback to consist of

z €D iff

x is a finite subset of D such that mx € A & max € B,

Ve,e'ez.ete =>ycr. mye A& myeB& (ecy < €' ¢y).
The extra local injectivity property we needed in the definition of product is not
necessary here; it follows from the definition of D and that f and g are locally
injective.

We obtain the pullback of event structures by first forming the pullback in

stable families of their families of configurations and then applying Pr.

As a corollary of Lemma 3.32 we obtain a useful way to understand config-
urations of the pullback of total maps on event structures.

Proposition 3.33. When f: A — C and g: B - C are total, maps of event
structures, in their pullback P, 111,11,

I,
N,

the finite configurations of P correspond to composite bijections

0: x> fr=gyy

between finite configurations x of A and y of B such that fx = gy, for which the
transitive relation generated on 6 by (a,b) < (a’,b") if a<a a’ or b<p b’ forms
a partial order.

As a consequence the pullback of rigid maps, respectively rigid epi maps,
across total maps are rigid, respectively rigid epi.

Proposition 3.34. Let P,I11,II5 be a pullback of total maps f: A - C and
g: B — C in the category of event structures. If f is rigid so is Ua. If f is rigid
and epi so is Il,.

Proof. Use Proposition 3.33 to construct the appropriate configurations of the
pullback of event structures; the rigidity of f ensures their existence. O
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3.3.5 Projection

As we have seen, event structures support a simple form of hiding associated
with the partial-total factorisation of a partial map. Let (E, <, Con) be an event
structure. Let V' € E be a subset of ‘visible’ events. Define the projection of E
on V, to be E|V =45t (V,<y,Cony ), where v <y v’ iff v < v’ & v,0v" € V and
XeCony iff XeCon & X cV.

Proposition 3.35. Let f : E — E’ be a total map of event structures. Let
VCFE and V' € E' be such that

VeeE.eeV < f(e)eV' .
Then f restricts to a total map f 'V :E |V - E" | V'. Moreover, if [ is rigid
then so is f I'V.

3.3.6 Recursion

Both stable families and event structures support recursive definitions via the
‘large cpo’ based on the substructure relation < [4, 5]. For two stable families
F and G with events F' and G respectively,

FAGit FecG & Ve csn F.xeF < x€@G.



Chapter 4

Games and strategies

Very general nondeterministic concurrent games and strategies are presented.
The intention is to formalize distributed games in which both Player (or a
team of players) and Opponent (or a team of opponents) can interact in highly
distributed fashion, without, for instance, enforcing that their moves alter-
nate. Strategies, those nondeterministic plays which compose well with copy-cat
strategies, are characterized.!

4.1 Event structures with polarities

We shall represent both a game and a strategy in a game as an event structure
with polarity, comprising an event structure together with a polarity function
pol : E - {+,-} ascribing a polarity + or — to its events E. The events corre-
spond to (occurrences of) moves. The two polarities +/— express the dichotomy:
Player/Opponent; Process/Environment; Prover/Disprover; or Ally /Enemy. Maps
of event structures with polarity are maps of event structures which preserve po-
larity.

4.2 Operations
4.2.1 Dual

The dual, E*, of an event structure with polarity E comprises a copy of the
event structure E but with a reversal of polarities. It obviously extends to a
functor. Write € € E* for the event complementary to ¢ € E and vice versa.

4.2.2 Simple parallel composition

This operation simply juxtaposes two event structures with polarity. Let (A4,<4
,Cony, pol 4) and (B,<p,Conp,polg) be event structures with polarity. The

I This key chapter is the result of joint work with Silvain Rideau [6].
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events of A||B are ({1}xA)u({2}xB), their polarities unchanged, with: the only
relations of causal dependency given by (1,a) < (1,a") iff a <4 o' and (2,b) <
(2,0") iff b<p b'; a subset of events C' is consistent in A||B iff {a | (1,a) e C} €
Cony and {b | (2,b) € C'} € Conpg. The operation extends to a functor—put the
two maps in parallel. The empty event structure with polarity @& is the unit
w.r.t. ||

4.3 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events
stand for the possible occurrences of moves of Player and Opponent and its
causal dependency and consistency relations the constraints imposed by the
game. A pre-strategy in A is a total map o : S - A from an event structure with
polarity S. A pre-strategy represents a nondeterministic play of the game—all
its moves are moves allowed by the game and obey the constraints of the game;
the concept will later be refined to that of strategy (and winning strategy in
Section 10.1).

A map from a pre-strategy o: S — A to a pre-strategy ¢’ : S’ - A is a map
f:S — 8" such that

st g

N!

A

commutes. Accordingly, we regard two pre-strategies 0:S - A and ¢’ : §' - A
as essentially the same when they are isomorphic, and write o = o', i.e. when
there is an isomorphism of event structures #:.S = S’ such that

Sl
N
A
commutes.

Let A and B be event structures with polarity. Following Joyal [7], a pre-
strategy from A to B is a pre-strategy in A*||B, so a total map o: S — A'||B.

It thus determines a span
S
A
At B,

of event structures with polarity where 01,09 are partial maps. In fact, a pre-
strategy from A to B corresponds to such spans where for all s € S either, but

S
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not both, o1(s) or o2(s) is defined. Two pre-strategies o and 7 from A to B
are isomorphic, o 2 7, when their spans are isomorphic, i.e.

S
I
2l
\
g1 T g2
At B

commutes. We write o : A—= B to express that o is a pre-strategy from A to B.
Note a pre-strategy in a game A coincides with a pre-strategy from the empty
game o : @F—=A.

4.3.1 Concurrent copy-cat

Identities on games are given by copy-cat strategies—strategies for Player based
on copying the latest moves made by Opponent.

Let A be an event structure with polarity. The copy-cat strategy from A
to A is an instance of a pre-strategy, so a total map @, : (CCy - A*||A. Tt
describes a concurrent, or distributed, strategy based on the idea that Player
moves, of +ve polarity, always copy previous corresponding moves of Opponent,
of —ve polarity.

For ¢ € A*||A we use ¢ to mean the corresponding copy of ¢, of opposite
polarity, in the alternative component, i.e.

m: (2,@) and m: (L,a@).

Proposition 4.1. Let A be an event structure with polarity. There is an event
structure with polarity GC4 having the same events and polarity as A*||A but
with causal dependency <cc, given as the transitive closure of the relation

<arjau {(G0) | ce A A & polyuya(c) = +}

and finite subsets of (C4 consistent if their down-closure w.r.t. <cc, are con-
sistent in A*||A. Moreover,
(i) ¢ — ¢ in C4 iff

c—c in A A or pol gy 4(c') =+ & e=¢';
(ii) e C((C4) iff
reC(AT|A) & Yeex. polga(c) =+ = Cex.
Proof. It can first be checked that defining

c<a, ¢ M (i) c<avpac or
(’L’L) deg € AlHA pOZALHA(Co) =+ &

— ’
C<AL|A Co & ¢ <ALjA €,
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yields a partial order. Note that
c<aL|A d iff C<pLA g,

used in verifying transitivity and antisymmetry. The relation <, is clearly
the transitive closure of <4. 4 together with all extra causal dependencies (¢, c)
where pol 4. 4(¢) = +. The remaining properties required for (C 4 to be an event
structure follow routinely.

(i) From the above characterization of <.

(ii) From (C4 and A*'||A sharing the same consistency relation on sets down-
closed in A*||A and w.r.t. the extra causal dependency adjoined to CC 4. O

Based on Proposition 4.1, define the copy-cat pre-strategy from A to A to
be the pre-strategy @ 4 : CC4 - A'|| A where (C 4 comprises the event structure
with polarity A*'||A together with extra causal dependencies ¢ <a, ¢ for all
events ¢ with pol,.4(c) = +, and @, is the identity on the set of events
common to both (C4 and A*| A.

4.3.2 Composing pre-strategies

Consider two pre-strategies 0 : A—=B and 7: B—C as spans:

S T
At B B* C.

We show how to define their composition 700 : A—=C'". If we ignore polarities
the partial maps of event structures o, and 7, have a common codomain, the
underlying event structure of B and B*. The composition 7@ will be con-
structed as a synchronized composition of S and T', in which output events of S
synchronize with input events of T, followed by an operation of hiding ‘internal’
synchronization events. Only those events s from S and ¢ from T for which
o2(s) = 11(t) synchronize; note that then s and ¢ must have opposite polarities
as this is so for their images o2(s) in B and 71(¢) in B*. The event result-
ing from the synchronization of s and ¢ has indeterminate polarity and will be
hidden in the composition 7@0o.

Formally, we use the construction of synchronized composition and projec-
tion of Section 3.3.3. Via projection we hide all those events with undefined
polarity.

We first define the composition of the families of configurations of S and T
as a synchronized composition of stable families. We form the product of stable
families C(S) x C(T") with projections m; and g, and then form a restriction:

C(T)®C(S) =aes C(S) xC(T) I R
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where
R = {(s,%) ]| s€S & o1(s) is defined} u

{(s,t) | s€S & teT & o3(s) = 11(¢t) with both defined}u
{(*,t) | teT & 72(t) is defined} .

The stable family C(T") ® C(S) is the synchronized composition of the stable
families C(S) and C(7T') in which synchronizations are between events of S and
T which project, under o5 and 7 respectively, to complementary events in B
and B*. The stable family C(T) ® C(S) represents all the configurations of the
composition of pre-strategies, including internal events arising from synchro-
nizations. We obtain the synchronized composition as an event structure by
forming Pr(C(T") ® C(.9)), in which events are the primes of C(T") ® C(.S). This
synchronized composition still has internal events.

To obtain the composition of pre-strategies we hide the internal events due
to synchronizations. The event structure of the composition of pre-strategies is
defined to be

ToS =gt Pr(C(T)®C(S5)) LV,

the projection onto “visible” events,

V={pePr(C(T)®C(S)) | Is€ S. top(p) =(s,*)} U
{pePr(C(T)®C(S)) | IteT. top(p) = (*,t)}.

Finally, the composition 7®c is defined by the span

TeS
At C

where v; and vy are maps of event structures, which on events p of T®S act so
v1(p) = 01(s) when top(p) = (s,*) and va(p) = 72(t) when top(p) = (*,t), and
are undefined elsewhere.

Proposition 4.2. Above, vy and ve are partial maps of event structures with
polarity, which together define a pre-strategy v: A—=C'. For x € C(T®S),

vz =oym |Jz and vexr =mm|Jx.
Proof. Consider the two maps of event structures
w1 :Pr(C(T) ®C(S)) 5575 A* |
us :Pr(C(T) ® C(9)) ST -2C,

where Iy, 15 are (restrictions of) projections of the product of event structures.
E.g. for pe Pr(C(T)®C(S)), I11(p) = s precisely when top(p) = (s, *), so o1(s)
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is defined, or when top(p) = (s,t), so o1(s) is undefined. The partial functions
vy and vo are restrictions of the two maps u; and us to the projection set V.
But V consists exactly of those events in Pr(C(T) ® C(S)) where u; or ug is
defined. It follows that v; and vy are maps of event structures.

Clearly one and only one of v, vg are defined on any event in T®S so they
form a pre-strategy. Their effect on z € C(T®S) follows directly from their
definition. O

Proposition 4.3. Letoc: A—=B, 7: B—=C and v : C—=D be pre-strategies.
The two compositions vE(Tec) and (VOT)®0 are isomorphic.

Proof. The natural isomorphism S x (T'x U) = (S xT) x U, associated with
the product of event structures S, T, U, restricts to the required isomorphism of
spans as the synchronizations involved in successive compositions are disjoint.O

4.3.3 Composition via pullback

We can alternatively present the composition of pre-strategies via pullbacks.?
For this section assume that the correspondence a < @ between the events of
A and its dual A' is the identity, so A and A* share the same events, though
assign opposite polarities to them. Given two pre-strategies o : S - A'||B and
7:T — B*||C, ignoring polarities we can consider the maps on the underlying
event structures, viz. o:S5 — A||B and 7:T — BJ|C. Viewed this way we can
form the pullback in € (or &, as the maps along which we are pulling back are
total)

pP

TN

S|C A|T

A|B|C.

There is an obvious partial map of event structures A||B||C - A||C undefined
on B and acting as identity on A and C. The partial map from P to A||C given

2I’m grateful to Nathan Bowler for the observations of this section.
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by following the diagram (either way round the pullback square)

P

4
S| A|T

o|lC Al
AlBJlC

|

AlC

factors through the projection of P to V', those events at which the partial map
is defined:

PPV - A|C.

The resulting total map v: P | V - A|C gives us the composition 7@0 : P |
V — A*||C once we reinstate polarities.

4.3.4 Duality

A pre-strategy o : A—= B corresponds to a dual pre-strategy o* : B*—=A*'.
This duality arises from the correspondence

S > S
N TN
A B (BY)* At

It is easy to check that the dual of copy-cat, a?;, is isomorphic, as a span, to
the copy-cat of the dual, @ 4., for A an event structure with polarity. It is also
straightforward, though more involved, to show that the dual of a composition
of pre-strategies (7®o)* is isomorphic as a span to the composition oto7t.
Duality, as usual, will save us work.

4.4 Strategies

This section is devoted to the main result of this chapter: that two conditions
on pre-strategies, receptivity and innocence, are necessary and sufficient in order
for copy-cat to behave as identity w.r.t. the composition of pre-strategies. It be-
comes compelling to define a (nondeterministic) concurrent strategy, in general,
as a pre-strategy which is receptive and innocent.
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4.4.1 Necessity of receptivity and innocence

The properties of receptivity and innocence of a pre-strategy, described below,
will play a central role.

Receptivity. Say a pre-strategy o : S — A is receptive when cz—c & pol 4(a) =
~=3seS. a—c & o(s) =a, for all 2 €C(S), a € A. Receptivity ensures that
no Opponent move which is possible is disallowed.

Innocence. Say a pre-strategy o is innocent when it is both +-innocent and
—-innocent:

+-Innocence: If s — s' & pol(s) = + then o(s) — o(s').

—-Innocence: If s — s" & pol(s’) = — then o(s) — o(s’).

The definition of a pre-strategy o : S — A ensures that the moves of Player
and Opponent respect the causal constraints of the game A. Innocence restricts
Player further. Locally, within a configuration, Player may only introduce new
relations of immediate causality of the form & — @. Thus innocence gives Player
the freedom to await Opponent moves before making their move, but prevents
Player having any influence on the moves of Opponent beyond those stipulated
in the game A; more surprisingly, innocence also disallows any immediate causal-
ity of the form ® — &, purely between Player moves, not already stipulated in
the game A.

Two important consequences of —-innocence:

Lemma 4.4. Let 0:S — A be a pre-strateqy. Suppose, for s,s’ € S, that
[s) 1[s") & polg(s) =polg(s') =— & o(s) =0(s).

(i) If o is —-innocent, then [s) = [s').
(1) If o is receptive and —-innocent, then s =s'.
[x 1y expresses the compatibility of x,y € C(S).]

Proof. (i) Assume the property above holds of s, s’ € S. Assume o is —-innocent.
Suppose s; — s. Then by —innocence, o(s1) — o(s). As (s’) =c(s) and o is
a map of event structures there is sy < s’ such that o(s2) = o(s1). But s1, $2
both belong to the configuration [s) U[s’) so s1 = s2, as ¢ is a map, and s; < s'.
Symmetrically, if s; — s’ then s; < s. It follows that [s) = [s’). (ii) Now both

[s)—sc and [s)—sc with o(s) = o(s") where both s,s” have —ve polarity. If,
further, o is receptive, s = s'. O
Let  and 2’ be configurations of an event structure with polarity. Write
x €~ ' tomean x C z’ and pol(z'~xz) € {-}, i.e. the configuration 2’ extends the
configuration z solely by events of —ve polarity. In the presence of —-innocence,
receptivity strengthens to the following useful strong-receptivity property:

Lemma 4.5. Let 0 : S - A be a —-innocent pre-strategy. The pre-strategy o
is receptive iff whenever ox €~y in C(A) there is a unique 2’ € C(S) so that
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zca' & ox' =y. Diagrammatically,

X

\
ox < Y.

in
8

[Tt will necessarily be the case that v <~ x'.]

Proof. “if”: Clear. “Only if”: Assuming oz €~ y we can form a covering chain
al (e 7%
Or—=Cy1"—=CYn =Y.

By repeated use of receptivity we obtain the existence of z’ where x ¢ z’ and
oz’ = y. To show the uniqueness of z’ suppose = € z,2" and oz = 02’ = y.
Suppose that z # z’. Then, without loss of generality, suppose there is a <g-
minimal s’ € z" with s’ ¢ z. Then [s") € z. Now o(s’) € y so there is s € z for
which o(s) = o(s"). We have [s),[s") € z so [s) 1 [s"). By Lemma 4.4(ii) we
deduce s = s’ so s’ € 2, a contradiction. Hence, z = 2’. O

It is useful to define innocence and receptivity on partial maps of event
structures with polarity.

Definition 4.6. Let f : S - A be a partial map of event structures with
polarity. Say f is receptive when

f(ac)—ac & poly(a)=- = 3lseS. r—c & f(s)=a

for all x € C(95), a € A.
Say f is innocent when it is both +-innocent and —-innocent, i.e.

s— s & pol(s) =+ & f(s) is defined =

f(s") is defined & f(s) — f(s'),
s— s & pol(s') =—- & f(s') is defined =

f(s) is defined & f(s) — f(s').

Proposition 4.7. A pre-strategy o : A—=B is receptive, respectively +/—-
innocent, iff both the partial maps o1 and oy of its span are receptive, respectively
+/—-innocent.

Proposition 4.8. For 0 : A—=DB a pre-strateqy, o1 is receptive, respectively
+/—-innocent, iff (o*)2 is receptive, respectively +/—-innocent; o is receptive and
innocent iff o+ is receptive and innocent.

The next lemma will play a major role in importing receptivity and innocence
to compositions of pre-strategies.

Lemma 4.9. For pre-strategies 0 : A—=B and 7 : B—=C, if o1 is receptive,
respectively +/—-innocent, then (7®c); is receptive, respectively +/—-innocent.
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Proof. Abbreviate TGc to v.
Receptivity: We show the receptivity of v; assuming that oy is receptive. Let

2 € C(T®S) such that v;z—c in C(A*) with pol 4. (a) = —. By Proposition 4.2,
o1m Uz—c with m Uz € C(S). As oy is receptive there is a unique s € S such

that m; Ux—sc in S and o1(s) = a. It follows that Ux(i*c)z, for some z, in
C(T) ®C(S). Defining p =ger [(s, *)]. we obtain z—<c and vi(p) = a, with p
the unique such event.

Innocence: Assume that o; is innocent. To show the +-innocence of v we first
establish a property of the —-relation in the event structure Pr(C(T) ® C(5)),

the synchronized composition of event structures S and 7', before projection to
V:

If e — €' in Pr(C(T) ® C(S)) with e € V, pol(e) = + and v1(e)
defined, then e’ € V and vi(e") is defined.

Assume e — €’ in Pr(C(T) ® C(S5)), e€ V, pol(e) = + and vy (e) is defined.
From the definition of Pr(C(T) @ C(.9)), the event e is a prime configuration
of C(T) ® C(S) where top(e) must have the form (s, *), for some event s of S
where 01(s) is defined. By Lemma 3.27, top(e’) has the form (s’, ) or (¢,t)
with s = ¢’ in S. Now, as s — s’ and pol(s) = +, from the +-innocence of
o1, we obtain o1(s) — o1(s’) in A*||A. Whence o1(s’) is defined ensuring
top(e') = (s',*). It follows that ¢’ € V and vy (e) is defined.

Now suppose ¢ — ¢’ in T®S. Then either

(i) e —» ¢’ in Pr(C(T) ® C(S)), or

(ii) e —» e <€’ in Pr(C(T) ® C(S)) for some ‘invisible’ event e; ¢ V.

But the above argument shows that case (ii) cannot occur when pol(e) = +
and v (e) is defined. It follows that whenever e — e’ in T®S with pol(e) = +
and vy (e) defined, then vy(e’) is defined and vyi(e) — vi(e’), as required.

The argument showing —innocence of v, assuming that of o; is similar. O

Corollary 4.10. For pre-strategies 0 : A—=B and 7 : B—=C, if 1o is re-
ceptive, respectively +[—-innocent, then (T®0)s is receptive, respectively +/—-
mnocent.

Proof. By duality using Lemma 4.9: if 75 is receptive, respectively +/—-innocent,
then (71); is receptive, respectively +/—-innocent, and hence (c*@7t); = ((7@0)*); =
(7®0)4 is receptive, respectively +/—-innocent. i

Lemma 4.11. For an event structure with polarity A, the pre-strategy copy-cat
va i A—= A is receptive and innocent.

Proof. Receptive: Suppose x € C((C4) such that @ z—c in C(A*||A) where
pol gy 4(c) == Now @ 42 = and 2" =g¢f vU{c} € C(A*||A). Proposition 4.1(ii)
characterizes those configurations of A*|| A which are also configurations of (C 4:
the characterization applies to x and to its extension 2’ = z U {c} because of the
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—ve polarity of ¢. Hence 2’ € C((C4) and z—<c 2’ in C(CC,), and clearly c is
unique so @ 4(c¢) = c.

—-Innocent: Suppose ¢ — ¢ in Cy4 and pol(¢’) = —. By Proposition 4.1(i),
c¢— ¢ in A*||A. The argument for +-innocence is similar. O

Theorem 4.12. Let 0 : A—= B be a pre-strategy from A to B. Ifc®a@ s 20
and «p®o 2 o, then o is receptive and innocent.

Let o0 : A—=DB and 7 : B—=C be pre-strategies which are both receptive and
innocent. Then their composition T®c : A—=C is receptive and innocent.

Proof. We know the copy-cat pre-strategies « 4 and « p are receptive and
innocent—Lemma 4.11. Assume 00 @ 4 2 0 and @p®o 2 0. By Lemma 4.9,
(0@ 4)1 is receptive and innocent so oy is receptive and innocent. From its
dual, Corollary 4.10, (@ p®c)s2 so o3 is receptive and innocent. Hence o is
receptive and innocent.

Assume that o0 : A—= B and 7 : B— (' are receptive and innocent. The fact
that o is receptive and innocent ensures that (7®c); is receptive and innocent,
that 7 is receptive and innocent that (7®0)s is too. Combining, we obtain that
TO0 is receptive and innocent. m]

In other words, if a pre-strategy is to compose well with copy-cat, in the
sense that copy-cat behaves as an identity w.r.t. composition, the pre-strategy
must be receptive and innocent. Copy-cat behaving as identity is a hallmark
of game-based semantics, so any sensible definition of concurrent strategy will
have to ensure receptivity and innocence.

4.4.2 Sufficiency of receptivity and innocence

In fact, as we will now see, not only are the conditions of receptivity and inno-
cence on pre-strategies necessary to ensure that copy-cat acts as identity. They
are also sufficient.

Technically, this section establishes that for a pre-strategy o : A—= B which
is receptive and innocent both the compositions c® @ 4 and « p®o are isomor-
phic to o. We shall concentrate on the isomorphism from c®« 4 to o. The
isomorphism from « p®c to ¢ follows by duality.

Recall, from Section 4.3.2, the construction of the pre-strategy c®a 4 as
a total map SO, - A'||B. The event structure S®UC,4 is built from the
synchronized composition of stable families C(S) ® C((C4), a restriction of the
product of stable families to events

{(e,*) | ce @4 & @ a1(c) is defined} u

{(c,8)|ce @@y & seS & CCAQ(C):T(S)}U
{(*,5) | s€S & 02(t) is defined} :
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e(8)® (T )

c(Aah) c(A) c(at) c(B)

Finally S©(C4 is obtained from the prime configurations of C(S) & C((C4)
whose maximum events are defined under @ 4,7 or ooms.

We will first present the putative isomorphism from c®« 4 to o as a total
map of event structures 6 : S©(C4 — S. The definition of 8 depends crucially
on the lemmas below. They involve special configurations of C(S) @ C(CC4),
viz. those of the form Jx , where x is a configuration of SO 4.

Lemma 4.13. For z € C(So(C,),
(,8)elJz = (g, %) eJx=.

Proof. The case when pol(c) = + follows directly because then ¢ — ¢ in (C4 so

(E, *) U= (C,S).
Suppose the lemma fails in the case when pol(c) = -, so there is a < ,-maximal

(¢,s) € Uz such that
pol(e) = - & (@) ¢ U )

The event (¢, s) cannot be maximal in Uz as its maximal events take the form
(¢, *) or (*,s"). There must be e € Uz for which

(¢,8) =y €.

Consider the possible forms of e:

Case e = (¢/,s"): Then, by Lemma 3.27, either ¢ — ¢/ in (CC4 or s — s" in S.

However if s — s’ then, as pol(s) = + by innocence, o1(s) — o1(s’) in A*, so

@ az(c) = @az(c") in A; but then ¢ — ¢’ in (C4. Either way, ¢ — ¢’ in (C4.
Suppose pol(c’) = +. Then,

(c:8) =ua (6,%) =ya (¢,%) —ya (¢)57).

But this contradicts (¢, s) —. (¢, s').

Suppose pol(c’) = —. Because (c,s) is maximal such that (1), (¢/,*) € U.
But (¢, *) —y. (¢, *) whence (¢, *) € Uz, contradicting ().
Case e = (*,8"): Now (¢,8) =z (*,8'). By Lemma 3.27, s — s’ in S with
pol(s) = +. By innocence, o1(s) — o1(s’) and in particular o1(s’) is defined,
which forbids (*,s") as an event of C(S) ® C((C,).
Case e = (c/,*): Now (¢,8) =z (¢/,*). By Lemma 3.27, ¢ — ¢’ in (Cy4.
Because (¢, s) and (¢/,*) are events of C(S) ® C((C4) we must have @a(c)
and «1(c’) are defined—they are in different components of (C4. By Proposi-
tion 4.1, ¢’ = ¢, contradicting (f).

In all cases we obtain a contradiction—hence the lemma. O
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Lemma 4.14. For x € C(So(C,),

0'17T2U£L’ C @y U.’E

Proof. As a direct corollary of Lemma 4.13, we obtain:

Ul’ﬂ'QUIEE CCA17T1UZ.

The current lemma will follow provided all events of +ve polarity in @ 4,7 Ux
are in oy1me Uz. However, (¢,s) —yz (¢, *), for some s € S, when pol(c) =+. O

Lemma 4.15. For z € C(SoCC,),
om|Jrc oo,
Proof.
omJz={1} xoymJz U {2} xooma | Jz
c {1} x waym Uz u {2} xoame|Jz, by Lemma 4.14
=0@a sz, by Proposition 4.2.

O

Lemma 4.15 is the key to defining a map 6 : S©(C 4 — S via the following
map-lifting property of receptive maps:

Lemma 4.16. Let 0 : S - C be a total map of event structures with polar-
ity which is receptive and —-innocent. Let p : C(V) — C(S) be a monotonic
function, i.e. such that p(z) € p(y) whenever x Cy in C(V). Let v:V — C be
a total map of event structures with polarity such that

Ve eC(V). op(z) c va.

Then, there is a unique total map of event structures with polarity 6 : V. — S

such that Vo e C(V). p(z) €~ 0z and v =00 :

: b V
v-Ls5
\ la
%
C.
[We use a broken arrow to signify that p is not a map of event structures.]

Proof. Let x € C(V). Then op(z) €~ vz. Define ©(x) to be the unique
configuration of C(.S), determined by the receptivity of o, such that

p(x) e @(_x)

I B
;

op(z) < vz.
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Define 6,, to be the composite bijection
Op:x = v = O(x)

where the bijection = 2 vz is that determined locally by the total map of event
structures v, and the bijection v = ©(x) is the inverse of the bijection o 1O (x) :
O(x) 2 vz determined locally by the total map o.

Now, let y e C(V') with x € y. We claim that 6, is the restriction of 6,. This
will follow once we have shown that ©(z) € O(y). Then, treating the inclusions
as inclusion maps, both squares in the diagram below will commute:

Oy0y = vy = O(y)
O.:x = vz = O(x)

This will make the composite rectangle commute, i.e. make 6, the restriction

of 0,.
To show O(z) € ©(y) we suppose otherwise. Then there is an event s € O(x)
of minimum depth w.r.t. <g such that s ¢ ©(y). Note that pol(s) = -, as

otherwise s € p(z) € p(y) € O(y). As o(s) € vz € vy there is s’ € O(y) such
that o(s") = o(s). From the minimality of s, both [s),[s) € ©(y) ensuring
the compatibility of [s) and [s’). By Lemma 4.4(ii), s = s’ and s € O(y)—a
contradiction.

By Proposition 2.7, the family ,., z € C(V'), determines the unique total map
6:V — S such that 6 x = ©(x). By construction, p(z) ¢~ §z, for all z € C(V),
and v = of. This property in itself ensures that 6z = ©(x) so determines 6
uniquely. O

In Lemma 4.16, instantiate p : C(S®QC4) — C(S) to the function p(x) =
moUx for z € C(S©QC ), the map o to the pre-strategy o : S - A'||B and v to
the pre-strategy c©vy4. By Lemma 4.15, omo Uz S~ 0@ @ 4 x, so the conditions
of Lemma 4.16 are met and we obtain a total map 6 : S©(C4 — S such that
moUx € Oz, for all z e C(SOUW ), and 00 = 0Oy 4:

ul

» 3l
SoCy—=—-=8

=)
(o8
oOYA

At||B.
The next lemma is used in showing € is an isomorphism.

Lemma 4.17. (i) Let ze C(S)®C(MC4). Ife <, e’ and ma(e) and ma(e’) are
defined, then ma(e) <s mo(e’). (i) The map ms is surjective on configurations.
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Proof. (i) It suffices to show when
S B M 6,

with ma(e) and ma(e’) defined and all ma(e;), 1 < i < n—1, undefined, that
ma(e) <g ma(e’).

Case n =1, s0 e —, €’: Use Lemma 3.27. If either e or ¢’ has the form (*,s)
then the other event must have the form (x,s") or (¢/,s") with s — s" in S.
In the remaining case e = (¢,s) and €’ = (¢, s") with either (1) ¢ — ¢/ in (Cy4,
and @aq(c) = @as(cd) in A, or (2) s — s in S. If (1), 01(s) — o1(s’) in
A* where 3,5’ € maz. By Proposition 3.14, s <g s’. In either case (1) or (2),
ma(e) <g ma(e’).

Case n > 1: Each e; has the form (¢;, *), for 1 <4 <n-1. By Lemma 3.27, events
e and ¢ must have the form (¢, s) and (¢, s") with ¢ — ¢; and ¢,-1 — ¢ in
C 4. As @ a1(c) and @ a5(cy) are defined, ¢; = ¢ and similarly ¢,_1 = ¢/. Again
by Lemma 3.27, ¢; — ¢;41 in (C4 for 1 <4 <4 —2. Consequently @ a5(c) <4
@ p45(c"). Now, s,s" € maz with 01(s) <a: 01(s"). By Proposition 3.14, s <g s,
as required.

(ii) Let y € C(S). Then o1y € C(A*) and by the clear surjectivity of @ 45 on
configurations there exists w € C(QC4) such that @ sow = o1y. Now let

z={(e,*) | cew & @ 41(c) is defined}
D{(ers) | cew & s ey & @ an(e) =or(s))
U{(*,8) | sey & oa(s) is defined} .

Then, from the definition of the product of stable families—3.3.1, it can be
checked that z € C(S)®C(CC4). By construction, mez = y. Hence 7 is surjective
on configurations. O

Theorem 4.18.0: 00 « 4 % o, an isomorphism of pre-strategies.

Proof. We show 6 is an isomorphism of event structures by showing 6 is rigid
and both surjective and injective on configurations (Lemma 3.3 of [8]). The rest
is routine.
Rigid: Tt suffices to show p — p’ in S®QC 4 implies (p) <5 O(p’). Suppose p — p’
in SO 4 with top(p) = e and top(p’) = ¢’. Take x € C(S®UC 4) containing p’
so p too. Then

(& Uz €1 Uz T PUx €n—-1 Uz 6,

where e, e’ € Vy and e; ¢ Vo for 1 <i<n-1. (Vj consists of ‘visible’ events of the
form (e, *) with @ 41(c) defined, or (*,s), with o2(s) defined.)

Case n =1, so e =, €': By Lemma 3.27, either (i) e = (*,5) and €' = (*,s")
with s — s’ in S, or (ii) e = (¢, *) and e’ = (¢, *) with ¢ — ¢/ in (C 4.

If (i), we observe, via 06 = 0@« 4, that s € moUz € 6z and 0(p) € 0z with
a(0(p)) = a(s), so 8(p) = s by the local injectivity of o. Similarly, 8(p’) = s, so
0(p) <5 0).

If (ii), we obtain 8(p),0(p’) € Ox with 010(p) = @ a1(c), 010(p") = @ 41(c") and
@ a1(c) = @ 4,(c") in A*. By Proposition 3.14, 6(p) <5 6(p").
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Case n > 1: Note e; = (¢;,8;) for 1 < i < n -1, and that s; <g s,-1 by
Lemma 4.17(1). Consider the case in which e = (¢,*) and e’ = (¢, *)—the
other cases are similar. By Lemma 3.27, ¢ — ¢; and ¢,_; — ¢ in (C4. But
@ a1(c) and @ 49(c1) are defined, so ¢; = ¢, and similarly ¢,_; = ¢/. We re-
mark that 6(p) = s1, by the local injectivity of o, as both s; € mo Uz € x and
0(p) € 0z with o(6(p)) = o(s1). Similarly 6(p) = s,—1, whence 0(p) <s 6(p").
Surjective: Let y € C(S). By Lemma 4.17(ii), there is z € C(S) ® C(QC4) such
that moz = y. Let

2'=z20{(c,*) | pol(c)=+ & Is€S. (¢,s) € z}.
It is straightforward to check 2z’ € C(S) @ C(CC 4). Now let
2" =2"~{(e,*) | pol(c) =— & VseS. (¢,s) ¢2'}.

Then 2" € C(S) ® C(QC4) by the following argument. The set z” is certainly
consistent, so it suffices to show

pol(c)=- & (¢c,*) <y ee2’ = IseS. (¢,8) e,

for all ¢ € @C4 and e € 2”’. This we do by induction on the number of events
between (¢, *) and e. Suppose

pol(c) =— & (¢, %) = e1<eez’.

In the case where e; = (¢1,81), we deduce ¢ — ¢; in (C4 and as @ 4;(c) is
defined while @ a5(c1) is defined, we must have ¢; = ¢, as required. In the case
where e1 = (¢1,*) and pol(cy) = —, by induction, we obtain (¢1,s1) € 2’ for some
s1€8S. Also ¢ — ¢1,s0 ¢ —¢1 in (C4. As 2z’ is a configuration we must have
(¢,8) <o (c1,81), for some s € S, so (¢,s) € z'. In the case where e; = (cy, *)
and pol(c1) = +, we have ¢ — ¢1 in (C4. Moreover, (¢;,s) € 2’, for some s € S,
as 2’ is a configuration and ¢ — ¢; in (C4. Again, from the fact that 2’ is a
configuration, there must be (¢, s) € 2’ for some s € S. We have exhausted all
cases and conclude 2" € C(S) ® C((C 4) with 02" = w2 =y, as required to show
0 is surjective on configurations.

Injective: Abbreviate c®@ @ 4 to v. Assume Oz = 0y, where =,y € C(SOUW,).
Via the commutativity v = 06, we observe

vr=c0z=00y=vy.
Recall by Proposition 4.2, that v1z = @« 4ym Uz =7 Uz. It follows that
(%) ez <= cevz < cevy < (¢,%) e Jy.

Observe
(%,5) ez <= 02(s) is defined & s € bz :

“=” by the local injectivity of o2, as p =get [(*,8)]ux yields 8(p) € Oz and
s emaUx € Oz with 02(8(p)) = 02(s), so 8(p) = s; “<=" as 0a(s) defined and
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s € Oz entails s = §(p) for some p € x, necessarily with top(p) = (*,s). Hence

(*,8) e Jz <= 02(s) is defined & s €z
<= 09(s) is defined & s € Oy

> (#,8)eJy.

Assuming (¢,s) € Uz we now show (c¢,s) € Uy. (The converse holds by
symmetry.) There is p € z, such that (¢,s) € p. If top(p) = (*,s") (also in
Uy as it is visible) then as my is rigid, s < s" and we must have (¢, s) € Uy.
Otherwise, top(p) = (d,*) and we can suppose (by taking p minimal) that
(¢,8) <yz (d',8") —x (d, #). But then 0(p) = s’ € 6z = 0y. Also s <g s, by the
rigidity of 7o, and, as we have seen before, d’ = d with d’ —ve. Hence s’ is +ve
and as Ay is a —ve extension of 7y Uy we must have s’ € m3 Uy. Hence there is
(*,8") or (¢",s") in Uy, and as s <g s there is some (¢’,s) € Uy. In both cases,

@ a9(c") =01(8) = @ a9(c), so ¢’ = ¢, and thus (¢, s) € Uy.
We conclude Uz = Uy, so x =y, as required for injectivity. O

4.5 Concurrent strategies

Define a strategy to be a pre-strategy which is receptive and innocent. We obtain
a bicategory, Strat, in which the objects are event structures with polarity—the
games, the arrows from A to B are strategies o : A—= B and the 2-cells are maps
of pre-strategies. The vertical composition of 2-cells is the usual composition of
maps of spans. Horizontal composition is given by the composition of strategies
® (which extends to a functor on 2-cells via the functoriality of synchronized
composition). The isomorphisms expressing associativity and the identity of
copy-cat are those of Proposition 4.3 and Theorem 4.18 with its dual.

We remark for future use that composition of strategies respects less gen-
eral notions of 2-cell. The horizontal composition of rigid 2-cells is rigid. The
essential ingredients in showing this are that the product and pullback of event
structures preserve rigid maps when regarded as functor (from Corollary 3.29)
and that under appropriate conditions hiding as formalized through projection
preserves rigid maps (Proposition 3.35).

Proposition 4.19. Let 0 : S — A be a strategy in A and o’ : S - A a receptive
total map of event structures with polarity. Let f : S — S’ be a total map of
event structures with polarity s.t. o'f = 0. Then, [ is receptive and innocent.
A fortiori if f is 2-cell from strategy o to strategy o’ in the bicategory of games
and strategies, then f is receptive and innocent.

Proof. We first show f is receptive. Assume z € C(S) and fz ¢ z’. Then
o'fx ¢ o'z’ i.e. ox € o'z’ in A. Hence as o is receptive (existence part),
there is z € C(S) such that oz = ¢’z’. Now both fz ¢ fz and fz € 2’ with
o'fz =0o'z’. From the receptivity of o’ (uniqueness part) we obtain fz = a’, as
required.
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It remains to show f is innocent. Suppose s’ — s and pol(s’) = + or pol(s) =
—in S. We require f(s') — f(s) in S’. As o is innocent, o(s’) — o(s) in
A. Being a map o' locally reflects causal dependency. So given that f(s")
and f(s) both belong to the configuration f[s]s and o’(f(s")) — o'(f(s)) we
obtain f(s") < f(s). The depenency f(s") < f(s) must be realised by a chain of
immediate causal dependencies

f(s") == [(s)

in S’. Suppose to obtain a contradiction, that the chain were of length greater
than one. Then, as f is total and reflects causal dependency locally w.r.t. [s],
we would obtain a chain

SI—D-"—DS

of length greater than one in S—contradicting s" — s. Consequently, f(s") —
f(s), as required. O

4.5.1 Alternative characterizations
Via saturation conditions

An alternative description of concurrent strategies exhibits the correspondence
between innocence and earlier “saturation conditions,” reflecting specific inde-
pendence, in [9, 10, 11]:

Proposition 4.20. A strategy in a game A exactly comprises a total map of
event structures with polarityo : S - A such that

(i) cr—c & pols(a) =—=3lseS. 1—c & o(s) =a, for allz€C(S), ae A;
(ii)(+) If 2—ca1—c & polg(e) =+ in C(S) and O’:EU—(EC) in C(A), then z——
in C(S); and

(i3)(-) Ifa:—ecxl—elc & polg(e’) =— in C(S) and azg—(ec) in C(A), then x—c
in C(S5).

A e e . L. [
Proof. Note that if z—c 21——c then either e co e’ or e — €’. Condition (ii) is
a contrapositive reformulation of innocence. a

Via lifting conditions

Let x and 2’ be configurations of an event structure with polarity. Write z c*
to mean z € z’ and pol(x’ \ x) € {+}, i.e. the configuration x’ extends the
configuration x solely by events of +ve polarity. With this notation in place we
can give an attractive characterization of concurrent strategies:

Lemma 4.21. A strategy in a game A comprises a total map of event structures
with polarity o:S — A such that
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(i) whenever y € ox in C(A) there is a (necessarily unique) x' € C(S) so that
¥'cx & or’ =y, ie.

n

and
(ii) whenever oz €~y in C(A) there is a unique z' € C(S) so that x Cz’ & oz’ =
Y, i.€.

x SR
U[ g
\
or <y

Proof. Let 0 : S — A be a total map of event structures with polarity. It is
claimed that o is a strategy iff (i) and (ii).

“Only if”: Lemma 4.5 directly implies (ii). To establish (i) it suffices to show
the seemingly weaker property (i)" that

y—cox & pol(a) =+ = a2’ €C(S).2'—cz & oa' =y
for a € Ajx € C(S),y € C(A). Then (i), with y c* oz, follows by considering a
covering chain y—c---—cox. (The uniqueness of z is a direct consequence of

o being a total map of event structures.) To show (i)', suppose y—c oz with a
+ve. Then o(s) = a for some unique s € x with s +ve. Supposing s were not <-
maximal in z, then s — s for some s’ € . By +-innocence a = o(s) —» o(s') € ox

implying a is not <-maximal in ox. This contradicts y—ac ox. Hence s is <-
maximal and 2’ =qer « N {s} € C(S) with 2’'—<cx and o2’ = y.

“If”: Assume o satisfies (i) and (ii). Clearly o is receptive by (ii). We establish
innocence via Proposition 4.20.
! . (s’ ( .

Suppose 1—c z1—c 2’ and pol(s) = + with orc y2. Then ygisc) oz’ with
pol(o(s)) = +. From (i) we obtain a unique x5 € C(S) such that x5 € 2’ and
oxs = yo. As o is a total map of event structures, we obtain J,‘Q—SC z' and
subsequently r—c X, as required by Proposition 4.20(ii)+.

! . (s")

Suppose r—cz;—cz’ and pol(s') = - with or y2. The case where
pol(s) = + is covered by the previous argument: we obtain - Z9, as required
by Proposition 4.20(ii)-. Suppose pol(s) = —. We have

a(s) o(s)

or—<Cys—Cox .
As o is already known to be receptive, we obtain

’

e e
r—cxo—cz” & oxo=ys & oz =01’
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From the uniqueness part of (ii) we deduce 2" = z’. As o is a total map of event

structures, e = s and ¢’ = s’ ensuring z—c, as required by Proposition 4.20(ii)-.
o

As its proof makes clear, condition (i) in Lemma 4.21 can be replaced by:
for all a e A,x € C(S),y e C(A),

y—cor = 32’ €C(S).2'—cz & oa' =y, i

where the relation —c signifies the covering relation induced by an event of
+ve polarity.

The proposition above generalises to the situation in which configurations
may be infinite, but first a lemma extending receptivity to possibly infinite
configurations.

Lemma 4.22. Let 0: S5 — A be receptive and —-innocent. Then,

cr—c & polys(a) =—=3lseS. 1—c & o(s)=a,
for all z eC*(S5), ac A.

Proof. Suppose ocz—c and pol 4(a) = —. Then there is o € C(S) with x¢ €
and azo—ac . By receptivity, there is a unique s € S such that aso—sc & o(s)=a.
In fact, x U {s} € C*(S). Suppose otherwise. Then there is x; € C(S) with
xg € w1 € 2 for which x1 U {s} ¢ C(S). But axl—ac so there is a unique s1 € S
such that 71—c & o(s1) = a. Both [s) and [s1) are included in z1 so s = s1

by Lemma 4.4—a contradiction. Now that z U {s} € C*(S) we have z—c and

o(s) = a. Uniqueness of s follows by Lemma 4.4: if also 2—< and o(s') = a
then [s) 1 [s). O

Corollary 4.23. A strategy in a game A comprises a total map of event struc-
tures with polarity o:S — A such that
(i) whenever y ¢t ox in C*(A) there is a (necessarily unique) x' € C*(S) so
that ¥’ cx & oz’ =y, i.e.

!

T = T
o [J
\
Y ct o,

and
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(ii) whenever ox ¢~ y in C®(A) there is a unique x’ € C=(S) so that z ¢
' & ox' =y, ie.

x < X
v
or < y.

Proof. Let o : S - A be a total map of event structures with polarity. It
is claimed that o is a strategy iff (i) and (ii). The “If” case is obvious by
Lemma 4.21. “Only if”:

(i) Take 2’ =ger {s€x | 0(s) ¢ (cx) N~ y}. Suppose s’ — s in x. Then
o(s')e(ox) Ny = o(s)e(ox)\y

by +-innocence. Hence its contrapositive, viz.
o(s) ¢ (ox) Ny = o(s') ¢ (ox) Ny,

so that s € 2’ implies s’ € #’. Thus, being down-closed and consistent, ' € C*(.5)
with oz’ = y from the definition of z'.

(ii) Let ' 2 = be a c-maximal 2’ € C*(S) for which oz’ ¢ y—this exists by
Zorn’s lemma. Then, ox ¢~ ox’ ¢~ y. Supposing oz’ ¢~ y there is a € A with
pol 4(a) = — such that or'—cy; ¢ y. But, by Lemma 4.22, there is s € S for

which 2/—c and o(s) = a, contradicting the c-maximality of 2’. Hence oz’ = y.
Uniqueness of z’ follows as in the proof of Lemma 4.5. O

Via +-moves

A strategy is determined by its +-moves. More precisely, a strategy o : S - A
determines an additive function d : C(S*) - C(A) given by d(z) = o[z]s for
x € C(S*) —by an additive function is meant one which preserves unions when
they exist. The event structure S* is the projection of S to its purely +-ve
moves. Intuitively, d specifies the position in the game at which Player moves
occur. The function d determines the original strategy o via the universal
property described in the proposition below.

Proposition 4.24. Let o : S — A be a receptive —-innocent pre-strategy. Define
q:S — S* to be the partial map of event structures with polarity mapping S to
its projection S* comprising only the +ve events of S, so qy =y* for y e C(S5).
Define the function d : C(S*) - C(A) to act as d(x) = o[z]s for x € C(S*).
Then, d(qy) €~ oy for all y € C(S), i.e.

5 —1s 57 (1)

GL 2
s

A.
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[The dotted line indicates that d is not a map of event structures.]
Suppose f : U - A is a total map and g : U - ST a partial map of event
structures with polarity such that d(gy) €~ fy for all y e C(U), i.e.

U—"= 5" (2)
l=

l pod

A.

Then, there is a unique total map of event structures with polarity 6 : U — S
such that f =06 and g = q0,

U-2>5—>5* (3)

Proof. We first check (1). Letting y € C(S),
d(qy) =d(y") =oly"ls <" y.
Suppose (2). Define p:C(U) — C(S) by taking
P(2) =def [92]s-
Clearly p is monotonic and
op(z) =olgz]s =d(gz) & [

for all z € C(U). By Lemma 4.16, there is a unique total map of event structures
with polarity 6:U — S such that

f=00 and VzeC(U). p(z)c Oz.

From the latter, [gz]s €~ 0z from which gz = (g2)* = (02)", so gz = ¢ z, for
all z € C(U). Hence we have the commuting diagram (3). Noting

VzeC(U). gz=(02)" < [gz]s< 0z,
we see that 6 is the unique map making (3) commute. O

It follows that a strategy o is determined up to isomorphism by its ‘position
function’ d specifying at what state of the game Player moves are made. The
position functions d which arise from receptive —-innocent strategies have been
characterised by Alex Katovsky [12]. We now give a (simplified if laborious)
proof of the characterisation of position functions for strategies.

Wart. 0 : S - A a strategy, define d as in the statement of the above
theorem, viz. dz = o[z]s when x € C(S*). Let E = S*. Define f: E - A* to be
the restriction of o to the events F. Then,
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(i) the function d:C(E) - C(A) preserves unions when they exist;

(ii) the map f: EF - A" is a total map of event structures such that fz = d(x)*
on configurations x € C(F), and

(iii) for all s € E, the event f(s) is the unique +ve event which is <4-maximal
in d[s]g. (There may be <4-maximal —ve events in d[s]g.)

Apart from (iii), the properties are obvious. We show (iii). Firstly, f(s) is <a-
maximal in d[s]g: otherwise as f reflects causal dependency locally we would
contradict that s is maximum in [s]g. Suppose a € d[s]s and a is +ve in A.
Then a = f(s") for some s’ < s in S. Suppose s’ #s. Then s’ — 51 < sin S. As
s" is +ve, by +-innocence, f(s') = o(s') — o(s1) € d[s]s in A, so a = f(s) is
not <4-maximal in d[s]s. Hence f(s) is the unique <4-maximal, +ve event in
d [S]S

Let A and F be event structures with polarity, with E a purely +ve. Say a
function d : C(E) — C(A) is a position function iff there is some map of event
structures f: E - A" such that (i), (ii) and (iii) above; once it exists, the map
f is determined uniquely by (ii).

Such a position function d determines a strategy o :.S - A as follows. (The
proof uses the Scott order £ introduced later in Section 7.1, with techniques
closely related to those of Chapter 9.)

Firstly, the family
F=Azlly[zeC(E) &yeC(A) &ycad(x)}
is stable:

Completeness. Let x;||y;, ¢ € I, be a compatible subset of F. Then y; S4
d(z;), i.e. y; 2 d(z;)” and yf < d(x;)*, for all ¢ € I. It follows that U;y; 2
Uid(zi)” = d(U; ;)" and U;y; € Uid(2:)" = d(U;z)", so Uiys Ea d(U; ),
giving (U; yi |l U; z;) € F, as required for completeness.

Stability. Let x;||y;, ¢ € I, be a non-empty, compatible subset of F. Then
Yi Ca d(x;), d.e. y7 2 d(x;)” and yi € d(x;)*, for all i € I. It follows that
Niyi 2Nid(z;)” and Ny € Nid(z;)", so

i caNd(zi). (1)
As d is monotonic,

d(m:cz) c ﬂd(xl) )

But

d(mxi)+ = fmxz' = mfl'i = md(l’i)Jr
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—as f is a stable function on configurations—so
d((ai) € (d(@s),
1 1

ensuring

(d(x:) ead(( ).

With (1), we obtain
myl Ea d(mxl) )

giving (N; y: |l N; x;) € F, as required for stability.

Coincidence-free. Consider two distinct events in a configuration z||y € F, with
y E4 d(z). Take a covering chain o—"cp e, =u.

If the two distinct events are e, e’ € x they lie within {ey,...,e,} and we can
easily separate them by a subconfiguration x;||ynd(x;) of 2|y where z; contains
one of e, e’ but not the other.

Suppose the two distinct events are e € x and a € y. Then e = e; for some
i with 1 <4 <n. If a ¢ d([e;]) then [e;]]|ly nd([e;]) is a subconfiguration of
x|ly which contains e but not a. If a € d([e;]) and a = f(e;) then, as a =
f(e;) is +ve and maximal in d([e;]), we have (d([e;]) ~ {a}) a4 d([e:]) so
[e;]ll(y n (d([e;]) ~ {a})) a subconfiguration of x|y which contains contains e
but not a. If a € d([e;)) then [e;)|lynd([e;)) is a subconfiguration of z ||y which
contains a but not e. It remains to consider the case a ¢ d([e;)) and a € d([e;])
with a # f(e;); this ensures that a is —ve. Then d([e;)) 27 [a]a 4 d([e;))
making [e;)||(yn (d([e;)) u[a]a)) a subconfiguration of x|y which contains a
but not e.

Finally, consider the case where the two distinct events are a,a’ € y. If both
a,a’ are +ve, then a = f(e;) and a’ = f(e;), for some 7, j where w.l.o.g. we may
suppose i < j; then the subconfiguration [e;]|ly nd([e;]) € ||y contains a but
not a’. If only one of them, say a is +ve we have a = f(e;), for some least
i, and a is —ve. If a’ € d([e;)) then [e;)]|ly nd([e;)) is a subconfiguration of
z|ly which contains a’ but not a. Otherwise, a ¢ d([e;)) and a € d([e;]). Then
d([e;))u[a']a 27 d([e;)) making [e;)][(yn (d([e;))u[a]a)) a subconfiguration
of x|ly which contains @’ but not a. Suppose a,a’ are both —ve. If w.l.o.g. we
have a € d(x;) and a’ ¢ d(x;), for some ¢, then z;|lynd(x;) is a subconfiguration
of ||y which contains a but not a’. Suppose otherwise. Then either (i) there is
a least ¢ for which both a,a’ € d(z;) or (ii) a,a’ ¢ d(x). If (ii), as y £4 d(z), both
[a]lau(ynd(z))ca d(z) and [a']au(ynd(z)) 4 d(z) which provides us with
two subconfigurations x| [a] aU(ynd(x)) and z|/[a’]au(ynd(z)) of x|y, at least
one of which separates a and a’. Suppose (i), that both a,a’ € d(x;) while neither
a nor a’ is in d(x;—1). Then, [a]a Ud(z;—1) 27 d(x;-1) and [a']a U d(xs-1) 27
d(z;_1) which provide us with subconfigurations z;_1||[a]a U (y nd(z;-1)) and
xi—1||[a’]a v (ynd(z;-1)) of 2|y, at least one of which separates a and a'.

We conclude that F is a stable family.
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The map of stable families given by the inclusion F < C(F|A) induces
a pre-strategy o1 : Pr(F) — E| A got by applying Pr —it won’t in general
be a strategy (by Example 9.19 taking d to be the function exampled there).
Projecting o1 to A we obtain the required strategy ¢ in A associated with the
position function d:

Pr(}') — 9

v
or| F o

v
E|A——A.

Above, E||A - A is the partial map projecting to A and the map o is the
defined part of its post-composition with o7.

Above we have also indicated how oy regarded as a map of stable families
C(Pr(F)) - C(E| A) is a composition of the counit C(Pr(F)) = F of the ad-
junction between event structures and stable families and the inclusion map
F < C(E||A). This are helpful in showing that o is a strategy. By Theo-
rem 7.7(ii), we should show the following:

oz=y &y cay = N c5z2 07 =9,

for all z € C(S), y € C(A). (The other properties required by Theorem 7.7 are
obvious.) To this end suppose z € C(S) and ¢’ £4 y = 0z. Then [z] short
for [z]py(z) is in C(Pr(F)). The image o1[z] must have the form o1[z] =
x|y € C(E||A). Via the factorisation of o1 through F we see that x|y € F, so
y Ea d(x). Consider now the configuration y'||z € C(E||A). We have y'||z € F.
because y' 4 y Sa d(x), so y' 4 d(z). Clearly 3’|z € x|y in F. From the
isomorphism C(Pr(F)) 2 F we obtain w € [z] in Pr(F). The projection of w to
a configuration 2z’ of S is the unique configuration for which 2z’ Eg z and o2’ = 3/'.
This establishes o as a strategy.

The events of S* are built from prime configurations [e]||d([e]) for e € E,
giving the isomorphism between S* and E. We show the position function of o
coincides with the original position function d under this isomorphism. Let d’ be
the position function of o, by definition, given by d’([s]) = o[s]s for any s € S*.
Hence, inspecting the above diagram, o[s]s is the projection of o1[s]p,(F) to
A. But s = [e]||d([e]) for some e € E, so this yields d'([s]) = o[s]s = d([e]), as
required.

We have shown:

Theorem 4.25. Let A be a game. A strategy o : S - A determines a position
function d : C(S*) - C(A) given by d(z) = o[x]s for x € C(ST). Conversely,
any position function d : C(E) — C(A) is so determined by a strategy, unique
up to isomorphism.
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4.6 Rigid-image strategies

It can be useful to replace a strategy by its rigid image in its game. As is to
be expected something can be lost in the process. Precisely what, is related
to notions of equivalence between strategies. For now suffice it to say, that
while ‘may’ behaviour is preserved, ‘must’ behaviour need not be. What is
gained is that we can replace the bicategory of games by a category; a rigid-
image strategy can be identified with its rigid image, a substructure of the
game so we have canonical representatives of isomorphism classes of rigid-image
strategies. Rigid images are important for equivalences on strategies. For several
important behavioural equivalences, a representative of an equivallence class
of strategies can be found in their sharing a common rigid image and some
additional structure (probability or stopping configurations, for instance).
A strategy o : S — A factors through its rigid image

S*f>50i>14

where f is rigid epi (i.e. both rigid and surjective) and o : Sy - A is itself
a strategy. In a rigid-image strategy such as og : Sop = A the rigid image Sy
is bounded to be a substructure of aug(A). This provides us with a charac-
terisation of rigid-image strategies. A rigid-image strategy in a game A is an
innocent, receptive substructure Sy of aug(A) in the sense that there is a rigid
inclusion g : Sp = aug(A) for which the composition €4 oig is innocent and g is
receptive. In other words Sy is a down-closed subset of aug(A) which is closed
under possible Opponent moves and comprises only innocent augmentations of
A.

The following example shows that the composition of the rigid images of two
strategies is not necessarily a rigid image, both for composition of strategies with
and without hiding.

Example 4.26. Let B be the game

B H<t+——0d.

Let C be the game consisting of a single Player move @. Let o : S — B be the
strategy sending S equal to

B

/N

Ht————4H3.

O ——->E

to B in the obvious way indicated by the layout. Let 7 : T — B*||C be the
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strategy sending T equal to

H———>H

H<t——H8<t—H

to B*||C, which we can draw as

B<—®,
in the obvious way. Their composition, before hiding, is given by T & S:

© © —>H

Ve

@<4t——O<¢+—0.

Both ¢ and 7 are rigid-image strategies yet there composition both before and
after hiding is not. Before hiding the two Player moves in T'®S over the common
move in C' go to a common image. After hiding T®S looks like

=2]

with both moves going to the common sole move in C'; while distinct they clearly
go to a common event in the rigid image. ]

So the compositions, with and without hiding, 70®0¢ and 79 ® oy of the
rigid images of two strategies o and 7 is not necessarily a rigid-image strategies,
we are forced to take the rigid image of the result. However once we do, the
operation of forming the rigid image of a strategy respects composition, both
with and without hiding: letting o : S - A*||B and 7: T — B*||C be strategies,
(1@0)0 = (170®00 )¢ and (T ® 7)o = (70 ® 70 )o-

Proposition 4.27. Let f: A—> B and g: B - C be maps of event structures.
Assume that f is rigid and epi. Then, the Tigid image of g equals the rigid image
ofge f.

Proof. Write the rigid image of g as Im(g) and the rigid image of gf as Im(gf).
From the universal property associated with the rigid image of gf there is a
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unique (necessarily rigid epi) map h:Im(g) — Im(gf) such that

A —f>> B—% Im(g) L)
v
Im(gf)

commutes. Write [ =g hgg. Then [ is rigid epi being the composition of such.
From the universal property associated with the rigid image of g there is a
unique (necessarily rigid epi) map & : Im(gf) — Im(g) such that

B—%% Im(g) -2—~C
A
k
!
Im(gf)

commutes. By uniqueness of the universal property of the rigid-image of g we
obtain kh = idyy(g). By uniqueness of the universal property of the rigid-image
of gf we obtain hk =idyy,(,r). Hence the rigid images are isomorphic. Because
they are chosen to be substructures of aug(C') they are equal. O

Corollary 4.28. If two strategies are connected by a 2-cell which is Tigid epi,
then they share the same rigid image..

Lemma 4.29. Let U:Sf*>50i>Al||B and 7:T —— Ty — % B*||C

be the rigid image factorisations of strategies o : S — A*||B and 7: T — B*||C.
Then,

(i) (to®0c0)o=(T®0c)g and (ii) (170000)o = (TO7)g .

Proof. (i) Consider the following compound pullback square in which all the
squares are pullbacks—we are ignoring polarites.

T®S
g8®S : Tef
To® S g@ief T® Sy
/ % v A \

S|c To ® So AllT

SollC (To ® So)o A|lTo

\
/

TDG'D;TO)U
\
Al B||C

4
A

oolC Allo



4.6. RIGID-IMAGE STRATEGIES 71

In the diagram we have inserted the rigid-image factorisation of the map Ty &
So = A||B||C. Notice that in the uppermost square all the maps are rigid epi
being the pullbacks of such maps. Consequently g® f is rigid epi. Now applying
Corollary 4.28 we deduce that the rigid image of the map T'® S coincides with
that of To ® Sy in A||B||C and is therefore (To ® Sp)o. This ensures that

(TQ@O’())O = (T@O’)Q.

(ii) We can also deduce
(7'0@0'0)0 = (’T@O’)O .

Recall we obtain 7@c as the defined part of the partial map

TeS-—"2% A|B|C —— A|C

and similarly 79®0q as the defined part of the partial map

T0®00

To ® So — A||B||C —— A||C

—in both cases the map A|B||C — A|C is that eliding B. From the diagram
in (i) we see
T®0=(T0®00)o(9® f).

In the commuting diagram

T@SLG];’Ib@SO

L

TeS g@f) TO@SO
TOO l‘m@t‘fo
A|C

we have filled in the total map gof given by the universal property of partial-
total factorisation. Asin (i) above g® f is rigid epi. It follows that the map gof
is also rigid epi: the map go f preserves causal dependency because g® f does; it

. . . 9% . .

is epi because the composite map T & .S _sel To® Sy — TS, is epi—the
latter projection map is epi. Now by Corollary 4.28 we deduce that 7y©oy and
TO0 share the same rigid image in A||C. Consequently (10®0q)o = (T00). O

Let Straty be the order-enriched category of rigid-image strategies defined
as follows. Its objects are games. Its maps are rigid-image strategies. Its 2-cells
are rigid 2-cells between strategies which are necessarily rigid inclusions as they
are between rigid images. Under composition composable strategies ¢ and 7 are
taken to (7®0)g. The associativity law and identity laws for composition are
verfied using Lemma 4.29; recall that in a copycat strategy @4 : 4 - A*||A
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the underlying function of the map « 4 acts as the identity on events; this
ensures that copycat strategies are rigid-image.

The operation of taking the rigid image of a strategy yields a functor from
Strat,., the bicategory of strategies with with rigid 2-cells, to Straty. From
the results above composition is preserved. A rigid 2-cell f: o = 7 is sent to a
rigid inclusion between their rigid images: by taking its image, any rigid 2-cell
between strategies factors into a 2-cell which is a rigid epi, followed by 2-cells
which is a rigid inclusion; strategies connected by a rigid epi share the same
rigid image, while rigid inclusions are preserved in taking the rigid image.

A concrete, relatively elementary, presentation of rigid-image strategies and
probabilistic rigid-image strategies is given in [?].



Chapter 5

Deterministic strategies

This chapter concentrates on the important special case of deterministic con-
current strategies and their properties. They are shown to coincide with Mellies
and Mimram’s receptive ingenuous strategies.

5.1 Definition
We say an event structure with polarity S is deterministic iff
VX Cap S. Neg[X] e Cong = X € Cong,

where Neg[X] =qef {s' €S | pol(s’) = - & s e X. s’ < s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends
only on a consistent set of opponent moves. Say a strategy o : S — A is
deterministic if S is deterministic.

Lemma 5.1. An event structure with polarity S is deterministic iff
Vs,s' €S, 2eC(S). a—c & x—c & pol(s) =+ = zU{s,s'} €C(S).

Proof. “Only if”: Assume S is deterministic, x—SC, r—c and pol(s) = +. Take
X =4of zU{s,8"}. Then Neg[X]caxuU{s} so Neg[X] e Cong. As S is determin-
istic, X € Cong and being down-closed X =z u {s, s’} € C(59).

“If”. Assume S satisfies the property stated above in the proposition. Let
X CSgyp S with Neg[ X ] € Cong. Then the down-closure [ Neg[ X ]] € C(.S). Clearly
[Neg[X]] ¢ [X] where all events in [X] N [Neg[X]] are necessarily +ve. Sup-
pose, to obtain a contradiction, that X ¢ Cong. Then there is a maximal
z € C(S) such that

[Neg[X]] € z < [X]

and some e € [X ]\ z, necessarily +ve, for which [e) ¢ z. Take a covering chain

S1 S92 Sk
[e)—cz1—c—<zp=2.

73
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As [e)—ec[e] with e +ve, by repeated use of the property of the lemma—
illustrated below—we obtain z—c 2’ in C(S) with [Neg[X]] € 2’ € [X], which
contradicts the maximality of z.

[e] S1 7 S2 Sk 7 7

—< 27 —< ' —< Zp = z
ET eT e'T
[e) 2c 2o % o 2 oz = 2

O

So, above, an event structure with polarity can fail to be deterministic in
two ways, either with pol(s) = pol(s’) = + or with pol(s) =+ & pol(s’) =-. In
general for an event structure with polarity A the copy-cat strategy can fail to
be deterministic in either way, illustrated in the examples below.

Example 5.2. (i) Take A to consist of two +ve events and one —ve event, with
any two but not all three events consistent. The construction of (C 4 is pictured:
g—

At B—m@ A

H<+— B

Here @ 4 is not deterministic: take x to be the set of all three —ve events in
(@C 4 and s, s’ to be the two +ve events in the A component.

(ii) Take A to consist of two events, one +ve and one —ve event, inconsistent
with each other. The construction (C 4:

A B—-m A
BB

To see (IC 4 is not deterministic, take x to be the singleton set consisting e.g. of
the —ve event on the left and s, s’ to be the +ve and —ve events on the right.

5.2 The bicategory of deterministic strategies

We first characterize those games for which copy-cat is deterministic; they only
allow immediate conflict between events of the same polarity; there can be no
races between Player and Opponent moves.

Lemma 5.3. Let A be an event structure with polarity. The copy-cat strategy
@ 4 1s deterministic iff A satisfies

Vo eC(A). 1—< & :L'—alc & pol(a) =+ & pol(a') = - = zu{a,a’} eC(A).
(race-free)

Proof. “Only if”: Suppose x € C(A) with z—c and x—c where pol(a) =+ and
pol(a") = —. Construct y =get {(1,0) |bez}u{(1l,a)} u{(2,b) | bex}. Then
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2,a 2,a’
y € C(QC4) with y(—c) and y(—c), by Proposition 4.1(ii). Assuming (C4 is

deterministic, we obtain y U {(2,a),(2,a’)} € C(QC4), so yu {(2,a),(2,a")} €
C(A*||A). This entails z U {a,a’} € C(A), as required to show (race-free).
“If7: Assume A satisfies (race-free). It suffices to show for X cq, (C4, with
X down-closed, that Neg[ X ] € Cong, implies X € Conge,. Recall for Z down-
closed, Z € Congg, iff Z € Congua.

Let X cg, (C4 with X down-closed. Assume Neg[X] € Congz,. Observe

(i) {c|ce X & pol(c) = -} € Neg[X] and

(ii) {¢| ce X & pol(c) = +} € Neg[X] as by Proposition 4.1, X being down-
closed must contain ¢ if it contains ¢ with pol(c) = +.

Consider Xs =qef {a | (2,a) € X}. Then X» is a finite down-closed subset of A.
From (i),
X35 =def {a € X2 | pol(a) =-} € Cony .

From (ii),
X3 =get {a€ Xa | pol(a)=+}€Cony.

We show (race-free) implies X5 € Con 4.

Define z7 =qo¢ [X5] and z* =get [X5]. Being down-closures of consistent
sets, 27,27 € C(A). We show 2z~ 1 z* in C(A). First note z~ nz* € C(A4). If
a €z Nz nz' then pol(a) = —; otherwise, if pol(a) = + then a € 2 a well as
a € z~ making a € z7 n z*, a contradiction. Similarly, if a € z* \ 27 n 2" then
pol(a) = +. We can form covering chains

P2 Pk

— + P1 _ n2 ny
zZ Nz —Cr1—C——CIT=2

_ ni
and 2" nzt—cy—c-—cy = 2"

where each p; is +ve and each n; is —ve.

Consequently, by repeated use of (race-free), we obtain xx Uy, € C(A),
i.e. ztuz” €C(A), as is illustrated below. But X5 € 2* Uz~ so X3 € Congy.
A similar argument shows X =ger {a € A* | (1,a) € X} € Cona:. It follows that
X €Conyupa, so X € Cong,, as required.

p1 p2 P3 Pk
Ui — T1VYy — 22Uy — - — TpUY

&

a3

o

!

&

3

o

o

P1 P2 p3 Pk
Y1 —< T1VUYy1 — T2UY; —< —< T YY1
ni T ni T ni T ni T
- + b1 P2 p3 Pk
zZ Nz —c 1 —c T2 —c —c Tl
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Exercise 5.4. Provide a direct proof of Lemma 5.3, i.e. show directly from the

property of configurations x of copy-cat that r—c and r—<c , with ¢ having +ve
polarity in copy-cat, implies z U {¢, ¢’} is a configuration of copy-cat. (Consider
different cases of ¢, ¢/, which component game the belong to and the polarity of
c\) i

Proposition 5.5. Let A be an event structure with polarity. Then, A is
race-free iff

Vao,z1,00 €C(A). x v 11 & S 19 = 31 UT2 €C(A).

Proof. “If” is obvious. “Only if”: by repeated use of (race-free) as in the
proof of Lemma 5.3. O

Proposition 5.6. Let A be an event structure with polarity. Then, A is
race-free iff for all X, a <-down-closed finite subset of the A,

XeCon < X e€Con & X*eCon.

Proof. “only if”: Suppose z—cy & z—<y' & polg(s) = -& polg(s") = +. Then,
taking X =z U {s,s’} we obtain x U {s,s’} a configuration, as required for A to
be race-free. “if”: from the X~ € Con and X* € Con we obtain

[XT]2" [XT]n[X7] e [X7],

whereupon, if A is race-free, from Proposition 5.5 above, we obtain X = [X*]u
[X ] a configuration, so in Con. O

Via the next lemma, when games satisfy (race-free) we can simplify the
condition for a strategy to be deterministic.

Lemma 5.7. Leto: S — A be a strategy. Suppose -—cy & x—<y' & polg(s) =
—. . Then, oy t oy’ inC(A) = y 1ty inC(S). A fortiori, if A satisfies
(race-free) then so does S.

. (s) . .
Proof. Assume oy 1 oy’ in C(A), so O'yIU—SC oyuoy in C(A). As o(s) is —ve, by
receptivity, there is a unique s” € S, necessarily —ve, such that o(s") = o(s) and

y—czu{s,s"} in C(S). In particular, z U {s’,s”} € C(S). By —-innocence,

”

we cannot have s’ — s”, so z U {s"} € C(S). But now z—c and z—c with
o(s) = o(s”) and both s,s” —ve and hence s” = s by the uniqueness part of
receptivity. We conclude that x u {s’,s} € C(S) so y 1y’ O

Corollary 5.8. Assume A satisfies (race-free) of Lemma 5.8. A strategy
o : S — A is deterministic iff it is weakly-deterministic, i.e. for all +ve events
s,s" €S and configurations x € C(S),

g—c & 1—c = zU{s,s'}C(S5).
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Proof. “Only if”: clear. “If”: Let —<c and 2—< where polg(s) = +. For S
to be deterministic we require zU{s, s’} € C(S). The above assumption ensures

this when polg(s") = +. Otherwise polg(s’) = — with Uxisc) and Uxa—(sc)‘ As A
satisfies (race-free), cx U (s),o0(s’) € C(A). Now by Lemma 5.7, z U {s, s} €
C(9S). O

Lemma 5.9. The composition T®c of deterministic strategies o and T is de-
terministic.

Proof. Let 0: S - AY||B and 7 : T — B*||C be deterministic strategies. The
composition TS is constructed as Pr(C(T) ® C(S5)) | V, a synchronized com-
position of event structures S and T projected to visible events e € V' where
top(e) has the form (s, *) or (*,t).

We first note a fact about the effect of internal, or “invisible,
V on configurations of C(T") ® C(S). If

7 events not in

zﬁfz)w&z(iiz)w'&wﬁrw' (1)

within C(T") @ C(S), then either

’
S S
mz—cmw & mz—cmuw & mw 3 mw’, (2)

within C(S), or

7TQZ—tC mow & ﬂQZ—tC mow’ & maw 3 mow’, (3)
within C(T'). Assume (1). If t =¢' then o(s) = 7(¢t) = 7(t') = 0(s") and we obtain
(2) as o is a map of event structures. Similarly if s = s" then (3). Supposing
s# s and ¢ # ¢’ then if both (2) and (3) failed we could construct a configuration
2" =qet 20 {(s,t),(s",t)} of C(T) ® C(S), contradicting (1); it is easy to check
that 2’ is a configuration of the product C(S) x C(T') and its events are clearly
within the restriction used in defining the synchronized composition.

We now show the impossibility of (2) and (3), and so (1). Assume (2) (case
(3) is similar). One of s or s’ being +ve would contradict S being deterministic.
Suppose otherwise, that both s and s’ are —ve. Then, because o is a strategy,
by Lemma 5.7, we have

!
0T W A|A' 0T W

in C(B). Also, then both ¢ and t' are +ve ensuring mow 1 mew’ in C(T), as T is
deterministic. This entails
Timow 1 Ty mow’

in C(B*). But oomw and 1ymaw, respectively oomw’ and 1ymew’, are the same
configurations on the common event structure underlying B and B*, of which
we have obtained contradictory statements of compatibility.
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As (1) is impossible, it follows that

(s;t)

220 8 00— w T’ (4)

within C(T) ® C(S).

Finally, we can show that 7@ is deterministic. Suppose a—c y and z-Lc y'
in C(T®S) with pol(p) = +. Then,

’ ’ ’

€1 €92 €L 61 62 el
Uz—czi—<—<z=Jy and Jor—<czi—<-—<z =y

in C(T) ® C(S), where e;, = top(p) and e} = top(p'), and the events e; and e’
otherwise have the form e; = (s;,¢;), when 1 <4 < k, and € = (s},t}), when
1 < j < 1. By repeated use of (4) we obtain zx_1 1 2/_;. (The argument is like
that ending the proof of Lemma 5.3, though with the minor difference that now

we may have e; = e;.) We obtain w =qef 2x-1 U 2,_; € C(T) ® C(S) with w—c

and w—c and pol(ex) = +.

Now, wu {eg,e;} € C(T) ®C(S) provided wu {ey,e;} € C(S) xC(T'). Inspect
the definition of configurations of the product of stable families in Section 3.3.1.
If e;, and e] have the form (s, ) and (s', *) respectively, then determinacy of S
ensures that the projection mw u {s,s'} € C(S) whence w U {eg, €]} meets the
conditions needed to be in C(.S) x C(T'). Similarly, wu {ex,e;} € C(S) x C(T) if
e and e] have the form (*,t) and (*,t"). Otherwise one of e; and e has the
form (s, *) and the other (*,t). In this case again an inspection of the definition
of configurations of the product yields wu {eg,e;} € C(S) x C(T'). Forming the
set of primes of wu {eg, e/} in V we obtain z u {p,p’} e C(T®S).

This establishes that T©S' is deterministic. O

We thus obtain a sub-bicategory DGames of Strat; its objects satisfy
(race-free) of Lemma 5.3 and its maps are deterministic strategies.

5.3 A category of deterministic strategies

In fact, DGames is equivalent to an order-enriched category via the follow-
ing lemma. It says weakly-deterministic strategies in a game A are essentially
certain subfamilies of configurations C(A), for which we give a characterization
in the case of deterministic strategies. Recall, from Corollary 5.8, a weakly-
deterministic strategy o : S - A is a a strategy in which for all +ve events
s,s" € S and configurations x € C(S),

g—c & x—c = xU{s,s'} €C(9).
Lemma 5.10. Let 0: S — A be a weakly-deterministic strategy. Then,

ocycCoxr = ycu
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for all x,y € C(S). In particular, a weakly-deterministic strategy o is injective
on configurations, i.e., ox = oy implies x =y, for all z,y € C(S) (so is mono as
a map of event structures).

Proof. Let 0: S — A be a weakly-deterministic strategy. We show
x2z<cy&oyCor = ycu,
for x,y,z € C(S), by induction on |z \ z|.

Suppose x 2 z—ecy and oy € ox. There are 1 and event e; € S such that
P—s x1 Cx. If 0(e1) = o(e) then e; and e have the same polarity; if —ve, ey = e
by receptivity; if +ve, e; = e because ¢ is weakly-deterministic, using its local
injectivity. Either way y € x. Suppose o(e1) # o(e). We show in all cases
yu{ei}cx, s0yca.

Case pol(ey) = pol(e) = +: As o is weakly-deterministic, e; and e are concurrent
giving 21 —cy U {e1}. By induction we obtain yu {e;} c x.

Case pol(e) = — or pol(e1) = —: From Lemma 5.7, we deduce that e; and e are
concurrent yielding z1—cy U {e1}, and by induction yu {e;} € x.

Another, simpler induction on |y \ z| now yields
r2zcy & oycor = ycux,

for x,y,z € C(S), from which the result follows (taking z to be, for instance, @
or zNny). Injectivity of o as a function on configurations is now obvious. O

A deterministic strategy o : S - A determines, as the image of the configu-
rations C(.9), a subfamily F =4.f 0C(S) of configurations of C(A), satisfying:

reachability: @ € F and if x € F there is a covering chain z—c xl—an e Tp=2x
within F;

determinacy: If z—< and z—c in F with pol 4(a) = +, then z U {a,a’} € F;
receptivity: If x € F and J]—aC in C(A) and pol 4(a) = - then xu{a}eF,;
+-innocence: If x—c xl—c & pol 4(a) =+ in F and z— in C(A), then z—
in F' (here receptivity implies —innocence);

cube: In F, 1 ——C implies 21—

LN
NS

Theorem 5.11. A subfamily F < C(A) satisfies the azioms above iff there is a
deterministic strateqy o : S — A such that F = 0C(S), the image of C(S) under
.

Proof. (Sketch) It is routine to check that F, the image oC(S) of a deterministic
strategy, satisfies the axioms. Conversely, suppose a subfamily F' ¢ C(A) satisfies
the axioms. We show F is a stable family. First note that from the axioms of
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determinacy and receptivity we can deduce:

if -—c and z— in F with z U {a,a’} € C(A), then z U {a,a’} € F.

By repeated use of this property, using their reachability, if x,y € F and = 1y
in C(A) then z Uy € F; the proof also yields a covering chain from z to x Uy
and from y to z Uy. (In particular, if € y in F, then there is a covering chain
from x to y —a fact we shall use shortly.) Thus, if x 1 y in F then zuy e F. As
also @ € F', we obtain Completeness, required of a stable family. Coincidence-
freeness is a direct consequence of reachability. Repeated use of the cube axiom
yields

Cube: In F, T ———y, \ implies
T1NT2 L1 Uy ——C1 Uy
\g g/ g/
To Tcyg
We use Cube to show stability. Assume v 1w in F. Let z € I’ be maximal such

that z ¢ v,w. We show z = v nw. Suppose not. Then, forming covering chains
in F,

€
r1Nrg —C.

dx da d

Cc1 Cc2 Ck
z—Cuy;—<C-+—=<Cyp =v and z—Ccw;—<C--—Cw; =W,

there are ¢; and d; such that c¢; = d;, where we may assume c; is the earliest
event to be repeated as some d;. Write e =q¢r ¢; = dj. Now, v;o1 nwj—q = 2.
Also, being bounded above v;_; Uw;_1 € F and v; uw; € F. We have an instance
of Cube: take x1 = v;—1, 2 = wj_1, y1 = v; and y2 = w;. Hence 2—Sc and
zuU {e} ¢ z,y—contradicting the maximality of z. Therefore z = v Nnw, as
required for stability.

Now we can form an event structure S =gef Pr(F'). The inclusion F ¢ C(A)
induces a total map o : S - A for which F' = ¢C(S). Note that —-innocence (viz.

ifr—ca—c & pol4(a’) = —in F and T—c in C(A), then z—2c in F) is adirect
consequence of receptivity. That S is deterministic follows from determinacy,
that o is a strategy from the axioms of receptivity and +-innocence. O

We can thus identify deterministic strategies from A to B with subfamilies
of C(A*||B) satisfying the axioms above. Through this identification we obtain
an order-enriched category of deterministic strategies (presented as subfamilies)
equivalent to DGames; the order-enrichment is via the inclusion of subfamilies.
As the proof of Theorem 5.11 above makes clear, in the characterization of those
subfamilies F' corresponding to deterministic families, the cube axiom can be
replaced by

stability: if vt w in F, then vnw e F.



Chapter 6
Games people play

We briefly and incompletely examine special cases of nondeterministic concur-
rent games in the literature.

6.1 Categories for games

We remark that event structures with polarity appear to provide a rich environ-
ment in which to explore structural properties of games and strategies. There
are adjunctions

P.AT( T Pfr( T ’PET-( T 'Pgt

!

PA* =T _ PF?

relating PE;, the category of event structures with polarity with total maps,
to subcategories PE,., with rigid maps, PF,. of forest-like (or filiform) event
structures with rigid maps, and PA,., its full subcategory where polarities al-
ternate along a branch; in PF¥ and PA¥ distinct branches are inconsistent.
We shall mainly be considering games in P€,;. Lamarche games and those of
sequential algorithms belong to PA, [13]. Conway games inhabit PF f , in fact
a coreflective subcategory of PE; as the inclusion is now full; Conway’s ‘sum’ is
obtained by applying the right adjoint to the |-composition of Conway games
in PE;. Further refinements are possible. The ‘simple games’ of [14, 15] belong
to PA; 7, the coreflective subcategory of ’PAf comprising “polarized” games,
starting with moves of Opponent. The ‘tensor’ of simple games is recovered
by applying the right adjoint of PA;# < P&, to their ||-composition in PE;.
Generally, the right adjoints, got by composition, from PE; to the other cate-
gories fail to conserve immediate causal dependency. Such facts led Mellies et
al. to the insight that uses of pointers in game semantics can be an artifact of
working with models of games which do not take account of the independence
of moves [16, 11].
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6.2 Related work—early results

6.2.1 Stable spans, profunctors and stable functions

The sub-bicategory of Strat where the events of games are purely +ve is equiv-
alent to the bicategory of stable spans [8]. In this case, strategies correspond to

stable spans:
S «— S+t
At B A B,

where S* is the projection of S to its +ve events; o3 is the restriction of o5 to
S*, necessarily a rigid map by innocence; o5 is a demand map taking x € C(S™)
to o7 (x) = o1[x]; here [z] is the down-closure of = in S. Composition of stable
spans coincides with composition of their associated profunctors—see [17, 18, 3].
If we further restrict strategies to be deterministic (and, strictly, event structures
to be countable) we obtain a bicategory equivalent to Berry’s dI-domains and
stable functions [3].

6.2.2 Ingenuous strategies

Via Theorem 5.11, deterministic concurrent strategies coincide with the receptive
ingenuous strategies of Mellies and Mimram [11].

6.2.3 Closure operators

In [19], deterministic strategies are presented as closure operators. A determin-
istic strategy o : S - A determines a closure operator ¢ on possibly infinite
configurations C*°(.S): for x € C*(.9),

o(zx)=xu{seS | pol(s) =+ & Neg[{s}]cz}.

Clearly ¢ preserves intersections of configurations and is continuous. The closure
operator ¢ on C*°(S) induces a partial closure operator ¢, on C*(A). This in
turn determines a closure operator ¢, on C*(A)', where configurations are
extended with a top T, ¢f. [19]: take y € C*(A)T to the least, fixed point of ¢,
above y, if such exists, and T otherwise.

6.2.4 Simple games

“Simple games” [14, 15] arise when we restrict Strat to objects and deterministic
strategies in PA, ¥, described in Section 6.1. Conway games are tree-like, but
where only strategies need alternate and begin with opponent moves.



Chapter 7

Strategies as profunctors

This chapter relates strategies to profunctors, a generalization of relations from
sets to categories, and composition on strategies to composition of profunctors.
Profunctors themselves provide a rich framework in which to generalize domain
theory in a way that is arguably closer to that initiated by Dana Scott than
game semantics [20, 21]. Early connections are made with bistructures.

7.1 The Scott order in games

Let A be an event structure with polarity. The c-order on its configurations
is obtained as compositions of two more fundamental orders (¢* u c™)*. For
z,y €C*(A),
xC yiff zcy & pols(y~z)c{-}, and
rctyiffzcy & poly(y~x)c{+}.
We use 27 as the converse order to c~. Define a new order, the Scott order,
between configurations x,y € C*(A), by

xEay < J2e€C¥(A). z2 zc y.

As we now verify, when such a z exists it is necessarily x ny. We shall see S4
is a partial order, so together with 2~ and €™ we obtain a factorisation system.

Proposition 7.1. Let A be an event structure with polarity.
(i) If x 2~ zc* y in C*(A), then z=zny.

(i) If e < w2y in C*(A), thenz 2" zny cty in C*(A).
(i1i) (C*(A),c4) is a partial order.

Proof. (i) Assume z 2~ zc* y in C*(A). Then, znyeC®(A) and zczny. In
particular, z € x Ny € x with 2z €~ x which implies

zC xny. (1)
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Similarly, via z €* y, we obtain
zctzny. (2)
Together (1) and (2) imply z =2z ny.
(ii) Assume 2 €* w 27 y in C*(A). Clearly z 2 z ny. Suppose a € z and
pol 4(a) = +. Then a € w, and because only —ve events are lost from w in w2~ y

we obtain a € y, so a € z ny. It follows that x 27 x ny, as required. Similarly,
x Ny <t y. Summed up diagrammatically:

2

19}

LJI ul LJI
—_— . o~
(iii) Clearly ¢ is reflexive. Supposing x C y, i.e. 27 z " y in C*(A4) we see

that  ¢* y and y €~ . Hence if x € y and y € z in C*(A) then z and y have
the same +ve and —ve events and so are equal. Transitivity follows from (ii):

z z
+ +
ul Q\
Y 2T entails y 2 -
+ +E
ul ul Q\
X =3 X 27 =l

An alternative proof of part (iii) of the proposition above, that c 4 is a partial
order, follows directly from the following proposition. (When x is a subset of
events of an event structure with polarity, we use 2~ and x* for its subset of
events of the indicated polarity.)

Proposition 7.2. Let A be an event structure with polarity. For x,y € C™(A),
xEay = y ca & axtcy, or equivalently,
TEAYy = y Cax & atcy

Proof. We have

TCay < 2 znycty.

But
z2 zny < ztcy’

—argue contrapositively—and similarly
rnycty < y ca”,

whence the result. O
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Proposition 7.3. (C*(A),c4) is a complete partial order: any w-chain

ToEAT1IEA "EAXyEA -
has a least upper bound

Lz = (M 2n)" v (Uza)".

new new new

Proof. Consider an w-chain
ToEAT1IEA"EAXTpEQ- .
From the definition of €4 we deduce

X

o
U
Ay
1G]
1y
&

2+ and xjcax]C--Cx)C-

We first check that | e, Zn =dof (Mnew Zn)~ U(Unew Tn )" is a configuration of A.

Firstly, it is consistent: let X Cap [pew, Tn; then X~ € Mo, @ 50 X~ €z, for

all n € w, and X* € U, e, Tn, S0, being finite, X* ¢ x,,, for some m € w; whence
X ¢ =z, ensuring X € Cony. Secondly, it is down-closed, so a configuration.
Suppose a’ <4 a € | yep Tn. If ais —ve, then a € N, Tn 50 a € x,, whence a’ € z,,,
for all n € w; it follows that whatever the polarity of a’, we have a’ € |l,,c,, Tn.

If a is +ve, then a € U, T, 50 a € z, for all n > m, for some mew. Asa’ <4 a
we have a’ € x,, for all n >m. If a’ is +ve, clearly a’ € (Unew Tn)™ € Unpew Tn- If

a’ is —ve, we also have a’ € a,, for all n < m, ensuring a’ € (Nypew n)~ € Unew Tn-

Firstly, |pew ©n is an upper bound: x,, €4 Ll,ew Tn, for any m € w. Consider

the configuration

Tm N anz(ﬂxn)_Uﬁw

New new

where the equality follows from the definition of | J,,¢,, z,,. Clearly

Tm 2 ([(Nan) va,, and ([ zn) vz, S ((Vzn) v(Uzn)" =] 2n,

new new new new

from which x,, Ea Llhew Zn-

new

To show |, Zn is a least upper bound, suppose for y € C*(A) that z, S y

for all n € w, i.e.,
Tn 2 znny <y,

for all n € w. Then,

Uz,2~ Janny,

new new
SO
(Uzn)" =(Uznny)".
new new
Hence

Lzn=(Uz) v(MNzn)” 27 (Uznny) u((zany)”

new new new new new

= ]znny.

new



86 CHAPTER 7. STRATEGIES AS PROFUNCTORS

Also,
Naznnyc'y,

new

(mxnmy)izyia

new

SO

which yields
Lznny=(Uznny) u((Nznny)” < y.

new NEW new

‘We have obtained

|_|fl7n:_>_ uxnmy 9+y7

new new

i.€., Lnew Tn EA Y, as required. O
The Scott order is bounded-complete:

Proposition 7.4. Assume that A is race-free. Let X ¢ C*(A) such that X 1,
i.e. X has an upper bound in C*(A), then X has a least upper bound

LIX=(x) vlUXx)"
w.r.t. the Scott order S4.

Proof. Once we understand X* as {z* | x € X} and X~ as {&7 | x € X}, we ob-
serve that (NX)™ =N(X") and (UX)™ =U(X"), so we can drop the brackets.
Assume Vz € X. x £4 z where z € C*(A). We show N X~ uUX* e C=(A4).
By Proposition 7.2, it is then the lub as claimed. From the assumption and
Proposition 7.2,
(i) 722 and (ii) 2" cz*
for all z € X. It follows directly from (i) that

[ 1c[NX]. 1

It also follows from (ii) that

[z 1< [UXT]. 2
To see this, note by (i) that any —ve event in 2* is in z; so this also applies to

UX*=U{a" | ze X}, i.e. any —ve event in UX ™" is in z.
Consider the maximal w € C*(A) such that

[z ]cwe [ X]

with
wctwulJXF]eC(A).
Such a w exists by Zorn’s lemma; the properties hold of [27] and of the union

of any chain of configurations satisfying the properties will be a configuration
satisfying the properties.
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Suppose w # [N X~]. Then
w—cw' <[ X"]
for some a € A and w' =wu{a} eC®(A). If a is —ve,
w' U X ]eC™(A),

as A is race-free. This contradicts the maximality of w. But if a is +ve, we
must have a € JX™ so

wecw u[JXT)=wu[JXT]eC®(4),
which again contradicts the maximality of w. We conclude that w = [N X~] and

that
[MXTJu[UXTTeCc™(4),
as required. O

The assumption that A is race-free is necessary. Consider A to consist of
one Opponent event 8 and two Player moves ®; and @, with trivial causal
dependency and consistency so any two events are consistent while the three
are not. Both {8,8,} € {#,82} and {8,®,} c {1, B2 }. However, the tentative
lub in this case would be {8, 8,85} which is not a configuration.

It is tempting to think that when A is race-free and countable the Scott order
(C=(A),c4) forms a Scott domain (though a Scott domain without necessarily
a bottom element). For this we would need (C*(A),Z4) to be w-algebraic.
This is not the case. Consider A comprising w parallel copies B8,, — B8,,. Let x
be the configuration consisting of all its events. If y £4 x then y = z. To see
this observe that y 4 x implies y~ 2 2~ which by the downclosure of y implies
y=x. If (C*(A),24) were to be algebraic z would be the directed union of
isolated (finite) elements t4-below it; this could only be so were x isolated.
Similarly any downclosed subset of = would be isolated, However there would
then be uncountatbly many isolated elements of (C*(A),c4), contradicting
w-algebraicity.

We conclude this section with a neat alternative construction of the copycat
strategy on a game A.

Proposition 7.5. Let
F={zllyeC(A'||A) | ycaz}.
Then, F is a stable family for which Pr(F) =2 (C4.

7.2 Strategies as presheaves

Let A be an event structure with polarity. We shall show how strategies in A
correspond to certain fibrations, so presheaves, over the order (C(A),E4). We
concentrate on discrete fibrations over partial orders.
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Definition 7.6. A discrete fibration over a partial order (Y,Cy) is a partial
order (X,Ex) and an order-preserving function f: X — Y such that

Vee X,y eY. ycy fz) = W' cxz. f(a')=1v".

Via the Scott order we can recast strategies o : S — A as those discrete
fibrations F : (C(5),cs5) — (C(A),24) which preserve @, 2~ and c* in the
sense that F(@) = @ while x 27 y implies F'(x) 27 F(y), and = c* y implies
F(z) <" F(y), for z,y € C(S):

Theorem 7.7. (i) Let o: S — A be a strategy in game A. The map o taking a
finite configuration x € C(S) to ox € C(A) is a discrete fibration from (C(S),Eg)
to (C(A),c4) which preserves @, 2~ and C*.

(ii) Suppose F : (C(S),Eg) - (C(A),C4) is a discrete fibration which preserves
@, 27 and €. There is a unique strateqy o : S - A such that F = c*.

Proof. (i) That ¢ forms a discrete fibration is a direct corollary of Lemma 4.21.
As a map of event structures with polarity, ¢“ automatically preserves @&, 2~
and c*. (ii) Assume F is a discrete fibration preserving @, 2~ and c*. First
observe a consequence, that if x €* 2’ in C(S) and F(z) c* y"” ¢ F(2') in C(A),
then there is a unique z” € C(S) such that z ¢* 2" c 2’ and F(2") =y”. (An
analogous observation holds with + replaced by —.) Suppose now z—cz' in
C(S)—where we write 2—c1’ to abbreviate z—c 2’ for some +ve s € 5. As F
preserves ¢t F'(x) ¢* F(a'). The observation implies F(x)—+c F(z") in C(A).
Similarly, z—c 2’ implies F(z)—c F(z').

Define the relation » between prime intervals [z, z'], where x—cz’, as the least
equivalence relation such that [z, 2'] » [y,y'] if x—<y and z'—cy’ with y # 2’. For
configurations of an event structure, [z, 2'] » [y,y'] iff z—ca’ and y—cy’ for
some common event e. As F preserves coverings it preserves ~. Consequently
we obtain a well-defined function o : S - A by taking s to a if an instance
z—cz' is sent to F(z)—ac F(2"). Clearly o preserves polarities.

Sn

By induction on the length of covering chains g xl—SZC—C Ty =x and
o(s1) o(s2) o(sn)

the fact that F' preserves @ and coverings, @ = F(@)—<C F(z1)—<C---—< F(x,) =
F(z) with oz = F(xz) € C(A). Moreover we cannot have o(s;) = o(s;) for
distinct 4,7 without contradicting F' preserving coverings. This establishes
0:85 > A as a total map of event structures with polarity. The assumed prop-
erties of F directly ensure that o satisfies the two conditions of Lemma 4.21
required of strategy. O

As discrete fibrations correspond to presheaves, Theorem 7.7 entails that
strategies o : S — A correspond to (certain) presheaves over (C(A),c4)—
the presheaf for ¢ is a functor (C(A),£4)°® — Set sending y to the fibre
{xeC(S) | ox=y}.
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7.3 Strategies as profunctors

A strategy
c:A—+=B

determines a discrete fibration over

(C(A*||B),EavB) -

(C(A*|B).Easy) = (C(AY),Ea0) x (C(B), Ep) (1)
% (C(A),c4)? x (C(B),ER). (2)
The first step (1) relies on the correspondence
zo ({a] (La)ex}, {b](2,0)cx})

between a configuration of A*| B and a pair, with left component a configuration
of A* and right component a configuration of B. In the last step (2) we are
using the correspondence between configurations of A* and A induced by the
correspondence a <> @ between their events: a configuration x of A* corresponds
to a configuration T =get {@ | a € 2} of A. Because A* reverses the roles of +
and — in A, the order x c4. y in C(A'),

v

PR
_,.<’/ ul

x TNy,

corresponds to the order § €4 @, i.e. TS, 7, in C(A),

It follows that a strategy
o:S - A*|B
determines a discrete fibration
0“1 (C(5),E5) ~ (C(A),£4)°" x (C(B),EB)

where

o“(z) = (17, 097),
for z € C(S). The fibration can be vewed as a presheaf over (C(A),54)°P x
(C(B),cp)—it assigns the set

{reC(S) |1z =0v & 09 = 2}
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to the pair (v,z) € C(A)°® x C(B). One way to define a profunctor from
(C(A),=4) to (C(B),cp) is as a discrete fibration over (C(A),c4)° x (C(B),ER).
Hence the strategy o determines a profunctor!

ot (C(A)7EA)*F>(C(B)7EB) .

7.4 Composition of strategies and profunctors

The operation from strategies o to profunctors ¢“ preserves identities:

Lemma 7.8. Let A be an event structure with polarity. For x € C*(A*|A),
X € COO(CCA) Zﬁ To EA Ty,
where 1 = {a€ A* | (1,a) ex} and xo={ac A | (2,a) € z}.

Proof. Let © € C®(A*||A). From the dependency within copy-cat of the +ve
events a € A on corresponding —ve events @ € A, and vice versa, as expressed
in Proposition 4.1, we deduce: x € C®(CCy) iff

(¢) Ty 2235 and (i) Ty Ca;,

where z* ={a ez | poly(a)=+} and 2z~ ={a €z | pol4(a) = -} for ze C=(A).
R THIS REPEATS PROP7.2*¥*** Tt remains to argue that (i) and (ii) iff
To 27 Ty Naxo € T “Only if”: Assume (i) and (ii). Clearly, Ty nzo € T3.
Suppose a € T with pol 4(a) = —. By (ii), a € 5. Consequently, x1 N x2 C* T1.
Similarly, (i) entails o 27 T3 nae. “If”: To show (i), let a € 3. Then as
o 27 X1 Ny ensures only —ve events are lost in moving from x5 to Ty Nxo, we
see a € Ty Nxa, 80 a € T1. The proof of (ii) is similar. O

¢

Corollary 7.9. Let A be an event structure with polarity. The profunctor « 4°
of the copy-cat strateqy @ 4 is an identity profunctor on (C(A),E4).

Proof. The profunctor @ 4“ : (C(A),54)—=(C(A),E4) sends x € C((C4) to
(T1,22) € (C(A),24)°? x (C(A),c4) precisely when x5 4 T;. It is thus an
identity on (C(A),E4). O

We now relate the composition of strategies to the standard composition of
profunctors. Let o : S - A*||B and 7: T - B*||C be strategies, so 0 : A—=B
and 7 : B—>C. Abbreviating, for instance, (C(A),c4) to C(A), strategies
o and T give rise to profunctors o : C(A)—=C(B) and 7% : C(B)—=C(C).
Their composition is the profunctor 7% o c“: C(A)—=C(C) built as a discrete

IMost often a profunctor from (C(A),c4) to (C(B),cp) is defined as a functor
(C(A),24) x(C(B),=B)°P — Set, i.c., as a presheaf over (C(A),c4)°P x (C(B),Ep), and as
such corresponds to a discrete fibration.
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fibration from the discrete fibrations c“: C(S) - C(A)°*xC(B) and 7%: C(T) —»
C(B)°P x C(C).
First, we define the set of matching pairs,

M =ges {(2,y) € C(S) xC(T) | 02w =71y},
on which we define ~ as the least equivalence relation for which

(z,y) ~(2',y') if 2csga’ &ycryk

oz =012 & Ty =my.
Define an order on equivalence classes M/ ~ by:
mem' if m={(z,y)}. &m'={@"y)}. &
rcgx &ycry &

A !
oox =09x & Ty =119,

for some matching pairs (z,y), (z',3')—so then oox = o902’ =Ty = T1y'.

Exercise 7.10. Show that € above is transitive, so a partial order on M/ ~.
Verify that T “o o “ is a discrete fibration. O

Lemma 7.11. On matching pairs, define

(z,y) ~1 (2,y)) iff IseSteT. s—ca' & y—tcy' & oa(s) =71(t).
The smallest equivalence relation including ~1 coincides with the relation ~.

Proof. From their definitions, ~; is included in ~. To prove the converse, it
suffices to show that matching pairs (z,y), (2',y") satisfying

rcsx &y cry&
! !
o1z =01z & Ty =Ty,

—the clause used in the definition ~ —are in the equivalence relation generated
by ~1. Take a covering chain

!
TLST1 TG Ty TS

in (C(S),Eg). Here ¢ is the covering relation w.r.t. the order E, so x—gx
means z,z; are distinct and x Sg x7 with nothing strictly in between. Via the
map o we obtain

O9L-CROIT R 0oL, —p0o2L’

in C(B) where oax = 71y and oo’ = 11y’. Via the discrete fibration 7 we obtain
a covering chain in the reverse direction,
Y3—1Y1 31 Ym 31y’

in (C(T),5r), where each each (z;,y;), for 1 < i < m, is a matching pair.
Moreover, (3, v;) ~1 (Zi+1,Yi+1) at each ¢ with 1 < ¢ < m. Hence (x,y) and
(«',y") are in the equivalence relation generated by ~1. O
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The profunctor composition 7“o ¢ “ is given as the discrete fibration
T4 g M/"' N C(A)OPXC(C)

acting so
{(z,9)}. = (o1, 729) -

It is mot the case that (7®c)* and 7% o ¢* coincide up to isomorphism.
The profunctor composition 7o g“ will generally contain extra equivalence
classes {(z,y)}. for matching pairs (z,y) which are “unreachable.” Although
o9x = z = T1y automatically for a matching pair (z,y), the configurations = and
y may impose incompatible causal dependencies on their interface z so never be
realized as a configuration in the synchronized composition C(T) ® C(.S), used
in building the composition of strategies T®o.

Example 7.12. Let A and C both be the empty event structure @. Let B
be the event structure consisting of the two concurrent events b, assumed —ve,
and bg, assumed +ve in B . Let the strategy o : @—= B comprise the event
structure s; — s with s; —ve and ss +ve, o(s1) = by and o(s2) = by. In B* the
polarities are reversed so there is a strategy 7 : B—=@ comprising the event
structure to — t; with ¢t —ve and t; +ve yet with 7(¢;) = by and 7(t2) = bo.
The equivalence class {(x,y)}., where x = {s1,s2} and y = {t1,t2}, would be
present in the profunctor composition 7“0 ¢ “ whereas 7@ would be the empty
strategy and accordingly the profunctor (7®0)“ only has a single element, @.

Definition 7.13. For (z,y) a matching pair, define

-y =qet{(s,%) | s € x & o1(s) is defined }u
{(*,t) | t ey & m2(t) is defined ju
{(s,t) | sex & tey & oa(s) =71(t)}

Say (x,y) is reachable if x -y e C(T) ® C(S), and unreachable otherwise.
For z € C(T) ® C(S) say a wvisible prime of z is a prime of the form [(s, *)].,
for (s, %) € z, or [(*,t)]., for (*,t) € z.

Lemma 7.14. (i) If (z,y) is a reachable matching pair and (xz,y) ~ (z',y'),
then (x',y'") is a reachable matching pair;

(ii) For reachable matching pairs (x,y), («',y"), (x,y) ~ («',y") iff x-y and
z'-y" have the same visible primes.

Proof. We use the characterization of ~ in terms of the single-step relation ~;
given in Lemma 7.11.

(i) Suppose (z,y) ~1 (z',y") or (2',y") ~1 (z,y). By inspection of the construc-
tion of the product of stable families in Section 3.3.1, if -y € C(T) ®C(S) then
'y e C(T)®C(S).
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(ii) “If”: Suppose z -y and z’ -y’ have the same visible primes, forming the
set Q. Then z =4t UQ € C(T) ® C(S), being the union of a compatible set of
configurations in C(T) ® C(S). Moreover, z €z -y,z'-y'. Take a covering chain

pcy e s —c xy
in C(T) ® C(S). Each (w12, 722;) is a matching pair, from the definition of
C(T)®C(S). Necessarily, e; = (s;,t;) for some s; € S, t; € T, with o2(s;) = 71 (¢;),
again by the definition of C(T") ® C(S). Thus

(7T121‘77T221‘) ~1 (77121‘+177T2Zi+1) .

Hence (m12,m22) ~ (x,y), and similarly (m2,m22) ~ (2',y), so (z,y) ~ (z',y").

“Only if”: Tt suffices to observe that if (x,y) ~1 (2',9'), then z -y and 2’ -y’

it
have the same visible primes. But if (x,y) ~1 (z/,y’) then x - y(ic) ' -y, for

some s € S,t €T, and no visible prime in 2’ -y’ contains (s,t). O

Lemma 7.15. Let 0: A—=B and 7: B—=C be strategies. Defining
Por:C(TOS) > M[~ by ¢s-(2) = {(ILz22)}_,

where Iy z =m Uz and sz = mo U 2, yields an injective, order-preserving func-
tion from (C(T®S),Eres) to (M] ~,E)—its range is precisely the equivalence
classes {(x,y)}. for reachable matching pairs (x,y). The diagram

(C(TOS),Eres) ——— (M/ ~, <)

(to0) “L i
(C(A),24)P x (C(C),=c)

commutes.

Proof. For z € C(T®S), we obtain that ¢, r(2) = (II12,1I32) = (m Uz, m2Uz)
is a matching pair, from the definition of C(T") ® C(S); it is clearly reachable as
mUz - mUz=UzeC(T)®C(S). For any reachable matching pair (z,y) let z
be the set of visible primes of x -y. Then, z € C(T'®S) and, by Lemma 7.14(ii),
(II12,1az) ~ (2,y) 80 @or(2) = {(z,y)}.. Injectivity of ¢, , follows directly
from Lemma 7.14(ii).

To show that ¢, , is order-preserving it suffices to show if z—=2z" in (C(T'05S5),€)
then ¢o - (2) € @o,r(2") in (M/ ~,2). (The covering relation — is the same as
that used in the proof of Lemma 7.11.) If 2—=2’ then either 2L Z', with p +ve,
or 'L z, with p —ve, for p a visible prime of C(T) ® C(S), i.e. with top(p) of
the form (s, *) or (*,%). We concentrate on the case where p is +ve (the proof
when p is —ve is similar). In the case where p is +ve,

Oyz-Iez=Jzc|Jz =112 - T2’
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in C(T) ® C(S) and there is a covering chain

(s1,t1 (sns5tn)
Uz =wyp—<cwy+ —<

¢

wy, 2Kg:J)Uz'

in C(T)®C(S). Each w;, for 0 <i<m, is associated with a reachable matching
pair (mw;, mow; ) where mw; -mow; = w;. Also (myw;, mow;) ~1 (T1W;i41, ToWis1),
for 0 <i <m. Hence (II12,1l22) ~ (1w, 2wy, ), by Lemma 7.11(ii). If top(p) =
(s,#) then mw,—cIl; 2, with s +ve, and mow, = Isz". If top(p) = (,t) then

t

mwy, = 112" and mw,—cIly2’, with ¢ +ve. In either case mw, Sg II;2’ and
mowy, Er Ilsz" with oomw, = o9ll1z" and Tymow, = 711I>2’. Hence, from the
definition of € on M/ ~,

Po.r(2) = {2 I22)} . = {(m1wn, mawn) }. € {(I 2", 22")}. = @6+ (2) .

It remains to show commutativity of the diagram. Let z € C(T'®S). Then,

(T900) (@a,r(2)) = (140 0")({(I12,1122)}.) = (011l12, T2ll22) = (T00)“(2),
via the definition of T@o—as required. O

Because (-)“ does not preserve composition up to isomorphism but only
up to the transformation ¢ of Lemma 7.15, (=) forms a laz functor from the
bicategory of strategies to that of profunctors.

7.5 Games as factorization systems

The results of Section 7.1 show an event structure with polarity determines a
factorization system; the ‘left’ maps are given by 27 and the ‘right’” maps by
c*. More specifically they form an instance of a rooted factorization system
(X,—>L,~Rr,0) where maps f :x - 2’ are the ‘left’ maps and g : x - 2’ the
‘right” maps of a factorization system on a small category X, with distinguished
object 0, such that any object x of X is reachable by a chain of maps:

O«p-—»Rr<p >RT;
and two ‘confluence’ conditions hold:

1 >px & 20 >gx = Jxg. To >r T1 & X9 >R T2, and its dual

r-op a1 &> 0 = Ix9. 1 oL To & 12 >R T

Think of objects of X as configurations, the R-maps as standing for (compound)
Player moves and L-maps for the reverse, or undoing, of (compound) Opponent
moves in a game.

The characterization of strategy, Lemma 4.21, exhibits a strategy as a dis-
crete fibration w.r.t. £ whose functor preserves 2~ and c*. This generalizes.
Define a strategy in a rooted factorization system to be a functor from another
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rooted factorization system preserving L-maps, R-maps, 0 and forming a dis-
crete fibration. To obtain strategies between rooted factorization systems we
again follow the methodology of Joyal [7], and take a strategy from X to Y to
be a strategy in the dual of X in parallel composition with Y. Now the dual op-
eration becomes the opposite construction on a factorization system, reversing
the roles and directions of the ‘left’ and ‘right’ maps. The parallel composition
of factorization systems is given by their product. Composition of strategies is
given essentially as that of profunctors, but restricting to reachable elements.
The confluence conditions are used here.

I thought at first that this work meant that bistructures, a way to present
Berry’s bidomains as factorization systems [22], inherited a reading as games.
But unfortunately configurations of bistructures don’t satisfy the second con-
fluence condition above.
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Chapter 8

A language for strategies

8.0.1 Affine maps

Notation 8.1. Let A be an event structure with polarity. Let z € C*(A).
Write A/z for the event structure with polarity which remains after playing .
Precisely, ....

We extend the notation to configurations regarding them as elementary event
structures. If y € C*(A) with x € y then by y/x we mean the configuration
y~z € C®(A/x). In the case of a singleton configuration {a} of A—when a is an
initial event of A—we’ll often write A/a and z/a instead of A/{a} and z/{a}.

An affine map of event structures f from A to B comprises a pair ( fo, f1)
where fy € C(B) and f; is a map of event structures f; : A > B/ fo. It determines
a function from C(A) to C(B) given by

fr=fou fiz

for x € C(A). The allied fy and fi can be recovered from the action of f on
configurations: fy = f@ and f; is that unique map of event structures fi :
A - B/f@ which on configurations = € C(A) returns fz/f@. It is simplest
to describe the composition gf of affine maps f = (fo, f1) from A to B and
g = (g0, 91) from B to C in terms of its action on configurations: the composition
takes a configuration x € C(A) to g(f x). Alternatively, the composition gf can
be described as comprising (go U g1 fo, h) where h is that unique map of event
structures h: A - C/(go U g1 fo) which sends x € C(A) to g1(fo U fix)/g1fo-

An affine map f: A -, B of event structures with polarity is an affine map
f = (fo, f1) between the underlying event structures of which the allied map
f1: A > B/f@ of event structures preserves polarities.

97
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8.1 A metalanguage for strategies

8.1.1 Types

Types are event structures with polarity A, B,C,--- understood as games. We
have type operations corresponding to the operations on games of forming the
dual A*, simple parallel composition A| B, sum X, A; and, although largely
ignored for the moment, recursively-defined types.

One way to relate types is through the affine maps between them. There
will be operations for shifting between types related by affine maps (described
by configuration expressions). These will enable us e.g. to pullback or ‘relabel’
a strategy across an affine map.

A type environment is a finite partial function from variables to types, for
convenience written typically asT' = xq : Ay, -+, &y, : Ay, in which the (configura-
tion) variables z1, -, z,, are distinct. It denotes a (simple) parallel composition
||, Ai in which the set of events comprises the disjoint union Us<je, {2} x A4;. In
describing the semantics we shall sometimes write I" for the parallel composition
it denotes.

8.1.2 Configuration expressions

Configuration expressions denote finite configurations of event structures. A
typing judgement for a configuration expression p in a type environment I"

'+p:B

denotes an affine map of event structures with polarity from I' to B.
In particular, the judgement

Nez:Arz: A

denotes the partial map of event structures projecting to the single component
A. The special case
r:Arz:A

denotes the identity map.
We shall allow configuration expressions to be built from affine maps f =

(fo, f1): A—>, Bin
Nx:Avr fx:B

and its equivalent
Ie:Ar fou fix: B.

In particular, f; may be completely undefined, allowing configuration ex-
pressions to be built from constant configurations, as e.g. in the judgement for
the empty configuration

'@:A

or a singleton configuration
F'r{a}:A
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when a is an initial event of A. In particular, the expression {a} Ux’ associated
with the judgement

Iz':Afar{a}uz': A,
where a is an initial event of A, is used later in the transition semantics.

For a sum Y;c;A; there are configuration-expressions jp where j € J and p
is a configuration-expression of type A;:

IF'e-p:A; .
— S e
' jp: Yier A

In the rule for simple parallel composition we exploit the fact that con-
figurations of simple parallel compositions are simple parallel compositions of
configurations of the components:

I'ep:A Avrq:B
I'Av(p,q): AlB

(We shall sometimes write pl||q for (p,q).)
Configurations of B* can be taken to be the same as configurations of B, so

another sound rule is
I'-p:B

I'wp:B*

where I' is 1 : Af, -, T A7,

8.1.3 Terms for strategies

A language for both strategies is presented. Its terms denoting strategies are
associated with typing judgements:

X1 :Alv"'amm :Am i Y1 :Blv"',yn:Bn )

where all the variables are distinct, interpreted as a strategy from the game
x1:Aq, e, Ty ¢ Ay denotes to the game y; @ By, -, yp ¢ By denotes.

We can think of the term t as a box with input and output wires for the
typed variables:

A1 Bl
—_— ——
Am: : B

The duality of input and output is caught by the rules:

Fz:Ar-t—4A F'rt4z:AA
Pet—axz: AL A Dz:AtHt4 A

Composition of strategies is described in the rule

't4 A Aru-H
F'-3A.[t||u]-H
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which, in the picture of partial strategies as boxes, joins the input wires of
one partial strategy to output wires of the other. The composition denotes the
usual composition of strategies, in the case of strategies, and that described
above, composition without hiding, in the case of partial strategies. Note that
the simple parallel composition of strategies arises as a special case when A is
empty. Via the alternative derivation

H-u AL At-taTt
H:+3AY [u | t] 4T
Fr3AY [u|t]4H,

we see an equivalent way to express the composition of strategies.
We can form the nondeterministic sum of strategies of the same type:

Trt;4A del
Il ti A

We shall use 1 for the empty nondeterministic sum, when the rule above spe-
cialises to

I'-14A.

The term 1 denotes the minimum strategy in the game I''||A—it essentially
comprises the initial segment of the game I'* || A consisting of all the initial —ve
events of A.

We can also form the pullback of two strategies of the same type:

F|—t1—|A F|_t2_|A
't ntya 1A

In the case where t; and t2 denote the respective strategies o1 : S1 — I'*||A and
o1 :51 = T A the strategy t1 A to denotes the pullback

S1/\52
/ v
Sl 201/\02 SQ
X v %
T4|A.

Proposition 15.41 shows that pullbacks of strategies against maps of event struc-
tures are pullbacks.

Write @a for the environment assigning the empty configuration @ to all
configuration variables in a type environment A. If A + p : C, write p[@a]
for the configuration expression resulting from the substitution of @& for each
variable in a configuration expression p. Later, we shall often write p[@] for
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the substitution of the empty configuration @ for all configuration variables
appearing in p. The hom-set rule

I'rp':C Arp:C
F'-peEcp 4A

ploal cc p'lor]

introduces a term standing for the hom-set (C(C),5¢)(p,p’). It relies on con-
figuration expressions p,p’ and their typings. If A + p: C denotes the affine
map g = (go,g1) and T'+ p’ : C the affine map f = (fo, f1), the side condition of
the rule ensures that gg S¢ fo. Copy-cat is seen as a special case of the hom-set
rule:

r:Arycpax-dy: A

W.r.t. affine maps f = (fo, f1) : A >4 C and g = (go,¢1) : B =4 C, the judgement
x:Avrgyce fxr4y: B
is equivalent to the judgement
x:Ar3z:C.{gycc z||zC¢c fx]-y: B

in the sense that the strategies they describe are isomorphic.
The Scott order Ec: in C*, the dual of a game C, is the opposite of the Scott
order £¢ of C. Correspondingly,

IF'-peEcp 4A d Fep'cacip~ A
e D —— an _—.
I'rp'ccip4A F-peEcp 4A

In showing equivalences between strategies one needs basic facts about the
Scott order. For example, assuming 2 € z,y in C(A), we have

yeaz iff y/zcy /2.

The precise definition of the strategy which the hom-set rule yields is given
in the next section.

Example 8.2. The denotation of
T Ar@Cca@-y: B

is the strategy in the game A*||B given by the identity map ida. p : A*||B —»
A*||B. The denotation of

FyEa@Hy: A
is L4, the minimum strategy in the game A comprising just the initial —ve events
of A.

The judgement
T Aj Y CEsiga, JT Ay Nier A
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denotes the injection strategy—its application to a strategy in A; fills out the
strategy according to the demands of receptivity to a strategy in ¥;c;A;. Its
converse

T BierAi b jY Exipa, €AY A

applied to a strategy of ;.7 A; projects, or restricts, the strategy to a strategy
in Aj.

Assume +t 4y : B. When f: A > B is a map of event structures with
polarity, the composition

F Jy:B.[t] fecpy] Hx: A

denotes the pullback f*o of the strategy o denoted by t across the map f: A —»
B.

In the case where a map of event structures with polarity f : A - B is
innocent, the composition

F dx:A{ycp fe|t] Hy:B
denotes the ‘relabelling’ fio of the strategy o denoted by ¢. (Check!) ]
Via the hom-set rule we obtain
x:Ay:Br zeq (2,y) 42:A|B,

which joins two inputs to a common output. A great deal is achieved through
basic manipulation of the input and output “wiring” afforded by the hom-set
rules and input-output duality. For instance, the following achieves the effect
of lambda abstraction:

Iz:A+t-y:B z: At y: B+ (z,y): AY||B z: AY|Brz: AY||B
F-t-z: At y: B i ANy B zEap (z,y) 42 AY|B
' 3z: A% y:B.[t| z€ayp (v,y))] +2: AY|B

)

A trace, or feedback, operation is another effect of such “wiring’.” Given a

strategy ',z : A+t 4y : A, A, we can derive

z:Atrycp oy AL
riAtrrc -y At Doo:ArtHy: A A
FrxCay-z:Ay: A z: Ay AL+t TH A
FIx: Ay At [zeay || t]ATHA
Pz Ay At [zcay | t]4A

which denotes the trace of t. Its effect is to adjoin a feedback loop from ¥ : A to
x: A. If t is represented by the diagram

r —— A
A AL
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then the diagram

represents its trace. The final judgement of the derivation may also be written
F-3z: Ay A[t|zcay]~A
standing for the post-composition of
DArt4z: At y: A

with the term
Aty Arxcay

denoting the copy-cat strategy @ 4.. The composition introduces causal links
from the +ve events of 3 : A to the —ve events of x : A, and from the +ve events
of z: A to the —ve events of y : A—these are the usual links of copy-cat @ 4. as
seen from the left of the turnstyle.

Projection of a strategy o : S — A| B to a strategy o : Sp - B is achieved
mathematically via the partial-total factorisation

S——Sp

A|B——B

w.r.t. the partial map of event structures A||B — B which is undefined on A
and the identity on B.

Proposition 8.3. Let 0 : S - A||B be a strategy. Let pg : A|B — B be the
(partial) map acting as identity on B and undefined on A. Define op:Sp - B
to be the defined part of pgo f. Then, op:Sp — B is a strategy.

Proof. For a direct proof, receptivity and innocence of o follow fairly directly
from the corresponding properties of o. O

(Of course, the analogous result holds for the other projection o4 : S4 — A.
It is not the case that 04 : S4 — A and op : Sg — B being strategies entails o
is a strategy.)
In the metalanguage, projection of a strategy +t¢ 4z : A,y : B is achieved
via the strategy
T AF BTy B

which projects the A game to the empty game @&, within the term

Fdz: At || @5y @) 4y B.
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Duplication terms

F'ep:C Airq:C Asrge:C
L'éc(pqi,q2) 4 A1, A

p[QFL q1 [QAl ] y 42 [®A2:| is balanced )

where what it means for a triple of configurations p[@r], ¢1[2a, ], ¢2[@a, ] to be
balanced is defined in Section 8.2.2. (The meaning of a triple of configurations
x,y1,y2 of C being balanced is almost y; Uys E¢ x but can’t be this in general
as y1 Uys need not itself be a configuration of C.) The term for the duplication
strategy is, in particular,

x:Arda(z,y1,y2) 41t Aya t AL

Their semantics rests on the strategy 04 : A—=A| A defined in Section 8.2.2.
The operation d4 forms a comonoid with counit L : A——=g.

Sum types and definition by cases. Recall that for a sum X;;;A; there are
configuration-expressions jp where j € J and p is a configuration-expression of
type Aj;:
IF'-p:A;
- P2 jel
[k jp:Yier A
In particular, there is the configuration-expression

x: A
'+ j:L‘ : Zig[Ai .
Clearly j@ = @ Ex, , 4, @. Accordingly, the judgement
T NierAi - jY Exa, THY A

denotes the strategy which projects to the jth component. Assume, for all j € I,
that
F,JZZA]' I—tj—lA.

Then,
I z: YierA; - dx e Aj[jl‘ ExaA; Z”tj] <A

lifts ¢; from a strategy with domain the component A; to a strategy with domain
the sum ;.7 A;. A case expression

I z: X1 A; - casejer jo Exypa, 2. 65 4 AL

el
is obtained as an abbreviation of the sum of strategies,

F,Z : ZieIAi = I] dz: AJ[_].’IJ Eyiar A Z”tj] —HA.
gel

We can obtain an equivalent cases expression by an alternative route. Let (-);
be the map of event structures with polarity ¥;c;A4; - A; which projects onto
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the jth component from the sum; it is undefined outside the jth component and
acts as identity on the events of A;. Then because

JT Ex, A, 2 iff xEy; 25, for all z € C(Bier As), v € C(4y),
the two judgements
2: e A jr Ex, a2 4w Ay and 2 XA mwEa; 25y Aj

denote the same strategy. Accordingly, we can alternatively write down the case
statement above as

[, z: Y1 Ai b casejer T Ex; 2. 15 4 A,
an abbreviation of the sum of strategies,

L,z: 8 Ai - [] 3zt Aj[(z 4, 25)lIt;] 4 A
jel

Recursive definitions can be achieved from trace with the help of duplication
terms, based on a strategy d4 from a game A to A|| A, roughly, got by joining

two copy-cat strategies together:
()=
t —

r

Provided the body ¢ of the recursion respects d 4, the diagram above unfolds in
the way expected of recursion, to:

" i
t )

For those strategies which respect 9, i.e.

0A00 = (J”O’)@(sruA s

and in particular for strategies which are homomorphisms between §-comonoids,
the recursive definition does unfold in the way expected. This follows as a
general fact from the properties of a trace monoidal category.

In fact, recursive definitions can made more generally, without the use of
trace, by exploiting old techniques for defining event structures recursively. The
substructure order < on event structures forms a “large complete partial order,”
continuous operations on which possess least fixed points — see [4, 5]. Given
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x: AT +t—4y: A theterm I' - px: A.t 4y : A denotes the <-least fixed
point amongst strategies X : I'—=A of the <-continuous operation F(X) =
to(idr|| X )®dr; here o 4 ¢’ between two strategies o : S - I'||A and ¢’ : §" >
I't|| A signifies S 94 S’ and that the associated inclusion map i : S - S’ makes
o = oli. Rk

Givenz: A’ t 4y: A,

T
Em—
t —
A
A

the term I' + pax:A.t 4y: A denotes the <-least fixed point amongst strategies
X :T—=A of F(X) =to(idr||X)edr:

. 1A

8.2 Semantics

8.2.1 Hom-set terms

The definition of the strategy which
Frpcep 4 A

denotes is quite involved. We first simplify notation. W.l.o.g. assume A +p: C
and T' + p’ : C—using duality we can always rearrange the environment to
achieve this. Write A for the denotation of the environment I' and B for the
denotation of A. Let A+ p: C and I' + p’ : C denote respectively the affine
maps ¢ = (go,91) : B =4 C and f = (fo, f1) : A =>4 C. Note, from the typing
of pc¢ p’ we have that gog E¢ fo. We build the strategy out of a rigid family
Q with elements as follows. First, define a pre-element to be a finite preorder
comprising a set
{1} x7 u {2} xy,

for which

zeC(A") & yeC(B) & gy =, fx,

with order that induced by <4: on T, <p on y, with additional causal depen-

dencies
(1,a) < (2,b) if fi(a) =g1(b) & bis +ve
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and
(2,0) < (1,a) if f1(a) =g1(b) & bis —ve.

As elements of the rigid family Q we take those pre-elements for which the order
< is a partial order (i.e. is antisymmetric). The elements of Q are closed under
rigid inclusions, so Q forms a rigid family—see Lemma 8.4 below. We now take
S =4t Pr(Q); the events of S (those elements of Q with a top event) map to
their top events in A*||B from where they inherit polarities. This map can be
checked to be a strategy: innocence follows directly from the construction, while
receptivity follows from the constraint that gy c. fz.

It is quite easy to choose an example where antisymmetry fails in a pre-
element, in other words, in which the preorder is not a partial order—see Ex-
ample 8.5 below. However, when either p or p’ is just a variable no nontrivial
causal loops are introduced and all pre-elements are elements. More generally, if
one of p or p’ is associated with a partial rigid map (i.e. a map which preserves
causal dependency when defined), then no nontrivial causal loops are introduced
and all pre-elements are elements.

Lemma 8.4. Q above is a rigid family.

Proof. For Q to be a rigid family we require that its is closed under rigid inclu-
sions, or equivalently, that any down-closed subset of any element ¢, with order
the restriction of that of g, is itself an element of Q.

Let ¢ =qef ({1} xT U {2} xy,<) be an element of Q, as constructed above.
Suppose z is a <-down-closed subset of q. Let z; =q¢f {@ | (1,@) € 2} € T and
29 =det {b | (2,b) € 2z} Cy. We first show

922 Ec fZ1,

i.e. that gz 27 gzo N fz1 €* f21.

Suppose, to obtain a contradiction, that it is not the case that gze N fZz; c*
fZ1. Then, there is some —ve event ¢ € fZz; with ¢ ¢ gzo (). It immediately
follows that ¢ ¢ gg. As ce€ fZ1, there are now two cases to consider according as
c € fo or not. However, if ¢ € fy because ¢ is —ve and gg E¢ fo we would obtain
¢ € go—a contradiction. Hence ¢ ¢ fo, and there is a € Z; with ¢ = f1(a), and so
+ve @€ z. As we have gy ¢ fz,

gyn fxct fx.

From this fact we see that because c € fx is —ve we must have ¢ € gy. So as
¢ ¢ go, we have ¢ = g1(b) for some —ve b € y. From the construction of ¢, we
have b < @ in q. Hence b € 29, as z is down-closed. But now ¢ = g1(b) € gza,
contradicting (f) above.

Similarly, to obtain a contradiction, suppose that it is not the case that
gza 27 gza N fZz;. Then, there is some +ve ¢ € gzo with ¢ ¢ fz; (f). We
immediately see ¢ ¢ fo. As c is +ve and gy E¢ fo, if ¢ € gg then ¢ € fy—a
contradiction. Therefore, as ¢ € gzo, there is +ve b € 2o with ¢ = g;(b). As we
have gy c¢ fz,

9y 2 gyn fx.
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Because ¢ € gy is +ve we must have c € fz. So ¢ = fi(a) for some a € x. From
the construction of g, we have @ < b. As z is down-closed, @ € z;. But now
¢ = fi1(a) € fZ1, contradicting (I) above.

To conclude, we now have gzo S¢ fz1, from which, according to the con-
struction above, we obtain a pre-element ¢, = (z,<,). From the construction,
the order <, is included in <, so in particular a partial order, ensuring g, is an
element of Q. We require that ¢, be rigidly included in ¢, for which we need
that <, is the restriction of < to 2. Any ordering e < ¢’ between events e, e’ € z
results from a chain of causal links in A or B or through the additional links of
the construction above. Because z is a down-closed subset of ¢ by the nature of
the construction the same chain will be present in ¢.. It follows that <, is the
restriction of < to z. Hence Q is closed under rigid inclusions. O

Example 8.5. Let A comprise a; = 8 — B = as. Let B comprise b = @ —
B = by. Let C comprise the two concurrent events ¢; = 8 and ¢y = B. Let
f:A—- C send a; to ¢; and as to co. Let g: B - C send by to ¢ and by to
c1. Taking x = {a1,a2} and y = {b1, b2} we have fx = gy, so certainly gy =¢ fx.
According to the construction of @ above, there is a pre-element comprising the
set {1} xT U {2} x y with preorder in which @ < @ (from <a:.), @2 < by (as
f(az) =g(b1)) , by <be (from <p) and be <@y (as g(b2) = f(a1)). The preorder
clearly contains a loop so this pre-element is not an element of the constructed
rigid family. O

8.2.2 Duplication
The definition of §4 : A—= A| A is via rigid families. For each triple

(z,91,92)
where x € C(A'), y1 € C(A) and yo € C(A) which is balanced, i.e.
Yaey. poly(a) =+ = aex,
Vaeys. poly(a) =+ = aex and

Vaex. poly(a)=+ = aey; oraeys,

and choice function
x:at = {1,2},

such that
X(a):l = a€y; and X(a):2 = TEYs,

the order ¢(x,y1,y2;x) is defined to have underlying set
{0} xz u {1} xy1 U {2} xys
with order generated by that inherited from A*||A| A together with

{((0,@), (1,a)) [ a ey} u{((0,a),(2,a)) |acys}u
{((x(a),@), (0,a)) [a €z & pol 4.(a) = +}.
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The rigid family Q consists of all such g(z,y1,y2;x) for balanced (z,y1,y2) and
choice functions y. From Q we obtain the event structure Pr(Q) in which events
are prime orders, with a top element; events of Pr(Q) inherit the polarity of
their top elements to obtain an event structure with polarity. We define the
strategy d4 : A—= A|| A to be the map

Pr(Q) ~ A*[ Al A

sending a prime to its top element. Of course, we had better check that Q is
a rigid family, in particular that each q(z,y1,y2;x) is a partial order, and that
04 is indeed a strategy.

Lemma 8.6. The family Q is rigid. The function § 4 taking an event of Pr(Q)
to its top element is a strategy Pr(Q) — A*|| Al A.

Proof. That Q is closed under rigid inclusions follows straightforwardly; rigid
inclusions ensure that choice functions restrict appropriately. O

Consider now the semantics of a term

I'rdc(p,qi,q2) 4 A

W.l.o.g. we may assume that the environment is arranged so A = A1, Ay with
judgements I' - p: C, A1+ g1 : C and As + go : C. To simplify notation assume
the latter judgements for configuration expressions denote the respective affine
maps f=(f, f1):A—aC,g1=(g),01"): By >~ C and g5 = (¢9,92") : Bo » C.
From the typing of d¢(p, g1, ¢2) we have that (f°, g, ¢9) forms a balanced triple
in C. We build the strategy out of a rigid family Q with elements as follows.
We construct pre-elements from = € C(A*), y; € C(By1) and y2 € C(Bs) where
(fx,g191,92y2) is a balanced triple in C' with a choice function x. There are
three kinds of elements of z:

" ={aex| poly(a)=-},
wg={acx| polyi(a) =+ & f1(a) €Y y1(ay} and
vy ={acx|poly(a)=+& fH(a) € gy(pr(ap¥nirican}

We define a typical pre-element to be a finite preorder on the set

{0} x (27 vay u{(x(f(a)),a) acag}) L {1} xy1 U {2} x g2,

with order that induced by that of the game A*|| By ||Ba—each event of the set
is clearly associated with a unique event of the game—with additional causal
dependencies

(0,a) < (1,b) if f'(a) =gi(b) & b is +ve in By,
(0,a) < (2,b) if f'(a) = g3(b) & b is +ve in By,
and

(x(f*(a)),b) <(0,a) if acx} & f'(a) = gi(fl(a))(b), for b a —ve in By (s1(a)) -
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As elements of the rigid family Q we take those pre-elements for which the
order < is a partial order (i.e. is antisymmetric). Once Q is checked to be a
rigid family—see Lemma 8.7 below—we can take S =ger Pr(Q); the events of
S map to the events in the game A*| Bj| By associated with their top events,
from where they inherit polarities. This map defines the strategy denoting the
original duplication term.

Lemma 8.7. The family Q is rigid. The function taking events of Pr(Q) to
their top elements defines a strategy from A to Bi|| Bs.

Proof. For Q to be a rigid family we require that any down-closed subset of any
element ¢, with order the restriction of that of ¢, is itself an element of Q.

Let g =qef ({0} xzu {1} xy1 U{2} xys,<) be an element of Q, as constructed
above. Suppose z is a <-down-closed subset of q. Let zg =qer {a | (0,a) € 2} € x,
21 =def {b | (1,0) € 2} Cy1 and 22 =qer {b | (2,b) € 2} S ya. We first show

(f20’91z1,9232)
is balanced. --- O

See Example 9.14 for an alternative derivation of the duplication strategy
using the general results of the next chapter.



Chapter 9

From maps to strategies

The metalanguage of the last chapter supported terms

x:AryCp fr4y: B (1)
and z:Argycaz-y:B (2)

w.r.t. affine maps f: A - B and g : B - A between event structures with
polarity s.t. @ g f@ and g 4 &. In this chapter we considerably broaden
those maps between event structures with polarity which lift to strategies. The
most general maps we consider, the affine-stable maps, include the affine maps
of the last chapter as well as Berry’s stable maps, though they are considerably
broader because they take account of polarity.

They are useful both for defining strategies—affine-stable maps support def-
initions like (1), and their dual (2) —but also for “changes of base” in which we
shift between strategies over different games related by an affine-stable map. In
the slightly more restricted case of additive-stable maps such a change of base is
accompanied by an adjunction. As a consequence, we obtain a lax functor from
deterministic strategies to the stable-domain model of Gol.

9.1 Maps as strategies—a general construction

W.r.t. affine maps f: A - B and g : B - A between event structures with
polarity s.t. @ €5 f@ and g& E4 @ (so necessarily @ ¢* (@) and @ ¢~ ¢(2)),
we can give an alternative more direct construction of the special cases

x:ArycCp fr4y: B and

r:Argycaxz-y:B.
The constructions based on infinitary stable families extend that of Proposi-
tion 7.5. (In an infinitary stable family the configurations need not be finite

sets and, to compensate, a finiteness axiom holds, saying every element in a
configuration is in a finite subconfiguration.)

111
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Proposition 9.1. Let A and B be event structures with polarity. W.r.t. affine
maps f:A—> B s.t. € f@ and g: B - A s.t. g@ S4 &, define

Fi={zlyeC™(A|B) | y e fx} and
Fo={TlyeC™(A'|B) | gycax}.

Then, F1 and Fy are infinitary stable families for which top : Pr(F;) - A*| B,
i=1,2, are isomorphic to the denotations of hom-set terms above. (The events
e of Pr(F) inherit their polarities from those of top(e).)

These facts follow from a general construction for a more general class of
maps.

9.2 Affine-stable maps

Definition 9.2. An affine-stable map between event structures with polarity,
from A to B, is a function f: (C*(A),<) - (C*(B),<) which is

e polarity-respecting: for x,y € C*(A),
xSy = f(x)< fly) and xSy = f(z)<" f(y)
— C-monotonicity follows, i.e., z €y = f(x) € f(y) for all x,y €
C=(A);
o +-continuous: for x € C*(A),

be f(x) & polg(b) =+ = FwgeC(A). zpCx & be f(xo);

e —-image finite: for all finite configurations x € C(A) the set f(z)~ is finite;

e affine: for all compatible families {x; | i € I} in C*(A),
(affinity) U f(2i) <" fF(U i)
i€l iel
—when I is empty this amounts to @ c* f(@);

e and stable: for all nonempty compatible families {z; | i € I} in C*(A),

(stability) f(ﬂlxl) < ) f(w).

iel

Note that as an affine-stable function is S-monotonic, the c* of affinity may
be replaced by Sp while the €~ of stability may be replaced by the converse
relation 2.

Proposition 9.3. Affine-stable maps form a category AS: objects are event
structures with polarity; arrows f : A - B are affine-stable maps from A to
B between event structures with polarity; composition is the usual function-
composition of affine-stable maps with identities the identity functions.
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Proposition 9.4. An affine-stable function f from A to B is S-continuous,
i.e. f(US)=UFfS, for any directed subset S cC>=(A).

Proof. As remarked f is S-monotonic. A directed subset is compatible, with
upper bound US. Hence, by affinity, U fS c* f(US). However any +ve event
in f(US) is necessarily in U fS by +-continuity. Hence U fS = f(US). O

Note that an affine-stable function is monotonic w.r.t. the Scott order £ but
we do not have a continuity property analogous to that above w.r.t. c.

We can simplify the “stability” condition: it’s sufficient to consider binary
intersections. First a general lemma concerning unions of directed families and
intersections; we prove it in a little greater generality than we strictly need. For
this dependent type notation is handy. For a set X and a family of sets S,
indexed by x € X, we write

> S =aer {(x,5) | s€S,};

reX
HSx:def{k'X—)USx|VJC€Xk($)€Sx}
reX zeX

Below in the proof of Lemma 9.6, we use the lemma in a simpler form, when
Sy =8 for all z € X; then [[,.x S is the set of all functions k: X — S.

Lemma 9.5. Let X be a nonempty family of sets, i.e. a nonempty set of sets.
For each x € X, let S, be a directed family of sets, i.e. a nonempty family for
which whenever s1,s9 € Sy there is s3 € S, with s1,89 € s3. Let h: Y cx Sz —
Set be monotonic w.r.t. inclusion in each S, i.e. for any v € X, if sC s’ in S,
then h(z,s) € h(x,s"). Then,

N Uhs)= U () k)

reX seS, ke[lpex Sa xeX
and {Ngex h(x,k(x)) | k € [1yex Sz} is a directed family.

Proof. The equality is a standard distributivity property of sets (relying on the
axiom of choice). Clearly then {Ngex h(z,k(x)) | k € [Tgex Sz} i nonempty.
To see it is directed, consider two of its elements, say Niex h(z, k1 (z)) and
Nzex h(x, ko (x)) where kq, ko € [T ex Sz. As each S, is directed, via the axiom
of choice, there is k3 € [T cx Sz such that ki (x),ka(x) € k3(x) for any x € X.
This ensures

M i, k1 (), Q{h(%kz(m)) < ) M, ks(x))

reX reX
and the claim that {Ngex h(z,k(x)) | k € [Tyex Se} is directed. O

Lemma 9.6. In Definition 9.2, of an affine-stable function f from A to B, the
stable condition follows from a seemingly weaker condition of “finite stability,”
viz. for all x,y € C*(A),

vty = f(zny) < f(z)n f(y).
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Proof. Let X be a nonempty compatible family of configurations in C*°(A).
Note, by a straightforward induction, the weaker axiom above implies

(N =) N f(=)
zreX zreX
when X is finite. Suppose that the family contains a finite configuration yy.
Then
Nz=)(ynz)
zeX zreX

which is the intersection of the finitely many configurations in {yonz | x € X}.
Hence in this case too

f(x)=f(N(wonz)s M flywonz)s () flyo)nflz)= () f(z).
zreX reX zreX

zreX zeX

In the general case choose some y € X. Then, y is the directed union of its
finite subconfigurations S = {yg € C(A) | yo Sy}, i-e.

y=U w.

YoeS
Then
Nz=Nnx)=N((Uw)nz)= U@nz)= U MNkk)n),
zreX zeX reX yoeS zeX yoeS k:X—S xeX

where the last step relies on Lemma 9.5, which also ensures that the set the

{N(k(z)nz) | k: X - S}

xreX
is directed.
Now
f(N=)=fC U N(kz)nz))
zeX k:X—S xeX

= U f(((k(z)nz)), by continuity, Proposition 9.4,
k:X—->S xzeX

< U M flk(z)nz), by stability w.r.t. finite intersections,
k:X—>S zeX

N U flyonz), by Lemma 9.5,
zeX yoeS

N fCU vonz), by continuity,
xreX yo€eS

=) f((U wo)n=z), by distributivity,
zreX YoeS

= f(ynx)

xreX

< () f(y)nf(xz), by finite stability,
reX

=) f(z), asyeX.

xreX
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Hence f(Nyex ) € Ngex f(2), as required. To verify the stability condition of
Definition 9.2 it suffices to verify finite stability. O

Let f be an affine-stable function from A to B. If we were to assume A
race-free it would follow from y £4 = that z1y in C*°(A), then, by the stability
of f that f(zny) <™ f(z)n f(y). However, even without race-freeness of A and
their compatibility, we can show the stronger property f(zny) = f(z)n f(y)
once y E4 z. This follows from the factorisation properties of the Scott order,
and is a result which will be useful later.

Proposition 9.7. Let f be an affine-stable function from A to B. Suppose
yCax in C°(A). Then,

flexny)=f(z)nf(y).

Proof. As f is affine stable it preserves 2~ and €* so the Scott order and its
associated factorisation system. Suppose y £4 . Then,

y2 (zny)ctz
in C*(A). It follows that
fy) 2" fleny) <" f(=),

i.e. f(y) € f(x), in C*(B). But this implies f(zny) = f(z) n f(y) by the
uniqueness of the factorisation—Proposition 7.1(3). O

Affine-stable maps include Gérard Berry’s stable maps,
[:C=(A) - C%(B)

when A and B comprise purely +ve events. Recall these are functions from
C*=(A) to C*(B) which are Scott continuous and such that

rtyinC=(A) = f(zny)=f(z)n f(y).

Scott continuity follows from +-continuity and Berry’s stability from the stable
condition; Jean-Yves Girard’s linear maps coincide with the subcase in which
the affine axiom is an equality. (Berry’s di-domains on which stable maps were
defined were restricted to have a countable basis of finite elements; countability
plays no role here.)

Proposition 9.8. When games A and B are purely positive, affine-stable maps
from A to B coincide with stable functions between their domains of configura-
tions; thus providing a full and faithful embedding of stable functions between
dI-domains in affine-stable maps.

Affine maps, f = (fo,f1) : A >, B of event structures with polarity, as
earlier in this chapter, form another example provided @ c* fy: an affine map
f: A —, B automatically respects polarity, is +-continuous, —-image finite and
stable; it satisfies “affinity” too but for different reasons according to whether
the compatible family of configurations involved is empty or not.
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9.3 Affine-stable maps as strategies

Lemma 9.9. Let B be an event structure with polarity. Let y; g y., for all
i€I. Then, (with I nonempty),

Nyics (Y-
iel iel
When both {y; | i€ I} and {y} | i € I'} are compatible in C*=(B),
Uwics Uy -
iel iel
Proof. For example, it is easy to see both (User ¥i)™ 2 (User vi) ™ and (User i)™ €

(User yi)* from the corresponding facts for each y; Ep y;. O

Theorem 9.10. Let f:C*(A) - C=(B) be an affine-stable map between event
structures with polarity A and B. Then

F =aet {Z||y € CZ(A*|B) | y 5 f(z)}

is an infinitary stable family. The map top : Pr(F) — A*||B is a strategy fi :
A—=B. The strategy fi is deterministic if A and B are race-free and f reflects
—-compatibility, i.e. x €~ x1 and x S x9 in C*(A) and fx1 U fxg € C*°(B)
implies x1 Uxg € C®(A).

Proof. We first show F is a stable family.
Completeness: Let {z;||y; | i€ I} be a finitely compatible subset in F. From
the compatibility, it follows that U;c; x; and Usery; are configurations. By
assumption y; Eg f(x;), for all i € I, so

Uwiss Uf(zi) <" F(Uz),

iel iel iel
by Lemma 9.9 and affinity. As the relation c* is included in cg, by the latter’s

transitivity we obtain
Uwics f(Ui),
iel iel

U@illy) = Uzl Uwi) € F.

iel iel iel

SO

Stability: Let {x;]|y; | i € I} be a nonempty compatible subset in F. By as-
sumption y; €g f(x;), for all i € I, so

yics (1 f(@:) 27 f(z),

i€l i€l i€l

by Lemma 9.9 and stability of f —it follows from the assumptions that {z; | i € I'}
is a nonempty compatible family in C*(A), as is required to apply the stability
of f. As 27 is included in £, we deduce

N(illy:) = (N zill (i) € F.

iel iel iel
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Finiteness: If x|y in the family F, then z € C*(A) and y € C*(B) with y cp
f(z). An element in x|y is either (1,a) where a € z or (2,b) where b € y. We
analyse these two cases.

Case a € x. Observe the set f([a])” is finite by —-image finiteness. It follows
that [f([a])"] € C(B) is a finite configuration of B for which

[f([a])"]1<" flal, so [f([a])"] =5 fla].

As also ycp f(x) we have

ynlf(la])"1eB f(x)n fla] = fla],

whence

[a]l(yn [f([a])"]) e F

creating a finite subconfiguration of x|y containing (1, a).
Case b € y. We prove a stronger result than is strictly needed for this part of the
proof, in preparation for the proof of coincidence-freeness later. Letting b € y,
take

To =def [ ){2" €C=(A4) | [b]" € f(2") & 2" c x}.

By the stability of f,

Fao) € NS | &' €C=(A) & [B]* € f(a') & o’ ).

Thus
[0]" < f(wo),

and xg is the minimum subconfiguration of x for which [b]* ¢ f(x0). By +-
continuity, xo is a finite configuration. Also

[f(x0)"] <" f(x0)

where the configuration [ f(z()~] is also finite by —-image finiteness. We observe
that all the <-maximal events in x(y are +ve: supposing otherwise, there is a
<-maximal —ve event in zo so a configuration x(, ¢~ xo; then, as f preserves
polarity, [b] ¢ f(xo) € f(xg) so [b]* € f(xg), contradicting the minimality of
xo. Whatever the polarity of b we obtain

[f(zo) Ju o] 27 [f (2o) JU[[b]"] €7 f(=o),

[f(zo)"Ju[bl =B f(=0).

We now show that b ¢ [ f(29)”] by cases on the polarity of b.

Suppose poly(b) = +. In this case [b] = [[b]*] and ¢ is the minimum sub-
configuration of x such that b € f(xg). If zop = @, by affinity, in the case of
the empty family, we have @ ¢ f(@) which ensures [f(xq)~] is empty, so does
not contain b. Otherwise, the <-maximal events in xy are +ve and there is
a subconfiguration zj ¢* xg. As f respects polarity, f(zy) € f(x0). Hence
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f(zo)™ < f(xf) so [f(xo)~] €t f(x(). From the minimality of zg, we must have
bé¢ f(xg), so we also have b ¢ [f(xg)~], as required.

Suppose polg(b) = —. We show b ¢ f(xg), from which b ¢ [f(xo)~] follows
directly. Suppose otherwise that b€ f(xg). If zo is empty, we have @ c* f(@) =
f(z0), contradicting the polarity of b. When x¢ is nonempty, as the <-maximal
events in xy are +ve, we must have a strictly smaller subconfiguration xj ¢* zo.
But then as f respects polarity f(xf) €* f(x0). As bis —ve, b€ f(x}) making
[b]* < f(z(),which contradicts the minimality of zo. This shows b ¢ f(xg), as
required to obtain b ¢ [ f(xz0)”].

To complete the proof of the finiteness property, observe that, by Lemma 9.9,

yEp f(x) with [f(zo) ]u[b] =B f(z0) entail
yn ([f(wo) Ju[b]) EB f(x) N f(x0) = f(w0).
It follows that
zoll(y 0 ([f(zo)"JuU[b])) € F,
so yielding a finite subconfiguration of x|y containing (2,b). We note for later

that zo is the minimum subconfiguration of x for which [b]* € f(z() and from
this it follows that

b¢ [f(xo)™] with [f(zo)"Julb]Ep f(xo).

Coincidence-free: Let x|y € F. Consider two distinct events in x|ly. There are
three cases: they belong to the same component x; they belong to the same
component y; or they belong to different components.

If they both belong to the same x-component, from the argument above they
are (1,a1) and (1,a2) and belong to the respective subconfigurations

[aa]li(y n[f([aa])7]) and [aa]l[(y n[f([a2])"])

of z|ly. If a1 and ag are distinct, one of the subconfigurations must separate
them in the sense of containing one but not the other.

Assume they both belong to the same y-component, one being (2,b1) and
the other (2,b3), with by,bs € y. From the proof of the finiteness part above,
they belong to respective subconfigurations of z||y of the form

a1ty n ([f(z1)"Jubr])) and zofl(y 0 ([f(22)"]U [b2]))

where x; is the minimum subconfiguration of x for which [b1]* ¢ f(z1) and
x9 is the minimum subconfiguration of x for which [b2]* ¢ f(z2). Recall from
earlier that

by ¢ [f(21)7] with [f(z1)"]u[bi]Ep f(21) and
ba ¢ [f(22)7] with [f(z2)"]u[b2]Ep f(22).
Imagine the two subconfigurations of z|y above do not separate (2,b;) and
(2,b2), i.e.
(2,b2) ezl (yn ([f(z1)"]u[b1])) and
(2,b1) € za|[(y 0 ([f(z2) ] U [b2])) -
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Then
bye[f(z1)"]ulbi]Ep f(z1) and

by € [f(z2) ]u[b2] Ep f(22).

By the properties of cg, we see that [b2]* € f(z1) and [b1]* € f(x2). From the
minimality properties of 1 and x5 we deduce that x1 = zo. Writing zg =qer 21 =
x9 and recalling by, by ¢ [f(z9)”] we obtain by € [be] and by € [b1], so by = bo.
Hence distinct (2,b1) and (2, by) are separated by the chosen subconfigurations
of z||y.

Assume the two distinct events in z||y belong to different components, one
being (1,a), with a € z, and the other (2,b), with bey. If b ¢ f([a]) then one
argues, as frequently above, that f([a]) g f([a]) together with y =5 f(x) gives
yn f([a]) cp f([a]) yielding [a]|/(y n f([a])) a subconfiguration of z||y, which
moreover contains (1,a) but not (2,b). Thus suppose b € f([a]). If be f([a))
then [a)]|(yn f([a))) is a subconfiguration of x|y which contains (2,b) but not
(1,a). The remaining case is when b e f([a]) and b ¢ f([a)). Then [a)—c [a]

and be f([a]) ~ f([a)).
If pol 4(a) = + then, as f respects polarity,

f([a)) " f([a]), so f([a)) 5 f([a]).

By the now familiar argument, this yields [a]||(y n f[a)) a subconfiguration of
z||y containing (1,a) but not (2,b).
Similarly, if pol 4 (a) = — then

f([a)) & f([al), so f([a]) =5 f([a)),

yielding a subconfiguration [a)||(y n f[a]) of z||y which contains (2,b) but not

(1,a).

This completes the proof of coincidence-freeness.

We check the map top : Pr(F) - A*||B is a strategy. Observe that
¥ajr&z|lye F&yapy = 2|y eF
as the Lh.s. clearly entails
y'epycs f(2)Ep f(2),

so the r.h.s.. In particular, when x|y € F and (z'||y") e C*(A*||B),

if (zlly) = (2'[ly"), then (2’||y") € F; and

if (2'lly") €* (zlly), then (2'[ly") € F.
Thus the composite map

C*(Pr(F)) > F = C* (A" B)

of stable families, where the first map is top and the second is an inclusion, satis-
fies the “lifting” conditions of Corollary 4.23 ensuring that top : Pr(F) — A*| B
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is a strategy.

Assume now that A and B are race-free and that f reflects —-compatibility.
As A*||B is now also race-free, to show f, a deterministic strategy it suffices to
show that any two +ve event increments of a configuration in F are compatible
in F,i.e. if zl|ly—<<*z1|y1 and z|ly—<<*za|ys in F, then (z1 uze2)|(y1 Uy2) € F.
Consider cases.
If the increments are y—blc y1 and y—ch 12, then by and by are +ve in B. Because
each y; g f(x), i.e. y; 27 2 €* f(z) where z = yn f(x), we see both by € f(z)
and by € f(z). Hence z U {by,bo} € C°(B). Because B is race-free we obtain
y1 Uys € C®°(B). Checking y; Uys Eg f(x), ensures x| (y1 Uyz) € F.
If the increments are z—c z1 and % ro then aq and ag are —ve in A with
yEp f(x1) and y Ep f(x2). It follows that each f(z;) \ f(x) consists of solely
—ve events in B and so are included in y. This ensures the compatibility of f(xz1)
and f(xz2). That (z1 Ux2)||y € F now follows from f reflecting —-compatibility
and its affinity.

b
The final case is when the increments are, w.l.o.g. r—c x1 and y—zc Y2, when aq
is —ve in A and by +ve in B. Then ycp f(x1) and y2 €5 f(x), so y2 Ep f(x1),
making x1||ys € F. O

Example 9.11. Consider f : A - B the map of event structures with polar-
ity which sends the two conflicting Opponents events of A to the single Opponent
event of B. The resulting strategy fi: A—= B is nondeterministic. O

Example 9.12. In [23], a more restricted form of lifting is used in the “lifting
lemma.” Let f : A - B be a map of event structures with polarity which
is receptive and innocent. In loc. cit. its “lifting” to the strategy f : A—=B
is taken to be the composite map f = (A*]|f)o a4 : CCy - A*||B. Making
essential use of the assumed properties of f we can show that f = fi. To see this
note that the configurations of (U4 form the stable family

F={z||2’ eC®(A*||A) | 2" ca x}.
Compare this with the stable family
Fi={zyeC™(A'|B) |ycp fo}.

The function § : F - F such that z||2’ — x| fz’ is an order isomorphism
w.r.t. inclusion. To see this, use the fact that if x — fz and y g fz in C*(B)
then there is a unique ' 4 x in C*°(A) such that fz’ = y. The isomorphism of
the stable families implies the isomorphism f = fi. O

Example 9.13. We often build a strategy in a game B from a configuration
x € C*°(B). Informally, we take the elementary event structure with polarity
got by restricting the causal dependency on B to x but then closed up under
accessible Opponent moves to ensure receptivity. More precisely, we can define
a strategy S — B with configurations of C*°(.S) the family

{yeC®(B) | IzpeC>(B). xSz & y2 xo}
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—the event structure S is then recovered via the prime configurations of the
family. The strategy generated in this way is deterministic if B is race-free.
This construction is only achieved as a lift of an affine-stable map in a very
special case, when @ ¢ x. Then, letting f : C*(@) - C=(B) take the empty
configuration to x, the function f is affine-stable—that it is affine depends on
@ ¢ x. The strategy fi: @—= B can be identified with the strategy in B built
as top : Pr({yeC=(B) | yEp }) — B; the strategy is deterministic if B is
race-free. O

Example 9.14. The duplication strategy revisited. Let A be an event structure
with polarity. Consider the function d4 :  — z|z from C*(A) to C*(A|A).
It is easily checked to be affine-stable. Hence there is a strategy da = da, :
A—=A|lA. (The strategy d4 is not natural in A; nor could it be as | is not a
product.) |

Example 9.15. Conditional strategy. We obtain a conditional strategy from
a conditional function. Let B be the event structure with polarity comprising
two Player moves t and f in conflict with each other. Define the conditional
function
cond : C*(B||AJ|4) - C=(A4),
as expected by
g fz=g,
cond(z|lyllz) =iy iftex,
z iffex.

Above we have written the input configuration in C*(B||A||A) as z|y||z with
z€C®(B), ye C*(A), z€C®(A). The associated strategy

cond : B||A||A—=A
is got as Pr(F) from the stable family
F =qet {(zllyll2)]lw e C=((BJ A A)*[|A) | w cond(zy|=)} -
From the definition of cond,

F={(zllyl2)lw | wea}u
{Glyll)llw|wey & texju
{(zlyll)llw | we z & fex}.

Note F contains both ({t}|@||@)||@ and ({f}|2||@|)@ so within configurations
of F the booleans t and f don’t causally depend on any events. Also w E & is
equivalent to w 2~ @. Hence for any configuration (z||y|z)||lw e F, if wn A* + &
then either t € z or f € x. For this reason any +ve event of y causally depends
on t € z, and similarly any +ve event of z causally depends on f € z.

The construction introduces extra causal dependencies in the strategy, viz. de-
pendencies of output on the booleans t and f, which are only implicit in the
original function. In this sense affine-stable functions provide a way for us to
program causal dependencies. O
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Example 9.16. A case construction. This refines the case construction associ-
ated with the sum of games, given earlier in Section 8.1.3, to cases which depend
on the value of the initial move. Imagine a game of the form ¥;c; ®;.4; in which
the initial moves are all by Player and in conflict with each other. We describe
the meaning of a case expression

Tw: Y 8 A - Case;jerT & ’LU/ 8. tj 4 A

built from strategies
Fx:Aj-t; 4 A,

using the partial maps of event structures with polarity
(*/j) 2 e B Al - Aj .

The map (_/®,) is undefined on all events but for those of A; where it acts as
identity. Upon occurrence of a Player move @;, the case expression resumes as
the strategy ¢; from A;.

First, for j € I, form the composite strategies given by expressions

Tow:Yrm; A -3z AJ[Z‘ c U)/ =F ||t]:| = A,
before obtaining the case expression above as an abbreviation for

T w: X 8 A - D E'JZ‘ZA]'.[JIEU)/EJ' ||t]] —“A.
jel

O

Example 9.17. Detector events. Let A be a game. Let X € Cony with X ¢ A*.
Let @ be a single “detector” event, of +ve polarity. Let

dx :C™(A) - C=(m)
be the function such that

m ifXcx,

dx(z) ={

@ otherwise.
It is easy to check that dx is affine-stable. Hence there is a strategy
dx): A—=m .
Let us examine dy, a little more carefully. The stable family from which it is

built is
Fx ={z|meC=(A*|m) | zcdx(x)}.

From the definition of dx we obtain

Fy = {z]|@ | eC®(A)Y U lz|{®) |z € C®(AY) & X ca}.
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Hence the (single) prime configuration in Fx containing @8 is [X]u {®}. Con-
sequently the strategy simply adjoins extra causal dependencies ¢ — @ from
a € X. The strategy detects the presence of X. In a similar way, one can ex-
tend detectors to detect the occurrence of one of a family (X;);e; of X; € Cong
provided

XiuX;eCony = i=j

for i,5€l. |
Example 9.18. Blockers. Let A be a game and Y € A™. Let

hy :C*(A) - C>(8)
be the function which acts so

B ifznY =g,
@ otherwise.

hy(l‘) = {

It can be checked that hy is a map of event structures so affine-stable. The
stable family from which the strategy hy derives is
Gy ={zllzeC™(A"|B) | z € hy ()}
={zllzeC™(AM]B) | 227 hy ()}
={z||zeC®(A*|B) |znY 2@ = z={8}}
={z||zeC®(A*||B) | VaeY. aex = z={8}}.
Consequently, the strategy hy obtained via Pr(Gy ) adjoins causal dependencies

B — a from B to each event a € Y. The absence of 8 blocks the occurrence of
cach event of Y. O

Example 9.19. That affine-stable maps respect polarities is essential for the
proof of Theorem 9.10 above to go through. Let f be map from the configura-
tions of A, comprising a single +ve event a, to B comprising by = 8 — B = by
which takes the empty configuration to the empty configuration and {a} to
{b1,b2}. Accordingly, F = {z|ly | y=p f(«)} is the family comprising the set

{2, 2l{b1}, {a}[l{b2}, {a}ll{bs,ba}}

which notably does not contain {a}||@. Consequently, the pre-strategy o :
A—= B obtained via Pr from the inclusion F < C(A*| B) fails receptivity and
—-innocence by introducing a causal dependency b; — a. |

The dual to Theorem 9.10 follows as a corollary:
Corollary 9.20. Let g : C=®(A) - C>(B) be such that g : C*(A*) - C*(B*)
1s affine-stable, then
G =det {Fllz € C™(B]|A) | g(=) =B y}

is an infinitary stable family. The map top : Pr(G) — B*| A is a strategy g* :
B—=A. The strategy g* is deterministic if A is race-free and g reflects +-
compatibility
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In particular, an affine map f: A - B, with @ cp f(@), is certainly affine-
stable and the construction of f, specialises to give the denotation of

z:Arycp fr4y:B.

An affine map g: B - A, with g& €4 @, yields an affine-stable map, which we
also call g, from B* to A*, so a strategy g* : A—= B, the denotation of

x:ArFgycax—y:B.

9.4 A functor: affine-stable maps to strategies

Let f: A— B and g : B - C be affine stable maps. As we have seen, they
determine stable families

F={zlly| f(=) 2 y} and

G ={yllz1g(y) 2¢c 2},
respectively. Consider the stable family determined by the composition of func-
tions g f, viz.

{zllz|gf(z)2¢ 2}
One can show straightforwardly that
{zllz | 9f(x) 2¢ 2} ={zllz | Iy e C=(B). f(z) 2By & g(y) 2¢ 2}
{zllz]3yeC™(B). zllye F & ylzeG}
=GoF,

where the last composition is essentially the composition of stable families as
relations: for instance, regarding the stable family F as

{(z,y) eC=(A) xC=(B) | f(x) 2B ¥},
observing the isomorphism C*(A) x C*(B) 2 C*(A*||B). We shall show that
Pr(G)oPr(F)zPr(GoF),

so reducing the composition of strategies of affine-stable maps to relational
composition; by definition, it follows directly that

910 fir=(gf)-

For functoriality of (_); we also require preservation of identities. However, the
stable family determined by id4 : C*(A) — C*(A) is, by definition,

{zlly [z 24y} =C™(L4),

ensuring that id4, 2 (C4.

The following general proposition and lemma will be useful in showing the
functions associated with the isomorphism Pr(G)® Pr(F) = Pr(G o F) are well-
defined.
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Proposition 9.21. Let F be a stable family. Let e € x € F and ¢’ € ' € F.
Then,
[ela=[€]e = e=€' & yeF. ycx,a’ &eey.

Proof. “=": Prime configurations have a unique top element, ensuring e = €',
and taking y = [e], = [¢']. we obtain a common subconfiguration of x and 2’
containing e. “=": From the rhs, we get e = ¢’ € y € z,z’ ensuring [e], = [e], =
(€] O

Lemma 9.22. Let 0 : A—=B and 7 : B—=C be strategies. Suppose 11 is
partial rigid (i.e., the component 7 : T — B preserves causal dependency when
defined). Letting x € C(S), y € C(T),

y®x is defined iff oox =11y.

Proof. Write x4 =012, xp =09z, yg = Ty and yo = 7oy. Recall y ® x is defined
to be the bijection
zlyc 2zallrsllre 2 zally

induced by ¢ and 7 provided =, = yp, i.e. oox = Ty, and the bijection is
secured—see Proposition 3.31. To simplify notation we can present the bijection
as xUy in which we identify the two sets 2 and y at their parts o'z and 77 typ
via the common image xp = ypg.

To obtain a contradiction, suppose that the bijection were not secured, that
there were a causal loop in x Uy, i.e. that there were a chain

Uy —> U2 —> - —> Up = U]

of events in x Uy, with n > 1, w.r.t. causal dependency — which is either —g or
—p. The events of ®y and so of the chain are either over A, B or C. As there
are no causal loops in S or T the causal loop must contain events over each of
A, B and C. W.l.o.g., we may assume u, is over B.

Part of the chain is over C'. The whole chain has the form

Uy => - => Uj—1 —>7 Uy —>7 = —>T Uj =T Ujyp —> 0 > Up = U

where u;_1 and ;41 are over B and u;, -+, u; are all over C'. Clearly u;—1 <7 ©j41.
As 1 is partial rigid, we obtain 7(u;-1) <p 7(u;+1). With the identification of
events over B in z and y, we have o(u;-1) <g o(ujs1). As o locally reflects
causal dependency, we see that u;—; <g uj,+1. We now have a causal loop

Up = > U] <G Uiyl >0 > Uy = UL

from which the events u;,---,u; over C have been excised. Continuing in this
way we can remove all events over C' from the causal loop, obtaining a causal
loop in S —a contradiction. O

Now to the isomorphism. First, a key observation, expressing that the strat-
egy obtained from an affine-stable map doesn’t disturb the causality of input:
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Proposition 9.23. Let g: B — C be an affine-stable map which determines the
stable family G ={y|z | ¢(y) 2¢ z}. Let y||lz€G. Then,

Vb,b ey, (1,b") <yy- (1,0) <= V' <pb.

In the strategy g1 = top : Pr(G) - B*|| C, the component (1)1 : Pr(G) — B* is
partial rigid.

Proof. Recall (1,b") <y (1,b) iff every subconfiguration of y|z in G which
contains (1,b) also contains (1,b").

Any subconfiguration of y||z necessarily takes the form y’||z" where ¢ is a
subconfiguration of y in B and 2’ is a subconfiguration of z in C with g(y’) 25 2'.
From b' <p b it therefore follows that (1,0") <, (1,0).

Conversely, given a subconfiguration 3’ of y we have y'|g(y') € G whence,
via Lemma 9.9, y'||g(y’) n 2’ is a subconfiguration of y||z in G. From this the
converse implication follows: if (1,0") <. (1,b) then b’ <p b.

Thus (1,0") <y (1,0) iff " <p b, for all b,b" € y. That (g1)1 is partial rigid
is a direct consequence. O

Lemma 9.24. Let f : A - B and g : B — C be affine stable maps which
determine stable families F = {z|ly | f(z) 2 y} and G = {ylz | 9(y) 2¢ 2},
respectively. Then, Pr(G)o Pr(F) 2 Pr(Go F).

Proof. Recall, Pr(G)®Pr(F) is obtained as Pr(G ® F) followed by hiding the
synchronisations over B. First consider G ® F.

A finite configuration of G ® F, built as a pullback of stable families, has the
form z||y||z where z||y € F and y||z € G and the causal dependencies from F
and G do not jointly introduce any causal loops. However, from the observation
of Proposition 9.23 and Lemma 9.22 above, it follows that there are no causal
loops for such particular stable families.

It follows that for all z|y € F and y||z € G we have z|y| z is a configuration
of G&F. Thus we have a simple characterisation of the the stable family G ® F:

GgoF={zlylzeC™(A|BIC) | zllyeF &ylzeG}.

It remains to consider the effect of hiding the synchronisations over B and
show
Pr(G)oPr(F)2Pr(GoF),

where
GoF={x]|zeC®(A"||C) | IyeC®(B). z|lyec F & yllz€G}.

(As we saw in the discussion preceding this lemma, this is the stable family
obtained from the composition gf.) To this end we define

0:Pr(G)oPr(F) - Pr(GoF)
and its putative mutual inverse

p:Pr(GoF) - Pr(G)oPr(F).
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For simplicity of notation, to avoid indices, throughout this proof assume that
the events A, B and C are pairwise disjoint and identify z||y||z with zxuy U z.

The events of Pr(G)® Pr(F) have the form [a]yy| -, where a € z, or [¢]y)y 2+
where c € z, and z||y||z € G ® F. The events of Pr(G o F) have the form [a],.,
where a € x, or [¢]g., where c € z, and ||z € G o F. Define

0([d)ay)=) = [d]ey- and @([d]e)2) = [d]e) f(a))- -

on typical events [d] |- € Pr(G o F) and [d],|. € Pr(G o F). We should check
0 and ¢ are well-defined functions. This is by straightforward applications
of Proposition 9.21. In showing that 6 is well-defined we use that x|y|z is
a configuration of G @ F directly implies x|z is a configuration of Go F. In
showing ¢ is well-defined we need that x|z € G o F implies z| f(z)||z € G ® F.
Assuming x|z € G o F, we have x|y € F and y||z € G for some y € C*(B). Then
f(z) 25 y and g(y) 2¢ z. Thus gf(x) 2¢ g(y) 2c z whence g(f(z)) 2¢ =
ensuring f(z)||z € G. Clearly x| f(x) € F, so x| f(x)]|z € G ® F, as needed.

We show 6 and ¢ are mutual inverses. It is easy to see that Op([d];.) =
[d]z)=- By definition, @8([d]s)y=) = [d]a|f(2)|2>» Where z|lyllz € G & F and d is
an event of = or z. We require

[d)apyiz = [d]z) £ ()= -

To this end we show z||(y n f(x))||z € G ® F; once this is shown we have

[d]ayiz = [d]aj@nr@niz = [de)p)1-

—using twice the general fact that [e], = [e],, when e is an event of compatible
configurations v and w of a stable family. To show z|[(yn f(z))]z € G ® F we
require
2y f(2)) e F and (yn f(2))]12G.

Using Lemma 9.9, from f(z) 25 y with f(x) 25 f(z) we obtain f(x) 2p
(yn f(z)); so z||(yn f(x)) € F. Using Proposition 9.7, from f(z) 2p y we
get g(f(z) ny) = g(f(2)) ng(y). But g(f(z)) 2c 2z and g(y) 2¢ = ensuring
g(f(x))ng(y) 2¢ 2, via Lemma 9.9. Hence g(f(z)ny) 3¢ z and (ynf(z))]|z € G,
as required. This establishes a bijection between the events of Pr(G)o Pr(F)
and those of Pr(G o F).

For an isomorphism, we require the bijection respects causal dependency and
consistency. The matching of a configuration z||z in G o F with a configuration
z||f(z)||z in G ® F clearly respects inclusion. This implies

d' <p) d = d <4 5(2))- 4

for d, d' in x € C*(A) or z € C>*(C). This entails that the bijection on events
given by 6 and ¢ respects causal dependency.

Via the matching of configurations, both 6 and its inverse ¢ may be shown
to preserve consistency. This establishes the isomorphism of the lemma. O

Corollary 9.25. The operation (_), is a (pseudo) functor from the category of
affine-stable maps to concurrent strategies.
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9.5 An adjunction

In general, an affine-stable map f from A* to B* yields a strategy f : At —=B*,
so by duality a strategy f*: B—=A. An affine-stable map f from A to B is
not generally also an affine-stable map from A* to B*. The following definition
of additive-stable map f from A to B bluntens affine-stability to ensure f is
also a additive-stable map from A* to B*; and hence is associated with both a
strategy

fi:A—=B

and a converse strategy
ff:B—A.

The usual maps of event structures with polarity are additive-stable so the
constructions specialise to give the denotations of

r:AryCp fr-y: B and
y:Br frxcpy-dx: A,

respectively, when f is a map of event structures with polarity—the map f may
be partial.

Definition 9.26. A additive-stable map between event structures with polarity,
from A to B, is a function f: (C*(A),<) - (C*(B),<) which is

polarity-respecting: for x,y € C*(A),
vy = f(x)< f(y) and zc’y = f(z) <" f(y);

e image finite: if x € C(A) then f(x) € C(B);

additive: for all compatible families {z; | i € I} in C*(A),

U f(zi) = fF(Ui);

el iel

and for all nonempty compatible families {x; | i € I} in C*(A),

F(w) = f(x)

iel iel

Additive-stable maps are closely related to Girard’s linear maps between
qualitative domains, though they differ in the extra generality of event structures
over qualitative domains, in taking account of polarity, and enforcing image
finiteness. Because the definition of additive-stable is indifferent to a switch of
polarities:

Proposition 9.27. An additive-stable function f from A to B is an additive-
stable function f from A* to B* and vice versa.
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Given an additive-stable function f from A to B we obtain a strategy
fi + A—=B and, via f from A' to B*, a strategy f* : B—=A. We show
they form an adjunction. First a Proposition—it will be important for the defi-
nition of the unit and counit of the adjunction. The proposition follows directly
from Lemma 9.24, obtaining the composition of strategies from maps from the
relational composition of their stable families.

Proposition 9.28. Let f be an additive-stable function from A to B between
event structures with polarity. Define

F =qee{z|ly e C*(A*B) | fx 2By},
F* =qei{yllz e C*(B*|A) | y 2 fz}.

Define fi:Pr(F) P, A*|B and f*:Pr(F*) e, B*||A . Then the com-
position of strategies f*®fi is isomorphic to

Pr(F* o F) 2~ AL||A
and fiof* to

Pr(FioF*) ™~ B'|B
based on the relational composition of the stable families.

Theorem 9.29. Let f be an additive-stable function from A to B between event
structures with polarity. In the bicategory of strategies the strategies fy and f*
form an adjunction fi — f*.

Proof. 1t is easiest to carry out the arguments by considering the associated
constructions on stable families. We obtain the compositions f*®f; and fiof*
from “relational” compositions of the stable families

Fi =aet {zlly € C*(4*B) | fz 25y}

for fi and
F* =qet {yllw e C*(B*|A) | y 25 fz}

for f*.
By Proposition 9.28, the composition f*®f, is the event structure Pr(F*oF})
derived from the stable family

F*o B = {z]la’ € C* (A A) | fa 25 fa')

—obtained as the relational composition of the stable families F} and F™*. Recall,
from Proposition 7.5, that the stable family of « 4 is

CA =def {.13”1" € COO(AJ'”A) | = .23’}.
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Define the unit n: @4 = f*0f to be the map Pr(I) of event structures with
polarity got from the inclusion of stable families

I:Cq = F" o Fy;

clearly, z||z" € Ca, i.e. x 24 o', implies fx 3 f2', so x||a’ € F* o F.
By Proposition 9.28, the composition fi®f* is the event structure Pr(FioF™)
got from the stable family

FloF* = {ylly' «C*(B*|B) | 32 ¢ C*(A). y 25 fx & fr 25y}

—obtained as the relational composition of the stable families F* and F;. The
counit €: fiof* = @p is the the map Pr(J) got from the inclusion of stable
families

J:EOF*‘—)CB;

clearly, y|ly’ € Fio F*, i.e. y 3p fx and fx 2 v, implies y 25 ¢, so y||y" € Cp.
To obtain an adjunction fi 4 f* we require (i) (f*€)(nf*) =idy+, i.e. the
composition of the 2-cells

@p
/ﬁ:\
B—+>A——2B A

f* f! ﬂ f*
n
aa

is the identity 2-cell ids- : f* = f*; and (ii) (efi)(fin) = idy,, i.e. the composi-
tion of the 2-cells

«p
e N
A——>B——>A——=21B
f'ﬂnf fi
@ a

is the identity 2-cell idy, : fi = fi.

We establish (i) and (ii) by considering the companion diagrams for stable
families—the diagrams (i) and (ii) are got by applying Pr to the diagrams for
stable families. Consider the diagram for (i). It takes the form

Cp

P N
C=(B) —> C™(A) —5> C™(B) —>C7(A),
W

Ca

yielding the inclusion Cy 0o F* ¢ F* o C'g. We check this is the identity inclusion,
from which (i) follows, by showing the converse inclusion F* o Cp € C4 o F*.
Suppose y||z € F* o Cp, i.e.

yapy &y 2B fr,
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for some y’ € C*(B). Then,
yap fr& xasx,

s0 yllx e Cy 0 F*.
The diagram for (ii) takes the form

Cp

O T

C=(A) =35> C7(B) > C=(A) —>C=(B),

~__ u

Ca

yielding the inclusion FioCy4 € Cgo F. To show (ii), we check that the converse
inclusion Cp o F} € Fy o C4 also holds. Suppose z||y € CgoF, i.e.

frapy &y 2y,
for some y’ € C*(B). Then,
x3p2 & fxragy,
so x|y e FioCyu. O

The adjunction in the bicategory of concurrent strategies Strat above yields
a traditional adjunction:

Corollary 9.30. Let f be an additive-stable function from game A to game B.
Let Strat 4 be the comma category of strategies in game A, and Stratp that in
B. Then there are functors fi®(_) : Strat 4 — Stratp and f*®(_) : Stratp —
Strat 4 with fio(.) left adjoint to f*o(.).

We remark on a direct way to construct the interaction fi®oc w.r.t. an affine-
stable map from C*(A) to C*°(B) and a strategy o in A. The construction uses
the lifting to a strategy f(o_);in S 1 || B of the composite map f(c_). A direct
description of fi®(.): Strat, — Stratp then arises by hiding S.

Proposition 9.31. Let o : S - A be a strateqy in the game A. Let f be
an affine-stable function from game A to game B. The composite function
flo2) :x— f(ox) is affine-stable from C*=(S) to C=(B). It lifts to a strategy
f(o2) from S to B, and is accordingly a strategy in the game S*||B.

The interaction fi ® o is isomorphic to (c||B) o f(c_)1. The composition
fioo is isomorphic to the projection of f(o ) to B.

Proof. Let o : S - A be a strategy in the game A. The strategy o induces,
via direct image, an affine-stable function from C*(S) to C*(A). Hence the
function f(o.) : x — f(ox) is affine-stable from C*°(.S) to C*°(B). Theorem 9.10
immediately implies that

F={zlly|zeC=(S) & yeC™(B) &ycp f(ox)}.
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is a stable family for which
floo)r=top:Pr(F) » S*||B
is a strategy from S to B. The composition
(ollB) o f(o-): Pr(F) - A*||B

produces a total map. (It needn’t be a strategy from A to B as o needn’t be
receptive or linear from S* to A*.) We claim that through the simple change of
making the events of A neutral we obtain the partial strategy fi ® o, i.e. that

fi®o=z(alB)o f(o): Pr(F) » A”|B.

Its projection to events over B, got as the defined part after post-composition
with A°||B — B, will then be fi®c. It is easy to see that this coincides with the
defined part of the composite

Pr(]—')fg!SlHB ~ B,

in which by projecting to B we hide the events of S.
We check the claim. Finite configurations of the interaction f ® o have the
form

Gzly) o=
with z € C(S), y € C(B) and z € C(A) s.t. y g f(2), inducing a secured bijection
zly zoxlly = z[ly-

However this is clearly the case for all x € C(S), y € C(B) s.t. yp f(ox). Such
secured bijections are in 1-1 correspondence with the finite configurations of F
above. The correspondence clearly respects inclusion, ensuring the claim. O

9.6 A special adjunction

A special case relates deterministic strategies to Geometry of Interaction.
Given any game A there is a map of event structures with polarity

fa: A AT||AT,

where A" is the projection of A to its +ve events and A~ is the projection to
its —ve events: the map f4 acts as the identity function on events; it sends a
configurations x € C*(A) to faxz =x*||z”. It determines the stable families

Far={z|ly e C=(A|(AT|A7)) | y Carpa- =" |27},
Fa' ={zlly e C* (AT A7) |A) | 2" [l Eavja- u},

and through them the adjunction fa, + fa™ where fa,: Pr(Fa,) - A*||[(A*]|A7)
and fa" : Pr(Fa”) - (AT[|AT)* | A.
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On inspecting
A
YEarja- o',

where x € C*(A) and y = y*||y” e C*(A*||A7), we see that it expresses
y 22" &ytcat.

So
Fay={zllyeC®(A*|(AT||A7)) |y~ 22~ &y ca™}.

Similarly,
Fa'={allyeC™((AT[AT)"[|A) 27 2y~ & o™ cy'}.

Proposition 9.32. Suppose a game A is race-free. Then both fa, and fao* are
deterministic strategies.

Proof. Assume A is race-free. Certainly sois A*||A~. As f reflects —-compatibility,
by Theorem 9.10 and the formulation of race-freeness in Proposition 5.6, we ob-
tain that fa4, is deterministic. Dually, as f also reflects +-compatibility, so
regarded as a function from A* to B* reflects —compatibility, we obtain f4* is
deterministic too. O

Let 0 : A—= B be a strategy between race-free games A and B. Defining
goi(o) = fB1@cOfa”

we obtain a strategy
goi(o): AY||A~—=B*||B”.

Then, the strategy goi(o) corresponds to a stable span from A*||B~ to A™||B™.
Also, if o is deterministic then so is goi(o), when goi(o) corresponds to a stable
function from A*||B~ to A™||B*, so to a Gol map.

The operation goi forms a lax functor. Let ¢ : A—=B and 7 : B—+C.
Then, in general there is a nontrivial 2-cell goi(T®0) = goi(T)ogoi(o):

goi(7)0goi(o) = (fc1070 [ )o(f51©00fa")
=feoTo(f 0fp)00ofa”
<=fc,0T0xp®c@fs”, from the 2-cell ng: wp = f"0fB,
=fc,0TOTOf4"
=goi(100).

We can explain goi in terms of its action on strategies in an individual
game A. Let 0 : S — A be a strategy in the game A. As a special case of
Proposition 9.31, the family

F=A{zly[zeC™(8) &yeC™(AT|A7) &y~ 2 (o) & y" < (0n)"}
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is stable with f4, ® o isomorphic to (o (A*||A7)) o top : Pr(F) - A’||AT||A".
When o : S — A is deterministic, the family

Fo={yeC(A"|A7) | Iz eC=(5). vy 2(ox)” & y* c (o2)"}

is stable with goi(o) = fa,00 isomorphic to top : Pr(Fy) - A*||A™.
When A is replaced by A*|| B, so o is a strategy o : A—= B, this construction
agrees to within isomorphism with the definition above of goi(c) as fp,@c®fa”.



Chapter 10
Winning ways

What does it mean to win a nondeterministic concurrent game and what is
a winning strategy? This chapter extends the work on games and strategies
to games with winning conditions and winning strategies. Without winning
conditions Player and Opponent can elect to not make any moves. For example,
there is always a minimum strategy in a game in which Player makes no moves
whatsoever. Winning conditions in a game provide an incentive with respect to
which Player or Opponent can be encouraged to make moves in order to avoid
losing and win.

10.1 Winning strategies

A game with winning conditions comprises G = (A, W) where A is an event
structure with polarity and W ¢ C*(A) counsists of the winning configurations
for Player. We define the losing conditions to be L =qef C*°(A) N W. Clearly a
game with winning conditions is determined once we specify either its winning
or losing conditions, and we can define such a game by specifying its losing
conditions.

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy o: S - Ain G
is winning (for Player) if cx € W for all +-maximal configurations z € C*(S)—

a configuration x is +-maximal if whenever z—c then the event s has —ve
polarity. Any achievable position z € C*(S) of the game can be extended to
a +-maximal, so winning, configuration (via Zorn’s Lemma). So a strategy
prescribes Player moves to reach a winning configuration whatever state of play
is achieved following the strategy. Note that for a game A, if winning conditions
W = C*(A), i.e. every configuration is winning, then any strategy in A is a
winning strategy.

In the special case of a deterministic strategy o :S - A in G it is winning iff
op(xz) e W for all x € C=(S), where ¢ is the closure operator ¢ : C*(S) - C=(S)

135
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determined by o or, equivalently, the images under o of fixed points of ¢ lie
outside L. Recall from Section 6.2.3 that a deterministic strategy o : S - A
determines a closure operator ¢ on C®(S): for x € C*(S),

p(x)=xzu{seS | pol(s) =+ & Neg[{s}]cx}.

Clearly, we can equivalently say a strategy o :S - A in G is winning if it
always prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent; a strategy o : S - A in G
is winning if ox ¢ L for all +-maximal configurations x € C*(S)

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
Player. Suppose o :S — A is a strategy in a game (A, W). A counter-strategy
is strategy of Opponent, so a strategy 7 : T — A’ in the dual game. We
can view o as a strategy o : g—>A and 7 as a strategy 7 : A—>@. Their
composition 7@ : @—= is not in itself so informative. Rather it is the status
of the configurations in C*°(A) their full interaction induces which decides which
of Player or Opponent wins. For the following definition of the results of an
interaction, we need only assume that ¢ : S - A and 7 : T — A* are pre-
strategies. Ignoring polarities, we have total maps of event structures o:.S - A
and 7:T — A. Form their pullback,

P
AN
S T
A,

to obtain the event structure P resulting from the interaction of o and 7. (Note
P =Pr(C(T)®C(S5)), in the terms of Chapter 4, by the remarks of Section 4.3.3.)
Because o or 7 may be nondeterministic there can be more than one maximal
configuration z in C*°(P). A maximal configuration z in C*(P) images to a
configuration ¢Il; z = 71152 in C*(A). Define the set of results of the interaction
of o and 7 to be

(0, 7) =gef {0112 | z is maximal in C*(P)}.

We shall show the strategy o is a winning for Player iff all the results of the inter-
action (o, 7) lie within the winning configurations W, for any counter-strategy
7:T - A* of Opponent.

It will be convenient later to have proved facts about 4+-maximality in the
broader context of the composition of receptive pre-strategies.

Convention 10.1. Refer to the construction of the composition of pre-strategies
0:S5 = A*||B and 7: B*||C in Chapter 4 We shall say a configuration z of ei-

ther C=(S), C=(T) or (C(T) ® C(S))* is +-maximal if whenever z—c then
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the event e has —ve polarity. In the case of (C(T) ® C(S))* an event of —ve
polarity is deemed to be one of the form (s, *), with s —ve in S, or (*,t), with ¢
—ve in T. We shall say a configuration z of C*(Pr(C(T)®C(S))) is +-maximal

if whenever z—c then top(p) has —ve polarity.

Lemma 10.2. Let 0:S > A*||B and 7: T — B*||C be receptive pre-strategies.
Then,

ze(C(T)®C(S))™ is +-mazimal iff

w1z € C7(S) is +-mazimal & maz € C*(T) is +-mazimal.

Proof. Let z € (C(T) ® C(S))=. “Only if”: Assume z is +-maximal. Sup-
pose, for instance, w1z is not +-maximal. Then, 7T12—SC for some +ve event

s € 5. Consider the two cases. Case o1(s) is defined: Form the configuration
zU{(s,*)} € (C(T)®C(S5))*, to contradict the +-maximality of z. Case oa(s)
1s defined: As s is +-ve by the receptivity of 7 there is t € T' such that 7r22—tc
and 71(t) = 02(s). Form the configuration z U {(s,t)} € (C(T) ® C(S))*, to
contradict the +-maximality of z. The argument showing myz is +-maximal is
similar.

“If”: Assume both 71z and 2z are +-maximal. Suppose z were not +-maximal.
Then, either

(s,%) (s,t) .
e z—C or z—C with s a +ve event of S, or

(*,t) (s,t) .
e z—C or z—<C with ¢t a +ve event of T'.

t
But then either le—SC, contradicting the 4+-maximality of 72z, or mez—c,
contradicting the +-maximality of moz. O

Corollary 10.3. Let 0 : S - A*||B and 7 : T - B*||C be receptive pre-
strategies. Then,

x e CZ(Pr(C(T)®C(S5))) is +-mazximal iff
Iz € C*(S) is +-mazimal & Mox € C=(T) is +-maximal.

Proof. From Lemma 10.2, noting the order isomorphism C* (Pr(C(T)®C(S5))) =
(C(T)®C(S))> given by x » Uz and that Il1z = 7 Uz, ez = mo Uz,

O

Remark. In fact the proof of Lemma 10.2 above only relies on the existence
part of receptivity.

Lemma 10.4. Let 0:S — A be a strategy in a game (A,W). The strategy o is
winning for Player iff (o,7) €W for all (deterministic) strategies T:T — A*.
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Proof. “Only if”: Suppose o is winning, i.e. ox € W for all +-maximal z €
C=(S). Let 7: T — A* be a strategy. By Corollary 10.3,

xeC”(Pr(C(T)®C(S))) is +-maximal
iff
Iz € C*(S) is +-maximal & Iz € C*(T) is +-maximal.

Letting « be maximal in C* (Pr(C(T)®C(.5))) it is certainly +-maximal, whence
IT;z is +-maximal in C*°(.9). It follows that ollyz € W as ¢ is winning. Hence
(o, 7y cW.

“If”: Assume (o, 7) ¢ W for all strategies 7: T — A*. Suppose x is +-maximal
in C*°(S). Define T to be the event structure given as the restriction

T =qef A* } (cxu{ae A" | poly.(a)=-}).

Let 7 : T - A*' be the (rigid) inclusion map T — A*. The pre-strategy T
can be checked to be receptive and innocent, so a strategy. (In fact, 7 is a
deterministic strategy as all its +ve events lie within the configuration oz.)
One way to describe a pullback of 7 along ¢ is as the “inverse image” P =qet

St{seS|a(s)eT}:
P
NG
s\ /T
A

From the definition of T" and P we see x € C*(P); and moreover that z is
maximal in C*(P) as z is +-maximal in C*(S). Hence oz € {0, 7) ensuring
ox € W, as required.

The proof is unaffected if we restrict to rigid deterministic counter-strategies
7:T — At. O

The proof is also unaffected if we generalise to receptive pre-strategies 7 :
T — A*, a generality that can be useful in showing ¢ is not winning.

Lemma 10.5. Let 0: S — A be a strategy in a game (A, W). The strategy o
is winning for Player iff (o,7) €W for all receptive pre-strategies T:T — A*.

Corollary 10.6. There are the following five equivalent ways to say that a
strategy o : S — A is winning in (A, W)—we write L for the losing configurations

Co (AN W

1. cx € W for all +-mazimal configurations x € C*(S), i.e. the strategy
prescribes Player moves to reach a winning configuration, no matter what
the activity or inactivity of Opponent;
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2. ox ¢ L for all +-mazimal configurations x € C*(S), i.e. the strategy
prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent;

3. (o,7) € W for all strategies 7 : T — A*, i.e. all plays against counter-
strategies of the Opponent result in a win for Player;

4. {o, 7y €W for all deterministic strategies 7: T — A*, i.e. all plays against
deterministic counter-strategies of the Opponent result in a win for Player;

5. (o,7) €W for all receptive pre-strategies T:T — A*, i.e. all plays against
any receptive pre-strategy of the Opponent result in a win for Player

Not all games with winning conditions have winning strategies. Consider
the game A consisting of one player move @ and one opponent move B incon-
sistent with each other, with {{@}} as its winning conditions. This game has
no winning strategy; any strategy o : S — A, being receptive, will have an event
s €S with o(s) =8, and so the losing {s} as a +-maximal configuration.

10.2 Operations

10.2.1 Dual
There is an obvious dual of a game with winning conditions G = (A, W¢):
G = (A", W)

where, for x € C*(A),
.’EEWGL iff T¢WG

We are using the notation a <> @, giving the correspondence between events of A
and A*, extended to their configurations: T =q¢f {@ | a € x}, for z € C*(A). As
usual the dual reverses the roles of Player and Opponent and correspondingly
the roles of winning and losing conditions.

10.2.2 Parallel composition

The parallel composition of two games with winning conditions G = (A, Wg),
H=(B,Wg) is

G| H =4es (AllB, We|C™(B)uC™(A)[[W)

where X||Y = {{1} xz u {2} xy |ze X & yeY} when X and Y are subsets of
configurations. In other words, for z € C*°(A| B),

reWg g it ©1eWgoraxeWy,

where 21 = {a | (1,a) € 2} and a9 = {b| (2,b) € }. To win in G| H is to win in
either game. Its losing conditions are L 4||Lg—to lose is to lose in both games
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G and H.' The unit of || is (&,@). In order to disambiguate the various forms
of parallel composition, we shall sometimes use the linear-logic notation G % H
for the parallel composition G||H of games with winning strategies.

10.2.3 Tensor

Defining G ® H =40t (G*||H*)* we obtain a game where to win is to win in both
games G and H—so to lose is to lose in either game. More explicitly,

(A, Wa)® (B,Wg) =det (A|B, W4||Wg).

The unit of ® is (@, {}).

10.2.4 Function space

With G — H =4 G*||H a win in G — H is a win in H conditional on a win in

G.

Proposition 10.7. Let G = (A, W¢g) and H = (B,Wg) be games with winning
conditions. Write Wa_pg for the winning conditions of G — H, so G — H =
(AY|B,Wg—p). For x € C*(A*||B),

reWagpy iff T1eWg = z9e Wgy.
Proof. Letting x € C*(A*||B),

IGWG_OH iff erGL”H
iff 1 EWGL or xo EWH
iff 7¢ Weg or 29 € Wiy
iff 77 e Wg = x9€ Wgy.

10.3 The bicategory of winning strategies

We can again follow Joyal and define strategies between games now with winning
conditions: a (winning) strategy from G, a game with winning conditions, to
another H is a (winning) strategy in G — H = G*||H. We compose strategies
as before. We first show that the composition of winning strategies is winning.

Lemma 10.8. Let o be a winning strateqy in G*|H and T be a winning strategy
in H*||K. Their composition T®0 is a winning strategy in G*| K.

'I'm grateful to Nathan Bowler, Pierre Clairambault and Julian Gutierrez for guidance in
the definition of parallel composition of games with winning conditions.
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Proof. Let G =(A,Wg), H=(B,Wg) and K = (C,Wg).

Suppose x € C*°(T®S) is +-maximal. Then Uz € (C(T)®C(S))>. By Zorn’s
Lemma we can extend Uz to a maximal configuration z 2 Uz in (C(T)®C(S))™
with the property that all events of z\Jz are synchronizations of the form (s, t)
for se S and t € T. Then, z will be +-maximal in (C(T") ® C(S))*° with

omz=om | Jr & mmz=nm|Jz. (1)
By Lemma 10.2,
w1z is +-maximal in S & mez is +-maximal in T.
As o and 7 are winning,
omzeWeypg & Tmeze Wy k.

Now omyz € Wy g expreses that

oMz e Wag = o9mize Wy (2)
and 7mez € Wik that

Timaz € Wy = Tomez € Wi, (3)
by Proposition 10.7. But o2m 2z = 71272, so (2) and (3) yield

oMz e Wg = momez e Wik .

By (1)
omJreWs = nmlJze Wk,

1.e.by Proposition 4.2,
iz e Wg = vox € Wk
in the span of the composition 7. Hence x € Wgy |k, as required. O

For a general game with winning conditions (A, W) the copy-cat strategy
need not be winning, as shown in the following example.

Example 10.9. Let A consist of two events, one +ve event B and one —ve event
B, inconsistent with each other. Take as winning conditions the set W = {{@}}.
The event structure (C4:
At B—-m A
«— B

To see (C4 is not winning consider the configuration x consisting of the two
—ve events in (C 4. Then z is +-maximal as any +ve event is inconsistent with
x. However, T; € W while x5 ¢ W, failing the winning condition of (A, W) —o
(A, W).



142 CHAPTER 10. WINNING WAYS

Recall from Chapter 7, that each event structure with polarity A possesses a
Scott order on its configurations C*(A):

dex iff 2 znz’ .

Hence a necessary and sufficient for copy-cat to be winning w.r.t. a game

(A, W):

Va,2' e C*(A). if 2’ cx & T||2’ is +-maximal in C*(CC4)

, (Cwins)
then zeW = z° e W.

Proposition 10.10. Let (A, W) be a game with winning conditions. The copy-
cat strategy @ 4 : @4 - AY||A is winning iff (A, W) satisfies (Cwins).

Proof. (Cwins) expresses precisely that copy-cat is winning. O

A robust sufficient condition on an event structure with polarity A which
ensures that copy-cat is a winning strategy for all choices of winning conditions
is the property

Va e C(A). a—c & a—c & pol(a) =+ & pol(a’) = - = zu{a,a’} €C(A).
(race-free)

This property, which says immediate conflict respects polarity, is seen earlier in

Lemma 5.3 (characteriziing those A for which copy-cat is deterministic).

Lemma 10.11. Assume A is race-free. If ' © x in C®(A) and T|a' is +-
mazimal in C*°(CCy), then x =1z’

Proof. Assume A is race-free and 2’ £ x and Z||z’ is +-maximal in C=(QC4).
Then z 2" z na’ ¢ 2’. There are covering chains associated with purely +ve
and —ve events from z Nz’ to x and z’, respectively:

,  F +
rnxy —cxy - —C T,

r / B /
rNxr —Cxy - —C T .

If one of the covering chains is of zero length, i.e. x 2% 2’ or x ¢~ 2/, then so
must the other be—otherwise we contradict the maximality assumption. On
the other hand, if both are nonempty, by repeated use of (race-free) we again
contradict the maximality assumption, e.g.

’ + ro + /
Ty —c T1UT] — —c TUTy
; o+ + +
rNnx —c T —c —c T

so a2’ £ zuz] and (E||:1:')—+C (zuzl||z"), showing how a repeated use of (race-free)
contradicts the +-maximality of Z||z’. We conclude z =x na’ =2’ O
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Proposition 10.12. Let A be an event structure with polarity. Copy-cat is a
winning strategy for all games (A, W) with winning conditions W iff A satis-
fies (race-free).

Proof. “If”: Assume (race-free). Suppose Z||z’ is a +-maximal configuration
in C®°(4). Then, by Lemma 10.11, = z’. Let W ¢ C*®(A). Certainly
reW = 2’ e W, as required to fulfil (Cwins).

“Only if”: Suppose A failed (race-free), i.e. r—2c 1 & r—c To with z1 4 xo
and pol 4(a) = + and pol(a’) = — within the finite configurations of A. The set
T || @2 =qef {1} X T1 U {2} x 25 is certainly a finite configuration of A*||A and is
easily checked to also be a configuration of (C4. Define winning conditions by

W={xeC”(A)|acx}.

Let z € C*(W4) be a +-maximal extension of T | x2 (the maximal extension
exists by Zorn’s Lemma). Take z1 = {a | (1,a) € 2z} and 25 = {a | (2,a) € z}.
Then Z; 2 1 and 25 2 zo. As a € Z; we obtain Z; € W, whereas z5 ¢ W because
zo extends o which is inconsistent with a. Hence copy-cat is not winning in
(A, W)HI(A,W). O

We can now refine the bicategory of strategies Strat to the bicategory
WGames with objects games with winning conditions G, H, --- satisfying (Cwins)
and arrows winning strategies G —= H; 2-cells, their vertical and horizontal com-
position is as before. Its restriction to deterministic strategies yields a bicategory
WDGames equivalent to a simpler order-enriched category.

10.4 Total strategies

As an application of winning conditions we apply them to pick out a subcategory
of “total strategies,” informally strategies in which Player can always answer a
move of Opponent.?

We restrict attention to ‘simple games’ (games and strategies are alternating
and begin with opponent moves—see Section 6.2.4). Here a strategy is total if
all its finite maximal sequences are even, so ending in a +ve move, i.e. a move
of Player. In general, the composition of total strategies need not be total—see
the Exercise below. However, as we will see, we can pick out a subcategory of
‘simple games’ with suitable winning conditions. Within this full subcategory
of games with winning conditions winning strategies will be total and moreover
compose.

Exercise 10.13. Ezxhibit two total strategies whose composition is not total. O

As objects of the subcategory we choose simple games with winning strate-
gies,
(A, Wa)

2This section is inspired by [24], though differs in several respects.
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where A is a simple game and W, is a subset of possibly infinite sequences
$189++- satisfying
W4 nFinite(A) = Even(A) (Tot)

i.e. the finite sequences in W, are precisely those of even length. Note that
winning strategies in such a game will be total. (Below we use ‘sequence’ to
mean allowable finite or infinite sequences of the appropriate simple game.)

The function space (A,Wa) — (B,Wpg), given as (A, Wa)*|(B,Wg), has
winning conditions W such that

seWiff s AeWy = s BeWsg.

Lemma 10.14. For s a sequence of A*||B, s is even iff s | A is odd or s | B is
even.

Proof. By parity, considering the final move of the sequence.

“Only if”: Assume s is even, i.e. its final event is +ve. If s ends in B, s B ends
in + so is even. If s ends in A, s | A ends in - so is odd.

“If”: Assume s | A is odd or s | B is even. Suppose, to obtain a contradiction,
that s is not even, i.e. s is odd so ends in —. If s ends in B, s | B ends in — so
is odd and consequently s I A even (as the length of s is the sum of the lengths
of s A and s | B). Similarly, if s ends in A, s | A ends in 4 so s | A is even and
s| B is odd. Either case contradicts the initial assumption. Hence s is even. [

It follows that W, the winning conditions of the function space, satisfies
(Tot): Let s be a finite sequence of a strategy in A*||B. Then,

seWif s AeWy =— s BeWp
iffstA¢Waors|BeWp
iff st Aisodd or s | B is even

iff s is even.

All maps in the subcategory (which are winning strategies in its function
spaces (A,W4) — (B,Wpg)) compose (because winning strategies do) and are
total (because winning conditions of its function spaces satisfy (Tot)).

10.5 On determined games

A game with winning conditions G is said to be determined when either Player
or Opponent has a winning strategy, i.e. either there is a winning strategy in
G or in G*.3 Not all games are determined. Neither the game G consisting of
one player move @ and one opponent move B inconsistent with each other, with
{{m}} as winning conditions, nor the game G* have a winning strategy.

3This section is based on work with Julian Gutierrez.
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Notation 10.15. Let 0: S — A be a strategy. We sayy € C*(A) is o-reachable
iff y = ox for some x € C*(S). Let y' €y in C*°(A). Say y’' is —-maximal in
y iff y—cy” implies y" ¢ y. Similarly, say 3y’ is +-maximal in y iff y—+c y”
implies y" ¢ y.
Lemma 10.16. Let (A, W) be a game with winning conditions. Let y € C*(A).
Suppose

Vy' e C®(A).

y' cy & y' is —-maximal in y & not +-mazimal in y

_—
{y"eC(A) |y "y &Y'~y )ny=0}nW=0.

Then y s o-reachable in all winning strategies o.

Proof. Assume the property above of y € C*°(A). Suppose, to obtain a contra-
diction, that y is not o-reachable in a winning strategy o : S — A.
Let 2’ € C*°(A) be c-maximal such that oz’ ¢ y (this uses Zorn’s lemma).
By the receptivity of o, the configuration oz’ is —-maximal in y. By suppo-
sition, oz’ ¢ y, so we must therefore have oa'—c Yo Sy in C*(A), i.e. oa' is
not +-maximal in y. From the property assumed of y we deduce both

o' ¢W & (Vy'eW.ox' <"y = (y'~o2')ny+2).

As o is winning, there is +-maximal extension x’ € 2" in C*(S) such that
ox" € W. Hence

(cz"~ox')nyt@.

Taking a <4-minimal event a1, necessarily +ve, in the above set we obtain
ax
ox'—cy <" oz”.

By Corollary 4.23, y; = ox; for some 1 € C*(S) with ' —c z; € 2”. But this
contradicts the choice of 2’ as c-maximal such that oz’ ¢ y. Hence the original
assumption that y is not o-reachable must be false. O

Recall the property (race-free) of an event structure with polarity A, first
seen in Lemma 5.3, though here rephrased a little:

- +
Vy,y1,y2 €C(A). y—c y1 & y——C yo = y11 2. (race-free)

Corollary 10.17. If A, an event structure with polarity, fails to satisfy (race-free),
then there are winning conditions W, for which the game (A, W) is not deter-
mined.

Proof. Suppose (race-free) failed, that y—cy; and y—+cy2 and y; + yo in
C(A). Assign configurations C*°(A) to winning conditions W or its complement
as follows:
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(i) for y" with gy, c* y”, assign y” ¢ W;
(ii) for y"” with yo €~ y”, assign y”’' ¢ W;

(iii) for y” with 3’ c* " and (v \y') ny = @, for some sub-configuration y’ of
y with ¢/ —maximal and not +-maximal in y, assign y” ¢ W;

(iv) for y" with ¢ ¢~ 3" and (y" \y') Ny = @, for some sub-configuration y’ of
y with ¥’ +-maximal and not —-maximal in y, assign y" € W;

(v) assign arbitrarily in all other cases.

We should check the assignment is well-defined, that we do not assign a config-
uration both to W and its complement.

Clearly the first two cases (i) and (ii) are disjoint as y; 4 ya.

The two cases (iii) and (iv) are also disjoint. Suppose otherwise, that both
(iii) and (iv) hold for y", viz.

14

sy & @ yny=0&

yy is —maximal & not +-maximal in y, and

Yy &y yp)ny=0&

Y is +-maximal & mnot —maximal in y .
As
sy 2y
we deduce 4~ Sy}, i.e. all the —ve events of i} are in y}. Now let a € y5". Then
a €y as yb €y. Therefore a ¢y’ \ y], by assumption. But a € y" as y5 ¢~ 3",
so a € yj. We conclude g4 € yi. A similar dual argument shows y] € y5. Thus
Y} = y5. But this implies that ¢} is both —-maximal and not —maximal in y —a
contradiction.
Suppose both the conditions (i) and (iv) are met by y”. From (vi), as y’ is

+-maximal & not —maximal in y,

/ a
Y—Cy%<y,
for some event a with pol4(a) = — and yo € C*(A). From (i), y € y”, so
a
y—<cyocy”.

Therefore
aey’'~Ny &aey,

which contradicts (iv). Similarly the cases (ii) and (iii) are disjoint.

We conclude that the assignment of winning conditions is well-defined.

Then y is reachable for both winning strategies in (A, W) and winning strate-
gies in (A,W)*. Suppose o is a winning strategy ¢ in (A,W). By (iii) and
Lemma 10.16, y is o-reachable. From receptivity y; is o-reachable, say y; = oz
for some x1 € C(S). There is a +-maximal extension x} of x; in C*(5). By (i),
ox’ cannot be a winning configuration. Hence there can be no winning strategy
in (A,W). In a dual fashion, there can be no winning strategy in (4, W)*. O
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It is tempting to believe that a nondeterministic winning strategy always
has a winning (weakly-)deterministic sub-strategy. However, this is not so, as
the following examples show.

Example 10.18. A winning strategy need not have a winning deterministic
sub-strategy. Consider the game (A, W) where A consists of two inconsistent
events B and @, of the indicated polarity, and W = {{g},{®}}. Consider the
strategy o in A given by the identity map id4 : @ > A. Then o is a nonde-
terministic winning strategy—all +-maximal configurations in A are winning.
However any sub-strategy must include 8 by receptivity and cannot include @ if
it is to be deterministic, wherepon it has @ as a +-maximal configuration which
is not winning.

Example 10.19. Observe that the strategy ¢ of Example 10.18 is already
weakly-deterministic—cf. Corollary 5.8. A winning strategy need not have a
winning weakly-deterministic sub-strategy. Consider the game (A, W) where A
consists of two —ve events 1,2 and one +ve event 3 all consistent with each other
and

W ={w,{1,3},{2,3},{1,2,3}}.

Let S be the event structure

0o ——>H
Oo——>H

and o : S — A the only possible total map of event structures with polarity:

o
—_— =) =)

O ——->>3
O ——->>3

Then o is a winning strategy for which there is no weakly-deterministic sub-
strategy.

The following example shows that for games where configurations can have
infinitely many events, race-freeness is not sufficient to ensure determinacy. It
also shows that the existence of a winning receptive pre-strategy does not imply
that there is a winning strategy.

Example 10.20. Consider the infinite game A comprising the event structure
with polarity

= B—bE—PE—P o ——PE ——D

where Player wins iff
(i) Player plays all @ moves and Opponent does nothing, or
(ii) Player plays finitely many ® moves and Opponent plays 2 .
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In this case there is a winning pre-strategy for Player. Informally, this is to con-
tinue playing moves until Opponent moves, then stop. Formally, it is described
B—bE—>E —_—

by the event structure with polarity S
\

with pre-strategy the unique total map to A. The pre-strategy is receptive
and winning in the sense that its +-maximal configurations image to winning
configurations in A. It follows that there is no winning strategy for Opponent:
if o is a winning receptive pre-strategy then (o, 7) will be a subset of winning
configurations, exactly as in the proof of Lemma 10.4, so must result in a loss
for 7, which cannot be winning. Nor is there a winning strategy for Player.
Suppose o : S - A was a winning strategy for Player; for o to win against the
empty strategy there must be = € S such that ox comprises all +ve events of
A. But now, using receptivity and —-innocence, there must be s € S such that
o(s) =8 with z U {s} € C>(S) losing and +-maximal—a contradiction. i

B
B
B
[=2]
[=2]

m
m
m
m

=]

10.6 Determinacy for well-founded games

Definition 10.21. A game A is well-founded if every configuration in C=(A)
1s finite.

It is shown that any well-founded concurrent game satisfying (race-free) is
determined.

10.6.1 Preliminaries

Proposition 10.22. Let Q be a non-empty family of finite partial orders closed
under rigid inclusions, i.e. if ¢ € Q@ and ¢’ = q is a rigid inclusion (regarded as
a map of event structures) then ¢’ € Q. The family Q determines an event
structure (P, <,Con) as follows:

e the events P are the prime partial orders in Q, i.e. those finite partial
orders in Q with a top element;

e the causal dependency relation p' < p holds precisely when there is a rigid
inclusion from p’ = p;

e a finite subset X € P is consistent, X € Con, iff there is q € Q and rigid
inclusions p = q for allpe X.

If x € C(P) then Uz, the union of the partial orders in x, is in Q. The function
x — Uz is an order-isomorphism from C(P), ordered by inclusion, to Q, ordered
by rigid inclusions.
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Call a non-empty family of finite partial orders closed under rigid inclusions
a rigid family. Observe:

Proposition 10.23. Any stable family F determines a rigid family: its config-
urations x possess a partial order <, such that whenever x €y in F there is a
rigid inclusion (x,<;) = (y,<y) between the corresponding partial orders.

Notation 10.24. We shall use Pr(Q) for the construction described in Propo-
sition 10.22. The construction extends that on stable families with the same
name.

Lemma 10.25. Let 0: S —> A be a strategy. Letting x,y € C(S),
zrcyt & orcoy = zcy.

Proof. The proof relies on Lemma 4.21, characterising strategies. We first prove
two special cases of the lemma.
Special case ox S~ oy. By assumption z* € y*. Supposing s € y* \ z*, via
the injectivity of o on y, we obtain oy \ oz contains o(s) a +ve event—a
contradiction. Hence z* = y*.

From Lemma 4.21(ii), as ox €~ oy, we obtain (a unique) z’ € C(S) such that
rcx' and oz’ = oy:

8
in
8

Now [z*] ¢ z, from which

—
8

T

[u—
n

Combining the two diagrams:

B

+
n

&\

As [y"] <y,

—
<

T

[
n
<
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where, by Lemma 4.21(ii), y is the unique such configuration of S. But y* = a*
so this same property is shared by z’. Hence 2’ =y and = € y.
Thus
ey &orc oy = wzcy. (1)

Note that, in particular,
=yt &or=0y = x=9. (2)

Special case cx € oy. By Lemma 4.21(i), there is (a unique) y; € C(S) with
y1 € y such that oy; = ox:
Y1 < Y

v

or ct oy,

Now z*,yf €y and ox* = (cx)" = oyj. So by the local injectivity of o we
obtain z* = y7. By (2) above, x = y;, whence x € y. Thus

eyt &oxctoy = zcy. (3)

Any inclusion ox € oy can be built as a composition of inclusions €~ and ¢,
so the lemma follows from the special cases (1) and (3). O

Lemma 10.26. Let o : S — A be a strategy for which no +ve event of S appears
as a —ve event in A. Defining

Fo =det {27 U (0z)” [2€C(S)}
yields a stable family for which

o (5) = {s if s is +wve,

o(s) if s is —ve.
is a map of stable families a, : C(S) — F, which induces an order-isomorphism
(€(5),€) = (%5,9)

taking x € C(S) to a, x =x* U (oxz)”~. Defining

o(e) = {0'(6) if e is +ve,

e if e is —ve
on events e of F, yields a map of stable families f, : F, — C(A) such that
C(s) ——=7%,
Nl
c(4)

commutes.
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Proof. A configuration x € C(S) has direct image
asr=z"U(ox)”

under the function a,. Direct image under a, is clearly surjective and preserves
inclusions, and by Lemma 10.25 yields an order-isomorphism (C(S),<) = (F,, <
): if asx € agy, for x,y € C(S), then z* ¢ y* and (ox)” ¢ (oy)~ by the
disjointness of S* and A, whence ox € oy so x C y.

It is now routine to check that F, is a stable family and «, is a map of
stable families. For instance to show the stability property required of F,,
assume a2, ;Y S @yz. Then z,y Sz so cxny = (ox)n(oy) as o is a map of
event structures, and consequently (czny)” = (cx)” N (oy)~. Now reason

(aoz) N (aoy) =(z" U (oz)") N (y" U (oy)™)
=(=z"ny")u((oz)" n(oy)")
—by distributivity with the disjointness of S* and A,
=(zny) u(ocazny)”
=(aszny)eF,.

From the definitions of a, and f, it is clear that f,a,(s) = o(s) for all events
of S. Any configuration of F, is sent under f, to a configuration in C(A) in a
locally injective fashion, making f, a map of stable families; this follows from
the matching properties of o. O

When we “glue” strategies together it can be helpful to assume that all the
initial —ve moves of the strategies are exactly the same:

Lemma 10.27. Let 0: S — A be a strategy. Then o =o', a strategy o’ : S" - A
for which
V'€ 8. polg[s']sr = {-} = & = [o(s")]a.

Proof. Without loss of generality we may assume no +ve event of S appears as
a —ve event in A. Take f, : F, > C(A) given by Lemma 10.27 and construct ¢’
as the composite map

Pr(F,) — 2 prc(a)) 'Y A

—recall top takes a prime [a]4 to a, where a € A. O

10.7 Determinacy proof

Definition 10.28. Let A be an event structure with polarity. Let W ¢ C*(A).
Let y € C®°(A). Define Aly to be the event structure with polarity comprising
events

{ae ANy |yula]aeC™(A)},
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also called Ay, with consistency relation
X e Conyyy iff X Can Ay & yu[X]aeCT(A),
and causal dependency the restriction of that on A. Define W[y c C=(Aly) by
zeWlyiff zeC*(Aly) & yuzeW.
Finally, define (A, W)[y =aet (A/y, W/y).

Proposition 10.29. Let A be an event structure with polarity and y € C*°(A).
Then,

z2eC®(Aly) iff zc Aly & yuzeC™(A).

Assume A is a well-founded event structure with polarity with winning con-
ditions W c C(A). Assume the property (race-free) of A:

- +
Vy,y1,92 € C(A). y—c y1 & y—< 2 = 11 12. (race-free)

Observe that by repeated use of (race-free), if x,y e C(A) with x ny c* 2 and
xNyc y, then zuyeC(A).

We show that the game (A,W) is determined. Assuming Player has no
winning strategy we build a winning (counter) strategy for Opponent based on
the following lemma.

Lemma 10.30. Assume game A is well-founded and satisfies (race-free). Let
W cC(A). Assume (A, W) has no winning strategy (for Player). Then,

VeeC(A). gz & zeW

f—

JyeC(A). xc  y & yeW & (A, W)/y has no winning strategy.

Proof. Suppose otherwise, that under the assumption that (A, W) has no win-
ning strategy, there is some x € C(A) such that

gcrr&reW
&
VyeC(A). 2" y & y¢ W = (A,W)/y has a winning strategy.

We shall establish a contradiction by constructing a winning strategy for Player.
For each y € C(A) with x ¢~ y and y ¢ W, choose a winning strategy

oy:Sy > Aly.

By Lemma 10.27, we can replace o, by a stable family F, with all —ve events
in A and a map of stable families f, : F, - C(A). It is easy to arrange that,
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within the collection of all such stable families, F,,, and F,, are disjoint on +ve
events whenever y; and yy are distinct. We build a putative stable family as

F =aet {y €C(A) | poly(y~x)c{-}} U
{yuv|yeC(A) & poly(y~z)c{-} &zuy¢W &
veFuuy & +epolv & yu fruveC(A)}.

[Note, in the second set-component, that zuUy is a configuration by (race-free).]
We assign events of F the same polarities they have in A and the families F,,.

We check that F is indeed a stable family.

Clearly @ € F. Assuming z1, 25 € z in F, we require 21 U 29, 21 N 29 € F.

It is easily seen that if both z; and z; belong to the first set-component, so
do their union and intersection. Suppose otherwise, without loss of generality,
that z5 belongs to the second set-component. Then, necessarily, z is in the
second set-component of F and has the form z = y U v described there.

Consider the case where z; = y; Uv; and z3 = ys U v9, both belonging to the
second set-component of F. Then

TUY1=rUY2=2UY,

from the assumption that families F, are disjoint on +ve events for distinct y,
and

v1,V2 S in Fruy .

It follows that z U (y1Uy2) = 2zuy ¢ W and vi Uvs € Fauy = Fou(yiuys)- AS
21,2, € 2,

(yl u fmuyvl)a (y2 u faruyv2) c (y U fmuyv)
SO

(y1 U y2) U fauy(v1 Uv2) = (Y1 U feuyv1) U (Y2 U fauyv2) € C(A).

This ensures 23 Uzs = (y; Uys) U (vy Uvg) € F. Similarly, z U (y3 Nnys) =
(zuy)n(zuyz)=zuy ¢ W and vi N vz € Fouy = Fau(yiny,)- Checking

(yl n y2) U focuy('Ul ﬁ’Uz) = (yl u f;cuyvl) N (y2 U fa:uy'UQ) € C(A)

ensures z1 Nz = (y1 Ny2) U (v Nwg) € F.

Consider the case where z; € C(A) belongs to the first and 25 = yo Uvs to
the second set-component of F. As z; € yUw it has the form 2z = y; Uv; where
y1 € C(A) with y1 € y and vq € Fpuy with vy € v; all the events of v1 = 21 \ (zUY)
have —ve polarity which ensures v; € Fpuy by the receptivity of o,. Because vy
and v have +ve events in common,

TUYs =T VY,

while clearly
v1,V2 €U in Fayy -
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We deduce z U (y1 Uyz) =z Uy ¢ W and vy Uvg € Fyyy = Fau(yruys) Whence
Z1Uzg = (y1Uy2) U(v1 Uwg) € F after an easy check that (y1Uy2)U fouy (viUv2) €
C(A). We have ys U fuuyv2 € C(A). But fyu, is constant on —ve events so

Z1MN2zy=21N (y2 UUQ) =z1N (y2 U fxuyvg) € C(A),

and z; N 25 belongs to the first set-component of F.

A routine check establishes that F is coincidence-free, and uses that each
family F, is coincidence-free when considering configurations of the second set-
component.

Having established that F is a stable family, we define a total map of stable
families

fiF-C)
by taking
e ifeexoreis —ve,
f(e) = o
fy(e) if e is a +ve event of F,,.

Defining ¢ to be the composite map of stable families

cPr(F)) e F—Lca)
we also obtain a map of event structures
oc:Pr(F)—> A

as the embedding of event structures in stable families is full and faithful. As-
cribe to events p of Pr(F) the same polarities as events top(p) of F. Clearly
o preserves polarities as f does, so o is a total map of event structures with
polarity. In fact, o is a winning strategy for (A, W).

To show receptivity of o it suffices to show for all z € F that fz—cy’ in
/

C(A) implies z—c with o2’ = z for some unique 2z’ € F. If z belongs to the
first set-component of F this is obvious—take z’ = 3’. Otherwise z belongs to
the second set-component, and takes the form y U v, when receptivity follows
from the receptivity of o,uy. No extra causal dependencies, over those of A,
are introduced into y in the first set-component of F. Considering y U v in the
second set-component of F, the only extra causal dependencies introduced in
y U, above those inherited from its image y U fyuyv in A, are from v in Fypyy
and those making a +ve event of v in y uv depend on —ve events y \ z. For
these reasons o is also innocent, and a strategy in A.

To show o is a winning strategy for (A, W) it suffices to show that fz e W
for every +-maximal configuration z € F. Let z be a +-maximal configuration
of F.

Suppose that z belongs to the first set-component of F and, to obtain a
contradiction, that fz ¢ W. Then z = fz € C(A) and polz \~ z ¢ {-}. By axiom
(race-free), x 1 y, so x € 2z from the +-maximality of z. As x €~ z and z ¢ W
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the strategy o, is winning in (A, W)/z. Because z is +-maximal in F we must
have @ is +-maximal in F,. It follows that @ € W/z, i.e. z €¢ W—a contradiction.
Suppose that z belongs to the second set-component of F, so that z has
the form y u v with y € C(A) and v € F,,. By (race-free), x C y, as z is +-
maximal in F. Hence v € F,, and is necessarily +-maximal in F;, again from the
+-maximality of z. As o, is winning, f,v € W/y. Therefore fz =yu fyv e W.
Finally, we have constructed a winning strategy o in (A, W)—the contra-
diction required to establish the lemma. O

Remark. In the proof above we could instead build the strategy for Player, on
which the proof by contradiction depends, out of a rigid family of finite partial
orders. Recall that stable families, including configurations of event structures,
are rigid families w.r.t. the order induced on configurations; finite configurations
x determine finite partial orders (x,<;), which we call ¢(x) in the construction
below. Define

Q =der {q(y) |yeC(A) & poly(y~z)c{-}} U
{a(y);q(v) | yeC(A) & pola(y~w)c{-} &ruy¢W &
veFuy & +epolv & yu fryveC(A)}

where above ¢(y);¢(v) is the least partial order on y Uv in which events inherit
causal dependencies from ¢(v), from their images in ¢(yU fzuyv) and in addition
have the causal dependencies y~ x v*. The family Q can be shown to be closed
under rigid inclusions, and so a rigid family. O

Theorem 10.31. Assume game A is well-founded, satisfies (race-free) and
has winning conditions W ¢ C(A). If (A, W) has no winning strategy for Player,
then there is a winning (counter) strategy for Opponent.

Proof. Assume (A, W) has no winning strategy for Player.

We build a winning counter-strategy for Opponent out of a rigid family of
partial orders, themselves constructed from ‘alternating sequences’ of configu-
rations of A.

Define an alternating sequence to be a sequence

T1,Y1,T2,Y2, " LiyYiy s Thy Yk Th+1
of length k +1 > 1 of configurations of A such that

pcta Cy1 S g Yy & T Sy C e C € Yk CF Thst

with
x, €W & y; ¢ W & (A, W)/y; has no winning strategy,
when 1 <4 < k. It is important that zy.1, which may be @&, need not be in W.

In particular, we allow the alternating singleton sequence x; comprising a single
configuration of A with @ ¢* x; without necessarily having x; € W.
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For each alternating sequence x1,y1, ", Tk, Yk, Tr+1 define the partial order
Q(x1,y1, " Tk, Yk, Ti+1) to comprise the partial order on xg.1 inherited from A
together with additional causal dependencies given by the pairs in

xf x (y; N z;), where 1 <i<k.

We define Q to be the rigid family comprising the set of all partial orders got
from alternating sequences, closed under rigid inclusions.

Form the event structure Pr(Q) as described in Proposition 10.22. Assign
the same polarity to an event in Pr(Q) as its top event in A. Recall from
Proposition 10.22 the order-isomorphism C(Pr(Q)) = Q given by z — Uz for
x €C(Pr(Q)). The map

7:Pr(Q)—> A

taking p € Pr(Q) to its top event is a total map of event structures with polarity.
Writing T : @ — C(A) for the function taking g € Q to its set of underlying
events, 7z = T (Ux) for all z € C(Pr(Q)), i.e. the diagram

C(Pr(Q)) = Q
\ jT
C(4)

commutes. We shall reason about order-properties of 7 via the function 7.

We claim that 7 is a winning counter-strategy, in other words a winning
strategy for Opponent, in which the roles of + and — are reversed.

Because the construction of the partial orders in Q only introduces extra
causal dependencies of —ve events on +ve events, 7 is innocent (remember the
reversal of polarities). To check receptivity of 7 it suffices to show that for g € Q
assuming T(q)—ac 2" in C(A), where pol 4(a) = +, there is a unique ¢’ € Q such
that g—<c ¢’ and T(q') = 2. Any such extension ¢’ must comprise the partial
order g extended by the event a. As a is +ve the events on which it immediately
depends in ¢" will coincide with those on which a immediately depends in z’,
guaranteeing the uniqueness of ¢’. It remains to show the existence of ¢'.

By assumption, ¢ rigidly embeds in Q(x1,y1,*, Tk, Yk, Tk+1) for some alter-
nating sequence x1,y1, ", Tk, Yk, Tk+1- In the case where ¢ consists of purely
+ve events, take ¢’ =qef Q(2"). Otherwise, consider the largest ¢ for which
T(q)n (y; ~ ;) #+ @. Then,

pols T(q) Nyi € {+}. (1)

From the construction of Q(z1,y1, ", Tk, Yk, Tr+1) and the rigidity of the inclu-
sion of ¢ in Q(x1,y1,*, Tk, Yk, Tk+1) We obtain

xf cT(q). (2)

From (2), T'(¢) <~ T(q) vy; and, by assumption, T(q)—ac 2" with pol 4(a) = +.
Using (race-free), their union remains in C(A4), and we can define

2 =qet T(q) Uy; U{a} e C(A).
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Note that

A
L1, Yt T, Yin T

is an alternating sequence because y; €* 2’ by (1) and it is built from an al-
ternating sequence x1,y1, -, Tk, Yk, Tk+1. Restricting Q(z1,y1, i, ¥i, ') to
events z we obtain a partial order ¢’ for which g—<c ¢’ in @ and T(¢') = z.

We now show that 7 is winning for Opponent. For this it suffices to show
that if ¢ € @ is —-maximal then T(q) ¢ W. Assume ¢ € Q is —-maximal in Q.
Necessarily ¢ embeds rigidly in Q(z1,y1, -, Tk, Yk, Tr+1) for some alternating
sequence Ti, Yi, s Tk Yk, Th+1-

In the case where ¢ consists of purely +ve events

@c* T(q) in C(A).
Suppose T'(¢q) € W. By Lemma 10.30, for some y € C(A4),
T(g) S y&y¢W.

But then there is a strict extension ¢ = Q(T(q),y,d) of ¢ by —ve events in Q,
and ¢ is not —-maximal—a contradiction.

In the case where ¢ has —ve events, we may take the largest i for which
T(q) n(y; ~z;) + @. As earlier,

(1) polaT(g) Ny s {+} & (2) 27 <T(q).
As ¢ is —-maximal, y; € T'(¢), whence by (1),
yi €' T(q).

Suppose, to obtain a contradiction, that T'(¢) € W. The game (A, W)/y; has
no winning strategy. By Lemma 10.30, given

@ 2 =40 T(q) Ny
in C((A,W)/y;) there is y € C((A, W)/y;) with

vy & yeWly:.
Let 2%, =aet T(q) and y},; =det y; Uy ¢ W. Then,

x1,Y1, "',$i7yi>$;+17y£+17®
is an alternating sequence which strictly extends ¢ by —ve events, contradicting
its —-maximality.
We conclude that 7 is a winning strategy for Opponent. O

Corollary 10.32. If a well-founded game A satisfies (race-free) then (A, W)
s determined for any winning conditions W .
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10.8 Satisfaction in the predicate calculus

The syntax for predicate calculus: formulae are given by

@b, u= Rz, xp) | @AY | oV | =p | 3. o | Va. ¢

where R ranges over basic relation symbols of a fixed arity and z,x1, zg, -, ok
over variables.

A model M for the predicate calculus comprises a non-empty universe of
values V), and an interpretation for each of the relation symbols as a relation
of appropriate arity on V,,. Following Tarski we can then define by structural
induction the truth of a formula of predicate logic w.r.t. an assignment of values
in V,, to the variables of the formula. We write

PEM P

iff formula ¢ is true in M w.r.t. environment p; we take an environment to be
a function from variables to values.

W.r.t. a model M and an environment p, we can denote a formula ¢ by
[l s ps & concurrent game with winning conditions, so that p =, ¢ iff the game
[¢] s p has a winning strategy.

The denotation as a game is defined by structural induction:

(Q,{@}) ifp':M R(mla"'vxk)a
(2,2) otherwise.

[[R(:vl,--nxk)}]Mp={

le AYlup = [elup® [¢]mp
lovlup=lelup B [Ylup
[=elap = ([e]np)*

[[Elx. ‘PHM/O: @ [[LP]]MP[U/w]

veVar

[Vz. ¢lup= © [eluplv/z].

UGVM

We use p[v/z] to mean the environment p updated to assign value v to variable
x. The game (@, {@}) the unit w.r.t. ® is the game used to denote true and the
game (@, {@}) the unit w.r.t. %% to denote false. Denotations of conjunctions and
disjunctions are denoted by the operations of ® and % on games, while negations
denote dual games. Universal and existential quantifiers denote prefized sums
of games, operations which we now describe.

The prefixed game @.(A, W) comprises the event structure with polarity 8.4
in which all the events of A are made to causally depend on a fresh +ve event @.
Its winning conditions are those configurations z € C*(@.4) of the form {®}uy
for some y € W. The game @,y (Ay, W,) has underlying event structure with
polarity the sum (=coproduct) ¥, 8.4, with a configuration winning iff it
is the image of a winning configuration in a component under the injection to
the sum. Note in particular that the empty configuration of @,y G, is not
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winning—Player must make a move in order to win. The game O, G, is
defined dually, as (@,cy G3)*. In this game the empty configuration is win-
ning but Opponent gets to make the first move. More explicitly, the prefixed
game B.(A, W) comprises the event structure with polarity 8.4 in which all the
events of A are made to causally depend on the previous occurrence of an op-
ponent event B, with winning configurations either the empty configuration or
of the form {8} Uy where y e W. Writing G, = (A,, W, ), the underlying event
structure of ©,cy Gy is the sum Y, 8.4, with a configuration winning iff it
is empty or the image under injection of a winning configuration in a prefixed
component.
It is easy to check by structural induction that:

Proposition 10.33. For any formula ¢ the game [¢]np is well-founded and
race-free (i.e. satisfies Aziom (race-free)), so a determined game by the result
of the last section.

The following facts are useful for building strategies.
Proposition 10.34.

(i) If 0 = S - A is a strategy in A and 7 : T — B is a strategy in B, then
ollr:S||T — A||B is a strategy in A|B.

(i) If 0 : S > T is a strategy in T and 7 : T — B is a strategy in B, then
their composition as maps of event structures with polarity 7o : S - B is
a strategy in B.

Proof. Tt is easy to check that the properties of receptivity and innocence are
preserved by parallel composition and composition of maps. O

There are ‘projection’ strategies from a tensor product of games to its com-
ponents:

Proposition 10.35. Let G = (A,Wg) and H = (B,Wpg) be race-free games
with winning conditions. The map of event structures with polarity

idat|@cp: AT|Cp ~ A BB
s a winning strategy pg : GO H —=H. The map of event structures with polarity
idp:||@a:B*[|(Cq > B*||AT[|Az A*||B*| A
is a winning strategy pc : G H—=G.

Proof. By Proposition 10.34, as id 41 is a strategy in A* and ~p is a strategy in
B*||B the map py =ida: || @ p is certainly a strategy in A*||B*| B.

We need to check that py is a winning strategy in G ® H — H. Consider x,
a +-maximal configuration of A*||(Cp. As B is race-free, the copy-cat strategy
~p is winning in H — H. Consequently if x images to a winning configuration in
G ® H on the left of G® H — H it will image to a winning configuration in H on
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the right of G@ H — H. (Recall a winning configuration of G ® H is essentially
the union of a winning configuration in G together with a winning configuration
in H.) Consequently, 2 images to a winning configuration in G ® H — H, as is
required for py to be a winning strategy.

The strategy p¢ is defined analogously but for the isomorphism B*||A*|| A
A*||B*||A which does not disturb its winning nature. O

The following lemma is used to build and deconstruct strategies in prefixed
sums of games. The lemma concerns the more basic prefixed sums of event
structures. These are built as coproducts Y ,.; ¢.B; of event structures e.B; in
which an event e is prefixed to B;, making all the events in B; causally depend
on e.

Lemma 10.36. Suppose f: A — Y,.;®.B; is a total map of event structures,
with codomain a prefixed sum. Then, A is isomorphic to an prefived sum, A =
Yjes ®-Aj, and there is a function v : J — I and total maps of event structures

fi+ Aj = By for which
stJ .'Aj = A
['-fj]jsll
Yier®-Bi
commutes.

Proof. Let J be the subset of events of A whose images are prefix events e in
Yicr®-Bi. As f is a map of event structures any distinct pairs of events in J
are inconsistent. Moreover, every event of A is <4-above a necessarily unique
event in J. It follows that the events of J are <s-minimal with A= ¥, ;e.4;;
the event structure A; is A/{j}, that part of the event structure strictly above
the event j. Each event j € J is sent to a unique prefix event f(j) in Y ;s ®.B;.
Thus f determines a function r: J — I and maps f; : A; — B, ;) for all j € J.
By construction the map f is reassembled, up to isomorphism, as the unique
mediating map [e.f;] es for which

in?
o A; - Yies o A; = A

o.fjl/ [O-fj]jsJL /

0. B.(jy —> Xier *-Bi
()

commutes for all j e J. O

Lemma 10.37. Let G,H,G,, where v € V, be race-free games with winning
conditions. Then,

(i) G® H has a winning strategy iff G has a winning strategy and H has a
winning strategy.
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(i) @yev Gy has a winning strategy iff G, has a winning strategy for some
veV.

(iii) Oyev Gy has a winning strategy iff G, has a winning strategy for allv e V.
If in addition G and H are determined,

(iv) G® H has a winning strategy iff G has a winning strategy or H has a
winning strategy.

Proof. Throughout write G, = (A, W,), where ve V.

(i) ‘Only if: If G ® H has a winning strategy o : (&,{0})—>=G ® H, then the
compositions pg®o and py©®o provide winning strategies in G and H, respec-
tively. ‘If’: If G = (A,W¢) and H = (B, Wpg) have winning strategies given as
maps of event structures with polarity ¢ : S - A and 7:T — B then the map
ol|T:S||T - A|B is a winning strategy in G ® H.

(ii) ‘Only if’: Suppose o : S — ¥ .y 8.4, is a winning strategy in @,y Gy
As @& is not winning in the game, S must be nonempty. By Lemma 10.36, S
decomposes into a prefixed sum necessarily nonempty and of the form } ;. ; 8.5
with maps, now necessarily total maps of event structures with polarity, o; :
Sj = A,(;)- Because o is winning any such map will be a winning strategy in
Gu(y- ‘If’: Suppose o, : S, = A, is a winning strategy in G,. Prefixing we
obtain ®.0, : 8.5, - B.4,, a winning strategy in B.G,. Composing with the
winning ‘injection’ strategy In, : 8.G, —= Y,y B.G, defined below we obtain a
winning strategy in @, G,. The injection strategy is built from the injection
map of event structures with polarity

M, @A, - Z m.A,.

veV
as the composite map
T A, idg. a,)Lll inw
Ing: Cga, ——— > (B.A4,)"] 8.4, ———"(8.4,)" || Spey B.A, .

Proposition 10.34 is used to show In, is a strategy. It can be seen that in, is
both receptive and innocent so a strategy in ¥,y 8.4,. The map idg 4,): is a
strategy. Hence id(g a,):[| in, is a strategy. As the composition of two strategy
maps, In, is a strategy in (8.4, )*|| X ey B-A,. It is a winning strategy because,
as is easily seen from the explicit composite form of In,, the image under In,
of a +-maximal configuration in (Cg 4, is winning.

(iii) ‘Only if : Defining P, =qo In,, where In,, : B.Gt —= @,y G is an instance
of an injection strategy defined above, we obtain by duality a winning strategy

P,:6G,—B8.G,,
veV
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for any v € V. Let v € V. By composition with P, a winning strategy in
O,y Gy yields a winning strategy in the component 8.G,. By Lemma 10.36
in a strategy o : S - 8.4, the event structure S decomposes into a prefixed
sum, where the prefixing events are necessarily all —ve. As o is receptive the
sum must be a unary prefixed sum of the form 8.5’. Lemma 10.36 provides a
map o’ : S’ - A,. From o being winning the map ¢’ will be a winning strategy
in G,. ‘If’: Suppose o, : S, - A, is a winning strategy in G,, for all v € V.
Prefixing we obtain winning strategies 8.0, : 8.5, - 8.4, in 8.G,.. Forming the
sum Yoy 5.0y 1 Dy B.Sy & B0yt Y B.4, we obtain a strategy winning in

evev Gv-

(iv) Now suppose G and H are determined. ‘If’: The dual winning strategies
Pe  G—=G B H and py. : H—=G % H compose with a winning strategy
(2,{@})—=G, or respectively a winning strategy (@,{@})—H, to yield a
winning strategy (@,{@})—=G % H. ‘Only if : Suppose G % H has a winning
strategy. Then G* ® H* = (G % H)* has no winning strategy. Hence by (i), G*
has no winning strategy or H* has no winning strategy. From determinacy, G
has a winning strategy or H has a winning strategy. O

Theorem 10.38. For all predicate-calculus formulae @ and environments p,
p Ex @ iff the game [@]mp has a winning strategy.

Proof. By Proposition 10.33 the games [¢]p obtained from formulae ¢ are
race-free and determined. The proof is by structural induction on .

The base case where ¢ is R(x1,-+,x)) is obvious; the game (@,{@}) has as
(unique) winning strategy the map @ - @, while (&, @) has no winning strategy.

For the case ¢ A1), reason

PEM A = pEyp & pEy Y
<= [¢]np has a winning strategy & [¢].p has a winning strategy, by induction,
<> [@]xp ® [¢]arp has a winning strategy, by Lemma 10.37(i),
<= [ AtY]wp has a winning strategy.

In the case p Vv 1,

PEMPVY <= pEyQoOr pELY
<= []p has a winning strategy or [¢],p has a winning strategy, by induction,
<~ [¢]up B [¥]mp has a winning strategy, by Lemma 10.37(iv),

< [ A1) up has a winning strategy.

In the case —p,

pEM =P = PP
<= []ap has no winning strategy, by induction,

< ([]mp)" has a winning strategy, by determinacy.
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In the case Jzx. ¢,

pEy . <> plv/x] =y @ for some veV
< [¢]up[v/z] has a winning strategy, for some v € V., by induction,

> @Pleluplv/z] has a winning strategy, by Lemma 10.37(ii),
veV

<= [Jz.¢]mp has a winning strategy.
In the case Vx. ¢,

pEy V.o < plvfz]Ey plorallveV
< [¢]up[v/z] has a winning strategy, for all v € V, by induction,

— O[¢luplv/z] has a winning strategy, by Lemma 10.37(iii),
veV

!

[Vz.p]wp has a winning strategy.
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Chapter 11

Borel determinacy

11.1 Introduction

We show the determinacy of concurrent games with Borel sets as winning con-
ditions, provided they are race-free and bounded-concurrent. Both restrictions
are necessary. The proof of determinacy of concurrent games proceeds via a
reduction to the determinacy of tree games, and the determinacy of these in
turn reduces to the determinacy of traditional Gale-Stewart games.

11.2 Tree games and Gale-Stewart games

We introduce tree games as a special case of concurrent games, traditional Gale-
Stewart games as a variant, and show how to reduce the determinacy of tree
games to that of Gale-Stewart games. Via Martin’s theorem for the determinacy
of Gale-Stewart games with Borel winning conditions we show that tree games
with Borel winning conditions are determined.

11.2.1 Tree games

Definition 11.1. Say FE, an event structure with polarity, is tree-like iff it is
race-free, has empty concurrency relation (so < forms a forest) and is such that
polarities alternate along branches, i.e. if e — ¢’ then polg(e) # polg(e’).

A tree gameis (E, W), a concurrent game with winning conditions, in which
FE is tree-like.

Proposition 11.2. Let E be a tree-like event structure with polarity. Then, its
configurations C(E) form a tree w.r.t. . Its root is the empty configuration @.
Its (mazimal) branches may be finite or infinite; finite sub-branches correspond
to finite configurations of E; infinite branches correspond to infinite configu-

rations of E. Its arcs, associated with r—c 2, are in 1-1 correspondence with
events e € B. The events e associated with initial arcs 3—c x all share the same

165
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polarity. Along a branch

€1 €2 €3 €4 €i+1
g—Cx1—Cxro—C---—Cx;—C---

the polarities of the events ey, es,. .., e;, ... alternate.

Proposition 11.2 gives the precise sense in which ‘arc,” ‘sub-branch’ and
‘branch’ are synonyms for ‘events,’ ‘configurations’ and ‘maximal configurations’
when an event structure is tree-like. Notice that for a non-empty tree-like event
structure with polarity, all the events that can occur initially share the same
polarity.

Definition 11.3. We say a a non-empty tree game (F,W) has polarity + or
— according as its initial events are 4+ve or —ve. It is convenient to adopt the
convention that the empty game (@, @) has polarity +, and the empty game
(2,{2}) has polarity —.

Observe that:

Proposition 11.4. Let f : S - A be a total map of event structures with
polarity, where A is tree-like. Then, S is also tree-like and the map [ is innocent.
The map f is a strategy iff it is receptive.

Proof. As f preserves the concurrency relation, being a map of event structures,
S must be tree-like. Innocence of f now follows so that only its receptivity is
required for it to be a strategy. O

11.2.2 Gale-Stewart games

For the sake of uniformity we shall present Gale-Stewart games as a slight variant
of tree games, a variant in which all maximal configurations of the tree game
are infinite, and where Player and Opponent must play to a maximal, infinite
configuration.

Definition 11.5. A Gale-Stewart game (G, V') comprises

e a tree-like event structure G for which all maximal configurations are
infinite, and

e a subset V of infinite configurations—the winning configurations.

A winning strategy in a Gale-Stewart game (G,V) is a deterministic strategy
0 : S8 — G such that oz € V for all maximal configurations x of S.

This is not how a Gale-Stewart game and, particularly, a winning strategy in
a Gale-Stewart game are traditionally defined. However, because the strategy
o is deterministic it is injective as a map on configurations, so corresponds to
the subfamily of configurations 7' = {ox | € C*(S)} of C*°(G). The family T
forms a subtree of the tree of configurations of G. Its properties, detailed below,
reconcile our definition with the traditional one.
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Proposition 11.6. A winning strategy in a Gale-Stewart game (G,V) corre-
sponds to a non-empty subset T € C*(G) such that

(i) Vo,yeC=(G). ycweT = yeT,

(ii) Vz,yeC(G). zeT & s—cy = yeT,
(iii) Y, y1,y2 € T. t—cyy & r—Cyp = y1 =ya, and
(iv) all c-mazximal members of T are infinite and in V.

Proof. Given o, a winning strategy in the Gale-Stewart game we define T' as
above. Then, (i) follows because o is a map of event structures and G is tree-
like; (ii) and (iii) follow from o being receptive and deterministic; (iv) is a
consequence of all winning configurations being infinite. Conversely, given T" a
subfamily of C*(G) satisfying (i)-(iv) it is a relatively routine matter to con-
struct a tree-like event structure S and map o : S - G which is a winning
strategy in (G, V). O

A Gale-Stewart game (G, V) has a dual game (G,V)* =4t (G*,V*), where
V* is the set of all maximal configurations in C*°(G) not in V. A winning
strategy for Opponent in (G,V) is a winning strategy (for Player) in the dual
game (G, V)*.

For any event structure A there is a topology on C*(A) given by the Scott
open subsets. The c-maximal configurations in C*°(A) inherit a sub-topology
from that on C*(A). The Borel subsets of a topological space are those subsets
of configurations in the sigma-algebra generated by the Scott open subsets.
Donald Martin proved in his celebrated theorem [25] that Gale-Stewart games
(G,V) are determined, i.e. there is a either a winning strategy for Player or
a winning strategy for Opponent, when V is a Borel subset of the maximal
configurations of C*°(A).

11.2.3 Determinacy of tree games

We show the determinacy of tree games with Borel winning conditions through
a reduction of the determinacy of tree games to the determinacy of Gale-Stewart
games.

Let (E,W) be a tree game. We construct a Gale-Stewart game GS(E, W) =
(G,V) and a partial map proj : G — E. The events of G are built as sequences of
events in F together with two new symbols 4~ and §* decreed to have polarity —
and +, respectively; the symbols 6~ and §* represent delay moves by Opponent
and Player, respectively.

Precisely, an event of G is a non-empty finite sequence

[617"',61@]

of symbols from E u {§7,§*} where: e; has the same polarity as (E,W); po-
larities alternate along the sequence; and for all subsequences [e1, -+, e;], with
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i<k,
{617"'7ei} nE EC(E)

The immediate causal dependency relation of G is given by

[61,"',€k] <a [elv "',6k7€k+1:|

and consistency by compatibility w.r.t. <g. Events [e,-,ex] of G have the
same polarity as their last entry e;. It is easy to see that G is tree-like, and
that the only maximal configurations are infinite (because of the possibility of
delay moves).

The map proj : G - E takes an event [e1,--,ex] of G to ey if ey € E,
and is undefined otherwise. The winning set V consists of all those infinite
configurations x of G for which projz e W.

We have constructed a Gale-Stewart game GS(E, W) = (G, V). The con-
struction respects the duality on games.

Lemma 11.7. Letting (E,W) be a tree game,
GS((E,W)*) = (GS(E,W))*.
Proof. Directly from the definition of the operation GS. O
Suppose o : S — G is a winning strategy for (G, V). The composite

ST g (F1)

is a partial map of event structures with polarity. Letting D ¢ .S be the subset
of events on which proj o o is defined, the map proj o o factors as

oo

S SiD

E (F2)

where: the first partial map acts like the identity on events in D and is undefined
otherwise—it sends a configuration = € C*(S) to xn D € C*(S | D); and oy
is the total map that acts like 0 on D. We shall show that oy is a (possibly
nondeterministic) winning strategy for (E, W).

Lemma 11.8. The map oy is a winning strategy for (E,W).

Proof. Write Sy =ge¢ S| D. By Proposition 11.4, for o¢ : Sg - E to be a strategy
we only require its receptivity. From the construction of G and proj,

projx—yin C(E) = 32’ eC(G). x—<a' & proja’ =y.

This together with the receptivity of o entails the receptivity of og.

To show o is winning, suppose z is a +-maximal configuration of Sy; we
require ogz € W. We will show this by exhibiting an infinite configuration
x € C*(S) such that x n D = z. Then, according to the factorisation (F2),
T~ 2z~ 00z, so we will have oyz = proj ox. The configuration = being infinite
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will ensure oz € V because ¢ is winning in the Gale-Stewart game (G,V). By
definition, ox € V implies projox € W, so ogz € W.

It remains to exhibit an infinite configuration = € C*°(.S) such that xn D = z.
When z is infinite this is readily achieved by defining x =4t [2]s € C®(S).
Suppose z is finite. Define xg =qef [2]s € C(S), ensuring zon D = 2. We
inductively build an infinite chain

s1 So Sn Sn+1
LO—C L] —C o Iy oo

in C(S) where all the events s,, are ‘delay’ moves not in D. Then z,, n D = z for
all n € w. By the definition of a winning strategies in Gale-Stewart games, no x,,
can be c-maximal in C(.S). For each Opponent move s,, choose to delay—as we
may do by the receptivity of o. For each Player move s,, we have no choice as
only a delay move is possible—otherwise we would contradict the +-maximality
assumed of z. Taking x =gef U,, €5, produces an infinite configuration x € C*(S)
such that x n D = z, as required. O

Corollary 11.9. Let H be a tree game. If the Gale-Stewart game GS(H) has
a winning strategy, then H has a winning strategy.

Theorem 11.10. Tree games with Borel winning conditions are determined.

Proof. Assume (E,W) is a tree game where W is a Borel set. Construct
GS(E,W) = (G,V) as above. The function proj, acting as x + proj x on config-
urations, is easily seen to be a Scott-continuous function from C*(G) — C*(E).
It restricts to a continuous function from the subspace of maximal configurations
in C*(G). Hence V, as the inverse image of W under this restricted function, is
a Borel subset. By Martin’s Borel-determinacy theorem [25], the game (G, V)
is determined, so has either a winning strategy for Player or a winning strategy
for Opponent.

Suppose first that GS(E, W) has a winning strategy (for Player). By Corol-
lary 11.9 we obtain a winning strategy for (E,W). Suppose, on the other
hand, that GS(E, W) has a winning strategy for Opponent, i.e. there is a win-
ning strategy in the dual game GS(FE,W)*. By Lemma 11.7, GS((E,W)*) =
GS(E,W)* has a winning strategy. By Corollary 11.9, (E,W)* has a winning
strategy, i.e. there is a winning strategy for Opponent in (E,W). O

11.3 Race-freeness and bounded-concurrency

Not all games are determined; We have seen the necessity of race-freeness for
the determinacy of well-founded games. However, a determinacy theorem holds
for well-founded games (games where all configurations are finite) which are
(race - free)

=t & ate & pol(a) # pol(a') = xu{a,a’} eC(A). (Race- free)

However race-freeness is not sufficient to ensure determinacy when the game is
not well-founded, as is illustrated in the following example.
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Example 11.11. Let A be the event structure with polarity consisting of one
positive event @ which is concurrent with an infinite chain of alternating negative
and positive events, i.e. for each ¢ we have both @ co ®; and & co©;, i € N,

A= @ ©1 —P>®1 —»Os —>Dy —b--
and Borel winning conditions (for Player) given by
W = {@, {91, @1}, ooy {61, ®1,...,9;, EBZ'}, ,A}

So, Player wins if (i) no event is played, or (ii) the event @ is not played and the
play is finite and finishes in some @;, or (iii) all of the events in A are played.
Otherwise, Opponent wins.

Player does not have a winning strategy because Opponent has an infinite
family of spoiler strategies, not all be dominated by a single strategy of Player.
The inclusion maps 7w : Too — A and 7; : T; — A, i € N, are strategies for
Opponent where T =ger A and T} =qof AN {e' € A]©; <€'}, for i e N.

Any strategy for Player that plays @ is dominated by some strategy 7; for
Opponent; likewise, any strategy for Player that does not play @ and plays
only finitely many positive events @, is also dominated by some strategy 7; for
Opponent. Moreover, a strategy for Player that does not play @ and plays all
of the events ®; in A is dominated by 7.,. So, Player does not have a winning
strategy in this game. Similarly, Opponent does not have a winning strategy
in A because Player has two strategies that cannot be both dominated by any
strategy for Opponent. Let og : S - A and og : S - A be strategies for
Player such that Sg =qef A~ {@©} and Sg =qer A.

On the one hand, any strategy for Opponent that plays only finitely many
(possibly zero) negative events ©; is dominated by og; on the other, any strategy
for Opponent that plays all of the negative events ©; in A is dominated by og.
Thus neither player has a winning strategy in this game! O

In the above example, to win Player should only make the move & when Op-
ponent has played an infinite number of moves. We can banish such difficulties
by insisting that in a game no event is concurrent with infinitely many events
of the opposite polarity. This property is called bounded-concurrency:

VyeC=(A). Veey. {e' ey |ecoe’ & pol(e) + pol(e')} is finite.
(Bounded - concurrent)
Bounded concurrency is in fact a necessary structural condition for determinacy
with respect to Borel winning conditions.

Notation 11.12. For a concurrent game A with configurations y,y’, write
mazy(y',y) iff v is ®-maximal in y, i.e. y—c & pol(e) =+ = e ¢ y; in
a dual way, we write maz.+(y',y) iff y' is not ®-mazimal in y. We use max_
analogously when pol(e) = —.

We show that if a countable, race-free A is not bounded-concurrent, then
there is Borel W so that the game (A, W) is not determined. Since A is not
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bounded-concurrent, there is y € C*°(A) and e € y such that e is concurrent with
infinitely many events of opposite polarity in y. W.l.o.g. assume that pol(e) = +,
that y \ {e} is a configuration and that y = [e]u [{a €y | pol4(a) =-}]. The
following rules determine whether 3" € C*(A) is in W or L:

1.y 2y=1y eW;
2.y cy&kecy =y’ cl;

yYecy&ety & mar,(y,y~{e}) &maz_(y',y~{e}) =y ¢ W;

= W

ycy&ety &maz,(y',y~{e}) or maz_(y',y~{e}) =y e L;

5. 92y & (yny)c y =y e W;

[=p)

Y Ry& Yoy Ty =y el;
7. otherwise assign y’ (arbitrarily) to W.

No 3’ is assigned as winning for both Player and Opponent: the implications’
antecedents are all pair-wise mutually exclusive.! The countability of A is im-
portant in showing that W is Borel.

Lemma 11.13. Let A be a countable race-free game. If A is not bounded-
concurrent, then there is Borel W < C*(A) such that the game (A, W) is not
determined.

Proof. The set W is Borel because it is defined by clauses such as 3’ ¢ y which
have extensions, in this case {y' € C*(A) | ¢’ c y}, which are Borel sets by virtue
of the countability of A. For instance, a clause such as e € y’ has extension

{y'ec™(A) leecy'} =[e],

a basic open set. In general, for 2 € C(A), we use T to denote the basic open
set {z' eC*(A) | zca’'}. The clause 3’ 2 y, equivalent to Va € y.a € y’, has

extension _
{y eC=(A) |y 2y} =N [al;
aey

because A is assumed countable so is y and the intersection is an intersection
of countably many open sets. To see that {y' € C*(A) | y’ cy} is Borel is a bit
more complicated. Observe that

{y eC™(A) |y ey} = N(C=(A)~ [a]) nUE™(A)~ [al);

ag¢y aey

the big intersection is the extension of 4’ € y and the big union that of Ja € y. a ¢
y'—because A is assumed countable the intersection and union are countable.

We first show:

IThe winning conditions W in Example 11.11 are instance of this scheme.
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(i) If o is a winning strategy for Player then y is o-reachable, i.e. 0 : S - A,
there is z € C*(5) s.t. ox = y.

(ii) If 7 is a winning strategy for Opponent then y is 7-reachable.

Write Ye =def Y N {6}

(i) This part uses rules (2), (4) and (6). Suppose o : S - A is a winning
strategy for Player. There is a S-maximal configuration of S s.t. oxg C y (via
Zorn’s lemma). By receptivity, oz is —-maximal in y. As ¢ is winning, there
is a +-maximal x € C*(S) with zg ¢* z and ocx € W (Zorn).

If oz 2 y then necessarily ox 2* y and by a general property of strategies
we obtain y is o-reachable. For completeness we include the argument. Take
x' =qef {s€x | 0(s) ¢ (ox) N y}. Suppose s’ — s in 2. Then

o(s") € (ox) Ny = o(s) e (0z) Ny
by +-innocence. Hence its contrapositive, viz.
o(s) ¢ (cx) Ny = o(s') ¢ (0x) Ny,

so that s € 2’ implies s’ € z’. Thus, being down-closed and consistent, =’ €
C>=(S), with oz’ =y from the definition of z’.

The remaining case ox ? y is impossible. Suppose xg # x, so xg ¢ . Then
we also have (ox) Ny c* oz, using the Cc-maximality of zg. By (6), oz € L—a
contradiction. Suppose, on the other hand, that zy = z. If e € oz, by (2) we
obtain the contradiction cx € L. If e ¢ ox, by (4) we obtain the contradiction
ox € L; recall ox = ox¢ is —-maximal in y so in y. when e ¢ oz.

(ii) This part uses rules (1), (3) and (5). Suppose 7 : T — A* is a winning
strategy for Opponent. It is sufficient to show g, is 7-reachable as then y will
also be 7-reachable by receptivity. Assume to obtain a contradiction that y. is
not T-reachable. Then there is a c-maximal 2 € C*°(T') s.t. Tz C y (via Zorn’s
lemma). By assumption, 7x¢ ¢ y. By receptivity, 7x¢ is +-maximal in y. and
necessarily 7xg is not —-maximal in y.. By (3), 7@g € W. As 7 is winning, there
is a —maximal z € C*°(T) with zo €~ « and 7o € L (Zorn); from the latter
xo € . We claim that by (1)&(5), 7x ¢ y., contradicting the c-maximality of
xg. To show the claim, suppose to obtain a contradiction that 7z ¢ y.. Then
Tr ¢y, as eis +ve ,so (rx)nyc” 7x. By (1), 7z 2 y. Now by (5), 7o € W, the
required contradiction.

To conclude the proof we show there is no winning strategy for either player.

If o is a winning strategy for Player then by (i) there is € C*°(S) s.t. ox = y;
in particular there is s, € x s.t. o(se) = e. Define the inclusion map 7y : A* |
(o[se]su{ae At | pols(a) =+} > At. Then 79 s a strategy for Opponent for
which there is y’ € (o, 7) with e € ¢y’ and where y’ only contains finitely many
—events. Either ¢y’ c y whence y’ € L by (2), or y’ ¢ y whereupon (y' ny) c* y’
so y' € L by (6). Hence as 1y is a strategy for Opponent not dominated by o
the latter cannot be a winning strategy for Player.
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If 7 is a winning strategy for Opponent then y is 7-reachable. Define the
inclusion map o¢: A} (yu{ae A | pol4(a) =-} = A. Then oy is a strategy for
Player for which there is y’ € (09, 7) with ¥’ 2 y. By (1) ¥’ € W, so o9 is not
dominated by 7, which cannot be a winning strategy for Opponent. O

11.4 Determinacy of concurrent games

We now construct a tree game TG(A, W) from a concurrent game (A, W). We
can think of the events of TG(A, W) as corresponding to (non-empty) rounds
of —ve or +ve events in the original concurrent game (A, W). When (A, W) is
race-free and bounded-concurrent, a winning strategy for TG(A, W) will induce
a winning strategy for (A, W). In this way we reduce determinacy of concurrent
games to determinacy of tree games.

11.4.1 The tree game of a concurrent game
From a concurrent game (A, W) we construct a tree game
TG(A, W) =(TA, TW).

The construction of TA depends on whether @€ W.
In the case where @ € W, define an alternating sequence of (A4, W) to be a
sequence
@ a1 C @y CF Xy € Lo € Tojyp C

of configurations in C* (A)—the sequence need not be maximal. Define the —ve
events of TG(W, A) to be

(D, 21,22, ..., Tap-2, Tag-1] ,
finite alternating sequences of the form
- + _ + -
JC 11C TaC - C Top2C Tk-1,
and the +ve events to be
(D, 21,22, ..., Top-1, T2k ],
finite alternating sequences
- + - - +
gC 3 C x2C - C Tgg-1 C Tk,

where k > 1. The causal dependency relation on TA is given by the relation of
initial sub-sequence, with a finite subset of events being consistent iff the events
are all initial sub-sequences of a common alternating sequence.

It is easy to see that a configuration of TA corresponds to an alternating
sequence, the —ve events of TA matching arcs xop_o €~ Zo,_1 and the +ve events
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arcs Tog-1 € Tok. As such, we say a configuration y € C*°(TA) is winning, and
in TW, iff y corresponds to an alternating sequence

& ct T; c” Tis1 ct ...

for which U; x; € W.
In the case where @ ¢ W, we define an alternating sequence of (A, W) as a
sequence

+ - + - + - +
JC X1 C TyC = C T C T2j41 C T2j42 C -

of configurations in C*°(A). In this case, the —ve events of TG(W, A) are finite
alternating sequences ending in xoy, while the +ve events end in xo;_1, for k > 1.
The remaining parts of the definition proceed analogously.

We have constructed a tree game TG(A, W) from a concurrent game (A, W).
The construction respects the duality on games.

Lemma 11.14. Let (A, W) be a concurrent game.
TG((A,W)*) = (TG(A,W))*.
Proof. From the construction TG, because alternating sequences
& ctpy T mpg
in C*(A) correspond to alternating sequences
& T myctmpg C
in C=(A*). O

Proposition 11.15. Suppose (A, W) is a bounded-concurrent game. Mazimal
alternating sequences have one of two forms,

(i) finite:

@ T xpC w7y
where x; is finite for all 0 <i <k (where possibly xy, is infinite), or
(i41) infinite:
g . ct Ti C Tisl ct .
where each x; is finite.

Proof. Otherwise, taking the first infinite x;, within configuration z;.1 there
would be an event of x;;1 \ x; concurrent with infinitely many events of x; of
opposite polarity—contradicting the bounded-concurrency of A. O
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11.4.2 Borel determinacy of concurrent games

Now assume that the concurrent game (A, W) is race-free and bounded-concurrent.
Suppose that str:T — TA is a (winning) strategy in the tree game TG (A, W).
Note that T is necessarily tree-like. We construct op : S - A, a (winning)
strategy in the original concurrent game (A,W). We construct S indirectly,
from a prime-algebraic domain Q, built as follows. For technical reasons, in the
construction of Q it is convenient to assume—as can easily be arranged—that

An(AxT)=g.
Via str a sub-branch
t= (tly'",tia"')
of T determines a tagged alternating sequence
ti-1 t; tiv1

_ 4 i
g -+ C X1 C x; C

where str(t;) = [@,...,%i-1,2;]. (Informally, the arc ¢; is associated with a
round extending x,;_1 to x; in the original concurrent game.)
Define ¢(f) to be the partial order comprising events

U{(zi ~2421) | £ is a —ve arc of £} U
U{(zi ~2im1) x {t;} | ti is a +ve arc of £}
—s0 a copy of the events U; z; but with +ve events tagged by the +ve arc of

T at which they occur?’—with order a copy of that UU; z; inherits from A with
additional causal dependencies pairs from

riq x ((wiNwior) x {ti})

—making the +ve events occur after the —ve events which precede them in the
alternating sequence.

Define the partial order Q as follows. Its elements are partial orders ¢, not
necessarily finite, for which there is a rigid inclusion

q = q(tl7t2a"'7ti7"')a

for some sub-branch (¢1,ts, -, t;,+~+) of T. The order on Q is that of rigid
inclusion. Define the function o : @ - C*(A) by taking

og={acA|ais-ve& acqtu{acA|IteT. ais +ve & (a,t) € q}

for ¢ € Q. We should check that og is indeed a configuration of A. Clearly,
0q(f) = Ujer z; where
ti-1 tq ti+1
[ D c Ti_1 C+ x; c”
is the tagged alternating sequence determined by £ =gef (t1,,t;,--). Any ¢ for
which there is a rigid inclusion ¢ = ¢(f) will be sent to a sub-configuration of
Ui 2.
21t is so that the two components remain disjoint under tagging that we make the technical
assumption above.
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Proposition 11.16. Let (t1,--,t;,--) be a sub-branch of T, so corresponding
to a configuration {t1,--,t;,--} € C®(T). Then,

strity, - ti, -} €TW <= oq(t1, - ti,-) e W.
Proof. Let € =g (t1,,t;,-). We have str(t;) = [@,...,2;_1,2;] for some
@ - wicta; e

an alternating sequence of (A, W). Directly from the definitions of TW, q(%)
and o,

str{t} e TW <= |Jz; e W

— oq(f) e W.

We shall make use of the following proposition.

Proposition 11.17. For all q,q' € Q, whenever there is an inclusion of the
events of q in the events of ¢’ there is a rigid inclusion q - ¢'.

Proof. To see this, suppose the events of ¢ are included in the events of ¢’. To
establish the rigid inclusion ¢ < ¢’ we require that, for all a € ¢,b € ¢/,

b—wqa <= b—gya. @)

However, in the construction of ¢(t1,t2, -, t;,-+-) the only immediate dependen-
cies introduced beyond those of A are those of the form b — (a’,t), of tagged
+ve events on —ve rounds specified earlier in the branch on which the +ve arc ¢
occurs. This property is inherited by ¢ and ¢’ in Q. Thus in checking (}) we can
restrict attention to the case where b is —ve and a is +ve and of the form (a’,t)
for some a’ € A and arc t of T. The arc t determines a sub-branch ty,---,t; = ¢
of T" and a corresponding tagged alternating sequence

tr-1 t;i
g - C X1 C Tk

So in this case,

b—+4a < bis <q-maximal in z}_; & a’ is <4-maximal in xj \ Tp_1

= b—ya,
which ensures (1), and the proposition. O

Notation 11.18. Proposition 11.17, justifies us in writing ¢ for the order of Q.
We shall also write ¢ €~ ¢' when all the events in ¢’ above those of ¢ are —ve,
and similarly ¢ ¢* ¢’ when all the events in ¢’ above those of ¢ are +ve. O

The following lemma is crucial and depends critically on (A4, W) being race-
free and bounded-concurrent.
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Lemma 11.19. The order (Q,<) is a prime algebraic domain in which the
primes are precisely those (necessarily finite) partial orders with a mazimum.

Proof. Any compatible finite subset X of Q has a least upper bound: if all
the members of X include rigidly in a common ¢ then taking the union of
their images in ¢, with order inherited from ¢, provides their least upper bound.
Provided Q has least upper bounds of directed subsets it will then be consistently
complete with the additional property that every ¢ € Q is the least upper bound
of the primes below it—this will make Q a prime algebraic domain.

To establish prime algebraicity it remains to show that Q has least upper
bounds of directed sets.

Let S be a directed subset of Q. The +ve events of orders g € S are tagged
by +ve arcs of T. Because S is directed the +ve tags which appear throughout
all g € S must determine a common sub-branch of T'; viz.

Ezdef (t17t2) "'ati,"') .

Every +ve arc of the sub-branch appears in some ¢ € S and all —ve arcs are
present only by virtue of preceding a +ve arc. The sub-branch ¢ may be

(1) infinite and necessarily a full branch of T, if the elements of S together
mention infinitely many tags;

(2) finite with ¢(f) infinite, and necessarily finishing with a +ve arc;

(3) finite and non-empty with ¢(#) finite, and necessarily finishing with a +ve
arc; or

(4) empty with £ = ().

(1) Consider the case where f forms an infinite branch of 7. We shall argue that
for all g € S, there is a rigid inclusion

q=q(l).

Then, forming the partial order |US comprising the union of the events of all
q € S with order the restriction of that on q() we obtain a rigid inclusion

US = q(),

so a least upper bound of S in Q.

Let g € S. By Proposition 11.17, to establish the rigid inclusion ¢ < ¢(f) it
suffices to show the events of ¢ are included in those of ¢(#). From the nature
of the sub-branch determined by S, we must have that all the +ve events of ¢
are included in those of q(#)—all 4+ve events of ¢ are tagged by a +ve arc of .
Suppose, to obtain a contradiction, that there is some —ve event a of ¢ not in
q(t). For every +ve arc t; in { there is ¢; € S with a +ve tagged event (a;,t;).
Let

Icqn {i|t; is a +ve arc of £}.



178 CHAPTER 11. BOREL DETERMINACY

As S is directed, there is an upper bound in S of

{a}ufai [ iel}.

It follows that
{a}u{a; |iel}eCony,

Hence, forming the down-closure in A of {a} U {a; | t; is a +ve arc in t}, we
obtain
[{a}u{a; | t; is a +ve arc in £}] € C*(A).

Moreover it is a configuration which violates the assumption of bounded-concurrency—
the —ve event a is concurrent with infinitely many of the +ve events a;. From
this contradiction we deduce that the events of ¢ are included in the events of

q(®).

(2) Consider the case where { is a finite branch (¢, -,z ), where necessarily t
is a +ve arc, and where ¢(¥) is infinite. By bounded-concurrency, all q(t1,---,t;),
for 0 <i < k, are finite with only ¢() = ¢(t1, -, ¢;) infinite.

Let ¢ € S. By Proposition 11.17, we can show there is a rigid inclusion

q = q(?)

by showing all the events of ¢ are in ¢(t). Again, all the +ve events of ¢ are in
q(t). Suppose, to obtain a contradiction, that b € ¢ with b ¢ q(f), so b has to
be —ve. There is a member of S with an event tagged by t;. Thus, using the
directedness of S, there has to be ¢; € .S with ¢ € ¢g; and where ¢; has an event
tagged by t;. Because of the extra dependencies introduced in the construction
of q(f), all the —ve events of ¢(f) are included in ¢;. Note in addition that

[q7] < q(?)

because all the +ve events of ¢; are in ¢(f). We deduce

[ar]<™ a(®). (i)

Also,
[e7] < @, (i)
where the inclusion has to be strict because b € g; \ q(t). Consider the images

of (i) and (4i) in C*(A):
olgi]€" oq(t) and olgi]c oqr.

As A is race-free, we obtain the configuration x =4t oq(t) Uoq € C°(A) and
the strict inclusion
oq(t) < =,

making x a configuration which contains the —ve event b concurrent with in-
finitely many +ve events—the images of those tagged by tx. But this contradicts
the bounded-concurrency of A. Hence all the events of g are in ¢(£).
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As in case (1) we obtain a rigid inclusion

UsS = q(),

and a least upper bound of S in Q.

(3) The case where £ is a non-empty finite branch (t1,---,#) and ¢(f) is finite.
Again, t;, is necessarily a +ve arc. As S is directed, the set of events Uges 0gq
is a configuration in C*(A). Again, all the +ve events of any q € S are in ¢(%),
from which it follows that as sets,

(Uog)" coq(t).
qes

Hence, the down-closure

[((Uoa)]acoq() inC=(A). (i)

qeS

There is g1 € S with an event tagged by t;. Because of the extra dependencies
introduced in the construction of ¢(%), all the —ve events of ¢(f) are included in
q1. Consequently, all the —ve events of o¢(f) are included in Uges oq. From this
and (#41) we deduce

[(Uoa) ] oq(f) inC*(A). (iv)

qeS

Also, straightforwardly,

[(Ue)"]e Uog inC™(4). (v)

qeS qeS

From (iv) and (v), because A is race-free, we obtain the configuration

Y =def (0q(f) U L%Uq) eC”(A)

for which
oq(f) < yeC™(A).

But by receptivity of the original strategy str : T — TA, there is a unique
extension of the branch = (t1,--,t) to (t1,--,tr, trs1) in T such that

Jq(tla”'atk;tk+1) =Y.

W.r.t. this extension, forming the partial order U S comprising the union of the
events of all ¢ € S with order the restriction of that on q(t1,-, tk, tk+1), We
obtain a rigid inclusion

US = q(tr, - te trsr),
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so a least upper bound of S in Q.

(4) Finally, consider the case where £ = (). Then all ¢ € S consist purely of —ve
events. As S is directed, Ugesoq € C*°(A). If Ugesoq = @ we have US = ¢q().
Assume Uyges 0¢ is non-empty.

Suppose first that @ € W. We can form the alternating sequence

gc Jog.
qesS

By the receptivity of str: T — TA there is a unique 1-arc branch (¢;) of T with
Uges ¢ = oq(t1). Then US =q(t1).

Now suppose @ ¢ W. In this case all alternating sequences must begin
@ c* xq--- and consequently all initial arcs of T' must be +ve. We are assuming
Uges 0¢ is non-empty so contains some non-empty q. There must therefore be
a rigid inclusion ¢ < ¢(%) for some non-empty sub-branch 4 = (uq,---). Via str
the sub-branch 4 determines the alternating sequence @ c* x; ¢ ---. Noting
@ ™ Uges 0q, because A is race-free there is 21 UUgzes 0q € C*(A). Form the
alternating sequence

gctrcxmulog.
qeS

From the receptivity of str there is a sub-branch (u1,uy) such that 21UUzes 0g =
oq(uy,ub). We obtain US < q(uq,ub). O

Definition 11.20. Define S to be the event structure with polarity, with events
the primes of Q; causal dependency the restriction of the order on Q; with a
finite subset of events consistent if they include rigidly in a common element
of Q. The polarity of event of S is the polarity in A of its top element (recall
the event is a prime in Q). Define o : .S - A to be the function which takes a
prime with top element an untagged event a € A to a and top element a tagged
event (a,t) to a.

Lemma 11.21. The function which takes q € Q to the set of primes below q
in Q gives an order isomorphism Q = C*(S). The function g : S - A is a
strategy for which

T = C=(5)
C~(A)

commutes.

Proof. The isomorphism Q = C*(S) is established in [1]. The diagram is easily
seen to commute. Via the order isomorphism Q = C*°(S) we can carry out the
argument that og is a strategy in terms of @ and o. Innocence follows because
the only additional causal dependencies introduced in ¢() are of +ve events on
—ve events. To show receptivity, suppose ¢ € Q is finite and oq c™ y in C(A).
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There is a rigid inclusion q < ¢(£) for some t = (t1,--,¢;,--+) , a sub-branch of T
Let

tio1 t; tiv1
F - C T q C+ x; c”
be the tagged sequence determined by £.
First consider when (oq)* # @. Suppose zy is the earliest configuration at
which (0¢)* € z. Then, t; has to be +ve and

¢ (e N zp-1) x {te}) 2.

The latter entails
T, Coq

because of the extra causal dependencies introduced in the definition of ¢(f). Tt
follows that
(oq) Ny €F 2y .

Moreover, as (oq)* ¢ xy, we deduce

(0q)nap € 0q< y.
By race-freeness, 2 Uy € C(A) with

xp € zp Uy in C(A).
In fact x c” zp Uy as x;, Cogc” y. Now

@ ctapc LUy

is seen to form an alternating sequence, so a sub-branch of TA. From the
receptivity of str there is a unique sub-branch ti,...,¢,t,,,; of T which has
this alternating sequence as image. Take ¢’ to be the down-closure of ¥ in
q(t1,. .., tk,t},,). This gives the unique ¢’ such that ¢ € ¢’ and o¢’ = y.

Now consider when (cq)* = @. Then @ ¢~ ogc” y.

In the case where @ € W we may form the alternating sequence

gc y.

The receptivity of str ensures there is a unique 1-arc branch (u;) of T such that
oq(u1) =y.

In the case where @ ¢ W we also have @ ¢ TW. In this case all alternating
sequences must begin @ c* x1--- and consequently all initial arcs of 7" must be
+ve. Also, the empty configuration (or branch) of T cannot be +-maximal
because its image under str is the empty configuration (or branch) of TW—
impossible because str is a winning strategy. Thus there must be v, an initial,
necessarily +ve arc of T. Via str the sub-branch (v;) yields the alternating
sequence @ ¢ xq, say. As A is race-free we obtain 27 Uy € C*(A) and the
alternating sequence

@ctr c Uy,
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From the receptivity of str there is a unique sub-branch (vy,vs) of T for which
oq(vi,v2) = 21 Uy. Take ¢’ to be the down-closure of y in g(vi,v2). This
furnishes the unique ¢’ such that ¢ € ¢’ and o¢’ = y.

We have shown the receptivity of o, as required. O

Theorem 11.22. Suppose that str: T — TA is a winning strategy in the tree
game TG(A,W). Then oo :S — A is a winning strategy in (A, W).

Proof. For ¢ to be winning we require that ogx € W for any +-maximal x €
C>(S5). Via the order isomorphism Q = C*°(S) we can carry out the proof in Q
rather than C*°(S). For any ¢ which is +-maximal in Q (i.e. whenever ¢ c* ¢
in Q then ¢ = ¢') we require that og e W.

Let ¢ be +-maximal in Q. We will show that ¢ = ¢(4) for some +-maximal
branch @ of T. Certainly there is a rigid inclusion ¢ < ¢(f) for some sub-branch
£=(ty, t;,~) of T. Let

ti—1 tf’,, tit1
g - C Ti—1 C x; C

be the tagged sequence determined by t.
Consider the case in which the set ¢* is infinite. There are two possibilities.
Suppose first that
q+ N ((.2?1 N\ l‘i_1) X {tl}) *J.

for infinitely many +ve ¢;. Because of the extra causal dependencies introduced
in the definition of ¢(£), the set of —ve events ¢(f)” is included in ¢q. Hence
q €t q(t). But ¢ is +-maximal, so ¢ = ¢(£). The second possibility is that
(0q)* € xx, for some necessarily terminal configuration in the tagged alternating
sequence, which now has to be of the form

ti1 t; tiv1

@ o mjycta;c oy

Because of the causal dependencies in g(f), the set ¢(#)~ is included in q. Hence
q <" q(t), so q = q(t) because ¢ is +-maximal.

Now consider the case where the set ¢* is finite. Then the set (og)™, also
finite, must be included in some zj of the tagged alternating sequence, which
we may assume is the earliest. Then t; must be +ve. If og € q(¢1,-,t%), then
the set q(t1,++,tx)” is included in ¢—again because of the causal dependencies
there; and again ¢ €t ¢(t1,-,tx) so q = q(t1,+,tx) because ¢ is +-maximal.
Otherwise, x; ¢ 2 U (0gq) and we can extend the alternating sequence to

@ ctapcxpu(og).

From the receptivity of str there is a sub-branch t¢1,...,%x,t,,; of T which
has this alternating sequence as image. Now ¢ ¢* ¢(t1,...,tk,t,,1) SO ¢ =
q(t1,...,tk, t},,) from the +-maximality of g.

Thus any ¢ € @ which is +-maximal has the form ¢ = ¢(%) for some sub-
branch 4 of T. Any extension of % by a +-ve arc would yield a +-ve extension



11.4. DETERMINACY OF CONCURRENT GAMES 183

of g(i), contradicting the +-maximality of ¢. Therefore @ is +-maximal, so its
image str{i} is in TW, as str is a winning strategy in (TG(A, W), TW). But,
by Proposition 11.16,

str{i} e TW <= oq(d)eW.
Hence, o0g € W, as required. O

Corollary 11.23. Let (A, W) be a race-free, bounded-concurrent game. If the
tree game TG(A, W) has a winning strategy, then (A, W) has a winning strat-

€qy.

Theorem 11.24. Any race-free, concurrent-bounded game (A, W), in which W
is a Borel subset of C*(A), is determined.

Proof. Assuming (A, W) is race-free, concurrent-bounded and W is Borel, we
obtain a tree game TG(A,W) = (TA, TW) in which TW is also Borel. To
see that TW is Borel, recall that a configuration y of TA corresponds to an
alternating sequence

g -t Ti € Tisl ct .

so determines f(y) =get U; 2; € C=(A). This yields a Scott-continuous function
f:C=(TA) - C=(A). The set TW is the inverse image f~'W, so Borel. As
the tree game TG(A, W) is determined—Theorem 11.10—we obtain a winning
strategy for Player or a winning strategy for Opponent in the tree game.
Suppose first that TG(A, W) has a winning strategy (for Player). By Corol-
lary 11.23 we obtain a winning strategy for (A4,W). Suppose, on the other
hand, that TG(A, W) has a winning strategy for Opponent, i.e. there is a win-
ning strategy in the dual game (TG(A4,W))*. By Lemma 11.14, TG((A,W)*) =
TG(A,W)* has a winning strategy. By Corollary 11.23, (A, W)* has a winning
strategy, i.e. there is a winning strategy for Opponent in (A4, W). O
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Chapter 12

Games with imperfect
information

12.1 Motivation

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”) or p (“pa-
per”). The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP, the event structure with
polarity

//ﬁ\\ /Erz\\
S18 Bp S9 B ~~rrr~~~ B Do

comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. In the absence of
neutral configurations, a reasonable choice is to take the losing configurations
(for Player) to be

{s1,72}, {p1,s2}, {r1,p2}
and all other configurations as winning for Player. In this case there is a winning
strategy for Player, viz. await the move of Opponent and then beat it with a

dominant move. Explicitly, the winning strategy o : .S — RSP is given as the

185
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obvious map from S, the following event structure with polarity:

S18Eg HPre. _ ;E%\
\pQE—vvvvvvv: E|7"2

But this strategy cheats. In “rock, scissors, paper” participants are intended to
make their moves independently. The problem with the game RSP as it stands
is that it is a game of perfect information in the sense that all moves are visible to
both participants. This permits the winning strategy above with its unwanted
dependencies on moves which should be unseen by Player. To adequately model
“rock, scissors, paper” requires a game of imperfect information where some
moves are masked, or inaccessible, and strategies with dependencies on unseen
moves are ruled out.

12.2 Games with imperfect information

We extend concurrent games to games with imperfect information. To do so in
way that respects the operations of the bicategory of games we suppose a fixed
preorder of levels (A,<). The levels are to be thought of as levels of access, or
permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

An A-game (G,1) comprises a game G = (A, W, L) with winning/losing con-
ditions together with a level function [ : A - A such that

a<sa = l(a)<l(a")

for all a,a’ € A. A A-strategy in the A-game (G,1) is a strategy o : S - A for
which
s<g 8 = lo(s) <lo(s')

for all 5,5 € S.

For example, for “rock, scissors, paper” we can take A to be the discrete
preorder consisting of levels 1 and 2 unrelated to each other under <. To make
RSP into a suitable A-game the level function [ takes +ve events in RSP to
level 1 and —ve events to level 2. The strategy above, where Player awaits
the move of Opponent then beats it with a dominant move, is now disallowed
because it is not a A-strategy—it introduces causal dependencies which do not
respect levels. If instead we took A to be the unique preorder on a single level
the A-strategies would coincide with all the strategies.
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12.2.1 The bicategory of A-games

The introduction of levels meshes smoothly with the bicategorical structure on
games.
For a A-game (G, lq), define its dual (G,lg)* to be (G*,lg) where lg. (@) =
lg(a), for a an event of G.
For A-games (G,lg) and (H,lg), define their parallel composition (G, lg)||(H,lx)
tobe (G| H,lgu) where lgu((1,a)) =lg(a), for a an event of G, and g ((2,0)) =
lg (D), for b an event of H.
A strategy between A-games from (G, l¢) to (H,ly) is astrategy in (G, lg)* || (H,lx).

Proposition 12.1.

(i) Let (G,lg) be a A-game where G satisfies (Cwins). The copy-cal strategy
on G is a A-strategy.

(ii) The composition of A-strategies is a A-strategy.

Proof. (i) The additional causal links introduced in the construction of the copy-
cat strategy are between complementary events in G* and G, at the same level
in A, and so respect <.

(ii) Let (G,lg), (H,lg) and (K,lx) be A-games. Let 0 : G—=H and 7 :
H—= K be A-strategies. We show their composition 700 is a A-strategy.

It suffices to show p — p’ in TeS implies I k7O (p) < lg kT (D').
Suppose p — p' in TeS with top(p) = e and top(p’) = ¢’. Take x € C(T®S)
containing p’ so p too. Then,

/
€ —2yz €1 Pyz " Uz €n-1 PUz €

where e,e’ € Vy and e; ¢ Vp for 1 <i <n—1. (Vj consists of ‘visible’ events
of the stable family, those of the form (s, *) with o1(s) defined, or (*,t), with
To(t) defined.) The events e; have the form (s;,t;) where o2(s;) = 71(t;), for
1<i<n-1.

Any individual link in the chain above has one of the forms:

(Svt) U=z (S,at,), (3’ >E) Uz (slvt,)a
(*,t) PUx (Slvt,)7 (S,t) Uz (Slﬂ *)7 or (S,t) Uz (*7t,)'

By Lemma 3.27, for any link either s —g s’ or ¢ —7 t'. As o and 7 are A-
strategies, this entails

lGLHHO'(S) < lGL”HO'(s’) or lHL||K7'(t) < lHL||K7'(t,)

for any link. Consequently < is respected across the chain and lg. | x 700 (p) <
lgy kT@0(p'), as required. 5

W.r.t. a particular choice of access levels (A, <) we obtain a bicategory
WGames,. Its objects are A-games (G,1) where G satisfies (Cwins) with ar-
rows the A-strategies and 2-cells maps of spans. It restricts to a sub-bicategory
of deterministic A-strategies, which as before is equivalent to an order-enriched
category.
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12.3 Dialectica games

Let the access levels be A comprising p < n.

A dialectica game is a A-game A with winning conditions, with A : A - A
s.t. A(®) = p and A(8) = n, for which there are no causal dependencies of mixed
polarity. In other words, it comprises a purely +ve game Ap and a purely —ve
game A, in parallel, so

o Ap|lAn

e with winning conditions a subset of C*(Ap||An) =2 C*(Ap) x C=(Apn), so
corresponding to A € C*(Ap) x C=(An),

e and access levels so all moves of Ay have access level p, with p < n, the
access level of all moves of Ay, .

A deterministic winning strategy corresponds to a configuration z € C*(Ap)
s.t. Yy e C*(An). A(x,y); to have a winning strategy in the dialectica game A
means

Jz e C™(Ap)Vy e C(An). A(z,y).

It might be helpful to think of the access levels p and n as representing two
rooms separated by a one-way mirror allowing anyone in room n to see through
to room p. In a dialectica game, Player is in room p and Opponent in room n;
whereas Opponent can see the moves of Player, the moves of Player are made
blindly, in that they cannot see Opponent’s moves.

A deterministic winning strategy o : A—=B between dialectica games A
and B corresponds exactly to a pair of stable functions f:C*(A4p) —» C*(Bp)
and g:C*(Ap) xC=(Bp) - C*(An) for which

Vo e C”(Ap)Vy e C*(Bn). A(z,9(z,y)) = B(fz,y),

where A and B are the respective winning conditions. This means that de
Paiva’s dialectica category based on the ccc of Berry’s stable functions embeds
fully and faithfully in the sub-bicategory of concurrent strategies comprising
deterministic winning strategies between dialectica games.

This is seen by considering the nature of deterministic strategies from a
dialectica game A to a dialectica game B. The access order on the events

(ApllAn)"|(Bp | Bn)

of A*||B can be drawn as

Ap By
A A
An By,

where the polarities are also indicated. Because a strategy can only adjoin
immediate causal dependencies from Opponent to Player moves, the access levels
restrict deterministic strategies to a pair of functions as described.
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12.4 Hintikka’s IF logic

We present a variant of Hintikka’s Independence-Friendly (IF) logic and propose
a semantics in terms of concurrent games with imperfect information. Assume
a preorder (A,<). The syntax for IF logic is essentially that of the predicate
calculus, but with levels in A associated with quantifiers: formulae are given by

@, = Ry, an) | ond | ov | o | Pa | Vi ¢

where A € A, R ranges over basic relation symbols of a fixed arity and x, x1, x2,
over variables.

Assume M, a non-empty universe of values V), and an interpretation for
each of the relation symbols as a relation of appropriate arity on V,,; so M is a
model for the predicate calculus in which the quantifier levels are stripped away.
Again, an environment p is a function from variables to values; again, p[v/x]
means the environment p updated to value v at variable x. W.r.t. a model M
and an environment p, we denote each closed formula ¢ of IF logic by a A-
game, following very closely the definitions in Section 10.8. The differences are
the assignment of levels to events and that the order on A has to be respected
by the (modified) prefixed sums which quantified formulae denote.

The prefixed game @*.(A, W,1) comprises the event structure with polar-
ity .4 in which all the events of a € A where A < I(a) are made to causally
depend on a fresh +ve event &, itself assigned level A\. Its winning conditions
are those configurations x € C*(8.A) of the form {@} Uy for some y € W. The
game EBf,‘eV(AU,WU,lv) has underlying event structure with polarity the sum
Y e BN . A, , maintains the same levels as its components, with a configuration
winning iff it is the image of a winning configuration in a component under the
injection to the sum. The game &) G, is defined dually, as (@) GL)*. In
this game the empty configuration is winning but Opponent gets to make the
first move.

True denotes the A-game the unit w.r.t. ® and false denotes he unit w.r.t. %.
Denotations of conjunctions and disjunctions are given by the operations of ®
and % on A-games, while negations denote dual games. W.r.t. an environment
p, universal and existential quantifiers denote the prefized sums of games:

[P ol = @ [l plvf]

veVy

Ve ¢lhp= © [ellolvfal.

vE V]u

As a definition, an IF formula ¢ is satisfied w.r.t. an environment p, written

pEN @,

iff the A-game [¢]4,p has a winning strategy.
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Chapter 13

Linear strategies

It has recently become clear that concurrent strategies support several refine-
ments. For example, define a rigid strategy to be a strategy ¢ in which both
components o7 and o9 preserve causal dependency where defined. Copy-cat
strategies are rigid, and the composition of rigid strategies is rigid, so rigid
strategies form a sub-bicategory of Strat. We can refine rigid strategies fur-
ther to linear strategies, where each +ve output event depends on a maximum
+ve event of input, and dually, a —ve event of input depends on a maximum
—ve event of output. By introducing this extra relevance, of input to output
and output to input, we can recover coproducts and products lacking in Strat.
Though doing so we lose monoidal closure.

13.1 Rigid strategies

Definition 13.1. A partial map of event structures which preserves causal
dependency whenever it is defined, i.e. ¢/ < e implies f(e’) < f(e) whenever
both f(e') and f(e) are defined, is called partial rigid.

A strategy 0 :S — A in a game A is rigid iff the map o is rigid. Rigidity
subsumes innocence, so a rigid strategy in A amounts to a rigid map o: 5 - A
which is receptive.

A rigid strategy from a game A to a game B is a strategy o : S - A*||B
where o1 and o, are partial-rigid maps.

Definition 13.2. Let A and B be event structures with polarity. Define A%,.B =
Pr(Q) and Q is the rigid family consisting of all partial orders

({1} xzu {2} xy,<),
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with x € C(A), y € C(B), in which

(1,a) < (1,d") <= a<ad,

(2,0) <(1,V) = b<pl,

(1,a) — (2,b) = poly(a) =- & polg(b) =+,

(2,0) = (1,a) = pol(a) =+ & polg(b) = —;
in other words @ contains augmentations of the partial order induced by A||B on
{1} x2u{2} xy which maintain innocence of the inclusion map {1} xxU{2}xy <

A||B. The total map top: A%, B - A||B of event structures with polarity takes
a prime to its top element.

Proposition 13.3. A rigid strategy from A to B corresponds to a rigid strategy
in the game A* %, B.

Proof. By specializing to rigid strategies the natural correspondence of the ad-
junction from the category of event structures with rigid maps to that with total
maps [8]. O

13.1.1 The bicategory of rigid strategies

Proposition 13.4. For any game A, the copy-cat strateqy « A is rigid.
The composition of rigid strategies is rigid.

Lemma 13.5. Let 0 : S —» A*||B and 7 : T — B*||C be rigid strategies. Let
z2eC(T)®C(S). If (s,t) —, (s',t'), then s —gs &t —pt'.

Proof. By Lemma 3.27(iii), either s —g s’ or t =7 t’. Suppose the case s —g 5.

Then o3(s) —p 02(s") by rigidity, so oa(s) —p: 02(s’). Recall from the con-
struction of C(T) ® C(S) that 71(¢) = 02(s) and 71(t") = 02(s’). By Proposi-
tion 3.14 (taking x = maz), we deduce that ¢ <p ¢'. However, by Lemma 3.27(iii),
either t —7 ¢’ or tcot’, whence we must have t —1 t’. The case t —1 t’ similarly
entails s —+g s'. O

Lemma 13.6. Let 0 : S —» A*||B and 7 : T — B*||C be rigid strategies. Let
zeC(T)®C(S). Ife<, €, then

(i) if m1(e) and w1(e") are defined, then m (e) <g m1(€’), and
(i) if mo(e) and wa(e’) are defined, then ma(e) <1 ma(e’).
Proof. We show for all —,-chains
€—b, €1 —b, b, Ep =€

from e to e’ that (i) and (ii), by induction on the length m.
The basis when m =1, where e —, ¢’, follows by Lemmas 3.27 and 13.5.
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Suppose m > 1. We show (i)—the proof of (ii) is analogous. Assume 71(e)
and 71(e’) are defined, with m(e) = s and 71 (e’) = ¢'.

If for some 4 with 0 < i < m we have 71 (e;) = s;, for some s; € S, then s <g s;
and s; <g ' from the induction hypothesis. Hence 7 (e) = s <g s’ = m1(€’).

Suppose otherwise, that for all ¢ with 0 < < m we have 7 (e;) undefined so
e; = (*,t;), for some t; € T. In particular,

e—, (*,t1) and  (*,t,_1) —. €.

By Lemma 3.27, e and ¢’ must have the forms e = (s,t) and €' = (s',t") with
t —p t; and t,,_1 —>7 t', for some t,t' € T. From the induction hypothesis
t1 <1 tm-1, so t <y t'. As 7 is partial rigid, 71(¢) <p: 71(¢"). Hence from
the definition of C(T') ® C(S) we obtain o4(s) = 11(t) <p 71 (t') = 02(s’). By
Proposition 3.14, we deduce s <g s', i.e. m1(e) <s w1 (€’), as required. O

Corollary 13.7. The composition TOc of rigid strategies o : S - A*||B and
7:T — B*Y||C is rigid.

13.2 Nondeterministic linear strategies

Formally, a (nondeterministic) linear strategy is a strategy

S
At B,

where o1 and o9 are partial rigid maps such that

VseS. polg(s) =+ & o3(s) is defined

>
Jsg € S. polg(so) = — & 01(s0) is defined & sg <5 s &
Vs1€S. polg(s1) =- & o1(s1) is defined & s1 <g s = 51 <5 S0

and

VseS. polg(s) =+ & o1(s) is defined

_—
Jsg € S. polg(so) = — & o2(sp) is defined & sp <5 s &
Vs1 €S. polg(s1) = - & o2(s1) is defined & s1 <g 8 = 51 <5 50

More informally, this says

e every +ve event of S over B depends on a <g-maximum —ve event over
A*, and symmetrically



194 CHAPTER 13. LINEAR STRATEGIES
e cvery +ve event of S over A' depends on a <g-maximum -ve event over
B.

We now demonstrate that copy-cat strategies are linear and linear strategies
are closed under composition, so that linear strategies form a sub-bicategory
Strat.

Lemma 13.8. For all games A the copy-cat strategy 4 is linear. Let o :
A—=B and 7 : B—=C be linear strategies. Then their composition TOC :
A—=C is linear.

Proof. Consider the copy-cat strategy

v X
At A,

defined in Proposition 4.1. Let ¢ € (C4 where pol,(c) = + and @ a5(c) is
defined. From the proof of Proposition 4.1,

¢ <, ciff (i) ¢ <qupacor
(ZZ) dcg € AJ'HA polAL”A(CO) =+ &

c <at)4 Co & ¢ SALjA C.
In particular for ¢’ € C4 with @ 4(c’) defined,

<@, ciff Jeg e AM| A. pol yojalco) =+ &

’ _
C <ALA Co & ¢ <ALjA €.

It follows that ¢’ <, €. This ensures that ¢ is the < ,-maximum —ve event for
which @ 41(¢) is defined and ¢ <, c. Similarly, if pol, (c) = + and @ a1 (c) is
defined, ¢ is the maximum —ve event for which @ 4,(¢) is defined and ¢ <, c.

Suppose
S and T
At B B C

are linear strategies. Recall the construction of their composition from Sec-
tion 4.3.2. Consider any chain of immediate dependencies
(8,%) =z = (x,1),

where s € S'is —ve and t € T is +ve, within a configuration z of C(T)®C(.S). The
chain must contain an element (s;,t;) where o2(s;) € B and 71(t;) € B* with

o2(s;) = 11(t;); otherwise there would have to be a link (s;,*) —, (*,¢41),
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which is impossible by Lemma 3.27(i). Consider the earliest stage along the
chain at which such an element appears, say

(S, >(') Pzt Py (Sn—la *) >z (8n7tn) Py P, (*7t) .
From Lemma 13.6, parts (i) and (ii), respectively,
s<g sp and t, <p t.

By Lemma 3.27(1), S$p-1 —>m,» Sn where o1(s,-1) € At and o3(s,) € B. As
o is innocent, we must have polg(s,-1) = — and polg(s,) = +. Consequently,
polp(ty) = -.

Now, exploiting the linearity of 7, let ¢’ be the maximum —ve event in T'
over B* on which ¢ depends. As t' < t there must be (a unique) s’ € S such
that (s’,t") € z; this is because moz € C(T') so is down-closed. Let s” be the
maximum —ve event in S over A* on which s’ depends. We will show s <g s”.

As t, <rtand t, is —ve,

ty <p .

From the rigidity of 7,
Tl(tn) SBL Tl(t,) .

From the definition of C(T) ®C(S), we know o2(s,,) = 71(t,) and o2(s") = 71 (¢')
and hence that oy(s,) <p 02(s’). Via Proposition 3.14, s, <g s’. Combined
with the established s <g s, this entails s <g s’. From the linearity of o, as s is
—ve,

s<g s .

Whenever p <res ¢ with p —ve over A', ¢ +ve over C defined, there is
2 €C(T)®C(S) such that p = [(s,*)], and ¢q = [(*,t)], with (s,%) —>, -+ —,
(*,t), as above. The description of s” given above furnishes [(s”,*)]., the
<res-maximum —ve event over A* on which [(*,7)], depends.

The remaining, symmetric, condition for the linearity of 7®o is proved anal-
ogously. O

13.3 Deterministic linear strategies

Deterministic linear strategies are, of course, linear strategies

S
At B,

where S is deterministic. They determine a sub-bicategory of DGames main-
taining duality.
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Proposition 13.9. The full sub-bicategory of deterministic linear strategies in
which objects are games in which all polarities are +ve is equivalent to Girard’s
(order-enriched) category of coherence spaces and linear maps.

Its sub-bicategory Lin of deterministic subcategories DLin has products
and coproducts constructed as follows.

The coproduct A® B comprises the parallel composition A|| B with additional
conflict (lack of consistency) between all pairs of +ve events of A and +ve events
of B. In other words

X €Congep <= X € Conyp &

X1nA"+g = XsnB =0.

Recall the operations X =qgef {a | (1,a) € X} and Xs =qger {b | (2,b) € X} project
X to its set of events in A and B respectively.

Dually, the product A& B comprises the parallel composition A| B with ad-
ditional conflict between all pairs of —ve events of A and —ve events of B. In
other words

X eConygp <= X eConyp &
XlﬂA_%Q — XQOB_:Q.

But Lin and DLin are not monoidal closed!

13.4 Linear strategies as pairs of relations

A linear strategy from o : A—=B is associated with a pair of dependency
relations, one from A" to B* and another from B~ to A™.

Deterministic linear strategies can be characterised in terms of Girard’s lin-
ear maps extended to event structures. A G-linear map F' : A - B from and
event structure A to an event structure B is a function

F:C®(A) »C™(B)

which preserves unions and is stable. Such maps can be described as certain
relations between A and B. We will write

aFb < be F([a]),

where a € A,be B.
A deterministic linear strategy o : A—= B corresponds to a pair of G-linear
maps F, : A" > B" and F_: B~ -g A™ such that

a<aa & poly(a)=+ & poly(a')=-& & a'F.b' & bF.a = b<pl/
and
b<p b & pol4(b) =+ & pol,(b')=- & & aF b & b'F.a' = a<sd

for all a,a’ € A,b,b’ € B.
To be completed.



Chapter 14

Strategies with neutral
events

*ANOT UP TO DATE****NEEDS TO CATCH UP WITH MFPS 14 SUB-
MISSION  ****

Neutral events occur through the synchronization of moves of opposing po-
larities in the composition of strategies. Here we consider strategies with neutral
events in order to

1. deal more accurately with deadlocks which can occur in the composition
of strategies, and in particular support ‘may’ and ‘must’ equivalences;

2. provide a structural operational semantics for strategies;

3. give a more accurate treatment of winning strategies, through a true ac-
count of those configurations which may be the end result of a strategy—
these need not be +-maximal.

14.1 Deadlocks

Composition of strategies can introduce deadlock which is presently undetected:

Example 14.1. ***deadlock through imposing incompatible causal dependen-
cies between events in B***

Example 14.2. B =@|@***
strategy o1 nondeterministically chooses right or left move in B
strategy oo chooses just right move in B
strategy T yields output in C' if gets right event of B as input
**¥ the two strategy compositions TOc1 and TOoo are indistinguishable

If we are to detect the possibility of deadlock we should take some account
of the hidden neutral moves a strategy can perform.

197
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We extend event structures with polarity with neutral events. An event
structure with polarity is an event structure F with a polarity function pol :
E — {+,-,0}; events tagged by 0 are neutral events. Neutral events are drawn
as ®. Maps are maps of event structures which preserve polarity when defined.

14.2 Strategies with neutral moves

We continue to assume games only possess events of +ve or —ve polarity.
To treat such phenomena explicitly and in order to obtain a transition se-
mantics we extend strategies with neutral events. Extend event structures with

polarity to include a neutral polarity 0; as before, maps preserve polarities when
defined.

Definition 14.3. A partial strategy in a game A (in which all events have +ve
or —ve polarity) comprises a total map o : S — N||A of event structures with
polarity (in which S may also have neutral events)

where
(i) N is an event structure consisting solely of neutral events;
(ii) o is receptive,Vx € C(S). cr—2c & poly(a) = - = 3ls. r—c & o(s) = a;
(iii) o is innocent in that it is both +-innocent and —-innocent:
+-innocent: if s — s’ & pol(s) =+ then o(s) — o(s);
—-innocent: if s — s’ & pol(s’) = - then o(s) — o(s').
(Note that s’ in +-innocence and s in —-innocence may be neutral events, so
this generalizes the condition of innocence of before. This definition of innocence
appears in the work of Faggian and Piccolo*****.)

Conditions (i), (ii) and (iii) imply:
(iv) in the partial-total factorization of the composition of S—>N| A with the
projection N||A - A

S —— 5

NIA—— A

the defined part gg is a strategy, as formerly understood.

(The old definition of partial strategy given in [?] is a little weaker in that it
doesn’t entail +-innocence in its sense extended to neutral events—see Lemma 14.6.)
Note that strategies are those partial strategies in which N is the empty

event structure.

It may seem odd that partial strategies are total as functions. The following
proposition should make the choice of name more understandable. Firstly, as
earlier in Definition 4.6, it is useful to define innocence and receptivity on partial
maps of event structures with polarity including now neutral polarities.

Definition 14.4. Let f : S - A be a partial map of event structures with
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polarity with neutral polarities.. Say f is receptive when
fx)—2c & poly(a) =- = seS. a—<c & f(s)=a

for all x € C(S), a € A.

Say f is innocent when it is both +-innocent and —-innocent, i.e.

s — s & pol(s) =+ & f(s) is defined =

f(s") is defined & f(s) — f(s'),
s— s & pol(s') =— & f(s') is defined =

f(s) is defined & f(s) — f(s').

Proposition 14.5. Let A be an event structure with polarity in which all events
have +ve or —ve polarity. Let o : S — A be a (partial) map of event structures
with polarity (in which S may have neutral events) which is receptive and in-
nocent and has domain of definition the non-neutral events of S. Define N to
be the event structure obtained as the projection of S to its neutral events, in
which all events are considered neutral. Then, its defined part o is a strategy
and the function o’ : S - N| A which acts as the identity function on neutral
events and as o on non-neutral events is a partial strategy.

Why have we not taken the partial maps of Proposition 14.5 as our defini-
tion of partial strategies? Because the partial maps of the proposition do not
behave well under pullback, and this would complicate the definition of com-
position and spoil later results such as that the pullback of a partial strategy
is a partial strategy. Very roughly, with our choice of definition we are able to
localise neutral events to the games over which they occur—with the definition
Proposition 14.5 suggests, different forms of undefined would become conflated.

Lemma 14.6. Let A be a game (with no neutral events) and N an event struc-
ture consisting solely of neutral events. Let S be an event structure with polarity,
possibly with neutral events. Let o:S — N| A be a total map of event structures
preserving polarities. Then, o is a partial strategy iff o is receptive, there is no
incidence of a +ve event immediately preceding a neutral event in S (i.e. no
— ©) and aziom (iv), viz. in the partial-total factorization of the composition

of S-S N || A with the projection N||A - A

S So
N|JA——> A

the defined part oo is a strategy.

Proof. “If”: Assume o is receptive, no incidence of B — ® in S and that the
defined part og is a strategy. For ¢ to be a partial strategy we require in addi-
tion that o is innocent. Suppose s — s’ in S where s is +ve. By assumption, s’
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cannot be neutral. It follows that s — s’ in Sy so o(s) = 0¢(s) = 0o(s") = o(s’)
by the innocence of og. Similarly if s — s” in S where s’ is —ve and s is not neu-
tral we obtain s — s’ in Sy so inherit o(s) — o(s’) from the innocence of gq. It
remains to show the impossibility of s — s’ in S where s’ is —ve and s is neutral.
Then s would be a <-maximal element of [s’) ensuring that x =qef [s) \ {s} is

. (s,
a configuration. We must have oz in N |A as o(s") cannot causally depend
on o(s). By the receptivity of o we get s” # s’ such that o(s") = o(s’); we have
"+ 5" as s” does not share with s’ its causal dependency on s. But now, letting

’ ”

T =def £ NSp, we obtain a configuration of Sy for which xo—sc and xo—sc with
oo(s’") = ag(s"), contradicting the receptivity of oy.

“Only if”: Suppose o is a partial strategy. Certainly o is receptive and from
its innocence there is no incidence of @ — ®. We require that its defined part
0 is receptive and innocent. For receptivity, suppose aoxo—ac with @ —ve and
xo a finite configuration of Sy. Taking x =gef [20]s We obtain or—c. From

the receptivity of o there is (a unique) s such that z—c with o(s) = a. But
s € Sp, being —ve, with o¢(s) = a. Its uniqueness follows from the uniqueness
part of the receptivity of ¢ once we remember that from the innocence of o
no -ve event of S can 1mmedlately causally depend on a neutral event; so that

xo—c in Sy implies [zg] S—C in S. Because, in addition, no neutral event can
immediately causally depend on a +ve event, whenever s — s’ in Sy we also
have s — s’ in S. It follows that o inherits innocence from o. O

Recall we assume that in games all events have +ve or —ve polarity.

Definition 14.7. A partial strategy from a game A to a game B comprises a

total map o : S — A||N||B of event structures with polarity (in which S may

also have neutral events) where

(i) N is an event structure consisting solely of neutral events;

(ii) o is receptive,Yx € C(.S). cr—c & pol4(a) = - = 3ls. 1—c & o(s) = a

(iii) o is innocent in that it is both +-innocent and —-innocent:

+-innocent: if s — s" & pol(s) = + then o(s) — o(s");

—-innocent: if s — s' & pol(s’) = - then o(s) — o(s').

(Note again that s’ in +-innocence and s in —-innocence may be neutral events.)
Again, conditions (i), (ii) and (iii) imply:

(iv) in the partial-total factorization of the composition of ¢ with the projection

AN B~ AY||B,

S——— 5

[
A*|N||B—— A*||B

the defined part oy is a strategy. Conversely, just as in Lemma 14.6, receptivity,
no incidence of a +ve event immediately preceding a neutral event in S and
axiom (iv) suffice in establishing o a partial strategy.
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Note that partial strategies in a game A correspond to partial strategies
from the empty game to A, and that strategies between games in A correspond
to those partial strategies in which the neutral events IV are the empty event
structure.

We can compose two partial strategies

0:8— A*||Ng||B and 7:T - B*||Nr|C

by pullback. Ignoring polarities temporarily, and padding with identity maps,
we obtain 7 @ ¢ via the pullback

TeS
/ o \
S|NrliC AllNs T
olN7|| AlNs |
A|Ns|B||Nz||C
as the ensuing map
T@0:T®S > A'||(Ns||B|Nr)|C

once we reinstate polarities and make the events of B neutral.
That the defined part of 7 ® o is a strategy follows once we have shown that
the defined part of the composite

Te S 23 A*||(Ns||B|Nr)|C— A*|C

is isomorphic to 79®0oy, the composition of the defined parts of o and 7. This
relies on the following;:

Lemma 14.8. With the notation fixed above, in the diagram

TQ@SO
%
TeS
/ o \
Sol|C<— S|INr||C A[Ns|T — A|To

ol Nzl AlNs T

A|[Ns|B|[Nz||C

|

A|lB|IC,

Allmo
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let p : A||Ng||B||Nr||C - A|BJ|C be the obvious projection, and oq, 7o the
defined parts of o, T, respectively. Then, the composite map Ty ® Sy - A||B|C
is the defined part of the composite map T @ S - A| B|C.

Proof. The map d: T ® S — Ty ® Sy is given by the universal property of the
pullback To®Sy. By Proposition 2.8, it suffices to show that d is partial injective
on events and surjective on configurations.

Surjective on configurations:

Partial injective:
ook KKKk O

Lemma 14.9. The composition T ® o is a partial strategy.

Proof. From earlier, it suffices to show 7 @ o is receptive, has no immediate
causal dependencies @ — ® and has defined part a strategy.

Receptivity of 7@ o follows directly from that of o and 7. That there can be
no incidence of a +ve event immediately causally preceding a neutral event in
T ® S relies on Lemma 3.27. W.l.o.g. suppose the +ve event to be over C. Then
either (x,t) —, (s',t') or (*,t) —, (*,t') in C(T) ® C(S) where pol(t) = +
and correspondingly o2(s’) = 71(¢') € B or ' is neutral; in either case t — t/,
contradicting the +-innocence of T'.

From Lemma 14.8 it follows immediately that 79 ® o is the defined part of
the composite

T®O

Te®S — A'|(Ns|B|Nr)|C—A||B|C.

By definition, 1g®@oy is the defined part of the composite
Ty ® Sy 25" A|B||C—A*||C.

By Proposition 2.9, it follows that T9®oq is the defined part of

T®O

TeS — AY|(Ns|B|Nr)|C—A|C,

ensuring that 7 ® o is a partial strategy. O

With partial strategies we no longer generally have that composition with
copy-cat yields the same strategy up to isomorphism—there will generally be
extra neutral events introduced through synchronizations.

Lemma 14.10. A configuration z € C*(T & S) is +/0-mazimal configuration
iff iz is +/0-mazimal in C=(S) and az is +/0-mazimal in C*(T).

Proof. Very similar to the proofs of Lemma 10.2 and Corollary 10.3. O
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14.2.1 As synchronized composition

A partial strategy o : .S - A*||N||B from game A to game B determines three
partial maps to the three components A*, N and B. As before, we write oy :
S — At and 09 : S — B for left and right components. Write o, : S — N for the
component into neutral events.

Proposition 14.11. Let A, B be event structures with polarity in which no
events are neutral. Let N be an event structure with polarity in which all events
are neutral. Partial strategies o : S — AY||N||B are in 1-1 correspondence with
triples of maps 01: S - A*, 09: S > B and 0, : S > N s.f. FHF*FF*

Assume partial strategies o : S - A*||Ng||B and 7: T — B*||Nr|C. We can
define their composition via a synchronized composition (without hiding). We
only synchronize events of S and T" when they are over complementary events
the game B, yielding the synchronized composition

SxTtop 'R
where
R = {(s,%) ]| s€S & o1(s) is defined or polg(s) =0} u

{(s,t) | se S & teT & oa(s) = 71 (t) with both defined}u
{(*,t) | teT & 72(t) is defined or pol,(t) =0}.

Modifying B so all its events are neutral, we obtain a partial strategy
viSxTtop~ R~ A*|(Ns| B Nr)l| C

in which
vy takes an event p to o1(s) if top(p) = (s, *), and is undefined otherwise;
vo takes an event p to m2(s) if top(p) = (*,1), and is undefined otherwise;
vy, takes an event p to an event in a component of Ng|| B|| N, to o2(s) = 71(t)
if top(p) = (s,t), to o,(s) if top(p) = (s,*) and polg(s) = 0 and to 7,(s) if
top(p) = (*,t) and polp(t) =0, and is undefined otherwise.

Proposition 14.12. The construction is isomorphic to composition of partial
strategies given earlier via pullbacks.

14.3 2-cells for partial strategies

f:0=0" where 0: S > A*|N||B and ¢': S" > A*|N|B
*¥*¥¥% Given f:o0 = o' and g: 7 = 7' from universality of pullback obtain
9g® f:T®0 =7 @

Lemma 14.13. Let f: 0 = o' and g : 7 = 7' be 2-cells between composable
partial strategies. Then, g® f is a 2-cell of partial strategies. It is rigid if f and
g are Tigid.
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14.4 May and must tests

NOTATION **** partial operations ysncircr, y®x on configurations, ALSO
infinite configs ****EARLIER***

Consider the following three strategies in the game A comprising a single
+ve event. Recall neutral events are drawn as ®.

n
18

B

So ® —>&

|

A
®

S3 © —>8

v

A

From the point of view of observing the move over the game A the first two
strategies, o1 and o9, differ from the the third, o3. In a maximal play both oy
and o9 will result in the observation of the single move of A. However, in o3 one
maximal play is that in which the topmost neutral event of S3 has occurred, in
conflict with the only way of observing the single move of A.

We follow [?] in making these ideas precise. For configurations x, y of an
event structure with polarity which may have neutral events write z P y to
mean z C y and all events of y \ z have polarity + or 0. We write € to mean
the inclusion involves only neutral events

Definition 14.14. Let o be a partial strategy in a game A. Let 7: T — A*||N||@
be a ‘test’ partial strategy from A to a the game consisting of a single Player
move B. Write v' =get (3,8).

Say o may pass 7 iff there exists y® x € C*(T ® S), where z € C*(5) and
y € C(T), with the image Ty containing v'. (Note that we may w.l.0.g. assume
that the configuration y ® x is finite.)

Say o must pass 7 iff for all y@x € C*(T®S), where x € C*(S) and y € C=(),
which are cP-maximal the image 7y contains v.

Say two partial strategies are ‘may’ (‘must’) equivalent iff the tests they may
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(respectively, must) pass are the same.
The definitions extend in the obvious fashion to partial strategies of type
A*|N| B.

A partial strategy is ‘may’ equivalent, but need not be ‘must’ equivalent,
to the strategy which is its defined part; ‘must’ inequivalence is lost in moving
from partial strategies to strategies.

Example 14.15. This example shows that strategies o1 and o2 in a game B
may have the same configurations in B as images and yet not be equivalent
w.r.t. ‘may equivalence.” The game B takes the form:

B:

H<t——0O

The first (nondeterministic) strategy oy is:

_,.\ .
Sy 8—>8
v Voo
B =] |
The second (deterministic) strategy is:
.«\
S B
=)
: v
B ®

A D<o

The test comprises 7 : T - B*||C' where C is consists of a single @ event.
Observe that B*|C takes the form

B|C: ® S|

O<t——-
H
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with the event of C' being the +-event to the right. The test strategy is:

AN ——>a/.

T B<—8

v v

BY|C : ® B
N e

Note that 01C(S1) = 02C(S2) = C(B). The composition 7Gcs can perform the
event over C—its causal constraints on events over B are consistent with those
of the test. However, the other composition 7®o; cannot perform the event
over C—its causal constraints on events over B are inconsistent with those of
the test. O

14.5 Strategies with stopping configurations—
the race-free case

Partial strategies lack identities w.r.t. composition, so they do not form a bicat-
egory. Fortunately, for ‘may’ and ‘must’ tests it is not necessary to use partial
strategies; it is sufficient to carry with a strategy the extra structure of ‘stopping’
configurations which are to be thought of as images of +/0-maximal configura-
tions in an underlying partial strategy. Composition and copy-cat on strategies
extend to composition and copy-cat on strategies with stopping configurations,
while maintaining a bicategory, in the following way. We tackle the simpler case
in which games are assumed to be race-free. (The extension to games which are
not race-free is outlined in [?].)

Let 0:S - AY||N| B be a partial strategy between race-free games, from a
game A to a game B. Recall its associated partial-total factorization

s— 4 .g,

o
A*|Ns||B— A*| B

Its defined part is a strategy og. Define the (possibly) stopping configurations
in C*(Sp) to be

Stop(c) =get {dx | € C*(S) is +/0-maximal} .

In other words, the stopping configurations are the images of configurations
which are maximal w.r.t. neutral or Player moves. Note that Stop(c) will
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include all the +-maximal configurations of Sy: any +-maximal configuration y
of Sp is the image under p of its down-closure [y] in S, and by Zorn’s lemma
this extends (necessarily by neutral events) to a maximal configuration x of S

with image y under d; by maximality, if z—c then s cannot be neutral, nor can
it be +ve as this would violate the +-maximality of y.

Note that if o is in fact a strategy, 4.e. it has no neutral events, then Stop(c)
is the set consisting of all +-maximal configurations of S. We can identify
strategies between race-free games with strategies with stopping configurations
the +-maximal configurations.

A strategy with stopping configurations in a game A comprises a strategy
S — A together with a subset Mg € C*(S). As usual, a strategy with stopping
configurations from a game A to game B is a strategy with stopping configura-
tions in the game A*| B.

There is an issue of axioms on stopping configurations. We do not insist
that stopping conigurations include all +-maximal configurations as this prop-
erty will not be preserved in taking the rigid image of a strategy with stopping
configurations. This is because not all infinite configurations in the rigid image
are direct images of a configuration in the original strategy—see Example 14.25.
(See Section 14.6.4 for further discussion of the axioms on stopping configura-
tions.)

The operation St : o — (0¢, Stop(c)) above, from partial strategies to strate-
gies with stopping configurations, preserves composition w.r.t. the following def-
inition.

Given two strategies with stopping configurations o : S - A*||B, Ms and
7:T - B*||C, Mt we define their composition by

(1, M1)o(0, Ms) =aet (700, MO Mg)
where
e MroMs iff 32eC(T ® S). [¢]res < 2 & Mz € Mg & Myz € My .

Above we write €° to mean the inclusion only involves neutral events. Recall,
T ® S is the result of composition before hiding neutral synchronizations. In
other words, if we define the stopping configurations of T'® S by

zeMr & Mg 1HZEC°°(T®S) & II1ze Mg & Tz € My
—sensible because of Lemma 14.10—we have
x € MroMg iff 3z € My ® Ms. [z]res < 2.

We should also extend copy-cat @ 4 : C4q - A*||A to a strategy with stop-
ping configurations. Assuming A is race-free, we do this by taking

Mc, =aet {(Z[l2) | x € C(A)}.

Because A is race-free, M, comprises all the +-maximal configurations of
(4. Then, @4, Mq, is an identity w.r.t. the extended composition.
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Proposition 14.16. When A is race-free, « 4, M, is identity w.r.t. compo-
sition.

Proof. ***** By definition,

x € MCCBQMS iff 3z € COO(CCB@S). [x]CCB&S‘ QO z&Il1ze Mg & Tlpz € MCCB .

kkokok ok k O

Lemma 14.17. Let o be a partial strateqy from A to B and T a partial strategy
from B to C. Then,
St(t® o) = St(T)eSt(o) .

Proof. Tt suffices to show the following holds of stopping configurations:
Stop(T ® o) = Stop(7)®Stop(o) .

We can describe the partial-total factorizations associated with the partial
strategies o : S > A*||Ng||B and 7:T - B*||N7|C as

S#So and T#TO
A*||Ng||B—— A*||B B*Y||Nr||C —— B*||C.

As preparation, in the diagram

S~ Tes 2 o7
a
d1 da®dy da
L
S() 'ﬁl T() ® S() ?‘ TO
dl
To®Sy

d . .
the two squares commute, and Tg @So—>T0®SOTQT>0Al |C gives the partial-total

factorization associated with the definition of 7y®0y. By Proposition 2.9,

T o S-5TheS, 2 AL |C

is a partial-total factorization, where we write d =gef d' o (do ® dy).

“Stop(7 ® o) ¢ Stop(7)®Stop(c)”: Let x € Stop(r ® o). We have z = dw for
some +/0-maximal configuration of T'® S. Then, IIyw is +/0-maximal in S
and Hyw is +/0-maximal in 7', by Lemma 14.10. Hence d;IT;w € Stop(o) and
doIlow € Stop(7). Take 2z =qef (do ® d1)w. As

dz=d(de®d))w=dw=21
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we have [z]7,es, c% 2. Moreover, by the commuting squares above,
Iz =111 (dy ® dy )w = d1 ITyw € Stop(o)

and similarly Tz € Stop(7). Therefore z € Stop(7)®Stop(o), as required.

“Stop(T @ o) 2 Stop(7)®Stop(c)”: Let x € Stop(7)®Stop(c). Then,
[2]7es € 2z & M1z € Stop(S) & Tyz € Stop(T),

for some z € C*(Ty ® Sp). Now, II;2z € Stop(S) implies 111z = dyw; for some
+/0-maximal w; € C*®(S), so [;2]s €® wy. Similarly, [zz]7 € wq for some
+/0-maximal wy € C*(T"). Construct

W =det [2]Tes U (wiN[Miz]s) x {x} U {#}x (w2~ [Il2z]7).

(It’s convenient to use the description of T ® S as a form of synchronized com-
position in Section 14.2.1.) Then, w € C®°(T ® S) and (dz ® d1)w = z. By
Lemma 14.10, w is +/0-maximal as ITyw = w; and Iyw = we are +/0-maximal.
Noting d'z = x, as it is equivalent to [2]7gs ¥ 2, we deduce

d(de®di)w=dz=x
ensuring x € Stop(7 ® o), as required. O

Definition 14.18. Let o be a strategy with stopping configurations Mg in a
game A. Let 7 : T - A*||N|@ be a ‘test’ partial strategy from A to a the
game consisting of a single Player move m. Write St(7) as (79, My) where
7o : To = A||® is the defined part of 7 and My are its stopping configurations,
obtained as images of the p-maximal configurations of T. Write v =qef (2, 8®).

Say (o, Mg) may pass 7 iff there exists y ® z € C*(Tp ® S), where x €
C=(S) and y € C=(Ty), with the image 7y containing v'. (Note again, we may
w.l.o.g. assume that the configurations = and y are finite.)

Say (0, Mg) must pass 7 iff for all y @ © € My ® Mg, where x € C*(S) and
y € C*(Tp), the image 7oy contains v

Say two strategies with stopping configurations are ‘may’ (‘must’) equivalent
iff the tests they may (respectively, must) pass are the same.

Proposition 14.19. With the notation above,

(0, Mg) may pass 7 iff there exists yoxr € C*°(Ty0S), where x € C*(S) and
y € C*(Tp), with the image Ty containing v' —the configurations x, y may be
assumed finite; and

(0, Mg) must pass 7 iff for all yox € My©@Mg, where x € Mg and y € My,
the image 19 y contains v .

Lemma 14.20. Let A be a race-free game. Let o be a partial strategy in A.
Then,

o may pass a test 7 iff St(c) may pass 7;

o must pass a test 7 iff St(o) must pass 7.
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Proof. Directly from the definitions, for the ‘if” of the ‘must’ case, using Lemma 14.10.
O

Example 14.21. It is tempting to think of neutral events as behaving like
the internal “tau” events of CCS [26]. However, in the context of strategies
they behave rather differently. Consider three partial strategies, over a game
comprising of just two concurrent +ve events, say a and b. The partial strategies
have the following event structures in which we have named events by the moves
they correspond to in the game:

S1 a Sy © —>a 53 © —>a
b © —»b b
All three become isomorphic under St so are ‘may’ and ‘must’ equivalent to
each other. O

In making strategies with stopping configurations a bicategory we must settle
on an appropriate notion of 2-cell. The following choice of definition seems most
useful.

A 2-cell f: (0,Mg) = (o', Mg) between strategies with stopping configu-
rations is a 2-cell of strategies f : ¢ = ¢’ such that fMg € Ms:. With this
choice of 2-cell, strategies with stopping configurations inherit the structure of
a bicategory from strategies; its objects are restricted to race-free games.

The 2-cells between strategies with stopping configurations respect ‘may’
and ‘must’ behaviour in the sense of the following lemma.

Lemma 14.22. Let f: (0,Mg) = (¢, Mg') be a 2-cell between strategies with
stopping configurations. Then for any test T,

(0, Ms) may pass T implies (o', M) may pass 7; and

(0!, Mg) must pass T implies (o, Mg) must pass .

Moreover, if f is rigid epi and fMg = Mg, then (0, Mg) and (o', Mg/) are
both ‘may’ and ‘must’ equivalent.

Proof. In this proof, we shall identify the partial-strategy test 7 with its asso-
ciated strategy with stopping configurations St(7), writing My for its stopping
configurations.

Let f:(0,Ms) = (0/,Mg') be a 2-cell. Assume 0:S - A and o' : 5" - A.
Let 7: T - A*|m.

Suppose (0, Mg) may pass 7. Then there is a (finite) configuration which
we write y ®  of T ® S, built as a pairing of y € C(T) and z € C(S), which
contains v'. (We are using the term ‘pairing’ so as to remain neutral between
the two equivalent ways of defining configurations of T'® S, via pullbacks when
the ‘pairing’ is a secured bijection, or as a synchronised composition.) The
pairing induces a pairing y ® fx, containing v', of y € C(T") and fx € C(S). (The
secured bijection built from y and x induces a secured bijection built from ¥
and fx; this is because fx has no more causal dependency than x with which
it is in bijection.)
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Suppose (o', Mg/) must pass 7. Any y®x € M7 ® Mg images under 7® f to
y® fre Mr® Mg:. As (0, Ms/) must pass 7, the configuration y ® fx contains
V', ensuring that y®x does too. *** REQUIRES GENERALISATION OF y&x
TO INFINITE CONFIGS***

Finally suppose that f is rigid epi and fMg = Mg,. We have just shown that
f preserves the passing of ‘may’ tests and reflects the passing of ‘must’ tests.
Because f is rigid epi it also reflects the passing of ‘may’ tests. Because f is
rigid and fMg = Mg it preserves the passing of ‘must’ tests: any pairing y® fx
in M7 @ Mg ensures by the rigidity of f a pairing y®z in My ® Mg; as (o, Mg)
must 7 we have y ® x contains v~ ensuring y ® fx does too. O

As a corollary of Lemma 14.22, with an appropriate construction of the rigid
image of a strategy with stopping configurations we are assured not to lose any
‘may’ and ‘must’ behaviour.

Definition 14.23. Let (o, Mg) be a strategy with stopping configurations. Let
o1 be the rigid image of o with accompany 2-cell f : 0 = o1 where f is rigid
epi. We define the rigid image of (o, Mg) to be (o1, fMs).

A rigid-image strategy with stopping configurations is one in which the strat-
egy is rigid-image.

Corollary 14.24. A strategy with stopping configurations is both ‘may’ and
‘must’ equivalent to its rigid image.

Proof. A direct consequence of the last part of Lemma 14.22. O

Thus w.r.t. ‘may’ and ‘must’ behaviour we can choose to work in the category
of rigid-image strategies with stopping configurations.

Example 14.25. In forming the rigid image o1 : S) - A of a strategy o :
S — A, related by rigid epi 2-cell f : o = o1, it is possible to have an infinite
configuration of S; which is not in the direct image under f of any configuration
of S; in particular it is possible to have a +-maximal configuration of S; which
is not a direct image of any +-maximal configuration S. For example, let A
comprise an infinite chain of Player events. Take S to be the sum of all finite
subchains. The rigid image of S is A itself which has +-maximal configuration
all the events in the infinite chain, not the image of any configuration of S;.
Thus, in forming the rigid image of strategy with stopping configurations, we
cannot assume that all the +-maximal configurations of the rigid image are
stopping. m]

As far as ‘may’ and ‘must’ behaviour is concerned it is sensible to regard
two strategies with stopping configurations to be equivalent if they share a com-
mon rigid image. The equivalence transfers to an equivalence between partial
strategies: two partial strategies are equivalent if under St we obtain equvalent
strategies with stopping configurations.
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Example 14.26. Tests based on partial strategies are more discriminating than
tests based on (pure) strategies. Let a game comprise a single Player move.
Consider two strategies with stopping configurations:

01, the empty strategy with the empty configuration @ as its single stopping
configuration;

09, the strategy performing the single Player move @ with stopping config-
urations @ and {@}.

By Lemma 14.22, we have (o2, {@, {8} }) must pass 7 implies (o1, {@}) must
pass 7, for any test 7. (The above would not hold if we had not included @ in
the stopping configurations of o5.)

Using the fact that we need only consider rigid images of tests, a little
argument by cases establishes the converse implication too provided we restrict
just to tests which are strategies. The strategies with stopping configurations
would be must equivalent w.r.t. tests based just on strategies.

However with tests based on partial strategies we can distinguish them.
Consider the test 7 comprising three events, one of them neutral, with only
nontrivial causal dependency 8 — ® and ® in conflict with the ‘tick’ event @.
Then, it is not the case that (o2, {@, {®}}) must pass 7 —the occurrence of the
neutral event blocks success in a maximal execution—while (o1, {@}) must pass
T. |

We can interpret the metalanguage directly in terms of strategies with stop-
ping configurations in such a way that the denotation of a term as a strategy
with stopping configurations is the image under St of its denotation as a partial
strategy. To achieve this, we specify the stopping configurations of both the
sum and pullback of strategies.

For the sum of strategies [|,.; o; with stopping configurations o;, a configu-
ration of the sum is stopping iff it is the image of a stopping configuration under
the injection from a component.

Consider strategies o :S - A and 7: T - A with stopping configurations
Mg and My respectively. Let their pullback be denoted by o A7: P - A with
projection morphisms 7 : P - S and w3 : P - T. A configuration of P is
defined to be stopping iff there exist z1,zo such that mz €* z; and mox €t x5
and z1 € Mg and x5 € Mr, and furthermore there exists a partition z* = Y; uYs
satisfying x;nY; = @. The set of stopping configurations of P coincides with the
stopping configurations obtained via St from the pullback of partial strategies.

The treatment of winning strategies of Chapter 10 generalises straightfor-
wardly, with the role of +-maximal configurations replaced by that of stopping
configurations.

14.6 May and Must behaviour characterised

14.6.1 Preliminaries, traces of a strategy
Let S be an event structure. A possibly infinite sequence

S1,825 " Sny "
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in S constitutes a serialisation of a configuration x € C*(S) if z = {s1, $2,*, $pn, -}
and {s1,--,s;} € C(S) for all ¢ at which the sequence is defined. We will often
identify such a countable enumeration of a set with its associated total order.
Note that in this way we can regard a serialisation as an elementary event struc-
ture in which causal dependency takes the form of a total order; a serialisation of
a configuration is associated with a map to S whose image is the configuration.

Let 0:.S - A be a strategy in a game A. A trace in o is a possibly infinite
sequence

o= (0(81)70(32)a "'7U(Sn)>"')

of events in A obtained from a serialisation
81,82, Sn;y "

of a configuration z € C*(.9). Clearly « is a serialisation of ox € C*°(A4). From
the local injectivity of o, the configuration x will be finite/infinite according as
the trace is finite/infinite. We say that « is a trace of the configuration z in o,
or that x has trace a in o.

Proposition 14.27. Let 0: S — A be a W.r.t. a strategy.
(i) Any countable configuration of S has a trace.
(i1) Let z € C*(S) and a be an enumeration

A1,Q2, "y An, "

of ox. Then, « is a trace of x in o iff for all s,s" € x if s — s’ then o(s) precedes
o(s') in the enumeration «.

Proof. (i) Let  be a countable configuration of S w.r.t. the strategy o : S - A.
This follows because there is a serialisation x = {s1, 82, Sp, -}, in which
{s1,+,8;} is down-closed in S at all 7 in the enumeration. To see this, from its
countability we may assume a countable enumeration of x, which need not be a
serialisation. Define s; € z to be the earliest event of the enumeration for which
[s1) =@ in S; such an s is ensured to exist by the well-foundedness of causal
dependency provided x # @. Inductively, define s, to be the earliest event of
the enumeration which is in « \ {s1, -+, s,-1 } and for which [s,) € {s1, ", $p-1};
again the well-foundedness of causal dependency ensures such an s,, exists pro-
vided x\ {81, ", 8p-1} # @. It is elementary to check this provides a serialisation
of x.

(ii) “Only if”: Directly from the definition of trace of a configuration.  “If”:
Via the local bijection between z and ox given by ¢ we obtain an enumeration

51,82, Sny

of x matching « in that o(s;) = a;. The assumption that s — s’ implies o(s)
precedes o(s’) in the enumeration «, entails {s1,-,s;} € C(S) for all i. Hence
the enumeration of x is a serialisation making « a trace of x. O
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Lemma 14.28. Let 0 : S — A be a strategy in a game A. Let x € C=(S).
Let o be a serialisation of ox which is not a trace of x € C*°(S). Then, there
are s,8" € x with pol(s) = — and pol(s') = + and s —g s’ and (note the order
reversal) o(s") <o () in « (regarded as a total order).

Proof. By assumption, any trace of x differs from a. We deduce there is s — s’
in  with o(s) £ o(s’) in the total order of «; otherwise we could serialise x
to obtain the trace & —Proposition 14.27(ii). Now, o(s) £4 o(s’) in A as any
serialisation must respect the order <4. Hence, by the innocence of o, we must
have pol(s) = — and pol(s’) = +. Because « is totally ordered, o(s’) < o(s) in
a. O

14.6.2 Characterisation of the may preorder
For strategies with stopping configurations (games assumed race-free) we have:

Lemma 14.29. Let (01, M1) and (o9, Ms) be strategies with stopping configu-
rations in a common game. Then,

(o1, M1) may pass T implies (o2, Ma) may pass T, for all tests T,

iff

all finite traces of o1 are traces of os.

Proof. Assume strategies o1 : S > A and 03 : Sy > A. “if”: Assume all finite
traces of oy are traces of oy. Suppose (01, M;) may pass test 7 with event
structure T. Then there is a successful configuration w @ 1 € C(T ® S1), where
x1 € C(S1) and w € C(T); it is successful in the sense that its image contains the
success event v'. Take a serialisation of w & x1; this induces a serialisation of x
to yield a trace. Then, by assumption, oo has a configuration xs € C(S3) with
the same trace, so a matching serialisation. Consequently the pairing w ® x5 is
defined with w ® x5 € C(T ® S3); sharing the same image as w ® z it is also
successful.

“only if”: We show the contraposition: assuming not all traces of oy are traces
of o9, we produce a test 7 for which o; may pass 7 while it is not the case that
09 may pass T.

Assume a trace oy of x1 € C(S1) is not a trace of any x5 € C(S2). Note
that the trace a1, and correspondingly x;, must have at least one +ve event as
otherwise, by receptivity, oo could match the trace ;. Any trace of xo, with
09x9 = o111, differs from «;. By Lemma 14.28, we deduce there are s,s € x5
such that s —o s" with pol(s) = - and pol(s’) = + and o2(s’) <1 2(s) in the
total order aj.

Thus for each x5 € C(S2) with oows = o121 we can choose 0(x2) = (s,8") so
that s —5 s’ in xe with pol(s) = — and pol(s’) =+ and o2(s") <1 02(s) in .

We now describe a test 7: T'— A*'||@ which will discriminate between o and
o9. Let T] be the elementary event structure comprising events T) =4ef 0121
saturated with all accessible Opponent moves (note, in A*'), i.e. events

Ty ={acA| pols.([a]\T1) = {-}}
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with order that of A* augmented with o2(s") <1 02(s) for every choice §(z2) =
(s,s") where x5 € My and o025 = o121; the ensuing relation on T3 is included
in the total order a so forms a partial order in which every element has only
finitely many elements below it. (By design, T “disagrees” with the causal
dependency of each xg € C(S3) for which ooz = o121.) The polarities of events
of T are those of its events in A*. On 77 the map 7 takes an event to its same
event in A*.

Let T be the event structure with polarity obtained from 77 by adjoining
a fresh ‘success’ event @ with additional causal dependency so t; <p 8 iff ¢; is
—ve; as noted above there has to be at least one +ve event in x; and thus, by
the reversal of polarity, at least one t; € T} of —ve polarity. Then the obvious
map 7:T — A*||@ is a strategy, and a suitable test for oy and 3.

We have (i) 01 may pass 7, while (ii) it is not the case that oo may pass 7.

To see (i), remark that the relation of causal dependency on T; is included
in the the total order of the trace «; of x1. Hence 7 ® o7 has a successful
configuration (77 U {®8}) ® 1.

To show (ii), consider any finite configuration of 7 @ 0. It has the form
w®xy where w € C(T) and x5 € C(S2). The configuration w & x2 is unsuccessful
because ® ¢ w, as we now show. By design, 7 and o2 enforce opposing causal
dependencies on a pair of synchronisations needed for 77 ® zo to be defined
whenever o € C(Sy) with ggxe = T7. At least two events of opposing polarity
in T} are excluded from any pairing w & z2; one must be a —ve event of 77 on
which & causally depends; hence & ¢ w. O

Clearly the proof above does not rely on stopping configurations or tests
being partial rather than pure strategies; the test used in the proof patently
has no neutral events. The extra discriminating power of tests based on par-
tial strategies, illustrated in Example 14.26, does play an essential role in the
analgous result in the ‘must’ case, to be considered shortly.

14.6.3 Characterisation of the must preorder

Recall an event structure E = (E,<,Con) is consistent-countable iff there is a
function x : E - w from the events such that

{e1,e2} € Con & x(e1) = x(e2) = e1=e2.

Any configuration x € C*(F) of a consistent-countable event structure E is
countable and so may be serialised as

€T = {61762,"',67“'“}

so that {e1,-,e,} € C(E) for any finite subsequence. For the must case we
assume that games are consistent-countable. It follows that strategies o: .S - A
in consistent-countable games A have S consistent-countable. W.r.t. such a
strategy o, we have traces of all configurations.
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Lemma 14.30. Assume game A is consistent-countable. Let (o1, M) and
(02, M) be strategies in A with stopping configurations. Then,

(02, M2) must pass T implies (o1, My) must pass T, for all tests T,

iff
all traces of stopping configurations My are traces of stopping configurations
M.

Proof. “if”: Assume all traces of stopping configurations M; are traces of stop-
ping configurations Ms. A stopping configuration of 7 ® o1 has the form w @ x;
where w and x; are stopping configurations of 7 and o1, respectively. A se-
rialisation of w ® x; into a (possibly infinite) sequence induces a serialisation
of x; € M,. By assumption, there is xs € My with the same trace in A as x.
Consequently, w ® xo is a configuration of 7 ® oo with the same image in A|@.
Moreover, w @ xo is a stopping configuration of 7 ® oo. Supposing (o2, Ms)
must pass a test 7, the image of w @ x5 contains v/ whence the image of w & x;
contains v~ ensuring (o1, M) must pass a test 7.

“only if”: We show the contraposition: assuming not all traces of stopping
configurations M; are traces of stopping configurations M, we produce a test
7 for which (092, My) must pass 7 while it is not the case that (o1, M7) must
pass T.

Assume a trace a; of x1 € M7 is not a trace of any xo € Ms.

In particular, consider any xo € My with osxo = o121. Then, any trace of
xo differs from . By Lemma 14.28, there are s,s’ € x5 such that s —5 s’ with
pol(s) = — and pol(s’) =+ and o2(s") <1 02(s) in the total order «;.

Thus for each 25 € My with osx9 = 0121 we can choose 6(z2) = (s,s’) so that
s —9 8’ in o with pol(s) = — and pol(s’) = + and o2(s’) <1 02(s) in ay.

We build an event structure with polarity 7" and a test as partial strategy
7:T - AY||N|j@. We build the events of T as T{ U N U T5, a union of sets of
events, assumed disjoint, described as follows.

e Let 77 be the elementary event structure comprising events T} =qof 0121
saturated with all accessible Opponent moves, i.e. events

Ty ={acA| pols.([a]NT1) = {-}}

with order that of A augmented with oa(s’) <1 o2(s) for every choice
0(xz2) = (s,8") where x5 € My and o929 = o1x1; the ensuing relation on
T is included in the total order «a; so forms a partial order in which
every element has only finitely many elements below it. (By design, T}
“disagrees” with the causal dependency of each x5 € My for which ogxo =
o121.) The polarities of events of T] are those of its events in A*. On T}
the map 7 takes an event to its same event in A*’.

e N comprises a copy of the set of events of —ve polarity in 7T7; all the events
of N have neutral polarity; an event of N is sent by 7 to its copy.
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e T, comprises a copy of the set of events T7; all the events of T have +ve
polarity; they are all sent by 7 to v' =qer (3, 8).

e Causal dependency on T is that of T} augmented with dependencies from
events of T; of —ve polarity to their corresponding copies in N.

e The consistency relation of 7' is that minimal relation which ensures that
any two distinct events of T are in conflict; a +ve event of T7 conflicts
with its corresponding copy in T5; and a neutral event in N conflicts with
its corresponding copy in 75. More formally,

XeConpiff Xcg, Ti1uNUT, & |XﬂT2| <1&
(Vt1 € X Ty ,ta € X nTh. t1,ts are not copies of a common event) &

(Vne XnN,ty e X nT,. n,ty are not copies of a common event).

Note that all the events over v, which together comprise the set T, can
occur initially but can become blocked as moves are made in T;. In particular,
the set T3 U N is a p-maximal configuration of T with image in A*||N|@ not
containing any event over v'. On the other hand any p-maximal configuration
of T not including all the events 77 will contain an event over v'. Hence St(7)
has an unsuccessful stopping configuration consisting of precisely all the events
of Th1—it does not have an event over v'—while all stopping configurations of
St(7) which do not contain all the events of T} are successful—they contain an
event over v'.

Consequently, (i) it is not the case that (o1, M1) must 7, while (ii) (o2, M2)
must 7. To see (i), remark that the relation of causal dependency on Tj is
included in the the total order of the trace oy of ;. Hence St(7) ® oy has a
stopping configuration 7} ® x1 which is unsuccessful and thus (o1, M) fails the
must test 7. To show (ii), consider any stopping configuration of St(7) @ o5.
It comprises w ® xo where w is a stopping configuration of St(7) and o € Mo,
a stopping configuration of oo. Now w 2 T, as by design 7 and oo enforce
opposing causal dependencies on a pair of synchronisations needed for T} @ x5
to be defined whenever x5 € My with o9x9 = T7. Thus w is successful in that
it contains an event over v'. Hence (o2, M3) must pass 7. This completes the
proof. O

Remark. By Example 14.26, the result above would not hold if tests were
based solely on pure strategies.

Example 14.31. ***over game B — @1 ||By — @2 the id strat and one where
make By — (copyof)By and By — (copyof)m®; , stopping configs +-maximal
configs, are ‘must ’equiv ****

14.6.4 Sum decomposition

It is straightforward to decompose an arbitrary strategy ¢ : S — A into a sum
of deterministic sub-strategies Y ;.; 0; with the same rigid image. Any config-
uration x € C*°(.9) determines a deterministic strategy o,: its events are those
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of x together with those Opponent events enabled from z to ensure receptivity,
ViZ.
zu{seS|[s]" ca}

with causal dependency and consistency inherited from S. It is easy to see that
the obvious map
f: ) op—-o0
zeC(S)
sending an event to its original is rigid epi. This ensures that o and ¥ cc(s) 0z
have the same rigid image, so are ‘may’ equivalent.

With stopping configurations, we can perform a similar decomposition re-
specting ‘may’ and ‘must’ behaviour. **INCORRECT Simon: ®|g with {8}
stopping and @ not stopping doesn’t split into a sum; the stopping strategy
is realised by bare the strategy B8 — @#® — @B. **** Firstly, say a strategy
0 :S - A with stopping configurations M is deterministic iff o is deterministic
and M consists precisely of the +-maximal configurations of S. Now given an
arbitrary strategy o : S - A with stopping configurations M for which

(i) Ve eC(S)Iye M. xcy and
(ii) Vye M,z € C*(S). x Cy & z is +-maximal = ze M,
we can decompose o, M into a sum of deterministic strategies with stopping

configurations.! Under the above assumptions, we can decompose o, M into a
sum of deterministic strategies with stopping configurations, viz.

Z (oy, My),

yeM
in which each component is a deterministic strategy with stopping configurations
My =qe¢ {x €C™(S) | x Cy & z is +-maximal} .

The obvious map
VE Z (UyﬂMy) - (o, M)
yeM
is rigid and epi, by (i). Moreover, because Uyeps My, = M, by construction and
(ii), the map f sends stopping configurations onto M. By Lemma 14.22, the
strategy o and its decomposition 3, v (0y, My) are ‘may’ and ‘must’ equivalent.

14.7 A language for partial strategies

The earlier language of strategies extends to a language for partial strategies,
reading the operations on strategies as the corresponding operations on partial
strategies.

'Example 14.25 shows why we cannot assume all +-maximal configurations are stopping.
That property is not preserved by taking the rigid image. However the axioms above are,
and would seem a reasonable weakening to impose generally on stopping configurations. The
axioms hold for St(¢’) of a partial strategy o’.
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14.8 Operational semantics—an early attempt

Let A be a game with configuration z. Write A/x for the game after x. If
f:A— B is amap between games A and B and x € C*°(A) write f/z: A/z —
B/ fx for the restriction of f between subsequent games.

Say a configuration z of a game A is +-pure if polx ¢ {+}, —-pure if polx ¢
{-} and pure if either. We identify configurations of A||B with pairs z,y where
2z €C®(A) and y € C*(B).

Composition

A B:o"%': Al Bly B'.C:rZ5%: B0/
AC:tec 57 @0 : Alx,Clz

Without typing,
Ty v,z
T,z / ’
T®o—T @0

Relabelling
A0S0 Al

= xeC(A)
B: fuo 5 (ffz)eo’ : Bl fa
Without typing, ,
% zeC(A)
fro—(f/z).0’

Pullback '
B:ol%o': B/fx
A: froS5(f)x)t o’ Alx

x €C(A) is pure

Without typing,

fz
o—0

fro—=(flx)*o’

Sum of strategies, without typing,

x e€C(A) is pure

x / .
oi—0;, 1€l

g x eC(A) is —-pure
Uicroi— lies o

0i7 9 jel & xeC(A) & + € polx

oo
Die[ 03 0;

We assume certain primitive strategies oy : A, so as a map oy : .S — A, for
which we assume a rule

— yeC(S) & ooy ==z
A:og—oy: Alx
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Proposition 14.32. Derivations in the operational semantics of
A:o-S0": Al

in which o denotes the map o : S — A, are in 1-1 correspondence with configu-
rations y € C(S) such that oy = x.

14.9 Transition semantics

A transition semantics is presented for partial strategies. Transitions are asso-
ciated with three kinds of actions: an action o associated with a hidden neutral

action,
t
lo

T+ t/ S IAY:

I+ - A

an initial event located in the left environment and an initial event located in
the right environment,

Iz:A+ t =4 A T+ t 4 y:B,A
Lﬁ:a:w' Lyibiy’
I,z :Ala + t 4 A I~ t! 4 3" :B/b,A.

Notice that a neutral action leaves the types unchanged but may affect the term.
An action z : a : z' is associated with an initial event ev(z : a : ') =ger T : a
at the z-component of the environment. On its occurrence the component of
the environment x : A is updated to =’ : A/a in which 2z, a fresh resumption
variable, stands for the configuration remaining in the remaining game A/a. Say
an action y : b : ¢’ on the right is +ve/—ve according as b is +ve/—ve. Dually,
say an action x : a : x’ on the left is +ve/-ve according as a is —ve/+ve.

Rules for composition:

I ~ t -4 y:B,A At y: Bt u -+ H
jy:b:yl Ly:b:y'
I+ t 4 y':B/b,A I,y :B)b + u’ + H
r + Jy:B,A.[t] u] <+ H

lo

I+ Jy : B/b, A [t || u'] 4 H
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Below we use « for o or an action on the left of the form z :a: 2, and 3 for o

or an action on the right of the form y:b:y'.

T+ t -+ A

I t’ 4 A

I —|H,

r + JA [t || u] 4 H

[e%

| JA [ || w] 4 H

Rules for hom-sets:

u
|s
I+ JA [t ] uw

[t u]
iﬁ
T+ At ']

—

Assuming a is an initial event of A for which p[{a}/z][@] cc p'[{a}/x][2],

Mx:A v pEcp

’
\Lr:a:m

- A

Iz’ :Ala + p[{atuz’/z]cec p'[{a}ua’/z] =4 A.

Above, the variable z will in fact only appear in one of p and p’, though because
of duality in forming terms we cannot prima facie be sure which.

Dually, assuming b is an initial event of B for which p[{b}/y][@] =c p'[{b}/v][2],

I+~ pEcp’

J{y:b:y'

4 y:B,A

I+ p[{b} vy [yl ec p'[{b} vy'[y] -y B[b,A.

Rules for sum of partial strategies:

I+ t; -+ A

le

I’ + t -4 A" el

3

€ is —ve
T~ Ujes ti 4 A

t - A/

iel V1

IV (]

IV t

HI

I+~ Diel ti

lo

I v (Hes t)LE5/5]

= A/
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I - t; =4 A
I+ t 4 A’
jel & eis +ve
I' + Dielti - A
'+ t -4 A

Rules for pullback of partial strategies:

R tl -4 A I + t2 4 A
| R t] =4 A | th =4 A’
I + t1 Atg - A
iz:c:z'
'+ t) Aty =4 A
I+ t -+ A I+ to - A
I+ t) 4 A I+ th 4 A
I+ t1 Atgy -4 A T+ t1 Ao - A
I+ ] At =4 A r + t1 At -4 A
Rules for 4:
Provided b is an initial —ve event of B,
I+ 50(177(]17(12) B y:BaA
ly:b:y'
IS éc(p, a1, 2)[{b} vy [y] - y':B/bA.
Dually, provided a is an initial +ve event of A,
F,LEZA = 6C(p7QIaQQ) 4 A
D2’ Ala + do(pyqr,q2)[{a} ua'/x] -4 A.



14.10. DERIVATIONS AND EVENTS 223

In typed judgements of dc(p,qi1,¢2) a variable can appear free in at most
one of p,q1,q2. Write, for example, y € fv(p) for y is a free variable of p, and
q1(y : b) € p[@] to mean the image of b under the map ¢; denotes is in the
configuration denoted by p[@].

Provided b is an initial +ve event of B, y € fv(q1) and ¢1(y : b) € p[2],

r + 5C(P»Q1a‘I2) — y:BvA
ly:b:y'
I+ dc(pqr,a2)[{b}vy'/y] -y :B/bA.

Similarly for g2. And dually.
Provided b is an initial +ve event of B, y € fv(p) and p(y :b) € ¢1[2],

r + 5C(P»Q1a‘I2) = y:BvA
ly:b:y'
I+ dc(pqr,a2)[{b} vy'/y] -y :B/bA.

Similarly for g2. And dually.

14.9.1 Duality

Above, as is to be expected from duality, we can derive a transition

x: A+ t =+ A
D,z': Ala + t 4 A

iff we can derive a transition

I v t 4 z:AHA
r + t’ 4 ' (Ala)t A

14.10 Derivations and events

Assume certain primitive strategies I' + og < A, so as a map, g : S - I'||A,
for which we assume rules,

s is initial in S & og(s) = ev(e).

I’ + o =4 A’
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Then, derivations in the operational semantics
t
le
tl
up to a-equivalence, in which ¢ denotes the partial strategy o : S — I'||A, are

in 1-1 correspondence with initial events s in S such that o(s) = ev(e) when
ev(€) # o or s is neutral when ev(e) = o.

I' +

IV =4 A/

)



Chapter 15

Probabilistic strategies

The chapter provides a new definition of probabilistic event structures, extend-
ing existing definitions, and characterised as event structures together with a
continuous valuation on their domain of configurations. Probabilistic event
structures possess a probabilistic measure on their domain of configurations.
This prepares the ground for a very general definition of a probabilistic strate-
gies, which are shown to compose, with probabilistic copy-cat strategies as iden-
tities. The result of the play-off of a probabilistic strategy and counter-strategy
in a game is a probabilistic event structure so that a measurable pay-off function
from the configurations of a game is a random variable, for which the expecta-
tion (the expected pay-off) is obtained as the standard Legesgue integral.

15.1 Probabilistic event structures

A probabilistic event structure comprises an event structure (E, <, Con) together
with a continuous valuation on its open sets of configurations, i.e. a function w
from the open subsets of configurations C*(FE) to [0,1] which is:

(normalized) w(C=(F)) =1 (strict) w(@) = 0;

(monotone) UcV = w(U) <w(V);

(modular) w(UuV)+w(UnV)=w(U)+w(V);

(continuous) w(User U;) = sup,;w(U;) for directed unions Ujer U;.

Continuous valuations play a central role in probabilistic powerdomains [27].
Continuous valuations are determined by their restrictions to basic open sets
T =gof {y €C=(E) | x €y}, for x a finite configuration. The intuition: w(U) is
the probability of the resulting configuration being in the open set U. Indeed,
continuous valuations extend to unique probabilistic measures on the Borel sets.

This description of a probabilistic event structure extends the definitions in
[28]. It turns out to be equivalent to a more workable definition, which relates
more directly to the configurations of E, that we develop now.

225
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15.1.1 Preliminaries

Notation 15.1. Let F be a stable family. Extend F to a lattice F' by adjoining
an extra top element T. Write its order as x €y and its join and meet operations
as TV y and x Ay respectively.

Definition 15.2. Let F be a stable family. Assume a function v : F - R.
Extend v to v" : FT — R by taking v"(T) = 0.

Wit v: F = R, for n € w, define the drop functions dg")[y;wl,---,xn] eR
for y,x1,,x, € F' with y S x1,-+, 2, in F' as follows:

dfjo)[y;] =def v (Y)
dq(;n) [yv L1, xn] =def df,nfl) [yv O PR mn—l] - ds;nil) [xn, T1VIp, 5 Tp-1V xn] .
Throughout this section assume F is a stable family and v : F - R.

Proposition 15.3. Let n€w. Fory,x1, &, € F' with y S x1,, Ty,

dPlyser, - aa]=o(y) - 3 DIV ).

@#Ic{l,n} iel

Fory,x1,--,xn € F with y Cx1,-, Ty,

Ay 1, 0] = v(y) - ;(—D'””MU ),

i€l
where the index I ranges over sets satisfying @ + I € {1,--,n} s.t. {x; | ie I}t

Proof. We prove the first statement by induction on n. For the basis, when
n=0, df,n) [y; ] =v(y), as required. For the induction step, with n > 0, we reason

dq()”) [yv T,y xn] =def d'f;n_l) [yv X1,y xn—l] - df;n_m[xna L1V Iy, Tp-1V mn]

SO VRN G i (VA

@#Ic{1,n-1} iel
- v(@n) + > G L AVERE
@+Jc{l,,n-1} geJ

making use of the induction hypothesis. Consider subsets K for which @ # K ¢
{1,-,n}. Either n ¢ K , in which case @ + K ¢ {1,,n—-1}, or n € K, in
which case K = {n} or J =gt K \ {n} satisfies @ + J ¢ {1,--,n—1}. From this
observation, the sum above amounts to

o)=Y CDEF(V @),

@+Kc{l,,n} keK

as required to maintain the induction hypothesis.

The second expression of the proposition is got by discarding all terms
v(Vier ;) for which V;ey x; = T which leaves the sum unaffected as they con-
tribute 0. O
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Corollary 15.4. Let n € w and y,x1,,Tn € F' with y € 21, Tn. For p an
n-permutation,

d’f)n) [y;xp(l)f"axp(n)] = d1()n) [y;xla 7'1:11] .

Proof. As by Proposition 15.3, the value of d,(Jn) [y; 21, -, 2] is insensitive to
permutations of its arguments. O

Proposition 15.5. Assume n > 1 and y,x1,,Zn € F' with y E X1, Tp. If
y =x; for some i with 1 <i<n then am [y; 21, 2,] = 0.

Proof. By Corollary 15.4, it suffices to show dl(,")[y; x1, %] =0 when y = z,.
In this case,

Ay 21, 20] =d D [ys 21, 21 ] = A [0 21V Ty e Ty V]
= dq()nil) [y7 T,y xn—l] - dq()nil)[ya T,y xn—l]
=0.

O

Corollary 15.6. Assume n > 1 and y,z1, -, 2, € F' with y € 1, -, 2. If
x; Ex; for distinct 1,7 with 1 <1,5 <n then

dz(;n) [Y; 21, 2n] = dﬁ”‘”[y;an, L1, L1, T ]
Proof. By Corollary 15.4, it suffices to show
d™ [y 21, Tpo1, an] = AV [y 21, 201 ]
when z,,_1 € x,,. Then,
Ay 2y, 0] =dO D[y 21, 2p1 ] = A [T 21V g,y By V 2]

= dgn_l) [y§ L1,y xnfl] - dg;n_l)[xn; T1VTp, 5 Tn-2, fn]

= d’f)n_l) [y7 L1,y xn—l] -0 5
by Proposition 15.5. O

Proposition 15.7. Assume n € w and y,x1,, T, € F' with y S x1,,Tp.
Then7 dl()n) [y;xla >xn] =0 ny =T and dl()n) [y;xla 7xn] = dg)n_l) [y;x17"'axi—17xi+1>”‘;xn]
ifx;=T with 1 <i<n.

Proof. When n =0, df,o)[T;] =v"(T) =0. When n > 1, df,n)[T;xl,---,xn] =0 by
Proposition 15.5 as e.g. x,, = T. For the remaining statement, w.l.og. we may
assume ¢ = n and that z, = T, yielding

d'f)n) [y7 L1,y T] = dz()n_l) [yJ L1,y wnfl]_dgln_l)[-r; T1VT, -, ‘rnfl\/T] = dgﬂ_l)[gh X1, "'7.%'”,1] .

O
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Lemma 15.8. Let n > 1. Let y,x1, @y, x), € F' with y C xq,-, T,. Assume
xn Eal,. Then,

d'f)n) [ya L1,y :E;z] = dq(jn)[ya X1, ,In] + dq(jn)[xna L1V Ty, "y Tp-1V Tn, IE;l] .
Proof. By definition,

the r.h.s. = dl()"_l)[y;ml, o XTpe1] — dff”_l)[xn;xl V Tyttt T V Ty |

n—1 . n—1 I, / /
+ df} )[xnvxlvmnf"ywn—lVxn]_dg, )[fl'n,xl VT, Tn-1 V{,Cn]

n—-1 . n—1 /. / /
A D[y wy, - wpq | - d O [2l sz vl g vl ]

d’f)n) [y7 L1,y Tp-1, xr,n,]
the Lh.s..

15.1.2 The definition

Definition 15.9. Let F be a stable family. A configuration-valuation is function
v:F —[0,1] such that v(@) = 1 and which satisfies the “drop condition:”

dz()n) [y;'rlv '"756”] 20

forall n>1 and y,x1, -, x, € F with y S x1,-, x,.

A probabilistic stable family comprises a stable family F together with a
configuration-valuation v : F — [0, 1].

A probabilistic event structure comprises an event structure F together with
a configuration-valuation v : C(F) - [0,1].

Proposition 15.10. Let v : F — [0,1]. Then, v is a configuration-valuation
iff v1(2) =1 and dgn)[y;xl,---,xn] >0 for allm ew and y,x1,,x, € F' with
YC X1, Tpn. If v is a configuration-valuation, then

yer = v'(y) 2v'(2),
for all z,ye FT.
Proof. By Proposition 15.7 and as dgl)[y; x]=v"(y) - v (x). O

In showing we have a probabilistic event structure or stable family it suffices
to verify the “drop condition” only for covering intervals.

Lemma 15.11. Let F be a stable family and v: F — [0,1].

(i) Let y € x1,-+, @, in F. Then, df,n) [y; 1, @, ] is expressible as a sum of
terms
d$¥) [u;wy, -, wy,]
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where y € u—cw; in F and w; € 21 U Uxy, for all i with 1 <i <k. [The set
x1 U Uz, need not be in F.|

(ii) A fortiori, v is a configuration-valuation iff v(@) =1 and
for allm >1 and y—<xq,---,x, in F.

Proof. Define the weight of a term df,n)[y;xl,---,xn], where y € x1,--, x,, in F,
to be the product |z1 \ y| x -+ x |z, Nyl
Assume y S xy,-, 2, in F. By Proposition 15.5, if y equals z], or some
i, then dq(,")[y;xl,---m;] = 0, so may be deleted as a contribution to a sum.
Otherwise, if y ¢ x,, ¢ 2},, by Lemma 15.8 we can rewrite a™ ly;x1,-, )] to
the sum

A9 [ys wr, e ] + A5 [0 21V @y oy 1 Vi, 20,

where we further observe
o0 Nyl < |2, Nyl |7, N 2| < |27, Nyl

and
(i Van) N x| <2 Nyl

whenever z; vz, # T. Using Proposition 15.7 we may tidy away any mentions of
T. This reduces dqﬁ") [y; 21,2, ] to the sum of at most two terms, each of lesser
weight. For notational simplicity we have concentrated on the nth argument
in dq(j")[y;:vl,---,x;], but by Corollary 15.4 an analogous reduction is possible
w.r.t. any argument.

Repeated use of the reduction, rewrites dl(,") [y;x1,,Tn] to a sum of terms
of the form

A [u; wy, -, wy]

where k < n and u—cwy, -, wg € x1 U+ Ux,. This justifies the claims of the
lemma. O

15.1.3 The characterisation

Our goal is to prove that probabilistic event structures correspond to event
structures with a continuous valuation. It is clear that a continuous valuation w
on the Scott-open subsets of an event structure E gives rise to a configuration-
valuation v on E: take v(x) =gt w(T), for x € C(F). We will show that
this construction has an inverse, that a configuration-valuation determines a
continuous valuation.

For this we need a combinatorial lemma;*

1The proof of the combinatorial lemma below is due to the author. It appears with acknowl-
edgement as Lemma 6.App.1 in [29], the PhD thesis of my former student Daniele Varacca,
whom I thank, both for the collaboration and the latex.
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Lemma 15.12. For all finite sets I, J,
3 (-1)IET = (=)L

F+xrKcIxJ
(K=l s (K)=J

Proof. Without loss of generality we can take I ={1,...,n} and J={1,...,m}.
Also observe that a subset K ¢ I x J such that m (K) = I, m2(K) = J is in fact
a surjective and total relation between the two sets.

n

7\

m

Let
tmm =def Z (_1)|K|7

P+rKcIxJ
w1 (K)=1,m2(K)=J

t0 m =aet {@# K I xJ||K|odd, m(K)=1,m(K)=J}|;
tpm=H{@# KcIxJ||K|even, m(K)=1,m2(K)=J}.

Clearly tnm = t5 ,,, =19 .- We want to prove that t, ,m = (=1)"*"*!. We do
this by induction on n. It is easy to check that this is true for n = 1. In this
case, if m is even then ¢§,, =1 and t{, =0, so that t§,, -7, = (-1)"*"*
Similarly if m is odd.

Now assume that for every p, t,, = (-1)™*?*! and compute tp11,,. To
evaluate ¢,,+1,, we count all surjective and total relations K between I and J
together with their“sign.” Consider the pairs in K of the form (n + 1,h) for
h € J. The result of removing them is a a total surjective relation between
{1,...,n} and a subset Jg of {1,...,m}.

n

Eard

m S

Consider first the case where Jg = {1,...,m}. Consider the contribution of
such K’s to t;+1,m. There are (T) ways of choosing s pairs of the form (n+1,h).
For every such choice there are t,, ,,, (signed) relations. Adding the pairs (n+1,h)
possibly modifies the sign of such relations. All in all the contribution amounts
to

5 (e

1<s<m
Suppose now that Jx is a proper subset of {1,...,m} leaving out r elements.

n

P
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Since K is surjective, all such elements h must be in a pair of the form
(n+1,h). Moreover there can be s pairs of the form (n + 1,h’) with h' € Jg.

What is the contribution of such K’s to t, 7 There are (T) ways of choosing

the elements that are left out. For every such choice and for every s such that
0 < s < m—r there are (m:) ways of choosing the h' € Jg. And for every
such choice there are t,, ,,—r (signed) relations. Adding the pairs (n +1,h) and
(n+1,h") possibly modifies the sign of such relations. All in all, for every r such
that 1 <r <m -1, the contribution amounts to

()5 ()t

T/ 1<s<m-r

The (signed) sum of all these contribution will give us t,11,m. Now we use
the induction hypothesis and we write (=1)"*?*! for ¢, ,,.
Thus,

m
tn+1,m = ( )(_l)stn,m
1<s<

SN NG S

0<s<m-—r

_ (m)(_1)5+n+m+1

_— m) » (ms_T)(_l)strmu

0<s<m-—r

- o p (M)

1<s<m

" 137“;71—1 (T;L) OSSSZ'fn—"’ (ms_ r)(_l)s) .

By the binomial formula, for 1 <r <m -1 we have

0o=(1-1)""= % (ms_ r)(—1)8.

0<s<m~—r

So we are left with

tnl,m = (_1)n+m+1 (1335m (T:)(_l)s)

- (caymm (m (") - (%*)(—1)0)
= (- (0-1)

- (_1)n+1+m+1

as required. O
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Theorem 15.13. A configuration-valuation v on an event structure E extends
to a unique continuous valuation w, on the open sets of C*°(E), so that w,(T) =
v(z), for all z e C(F).

Conversely, a continuous valuation w on the open sets of C*(E) restricts to
a configuration-valuation v, on E, assigning vy (x) = w(T), for all x € C(F).
Proof. The proof is inspired by the proofs in the appendix of [28] and the the-
sis [29].

First, a continuous valuation w on the open sets of C*°(E) restricts to a
configuration-valuation v defined as v(x) =gef w(T) for z € C(E). Note that any
extension of a configuration-valuation to a continuous valuation is bound to be
unique by continuity.

To show the converse we first define a function w from the basic open sets
Bs =get {T1 U UT, | x1,, 2, € C(E)} to [0,1] and show that it is normalised,
strict, monotone and modular. Define

w(A U UT) =ger 1-d™[@;21, 0]

= > DIV ay)

@g+Ic{l,-,n} iel

—this can be shown to be well-defined using Corollaries 15.4 and 15.6.
Clearly, w is normalised in the sense that w(C>(F)) = w(@) = 1 and strict
in that w(@) =1-v(@) =0.
To see that it is monotone, first observe that

w(F U UT,) <w(Fi U UTpi1)
as

w(F U UTr) —w(fi U uTy) =dV (@21, 2] = dS [ @21, T ]

=d™ [Epe1; 21V Tpst, o Tn V Tps1] 2 0.
By a simple induction (on m),
w(T U UT,) Sw(FiU-—UT, UG U UTm) -

Suppose that 3 U---UT, € 1 U UF,,. Then iU U, = LU UT UG U UTp,.
By the above,

w(ZI U UTy) Sw(FLU-UTp UG U UTm)

=w(fiV-UTm),

as required to show w is monotone.
To show modularity we require

w(FL Y- UTy) +w(fi V- UTm)

=w(FL U UTpy UG U UGm) +w((FTU-UTn) N (iU UTm))-
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Note

(ﬁu...u@)m(g\lu...uy’\m):(ﬁ ﬂy’\l)uu(@mg})u(ﬂmy’\m)

=EVYLU UL VY ULy V U,
From the definition of w we require

w(‘f\lu...uﬁug\lu...uy/\m)

DI G LR TAVES RS S G LA QVENY

@#Ic{l,n} i€l @#Jc{1,,m} jeJ
- > (D zivy). (1)
@#R{1,nyx{1,m} (i,j)€R

Consider the definition of w (& U--UT, Uf1 U---UT,,) as a sum. Its components
are associated with indices which either lie entirely within {1,---,n}, entirely
within {1,---,m}, or overlap both. Hence

w(ﬁu...uﬁug‘lu...uy"m)

- Z (—1)‘I‘+1v(\/xi)+ Z (—1)"]“10(/\(]%)

@#Ic{1,n} el @+Jc{1,-,m}
+ > (DI (O 2 v\ y5). (2)
@+lc{l,,n},@+Jc{l, - ,m} i€l jeJ

Comparing (1) and (2), we require

- > (Do @ivy)

@+Rc{1,-,n}x{1l,-,m} (3,j)eR
= > (DI (\ v\ yy). (3)
@+lc{l,n},@+Jc{l,m} el jeJ

Observe that
Vo ozivy;=VaivVy;
(i,j)eR iel jeJ

whenT =Ry =gt {i€1|3jeJ (i,j)e R}and J = Ry =qes {j € J | FieI. (i,j) € R}
for a relation R ¢ {1,---,;n} x{1,---,m}. With this observation we see that equal-
ity (3) follows from the combinatorial lemma, Lemma 15.12 above. This shows
modularity.

Finally, we can extend w to all open sets by taking an open set U to
SUDpeps &by W(D).  The verification that w is indeed a continuous valuation
extending v is now straightforward. O

The above theorem also holds (with the same proof) for Scott domains. Now,
by [30], Corollary 4.3:

Theorem 15.14. For a configuration-valuation v on E there is a unique prob-
ability measure i, on the Borel subsets of C*°(E) extending w,.
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Example 15.15. Consider the event structure comprising two concurrent events
e1, es with configuration-valuation v for which v(@) = 1,v({e1}) = 1/3,v({e2}) =
1/2 and v({e1,e2}) = 1/12. This means in particular that there is a probability
of 1/3 of a result within the Scott open set consisting of both the configuration
{e1} and the configuration {e;, es}. In other words, there is a probability of 1/3
of observing e; (possibly with or possibly without es). The induced probability
measure p assigns a probability to any Borel set, in this simple case any sub-
set of configurations, and is determined by its value on single configurations:
p(@) =1-4/12-6/12 + 1/12 = 3/12, p({e1}) = 4/12 - 1/12 = 3/12, p({e2}) =
6/12-1/12 =5/12 and p({e1,e2}) = 1/12. Thus there is a probability of 3/12 of
observing neither e; nor ey, and a probability of 5/12 of observing just the event
e2 (and not eq). There is a drop dﬁo)[z; {e1},{e2}]=1-4/12-6/12+1/12 = 3/12
corresponding to the probability of remaining at the empty configuration and
not observing any event. Sometimes it’s said that probability “leaks” at the
empty configuration, but it’s more accurate to think of this leak in probability
as associated with a non-zero chance that the initial observation of no events
will not improve.

Example 15.16. Consider the event structure with events N* with causal de-
pendency n < n + 1, with all finite subsets consistent. It is not hard to check
that all subsets of C*(N*) are Borel sets. Consider the ensuing probability
distributions w.r.t. the following configuration-valuations:

(i) vo(z) = 1 for all x € C(N*). The resulting probability distribution assigns
probability 1 to the singleton set {N*}, comprising the single infinite configura-
tion N*, and 0 to @ and all other singleton sets of configurations.

(i) v1(2) = v1({1}) = 1 and v1(x) = 0 for all other x € C(N*). The result-
ing probability distribution assigns probability 0 to @ and probability 1 to the
singleton set {1}, and 0 to all other singleton sets of configurations.

(iii) va(@) =1 and va({1,--,n}) = (1/2)™ for all n € N*. The resulting proba-
bility distribution assigns probability 1/2 to @ and (1/2)"*! to each singleton
{{1,--,n}} and 0 to the singleton set {N*}, comprising the single infinite con-
figuration N*.

When z a finite configuration has v(z) > 0 and u,({z}) = 0 we can under-
stand x as being a transient configuration on the way to a final with probability
v(zx). In general, there is a simple expression for the probability of terminating
at a finite configuration.

Proposition 15.17. Let E,v be a probabilistic event structure. For any finite
configuration y € C(E), the singleton set {y} is a Borel subset with probability
measure

po({y}) = mf{d{V[y; 21,00 [ new & y Gy, 2, € C(E)} .

Proof. Lety € C(E). Then {y} =7\ U, is clearly Borel as Uy =gef {x € C*(E) | y ¢ z}
is open. Let w be the continuous valuation extending v. Then

w(Uy) =sup{w(Tr V-V T,) |y § x1,- 20 € C(E)}
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as Uy is the directed union U{Zy U--UT, | y € z1, -,z € C(E)}. Hence

po({y}) = v(y) —w(Uy) =v(y) —sup{w(Zy V- UT,) | y & 21, 20 € C(E)}
sinf{o(y) - Y DIV @) [y a2, e C(E))

@+Ic{l,,n} iel
=inf{d"[y; 21, 2n] | new & y 1,20 € C(E)}.

O

Example 15.18. It might be thought that probabilistic event structures could
only capture discrete distributions. However consider the event structure rep-
resenting streams of 0’s and 1’s. We saw this earlier in Example 2.1. Its finite
configurations comprise the empty set and downwards-closures [s] of single event
occurrences s given by a finite sequence of 0’s and 1’s. Assign value 1 to the
empty configuration and 1/2" to a sequence s = (s1,82,*,8,). Then all finite
configurations [s] are transient it the sense that the probability of ending up
at precisely the finite stream [s] is zero; all the probabilistic measure is con-
centrated on the maximal configurations, the infinite streams. On the maximal
configurations the probabilistic measure gives a continuous distribution with
zero probability of the result being any particular infinite stream.

Remark. There is perhaps some redundancy in the definition of purely proba-
bilistic event structures, in that there are two different ways to say, for example,
that events e; and ey do not occur together at a finite configuration y where
(5 €9 . . .
y—cx1 and y—cxo: either through {e;,es} ¢ Con; or via the configuration-
valuation v through v(xz; Uxz2) = 0. However, when we mix probability with
nondeterminism, as we do in the next section, we shall make use of both order-
consistency and the valuation.

15.2 Probability with an Opponent

Assume now that the events of the stable family or event structure carry a
polarity, + or —. Imagine the event structure or stable family represents a
strategy for Player. The Player cannot foresee what probabilities Opponent will
ascribe to moves under Opponent’s control. Nor, without information about the
stochastic rates of Player and Opponent can we hope to ascribe probabilities
to play outcomes in the presence of races. For this reason we shall restrict
probabilistic event structures with polarity to those which are race-free.

It will be convenient, more generally, to define a probabilistic stable family in
which some events are distinguished as Opponent events (where the other events
may be Player events or “neutral” events due to synchronizations between Player
and Opponent). Events which are not Opponent events we shall call p-events.
For configurations x,y we shall write = ¢ y if x € y and y \ x contains no
Opponent events; we write z—cPy when z—cy and = c? y; we continue to write
x €™y if x Cy and y \ z comprises solely Opponent events.
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Definition 15.19. We extend the notion of configuration-valuation to the sit-
uation where events carry polarities. Let F be a stable family F together with
a specified subset of its events which are Opponent events. A configuration-
valuation is a function v : F — [0, 1] for which v(@) =1,

vy = v(z)=v(y) (1)
for all z,y € F, and satisfies the “drop condition”

for all n € w and y,x1, -, x, € F with y P z1,---, 2.

The notion of probabilistic stable family thus extends to a stable family F to-
gether with a specified subset of Opponent events and a configuration-valuation
v:F - [0,1]. The notion specialises to event structures with a distinguished
subset of Opponent events.

In particular, a probabilistic event structure with polarity comprises E an
event structure with polarity together with a configuration-valuation v : C(E) —
[0,1].

Remark There is an equivalent way of presenting a configuration-valuation
for an event structure with polarity S as a family of conditional probabilities.
Define a familiy of conditional probabilities over S to comprise Prob(z | y),
indexed by y €* x in C(S), such that

(i) Prob(y | y) = 1 and x ~ Prob(z | y) satisfies the drop condition for x
sty €t x in C(9);

(ii) Prob(w|y) = Prob(w | z)Prob(z | y) if y €* z ™ w in C(95);
(iii) Prob(x|y) =Prob(z'|y") ifyctz,y< ¢y and zuy =2’

Given a configuration-valuation v we define Prob(z | y) = v(x)/v(y) if v(y) # 0
and to be 0 otherwise. Conversely, given a family of conditional probabilities,
as described above, first extend it by taking Prob(x« |y) =1 for y €~ 2. We then
obtain a configuration-valuation by defining

v(x) =4of Prob(zy | zg)Prob(zs | 21)---Prob(z, | zp-1)
w.r.t. a covering chain
@ = x9g—Cx1—Cxo—<C—Cxy_1—CLy =T;
by (ii) and (iii) the choice of covering chain does not affect the value assigned to
x. The two operations provide mutual inverses between configuration-valuations

and families of conditional probabilities provided they in addition satisfy

Prob(y |@)=0 & y <"z = Prob(z|y) =0,
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or, equivalently,
Prob(zy |y1)=0& y1 € ry cyct 2 = Prob(x|y)=0.

There is an analogous result for configuration-valuations for a stable family F
together with a specified subset of Opponent events.

As indicated above, the extra generality in the definition of a probabilistic
stable family with polarity is to cater for a situation later in which we shall
ascribe probabilities not only to results of Player moves but also to events aris-
ing as synchronizations between Player and Opponent moves. As earlier, by
Lemma 15.11(i), it suffices to verify the “drop condition” for p-covering inter-
vals.

Definition 15.20. Let A be a race-free event structure with polarity. A proba-
bilistic strategy in A comprises a probabilistic event structure S,v and a strategy
0:S5 - A. [By Lemma 5.7, S will also be race-free.]

Let A and B be a race-free event structures with polarity. A probabilistic

strategy from A to B comprises a probabilistic event structure S, v and a strategy
o:8 - At||B.

We extend the usual composition of strategies to probabilistic strategies.
Assume probabilistic strategies o : S - A*|| B, with configuration-valuation
vg :C(S) - [0,1], and 7 : T — B*||C with configuration-valuation vy : C(T) —
[0,1]. We first tentatively define their composition on stable families, taking
v:C(T)®C(S) - [0,1] to be

v(x) = vg(mz) x vp(mex)
for z € C(T) ® C(9).
Proposition 15.21. Let v : C(T) ® C(S) — [0,1] be defined as above. Then,
v(@)=0. Ifrc yin C(T)®C(S) then v(x) = v(y).
Proof. Clearly,
(D) =vs(m@) x vp(m@) =1x1=1.
Assuming z—c"y in C(T) ®C(S), then either x(i*c)y, with s a —ve event of S, or

*,t . (s,%) .
iL'(—C)y7 with t a —ve event of T'. Suppose o y, with s —ve. Then wlw—sc mY,
where as s is —ve, vg(mz) = vs(my). In addition, mex = may so certainly
vr(mex) = vp(my). Combined these two facts yield v(z) = v(y). Similarly,

(%,t) . . . . . . .
x—<Cy, with ¢ —ve, implies v(z) = v(y). As x S~ y is obtained via the reflexive
transitive closure of —c~ it entails v(z) = v(y), as required. O

But of course we need to check that v is indeed a configuration-valuation.
For this it remains to show that v satisfies the “drop condition.” For this we
need only consider covering intervals, by Lemma 15.11(i).
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Lemma 15.22. Let y,z1, -, 2, € C(T) ®C(S) with y—cPxq,--, x,,. Assume that
my—<tma; when 1 < i < m and my—< mex; when m+1 < i < n. Then in
C(T)®C(S),v,

dz()n) [y; 21, 20] = dq(,?)[ﬂ'lyﬂrll’la T T | X dq(f;m) [T2y; T2Tme1, ", Mol ] .
Proof. Under the assumptions of the lemma, by proposition 15.3,

dq(;n) [le; T1L1," 7T133m] = US(7T11/) - Z(—l)lll‘ﬂvs( U 771331') y
I 1€l

where I; ranges over sets satisfying @ # I; ¢ {1,--,m} s.t. {muax; |iel}1.
Similarly,

d$7 ™) [y T ma, o mawn ] = vr(may) = D (-1 or (U mozi)
1o 1€ls

where I ranges over sets satisfying @ # Iy € {m + 1,---,n} s.t. {mox; | i € IL}1.
Note, by strong receptivity of 7, that when @ # I ¢ {1,---,m},

{mz;|ie 1}t inC(S)iff {x; |ie 1}t in C(T)®C(S)
and, similarly by strong receptivity of o, when @+ I ¢ {m+1,---,n},

{maw; | i€}t in C(T) iff {z; | iel}t inC(T)®C(S).
Hence

Umazi=m Jx and | mzi=m .

1€lq i€l 1€ls i€ly

Making these rewrites and taking the product

m . n-m .
dis M1y a1, -+, M1 T ] X df,T )Moy Mot Tawn] 4

we obtain
vs(my) x vr(my) —Z(—l)mH1 vs(my) x vr(me U 24)
I 1€ly
_Z(_l)lhlJr1 vs(m U x;) x vr(may)
I 1ely
+ Z (_1)\11\+\Iz| vg(m1 U ;) x vy (72 U i) .
11,12 iEIl iEIQ

But at each index I,
Us(ﬁy) = Us(ﬁ U »Ti)

1€ls

as my S 71 Uier, T;. Similarly, at each index I,

vp(mey) = vp(me U =)

i€l
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Hence the product becomes

vs(m1y) x vr(m2y) —[Z(—l)m'+1 vg(m U @) x vp(me |J 2:)

i€lo i€lo
—Z(—l)IIllJr1 vg(m |J @) x vp(me U i)
I i€l i€l
+ Z (‘Ulhlﬂh‘ ’US(Tl'l U xz) ><UT(7T2 U Iz)
11,12 iEIl iEIZ

To simplify this further, we observe that
{zilieh}t &{zi|ice L}t {x;|ieHul}t.

The “<=” direction is clear. We show “=.” Assume {z; | i € [}t and {z; | i € [ }1.
We obtain {myx; | i € I1 }1 and {mx; | i € Is}1 as the projection map 7 preserves
consistency. Hence U;er, m12; and Ujer, mix; are configurations of S. Further-
more, by assumption,

myc<" |Jmae, and myc | ma.

iely i€l

As S, a strategy over the race-free game A*'||B, is automatically race-free—
Lemma 5.7—we obtain

U 11X € C(S)

’iEIl UIQ
by Proposition 5.5. Similarly, because T is race-free, we obtain

J maz; eC(T).

’iEIlulg

Together these entail
U zieC(T)e®C(5),

iEIlulg
i.e. {z; | i € [ Uy }1, as required. Notice too that
mUzicm U v and mJzic m U 2,
i€l iel1Uly i€ly iel{Ulsy
which ensure
vg(m Jzi) =vs(m U ) and vp(me | zi) =vr(me U @),
iGIl iEIlufg iéIg iéIlufg

so that

o( U @) =vs(m U i) xvp(me U ).

el uls iely i€ly

We can now further simplify the product to

v(y) —;(—1)'12'+1 v(U #:)

ielqy
=S DI (U @)
I iely

e ()R (Y ).

I.1» iel Ul
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Noting that any subset I for which @ # I € {1,---,n} either lies entirely within
{1,:-,m}, entirely within {m+1,---,n}, or properly intersects both, we have
finally reduced the product to

o(y) = DD ()
I I

with indices those I which satisfy @ # I ¢ {1,---,n} s.t. {z; | i€ I}1, i.e. the
product reduces to am [y;x1-++, ] as required. O

Corollary 15.23. The assignment (vr ® vg)(z) =dof vs(mix) x vr(mezx) to
x € C(T)®C(S) yields a configuration-valuation on the stable family C(T)®C(S).

Proof. From Proposition15.21 we have requirement (1); by Lemma 15.11(i) we
need only verify requirement (2), the ‘drop condition,” for p-covering intervals,
which we can always permute into the form covered by Lemma 19.4—any p-
event of C(T") ® C(S) has a +ve component on one and only one side. O

Example 15.24. The assumption that games are race-free is needed for Corol-
lary 19.5. Consider the composition of strategies o : @—=B and 7 : B—=@&
where B is the game comprising the two moves B and 8 in conflict with each
other—a game with a race. Suppose o assigns probability 1 to playing @ and 7
assigns probability 1 to playing 8, in the dual game. Then the “drop condition”
required for the corollary fails.

We can now complete the definition of the composition of probabilistic strate-
gies:

Lemma 15.25. Let A, B and C be race-free event structure with polarity. Let
o : S > A B, with configuration-valuation vg : C(S) - [0,1], and 7 : T —
B*||C with configuration-valuation vy : C(T) — [0,1] be probabilistic strate-
gies. Assigning (vrovg)(x) =gef vs(Ilhz) x vp(llaz) to x € C(TOS) yields a
configuration-valuation on T®S which with T®@c : TS — A*||C forms a proba-
bilistic strategy from A to C.

Proof. We need to show that the assignment w(x) =get vs(Il12) xvp (I22) to = €
C(T®S) is a configuration-valuation on T®S. We use that v(z) =qer vs(m12) X
vr(maz), for z e C(T) ® C(.9), is a configuration-valuation on C(T") @ C(S)

Recalling, for z € C(T®S), that Uz € C(T) ® C(S) with IIjz = m Uz and
Ilsx = mo Uz, we obtain

w(x) =qer vs(Ihiz) x v (Ilaz) = vg(m |Jz) x vr(me | Jz) =v((Jz).

Consequently,
w(@)=v(Jo)=v(2)=1.
The function w inherits requirement (1) to be a configuration-valuation from
v because

to
m—pcy with p —ve in T®S implies Uz i(g)Uy with top(p) —ve in C(T) ®
C(S).
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To see this observe that top(p) either has the form (s,*) or (*,t). Suppose
top(p) = (*,t). Suppose e —»y (*,t). Then, by Lemma 3.27,

either (i) e = (s',t') and t' —r t or (ii) e = (x,t') and t' —r .
But (i) would violate the —innocence of 7. Hence (ii) and being ‘visible’ the
prime [e], €  ensuring e € Uz. As all —j,-predecessors of (*,t) are in Uz

. (*:t) . o
we obtain Jz—c Uy. The proof in the case where top(p) = (s, *) is similar.
Similarly, w inherits requirement (2) from v, as w.r.t. w,

A [y, wn] = w(y) - ;(‘1)‘1‘“”@%)
=o(Uy) - ;(-U'””NUUIM
=v(Uy) - ;(‘1)M+1“(L§(U )
>0,

whenever y €* z1,-, 2, in C(T®S). (Above, the index I ranges over sets satis-
fying @+ I c{1,---,n} s.t. {z; | iel}t) O

A copy-cat strategy is easily turned into a probabilistic strategy, as is any
deterministic strategy:

Lemma 15.26. Let S be a deterministic event structure with polarity. Defining
vg :C(S) = [0,1] to satisfy vs(x) =1 for all z € C(S), we obtain a probabilistic

event structure with polarity.

Proof. Clearly
rcy = vs(x)=vs(y) =1

for all x,y € C(S). As S is deterministic,
y<trx & ycta' = zux’eC(9),

for all y,z, 2" € C(S). For the remaining requirement, a simple induction shows
that for all n > 1,

d{y; 21,0 ] = 0
whenever y € 21, -, 2,,. The basis, when n =1, is clear as
dD[y;] = vs(y) ~vs(x) =1-1=0
when y €* x. For the induction step, assuming y €* x1,--, z,, with n > 1,
A [y 1, 2] = dS D [ys oy, o ]=dS D (20 21U, 2 U ] = 0-0 = 0,

from the induction hypothesis. O
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Definition 15.27. We say a probabilistic event structure with polarity is de-
terministic when its configuration valuation assigns 1 to every finite configu-
ration (provided it is race-free it will necessarily also be deterministic as an
event structure with polarity—see the proposition immediately below). We say
a probabilistic strategy o : S - A with configuration-valuation v on C(S) is
deterministic when the probabilistic event structure S,v is deterministic.

Proposition 15.28. If a race-free probabilistic event structure with polarity is
deterministic, as defined above, then the event structure with polarity itself is
deterministic.

Proof. Assume S, v, a race-free probabilistic event structure with polarity, is

deterministic, as defined above. Suppose y—+c x1 and y—+c r9. We must have
x1 1 xo as otherwise the drop condition would be violated. This with race-
freeness implies that the event structure with polarity S itself is deterministic
by Lemma 5.1. O

Recall that race-freeness of a game A ensures that (C4 is deterministic.
Hence as a direct corollary of Lemma 15.26:

Corollary 15.29. Let A be a race-free game. The copy-cat strategy from A to
A comprising @ 4 : Ty - A*||A with configuration-valuation vee, : C(QC4) —
[0,1] satisfying vae . () = 1, for all x € C(CC4), forms a probabilistic strategy.

Example 15.30. Let A be the empty game @, B be the game consisting of
two concurrent +ve events by and by, and C the game with a single +ve event
c. We illustrate the composition of two probabilistic strategies o : @—= B and
T:B—=C.

s T g 8 ——>8
N
B bl b2 BJ'HC b1 b2 C

The strategy o plays b; with probability 2/3 and by with probability 1/3 (and
plays both with probability 0). The strategy T does nothing if just by is played
and plays the single +ve event ¢ of C' with probabilty 1/2 if by is played. Their
composition yields the strategy 7@c : @—=C which plays ¢ with probability
1/6, so has a 5/6 chance of doing nothing,.

The example illustrates how through probability we can track the presence of
terminal configurations within a set of results despite their not being c-maximal.
The empty configuration is such a terminal configuration; it could be the final
result of the composition as could the configuration {c}. Such terminal but in-
complete results can appear in a composition of strategies through the strategies
being partial, in that one or both strategies do not respond in all cases—the
example above. Such partial strategies can appear as the composition of two
strategies through the occurrence of deadlocks because the two strategies impose
incompatible causal dependencies on moves in game at which they interact. O
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Remark on schedulers Often in compositional treatments of probabilistic
processes one sees a use of “schedulers” to “resolve the nondeterminism” due to
openness to the environment [?]. Here the use of schedulers is replaced by that
of counterstrategy to resolve the nondeterminism. The counterstrategy may
be deterministic (so straightforwardly a deterministic probabilistic strategy), in
which case it resolves the nondeterminism by selecting at most one play for
Opponent.

15.3 2-cells, a bicategory

We have thus extended composition of strategies to composition of probabilistic
strategies. This doesn’t yet yield a bicategory of probabilistic strategies. The
extra structure of configuration-valuations in strategies has to be respected in
our choice of 2-cell. The investigation of a suitable notion of 2-cell is the subject
of the next section.

We first look for an analogue of the well-known result allowing a probability
distribution to be pushed forward across an continuous (or measurable) function.
This is not immediate as the configuration-valuations associated with strategies
take account of Opponent moves so do not correspond to traditional probability
distributions.

Example 15.31. It seems impossible to push forward configuration valuations
across arbitrary 2-cells. For example, consider the game A comprising two
conflicting Opponent move and one Player move:

By ~~Hy.

Let one probabilistic strategy comprise

H1 Ho
By ~~ B

with obvious map o, where the left Player move occurs with probability p; and
the Player move on the right with probability ps according to a configuration-
valuation v, i.e. v({B1,®81}) = p1 and v({B2,B2}) = pa. Take another strategy
to be the identity map A to A. It seems compelling to make the push forward
of v across o assign p; to the configuration {8;,®} and ps to the configuration
{B2,8}. What value should the push forward of v assign to the configuration
{m}? Because configuration-valuations are invariant under Opponent moves, it
has to be simultaneously p; and py —impossible if p; # ps.

We shall now show the following theorem showing how to push forward
configuration valuations across maps which are both rigid and receptive; in par-
ticular it will allow us to push forward a configuration valuation across a rigid
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map between strategies.2

Theorem15.34. Let f: S — S’ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

V'(y) =aer Y. v(x)

z:fr=y

for y € C(S"), defines a configuration-valuation, written fv, on S’. (An empty
sum gives 0 as usual.)

The proof of the theorem proceeds in the following steps, needed to cope
with the fact sums can be infinite while also involving negative terms.

Lemma 15.32. Let f : S - S’ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

v'(Y) =aet ), v(@)

x:fr=y

we have v'(y) € [0,1], for y € C(S"). Moreover, v'(@) =1 and y €~ y" in C(S”)
implies v'(y) =v'(y").

Proof. We check that for y € C(S”) the assignment v'(y) is in [0,1]. Choose a

covering chain
t1 ta tn

B—Cyp—=C—<yn =Yy
up to y. As f is rigid for each x € C(S) s.t. fax =y there is a corresponding
covering chain

S1 S92 Sn
g—Cr1—C-—Cxp =2

with f(s;) = t; for 0 < i < n. Consider the tree with sub-branches all initial
sub-chains of covering chains up to each x s.t. fx = y; the tree has the empty
covering chain as its root and configurations =, where fx = y, as its maximal
nodes. Because f is receptive the tree only branches at its +ve coverings,
associated with different, possibly infinitely many, s; which map to a +ve event
t;. The corresponding configurations x; are pairwise incompatible. Although
such configurations z; may form an infinite set, by the drop condition for v,
the values of any finite subset will have sum less than or equal to v(x;-1), a
property which must therefore also hold for the sum of values of all the x;. The
value remains constant across any —ve event. Hence, working up the tree from
the root we obtain that ¥,.;,_, v(x) < 1.

Clearly, v'(2) = v(@) = 1. Suppose y €~ 3" in C(S’). From the properties
of f,  s.t. fr =y determines a unique z’ s.t. x €~ z’ and fz’ = 3’, and vice
versa; in this correspondence v(x) = v(a'), as v is a configuration-valuation.
Consequently, the sums yielding v'(y) and v'(y’) have the same component
values and are the same. O

2An alternative, more general proof, for edc strategies, is given later—see Theorem 20.6.
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For v’ to be a configuration valuation it remains to verify that v’ satisfies

the 4+ve drop condition. We first show this for a special case:

Lemma 15.33. Let f : S - S’ be a receptive and rigid map between event
structures with polarity. Assume that S has only finitely many +wve events.
Then, v' as defined above in Lemma 15.32 is a configuration valuation.

Proof. Suppose y—+c Y1, Yn- We claim that

Ay, ] = Y d [ X (@)

z:fr=y

S0 is non-negative, where
X(2) =qet {z" | <2’ & fa' € {y1, yn}}-

The notation d$" [x; X (z)] is justifiable as the drop function is invariant under
permutation and repetition of arguments. Recall

di(;l)[y;yl, o Un] =det V' (y) — > (—1)'”*11;’(\/ i) .
@+Ic{l,,n} iel

The claim follows because by the rigidity of f any non-zero contribution

D) (U w)

iel

is the sum of contributions

Doz,

iel

a summand of dgn)[x;X(a:)], over x s.t. there are x; € X(x) with fx; = y; for
alliel. O

We can now complete the proof of the theorem.

Theorem 15.34. Let f: S — S’ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

v'(y) =det Z v(z)

x:fr=y
for y e C(S"), defines a configuration-valuation, written fv, on S’.

Proof. We use a slight variation on the 9 approximation order between event
structures from [4, 2]. We write Sy < S; to mean there is a receptive rigid in-
clusion map between event structures with polarity from Sy to S;. Together all
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So 4 S where Sy has finitely many +-events form a directed subset of approx-
imations to S; their <-least upper bound is S got as their union. Such S, are
associated with receptive rigid maps fo : Sg — S’ got as restrictions of f,

f

S——5

| A

So

and configuration-valuations vg, got as restrictions v.
Let y—+C Y1, Yn in C(S"). We claim that

do[y; 91, Yn] = ;j]glsd&’ (Y5 1, Yn] ()

i.e., that dy[y; 91, Yn] is the limit of d*°[y;y1, -, yn], the drop functions got
by pushing forward vg, along fo to a configuration-valuation for S’—justified
by Lemma 15.33.

Let € > 0. For each I ¢ {1,--,n} there is large enough S; < S s.t. for all

d-larger Sp,
0<o(\V i) —vs,(\V yi) <e/2".
i€l i€l
(When I = @ take Viery; = y.) Taking S; to be <-larger than all S; where
Ic{l,-~,n}, we get for all Sy with Sy 955 that

oy y1s e yn] = d™2 [y yn, - yn ]| < 27€/2" = €.
As € was arbitrary we deduce (), ensuring d,[y;y1, ", Yn] > 0, as required. [

Consequently, we can push forward a configuration-valuation across a rigid
2-cell between strategies—recall that 2-cells are automatically receptive. Given
this it is sensible to adopt the following definition of 2-cell between probabilistic
strategies. A 2-cell from a probabilistic strategy v, : S - A*||B to a proba-
bilistic strategy v',o’ : 8’ - A*||B is a rigid map f : S - S’ for which both
o =o' f and the push-forward fv <v’, i.e. for any finite configuration of S’ the
value (fv)(z) <v'(fz).

Such 2-cells include receptive rigid embeddings f which preserve the value
assigned by configuration-valuations, so (fv)(z) = v'(fx) when z € C(S); notice
that the push-forward fv will assign value 0 to any configuration not in the
image of f, so not impose any additional constraint on the values v’ takes outside
the image of f. Rigid embeddings, first introduced by Kahn and Plotkin [31]
provide a method for defining strategies recursively. One way to characterize
those maps f : S — S’ of event structures which are rigid embeddings is as
injective functions on events for which the inverse relation f°P is a (partial)
map of event structures f°P: S’ — S.

In turn, 2-cells based on rigid embeddings include as special case that in
which the function f is an inclusion. Receptive rigid embeddings which are in-
clusions give a (slight variant on a) well-known approximation order < on event
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structures. The order < forms a ‘large cpo’ and is useful when defining event
structures recursively [4, 2]. With some care in choosing the precise construc-
tion of composition it provides an enrichment of probabilistic strategies and an
elementary technique for defining probabilistic strategies recursively. Spelt out,
when v,0 : S - A*||B and v',¢’ : S" - A'||B are probabilistic strategies, we
write

(v,0) 2 (v',0")

iff S <5, the associate inclusion map i : .S — S’ makes o = ¢'i and v(z) = v'(z)
for all x € C(S). There can be many different, though isomorphic, g-minimal
probabilistic strategies, differing only in their choices of initial —-events; to be
receptive they must start with copies of initial —-events of the game. Any chain

(vo,00) < (v1,01) 4+ 2 (Vp,00) <

has a least upper bound got by taking the union of the event structures.

We now show that 2-cells between probabilistic strategies compose horizon-
tally.

First, recall from Section 4.3.2, the concrete way to define composition of
strategies 0:.S > A*|B and 7: T - B*||C as 700 : TS — A*||C where

TeS=(SxTR)|V

for suitable restricting set R and projecting set V; from Section 4.3.3 that
T®S =gt (SxT | R) can be characterised as a pullback of total maps. We
observed in Section 4.5 that composition sends two rigid cells f : 0 = ¢’ and
g:7 =7 to arigid 2-cell gof : 700 - 'O .

For probabilistic strategies vg,o : S - A*||B and vp,7 : T - B*||C we
write vpQ@ug, respectively, vr ® vg for the configuration-valuations on 7.5 and
T ® S in the composition (v, 7)®(vs,0) and the composition without hiding
(vr,7) ® (vs,0). Recalling how vy ® vg is defined, we imediately obtain

(vr ® vs((x) = vr(Ilax) x vg (M 2)

for x € C(T ® S), and from how vr®uvg is defined, that

(vrovs)(y) = (vr ®vs)([Ylres) ;

for y e C(T®S).
To show that 2-cells compose functorially we must first attend to how configuration-
valuations are pushed forward by composition on 2-cells.

Lemma 15.35. Let f:0 — ¢’ be a rigid 2-cell between strategies o : S - A*||B
and o' : S" - AY||B. Let g: 7 — 7' be a rigid 2-cell between strategies T: T —
B||C and 7' : T" — B*||C. Let vs be a configuration-valuation for S and vy a
configuration-valuation for T. Then,

(90f)(vrovs) = (gvr)o(fvs)

and
(9@ f)(vr ®vs) = (gvr) ® (fus)-
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Proof. We first consider composition without hiding and lay out the relevant
maps:

S~ res ™

| e )

S'~—T oS ——T'
114 11/,

1 2

The push-forward configuration-valuation (¢@ f)(vr®vg) at ' e C(T'®S")

has value
(9@ Hlvrevs))(z)= > (vr@ws)(z).

z:g® fr=a'

Because f and g are rigid, configurations z € C(T @ S) such that (¢ @ f)z =2’
are in 1-1 correspondence with pairs z1 € C(S), z2 € C(T) such that fzq = I}z’
and gzo = IT52'; the correspondence takes x to the pair IT;x, Ilsx. (Clearly, if
(g®f)x = 2’ then xq = IT  x satisfies fzq = T2’ and x5 = sz satisfies gao = 5z’
the converse holds because by rigidity the pairing 2’ determines between IIjz’
and IT5z’ copies to a pairing between x1 and xs, yielding a configuration x.)
Consequently,

(9o Hlvrevs)) ()= 3 (vr@vs)(a)

z:(g® f)ax=a'

= ) vs(Ilhiz) xvp(Ilox)
z:(g®f)z=x'

= Z vs (1) x Z vr(z2)
zy:foy =111z’ z2:gwe=Il,z’

= (fvs)(I12") x (gur) (M52’

= ((gvr) ® (fvs))(2'),

showing (g ® f)(vr ® vs) = (gur) @ (fvs), as required.
The configuration-valuation vr®@vg of T®S is given by

(vrovs)(y) = (vr & vs)([Y]res)

for all y € C(T®S). The map gof acts on y € C(T®S) so

(90f)y = (9@ f)lylres -

(For readability, in the following we shall suppress the subscripts specifying the
event structure within which the down-closure is taking place.)
On y' € C(T'®S") the push-forward of (vrovg) yields

((gof)(vrovs))(y') = Z (vrovs)(y)-

y:(90f)y=y’

However, y € C(T®S) such that (¢gof)y = ¢ are in 1-1 correspondence with
x € C(T ®S) such that (g ® f)x = [y']; the correspondence takes y € C(T®S)



15.3. 2-CELLS, A BICATEGORY 249

to [y] ee C(T ® S). (This is because g ® f is rigid and gof is the restriction of
g ® f to ‘visible’ events.) Hence

((goN)vrovs))(y) = > (vrovs)(y)

y:(90f)y=y’

= Z (vr ® vs)(x)

z:(9@f)z=[y']
=((g@ f)(vr®vs))([¥'])
= ((gvr) ® (fus))([y'])
= ((gvr)o(fvs))(y"),

as required to show (gof)(vrovs) = (gur)o(fus). O

Lemma 15.36. Composition of probabilistic strategies is functorial w.r.t. 2-
cells, and functorial w.r.t. those 2-cells which are rigid embeddings.

Proof. In the absence of probability we have functoriality. We need to check that
the extra constraints on 2-cells between probabilistic strategies are respected by
composition. Let f : (vg,0) = (vs,o') and g : (vr,7) = (v, 7") be 2-cells
between probabilistic strategies. We adopt the convention that for instance o
has the form ¢ : S - A*||B with a configuration-valuation vg on S. We need to
check that

((gof)(vrovs))(y") < (vrovs ) (y'),

for all ¢y e C(T'0S5").
We first consider composition without hiding where the relevant map is g® f,
making the following diagram commute:

S~ res 2 o

I e |

S ~—T oS ——T'
T I/

We require that
(9@ f)(vr ®vs))(2") < (v ®vs)(2”)
for all configurations z’ of 7' ® S’. But, by Lemma 15.35, letting 2’ € C(T' ®5"),
we see
(9@ f)(vr ®vs))(2") = ((gvr) ® (fvs))(z')

= (gur)(I2z") x (fvs)(Mhz")

< ’UT/(HQI',) X vsr(Hlx')

= (v ®wgr)(x").

On ¢y’ e C(T'®S") we require

((g0f)(vrovs))(y) < (vrrovs ) (Y) -
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However,

((gof)(vrovs))(y') = ((gvr)o(fvs))(y')
((gvr) @ (fvs))([¥'])
(

(

(9@ f)(vr @vs))([y'])
v @ vs)([y'])
= (vrovs)(y') .

It has been long established that operations of traditional process algebras
preserve rigid embeddings. From [4] we obtain that the operation T @ S is
functorial w.r.t. rigid embeddings. (In fact, in [4] the stronger result is shown
that the operations preserve, and are continuous, w.r.t. <, rigid embedding
which are inclusions.) Projection is not considered there. However, in general if
f:S — S"is arigid embedding of event structures and subsets V ¢ E, V' c E’
satisfy

IN

eeV < f(e)eV' foralleeE,

then fIV:E |V - E’ | V'is arigid embedding. For this reason T®S abtained
from T @ S by projection is also functorial w.r.t. rigid embeddings. O

Combining the results of this section:

Theorem 15.37. Race-free games with probabilistic strategies with composi-
tion and copy-cat defined as in Lemma 15.25 and Corollary 15.29 inherit the
structure of a a bicategory from that of games with strategies. 2-cells between
probabilistic strategies are now restricted to rigid maps satisfying the conditions
explained above. The bicategory restricts to one in which the cells are rigid
embeddings.

Important remark There is a more general definition of 2-cell for probabilistic
strategies pointed out by Hugo Paquet, a definition which has the advantage of
being strictly more general in that it does not require the underlying 2-cell on
strategies be rigid. According to this definition, a 2-cell f : o,v = ¢’, v’ between
probabilistic strategies o : S - A with configuration valuation v and o: 5 - A
with configuration valuation v’ is a two cell f: o = o’ of strategies for which

v(x) <v'(fz)

for all € C(S). This definition is strictly more general than the rigid 2-cell
used for most of this section; a rigid 2-cells is one of this more general kind
by the following argument. Suppose f : o,v = ¢’,v’ is a rigid 2-cell between
probabilistic strategies, i.e. such that the push forward fv is less than or equal

to v’, pointwise, i.e.
(fo)(¥) =aer Y, <v'(y)

z':fa'=y

on y <C(S)’. Then certainly, for z € C(S),

v(@) < Y =(fo)(fz) <v'(fa),
z':fa'=fx

as required of a 2-cell according to the more general definition.
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15.3.1 A category of probabilistic rigid-image strategies

We extend the results of Section 4.6 on rigid-image strategies to probabilistic
rigid-image strategies. We show here that the order-enriched category Strat
of rigid-image strategies supports probability to give us an order-enriched cat-
egory of probabilistic rigid-image strategies. A probabilistic rigid-image strat-
egy over a game A comprises a rigid-image strategy o : S - A together with
a configuration-evaluation v for S. Given probabilistic rigid image strategies
vg,0: S - AY||B and vy, 7 : T - B*||C their composition comprises (70c)g :
(TeS)g - A*||C, the rigid image of 7®0, with configuration-valuation (vr®vg)g
the push-forward along the map TS - (T'®S5) to the rigid image of the con-
figuration valuation vyOug.

Taking rigid images yields a functor from the bicategory of probabilistic
strategies to the order-enriched category of probabilistic rigid-image strategies.
A strategy o : S — A has a rigid image comprising

5% g,

N

A
where fj is rigid epi and oq is a strategy with universal property:

fo

S‘>>S'77>50

A probabilistic strategy o : S — A with configuration-valuation v of S has rigid
image the probabilistic strategy og : Sg = A with configuration-valuation the
push-forward vy =gef fov. As could be hoped, the determination of the proba-
bilistic rigid-image strategy vg, oo from a probabilistic strategy v, o is functorial.

From Section 4.6, we know that the operation of forming the rigid-image
of a strategy is functorial w.r.t. rigid 2-cells. The key extra fact needed for
this to be functorial for the extension to probabilistic strategies is that the
configuration-valuation assigned to the rigid-image of 7®0 equals that assigned
in the composition of rigid-image strategies (79®0g)o, which we might write as:

V(reoa)o = V(ro@00)o *

We also have
V(rea)o = V(r0®a0)o
We show the former in detail. The argument for the latter is analogous.

Suppose vg,0: S - A 1 || B be a probabilistic strategy. Let f: o = ¢ be the
rigid 2-cell connecting the strategy o with its rigid image. Let (vg)o =det fvs be
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its push forward across f, giving us the configuration-valuation associated with
the rigid-image strategy. Suppose vy, 7:T — B 1L ||C. Let g : 7 = 7 be the rigid
2-cell connecting it with its rigid image; again write (vr)o for the push-forward
to a configuration-valuation of its rigid image. Write h : 7o®0¢ = (190®0¢ )¢ for
the 2-cell from : 7p®0y to its rigid image. The push-forward of the configuration-
valuation of the composition TG0 to its rigid image is

(vrevs)o = (h(gof))(vrovs)
=h((gof)(vrovs))
= h(gvr@fus)
=h((vr)o®(vs)o)
= ((vr)o®(vs)o)o,

the composition of the push-forwards in the category of probabilistic rigid-image
strategies. We conclude that the action taking a probabilistic strategy to its
probabilistic rigid-image strategy is functorial.

Is anything lost in moving to probabilistic rigid-image strategies? A negative
answer is provided by the next result if we are considering probabilistic strategies
as characterised by the probabilistic experiments we can perform on them. By
virtue of the following proposition, a probabilistic strategy and its probabilistic
rigid-image will always induce the same probability distribution on the game
whenever they are composed with a probabilistic counterstrategy.

Proposition 15.38. Let f : (o,v) = (o',v") be a 2-cell between probabilistic
strategies v,0 : S - A and v',0’ : 8" - A for which the push-forward fv = v'.
Let vp,7: T — A* be a probabilistic counterstrateqy. Then

T@Slﬂ;T@S’

commutes and the push-forward (7@ f)(vr ®@v) = vr @ v'. Moreover, T ® S with
vr ®v and T ® S" with vr ® v' are probabilistic event structures determining
continuous valuations w and w' respectively. The push-forwards of w and w’
across the maps T ® o and T ® o’ respectively to continuous valuations on the
open sets of C*(A) are the same.

Proof. The commuting diagram simply expresses that 7® f:7® 0 = T7® 0’ is
a 2-cell of partial strategies. We have

(ro f)(vr®v)=vr & (fv)=vrev.

None of the events of T® S and T'® S’ are those of Opponent (all events are
neutral) ensuring they form probabilistic event structures with configuration-
valuations vy ® v and vy ® v', respectively. As such they determine continuous
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valuations w and w’ on open sets of configurations C*(T'® S) and C* (T ®5’),
respectively. In this situation the push-forward across the rigid 2-cell 7 & f
agrees with standard push-forward of probability theory: for U an open set of
C=(TeS'),

w'(U) =w((r® f)7'U).

The continuous valuations w and w’ push-forward (in the sense of probability
theory) across the obviously-continuous maps of event structures 7®c and 7®c’.
For instance, the push-forward of w is the continuous valuation assigning

w((t®c)'V)

to an open set V ¢ C*(A). The commuting diagram ensures that both push-
forwards to open sets of C*°(A) are the same. O

15.4 Probabilistic processes—an early version

As an indication of the expressivity of probabilistic strategies we sketch how they
straightforwardly include a simple language of probabilistic processes, reminis-
cent of a higher-order CCS. For this section only, write o : A to mean o is a
probabilistic strategy in game A. Probabilistic strategies are closed under the
following operations.

Composition oot : A||C, if 0 : A|B and 7 : B*||C. Hiding is automatic in a
synchronized composition directly based on the composition of strategies.

Simple parallel composition o||T : A||B, if 0 : A and 7 : B. Note that simple
parallel composition can be regarded as a special case of synchronized composi-
tion: via the identification of o||7 with T®c, taking o : At —=@ and 7: @— B,
the operation ol||7 yields a probabilistic strategy. Supposing ¢ : S - A and
7:T - B and S and T have configuration valuations vg and vr, respectively,
then the configuration valuation v for S||T satisfies v(x) = vs(z1) x vy (x2), for
x e C(S|T).

Pullback if o1 : A and o5 : A we can form their pullback:
Sl A Sg

Sl %0’1/\02 SQ

TH|A.

If o1 and o4 are associated with configuration-valuations v; and vy respectively
then we tentatively take the configuration-valuation of the pullback to be v(z) =
v1 (Il 2) x vo (M) for x € C(S1 A Sa).
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To check that v is indeed a configuration-valuation we embed configurations
of S1 A Sy in those of S1]|.S2 as described in the next lemma, so inheriting the
conditions required of v from those of the configuration-valuation of o1 ||os.

Lemma 15.39. Define
¥ :C(S1AS2) > C(511152)
by ¢(2) = Th| Tz for @ € C(Sh A Sy). Then,
(i) ¥ is injective,
(i) o preserves unions, and

(iii) o reflects compatibility, and in particular +-compatibility: if x € y and
z " 2 in C(S1AS2) and Y(y) uy(z) e C(S1]|S2), then yu z € C(S1 A Sa).

Proof. Consider the pullback C(S1) A C(S2), m1, 72 in stable families of o7
and o9, regarded as maps between families of configurations. Configurations
C(S1AS2) are order isomorphic, under inclusion, to configurations C(S1)A C(.S2).
See the end of Section 3.3.4 for the detailed construction of pullbacks of stable
families. It is thus sufficient to show that ¢ : C(S1) AC(S2) — C(S1]S2), where
p(x) = mz||max for x € C(S1) AC(S2), satisfies conditions (i), (ii) and (iii) in
place of ¥. (i) Injectivity follows because configurations in the pullback of stable
families are determined by their projections; the nature of events of the pullback
fixes their synchronisations. (ii) is obvious. (iii) To show ¢ reflects compatibility,
assume x €y and z € z in C(S1) AC(S2) and p(y)up(z) € C(S1||S2). Inspecting
the construction of the pullback C(S1) AC(S2) it is now easy to check that yuz
satisfies the conditions needed to be in C(S1) A C(S2), as required. O

Corollary 15.40. Taking v(z) = v1(II1z) x vo(Ilox) for x € C(S1 A S2) defines
a configuration-valuation of S1 A Ss.

Proof. The assignment z — v1(z1) x va(z3), for z € C(S1]S2) determines a
configuration-valuation of S1]|.S3. The one non-obvious condition required of
v to be a configuration-valuation is the +-drop condition. This follows di-
rectly from the +-drop condition holding in C(S1|S2) because 9 reflects +-
compatibility. O

Input prefizing Y ;c; 8.04 ¢ Yo7 B.A4;, if 0,1 A;, for i € I, where I is countable.

Output prefixing Y ,c; piB.0; + Y ey B. Ay, if 0y 0 Ay, for i € I, where I is countable,
and p; € [0,1] for i € I with ¥, ;p; < 1. If ¥, ;p; <1, there is non-zero proba-

bility of terminating without any action. By design (¥ ;c; B.4;)*" = Y;er B.A7.

General probabilistic sum More generally we can define @;¢; p;o; : A, for o; - A
and I countable with sub-probability distribution p;,7 € I. The operation makes
the +-events of different components conflict and re-weights the configuration-
valuation on the components according to the sub-probability distribution. In



15.4. PROBABILISTIC PROCESSES—AN EARLY VERSION 255

order for the sum to remain receptive, the initial —ve events of the components
over a common event in the game A must be identified.

Relabelling, the composition f,o: B, if 0: A and f: A - B, possibly partial on
+ve events but always defined on —ve events, is receptive and innocent in the
sense of Definition 4.6. Then the composition of maps fo : S — B is receptive
and innocent. Its defined part, taken to be f.o : B, is given by the factorization

S——SI|D

N

A,

where D is the subset of S at which fo is defined, is a strategy over B. If the
configuration-valuation on S is v then that on S | D is given by = ~ v([z]),
for x € C(S | D), where [z] is the down-closure of z in S. The map f.o : B
is a strategy because, directly from the definition of innocence of partial maps,
the projection S — S | D reflects immediate causal dependencies from +ve
events and to —ve events. The function z — v([z]), for z € C(S | D), is a
configuration valuation: First, clearly v[@]) = v(&) = 0. Second, if z €~ y in
C(S | D), then [z] €™ [y] in C(S) directly from the —-innocence of f, ensuring
v([z]) = v([y]). Third, the drop condition is inherited from v. Assuming

+

y—<x1,-, %, in C(S | D) we obtain [y] € [z1],--, [#] in C(S) because f is
only undefined on +ve events. Hence, by the drop condition for v,

v(ly]) - ZI:(—l)‘””v(U[fciD >0,

i€l
where I ranges over subsets @ # I € {1,---,n} s.t. {[=;] | i € I}1s. But,
{lwil |iel}ts == {z; [ie Mgy,

and down-closure commutes with unions. So

v([y]) - le(—l)‘”“v(U[xi]) =v([y]) - 2}:(—1)"‘”@(&)] zil),

iel

where in the latter expression I ranges over subsets @ # I € {1,---,n} s.t. {z; | i e I}t g,v.
In particular, the composition fo : B, if 0 : A and f: A - B is itself a
strategy, i.e. total, receptive and innocent.

Pullback f*o: A,if 0: B and f: A— B is a map of event structures, possibly
partial, which reflects +-consistency in the sense that

y—+cx1,---,mn & {fa;|1<i<n}it = {z; | 1<i<n}t.
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The strategy f*o is got by the pullback

S/
fro

f/
_—
|
g
R

m <

f
Then, the map f’ also reflects +-consistency. This fact ensures we define a
configuration-valuation vg: on S’ by taking vs(z) = vs(f'z), for z € C(S"). If
o : S — B is a strategy then so is f*o : S’ - A. Pullback along f: A - B
may introduce events and causal links, present in A but not in B. The pullback
operation subsumes the operations of prefixing 8.0 and B.0 and we can recover
the previous prefix sums if we also have have sum types—see below.

Sum types If A;, i € I, is a countable family of games, we can form their sum, the
game Y. ;.; A; as the sum of event structures. If o : A;, for j € I, we can create
the probabilistic strategy jo : ¥;c; A; in which we extend ¢ with those initial
—ve events needed to maintain receptivity. A probabilistic strategy of sum type
0 Yier Ai projects to a probabilistic strategy (o), : A; where j € I.

Abstraction Ax : A.oc : A — B. Because probabilistic strategies form a monoidal-
closed bicategory, with tensor A| B and function space A — B =4t A*|| B, they
support an (linear) A-calculus, which in this context permits process-passing as
in [32].

Recursive types and probabilistic processes can be dealt with along standard
lines [4].

The types as they stand are somewhat inflexible. For example, that maps of
event structures are locally injective would mean that simple labelling of events
as in say CCS could not be directly captured through typing. However, this
can be remedied by introducing monads, but doing this in sufficient generality
would involve the introduction of symmetry.

In the pullback operations we have relied on certain maps being stable un-
der pullback. The following two propositions make good our debt, and use
techniques from open maps [33].

Proposition 15.41. Ifo:S — B is a strategy then so is f*o: S - A.

Proof. Define an étale map (w.r.t. to a path category P) to be like an open map,
but where the lifting is unique. It is straightforward to show that the pullback
of an étale map is étale. In fact, strategies can be regarded as étale maps, from
which the proposition follows. Within the category of event structures with
polarity and partial maps, take the path subcategory P to comprise all finite
elementary event structures with polarity and take a typical map f:p - ¢ in P
to be a map such that:
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(i) if e —, €’ with e —ve and e’ +ve and both f(e) and f(e’) defined, then
f(e) =4 f(e'); and

(ii) all events in ¢ not in the image fp are —ve.

It can be checked that w.r.t. this choice of P the étale maps are precisely those
maps which are strategies. |

Proposition 15.42. If f: A > B reflects +-consistency, then so does f':S" —
S.

Proof. As +-consistency-reflecting maps are special kinds of open maps, known
to be stable under pullback. An appropriate path category comprises: all fi-
nite event structures with polarity for which there is a subset M of <-maximal
+-events s.t. a subset X is consistent iff X n M contains at most one event of
M—all finite elementary event structures with polarity are included as M, the
chosen subset of <-maximal +-events, may be empty; maps in the path category
are rigid maps of event structures with polarity whose underlying functions are
bijective on events. |

15.5 The metalanguage on probabilistic strate-
gies

The metalanguage of games and strategies is largely stable under the addition
of probability. Though for instance we shall need to restrict to race-free games
in order to have identities w.r.t. the composition of probabilistic strategies.

In the language for probabilistic strategies, race-free games A, B,C, - will
play the role of types. There are operations on games of forming the dual
A*, simple parallel composition A|| B, sum X;c; A; as well as recursively-defined
games —the latter rest on well-established techniques [4] and will be ignored
here. The operation of sum of games is similar to that of simple parallel com-
position but where now moves in different components are made inconsistent;
we restrict its use to those cases in which it results in a game which is race-free.

Terms have typing judgements:

1Ay, A et Ay Bl yn By
where all the variables are distinct, interpreted as a probabilistic strategy from

the game A = A; ||| A, to the game B = By ||--||Bn. We can think of the term
t as a box with input and output wires for the variables:

B

Ay
—_— f—

At * B,

>
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The idea is that ¢ denotes a probabilistic strategy S — A* ||B with configuration
valuation v. The term ¢ describes witnesses, finite configurations of S, to a
relation between finite configurations  of A and § of B, together with their
probability conditional on the Opponent moves involved.

Duality The duality, that a probabilistic strategy from A to B can equally well
be seen as a probabilistic strategy from B* to A*, is caught by the rules:

Fz:A-t—4A T'rt4xz:AA
F'rt-x:AHA Do:Atvt4 A

Composition The composition of probabilistic strategies is described in the

rule
't A A+-u—-H

Fr3A.[¢t||u]-H

which, in the picture of strategies as boxes, joins the output wires of one strategy
to input wires of the other.

Probabilistic sum For I countable and a sub-probability distribution p;,i € I,
we can form the probabilistic sum of strategies of the same type:

Pt 4A del
F'_Eiglpiti_{A.

In the probabilistic sum of strategies, of the same type, the strategies are glued
together on their initial Opponent moves (to maintain receptivity) and only
commit to a component with the occurrence of a Player move, from which
component being determined by the distribution p;,i € I. We use 1 for the
empty probabilistic sum, when the rule above specialises to

T'r14A,

which denotes the minimum strategy in the game I' || A—it comprises the initial
segment of the game I'||A consisting of its initial Opponent events.
Conjoining two strategies The pullback of a strategy across a map of event
structures is itself a strategy [34]. We can use the pullback of one strategy
against another to conjoin two probabilistic strategies of the same type:

Trt14A Trtg4A
't ntya 4 A

Such a strategy acts as the two component strategies agree to act jointly. In
the case where t; and to denote the probabilistic strategies o1 : S1 — T'*[|A
with configuration valuation v; and o9 : So - ' ||A with vy the strategy ¢ A to
denotes the pullback

. Sl A S2 o

P N
S

%G’lAO’Q S2

o1 2

v o
A
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with configuration valuation x — v (mz) x vo(maz) for x € C(S1 A S2).
Copy-cat terms Copy-cat terms are a powerful way to lift maps or relations
expressed in terms of maps to strategies. Along with duplication they introduce
new “causal wiring.” Copy-cat terms have the form

r:Avr gyEe fx 4y: B,

where f: A - C and g: B - C are maps of event structures preserving polarity.
(In fact, f and g may even be “affine” maps, which don’t necessarily preserve
empty configurations, provided g@ c¢ f@—see [?].) This denotes a determinis-
tic strategy—so a probabilistic strategy with configuration valuation constantly
one—vprovided f reflects —-compatibility and ¢ reflects +-compatibility. The
map g reflects +-compatibility if whenever x ¢* x1 and x C* x5 in the configu-
rations of B and fz1 U fxo is consistent, so a configuration, then so is x; U x5.
The meaning of f reflecting —-compatibility is defined analogously.
A term for copy-cat arises as a special case,

r:Arycpax-dy: A,

as do terms for the jth injection into and jth projection out of a sum X;c;A;
w.r.t. its component A;,

€T Aj FYEs A, Jr-y: YierAq

and

T YAy F JYEs, 4, YA,

el
as well as terms which split or join ‘wires’ to or from a game A| B.

In particular, a map f: A - B of games which reflects —-compatibility lifts
to a deterministic strategy fi: A—=DB:

x:Ar ycCp fr 4y:B.

A map f: A — B which reflects +-compatibility lifts to a deterministic strategy
f*:B—=A:
y:Br frcpy 4 x:A.

The construction f*®t denotes the pullback of a strategy ¢ in B across the map
f:+A— B. It can introduce extra events and dependencies in the strategy. It
subsumes the operations of prefixing by an initial Player or Opponent move on
games and strategies.

Trace A probabilistic trace, or feedback, operation is another consequence of
such “wiring.” Given a probabilistic strategy I';z: A+t 4y : A, A represented
by the diagram

r A
— t —
A A
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we obtain
DAY -t4z: ANy A

which post-composed with the term
Aty Arzcy A,
denoting the copy-cat strategy « 4:, yields
M-3z: Ay At]|zcay] A,

representing its trace:
r —— A

t

<7>A

The composition introduces causal links from the Player moves of y : A to the
Opponent moves of = : A, and from the Player moves of = : A to the Opponent
moves of iy : A—these are the usual links of copy-cat @ 4. as seen from the left of
the turnstyle. If we ignore probabilities, this trace coincides with the feedback
operation which has been used in the semantics of nondeterministic dataflow
(where only games comprising solely Player moves are needed) [3].
Duplication Duplications of arguments is essential if we are to support the re-
cursive definition of strategies. We duplicate arguments through a probabilistic
strategy 04 : A—= A||A. Intuitively it behaves like the copy-cat strategy but
where a Player move in the left component may choose to copy from either of
the two components on the right. In general the technical definition is involved,
even without probability—see [?]. The introduction of probability begins to re-
veal a limitation within probabilistic strategies as we have defined them, a point
we will follow up on in the next section. We can see the issue in the second
of two simple examples. The first is that of §4 in the case where the game A
consists of a single Player move m. Then, 04 is the deterministic strategy

in which the configuration valuation assigns one to all finite configurations —we
have omitted the obvious map to the game A*||A||A. In the second example, as-
sume A consists of a single Opponent move 8. Now J 4 is no longer deterministic
and takes the form

H<d—B

§

H<—H

and the strategy is forced to choose probabilistically between reacting to the
upper or lower move of Opponent in order to satisfy the drop condition of its
configuration valuation. Given the symmetry of the situation, in this case any
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configuration containing a Player move is assigned value a half by the config-
uration valuation associated with d4. (In the definition of the probabilistic
duplication for general A the configuration valuation is distributed uniformly
over the different ways Player can copy Opponent moves.) But this is odd:
in the second example, if the Opponent makes only one move there is a 50%
chance that Player will not react to it! There are mathematical consequences
too. In the absence of probability § 4 forms a comonoid with counit L : A—=g@.
However, as a probabilistic strategy §4 is no longer a comonoid—it fails asso-
ciativity. It is hard to see an alternative definition of a probabilistic duplication
strategy within the limitations of the event structures we have been using. We
shall return to duplication, and a simpler treatment through a broadening of
event structures in the next section.

Recursion Once we have duplication strategies we can treat recursion. Recall
that 2-cells, the maps between probabilistic strategies, include the approxima-
tion order < between strategies. The order forms a ‘large complete partial order’
with a bottom element the minimum strategy 1. Given x: A, T+t 4y : A, the
term I' - pa:A.t 4y : A denotes the <-least fixed point amongst probabilistic
strategies X : I'—= A of the g-continuous operation F(X) = to(idr|| X )odr.
(With one exception, F is built out of operations which it’s been shown can be
be defined concretely in such a way that they are d-continuous; the one excep-
tion which requires separate treatment is the ‘new’ operation of projection, used
to hide synchronisations.) With probability, as dr is no longer a comonoid not
all the “usual” laws of recursion will hold, though the unfolding law will hold
by definition.

There are important special cases though, when we can avoid the problems
with duplication, for example, when we restrict all types and type constructions
to games comprising purely Player moves—then duplication strategies are deter-
ministic; we obtain a language for probabilistic dataflow, like nondeterministic
dataflow but with probabilistic choice.

15.5.1 Payoff

Given a probabilistic strategy vg,o : S - A and counter-strategy vy, 7: T — A*

we obtain
P
RN
S T
A

with valuation v(x) = vg(mia) x vyp(mz), for x € C(P), on the pullback P—a
probabilistic event structure, with probability measure ji, .. Define f =qer o1 =
T7. Adding payoff as a Borel measurable function X : C*°(A) — R the expected
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payoff is obtained as the Lebesgue integral

Eor(X) =0t [ X(/@)) dpor ()

zeC>(P)

_ -1
—fyecw(A)X(y) dptor 7 ()

where we can choose either to integrate over C*°(P) with measure i, -, Or over
C>(A) with measure p, ,f7'.

15.5.2 A simple value-theorem

Let A be a game with payoff X. Its dual is the game A* with payoff -X. If A, X
and B,Y are two games with payoff, their parallel composition (A, X)%® (B,Y")
is the game with payoff (A|B,X +Y).

Let A be a game with payoff X. Define

val(A, X) =ger supinf E, - (X)

val(A*, =X) =gef supinf E; ,(-X) = —inf sup E, - (X) .

The game A, X is said to have a value if
val(A,X) = —val(A*+, -X),

its value then being val(A, X).
The following theorem says that a Nash equilibrium—expressed in properties
(1) and (2)—determines a value for a game with payoff.

Theorem 15.43. Let A be a game with payoff X. Suppose there are a strategy
oo and a counterstrategy To S.t.

(1)VT, a counterstrateqy. Ey, (X) > Eqy -, (X) and
(2)Vo, a strategy. Eq r,(X) < Eyy 7 (X).

Then, the game A, X has a value and Ey, ,(X) is the value of the game.
Proof. Letting o stand for strategies and 7 for counterstrategies, we have
val(A) =gef sup irTlf Eq - (X)
val(A') =get SUp igf E;o(-X)=- irTlf supE, . (X).
We require
val(A) = —val(A*') = Ey, 1, (X) .

For all strategies o,

inf By, (X) < Eypry (X) < oy ry (X)
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by (2). Therefore
supinf B, - (X) < Egy 7 (X).

Also
supinf B, (X)) >inf E,) -(X) > Esy 7, (X)

by (1). Hence
supinf E; (X)) = Eyy -, (X) . (3)

Dually,
sup Ey - (X) > Esy +(X) > Eyy 7y (X)

by (1). Therefore

infsup By (X) > Eyy - (X) .

0,70

Also,
inf sup E, - (X) < sup Ey -, (X) < Egg 7, (X)

by (2). Hence
infsup By (X)) = Eyy 7 (X) . (4)

From (3) and (4) it follows that
val(A) = —val(A") = E,y -, (X),
the value of the game, as required. O

For (A, X), a game with payoff with value val(A,X), say a strategy o¢ in A
is optimal iff

val(og) =ger inf Eqy -(X) = supinf E, - (X) = val(A,X).

As a counterstrategy in (A4, X) is simply a strategy in (A*,-X), it follows that
a counterstrategy 7o in (A, X) is optimal iff

val(my) = —supE, -, (X) = —inf sup E, , (X) = val(A*, -X).

As a direct consequence of these definitions we obtain a converse to Theo-
rem 15.43:

Proposition 15.44. Suppose (A, X), a game with payoff, has a value. If
(A, X) has optimal strategy oo and optimal counterstrategy 7o, then oo, 7o form
a Nash equilibrium, i.e. satisfy (1) and (2) of Theorem 15.43.
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Proof. Clearly, from the definitions of val(og) and val(7p),
val(og) < Egy,7(X) and -val(7y) > Eqy 7, (X).
But, as the game (A, X) has a value,

—val(79) = val(op) .

So
val(09) =der Inf Egy 7(X) 2 Eq, 7, (X)
whence
V7. Evyr(X) 2 Epy 7o (X) (D)
and
-val(79) =det SUp Eq 7, (X) < Egy 7 (X)
whence
Vo. EO’,TO(X) SEUO,TO(X)‘ (2)
O

15.6 Probabilistic vs. nondeterministic seman-
tics

Causal loops can be introduced through composed strategies imposing incom-
patible causal dependencies over a common game. They receive rather different
interpretations according to our treatments of probability and nondeterminism:
they are detected as probability leaks in the probabilistic semantics but unde-
tected in the usual nondeterministic semantics.

Example 15.45. Let the game B comprise two concurrent moves of opposing

polarities, and C' consist of a single Player move. We represent the strategies o

from the empty game to B and 7 from B to C' diagrammatically as
H———>H H<t———— B8 —>H

| y

bm Bby Hc

b3 bo
The strategy ¢ may nondeterministically play by or wait till b; before doing so.
The strategy 7 only plays by after by and c after by. Only in the case where
o plays by without awaiting by will ¢ occur. The fact that ¢ does not occur
if o decides to await by is lost in the composition. Nor is it detected through
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neutral events or via stopping configurations. The event ¢ must occur in the
sense that any +/0-maximal configuration of 7 ® o will always contain c. If
Player is understood to play maximally this is sensible.

However it would be detected according to our probabilistic semantics. In
o the ‘drop’ conditions ensures the probabilities of playing the top or bottom
Player events would sum to less than or equal 1. For instance, imagine in o the
top Player event is played with probability 1/3 and the lower with probability
2/3. Then in the composition event ¢ would occur with probability 2/3.

The probabilistic semantics detects the possibility of causal loops, unde-
tected in the nondeterministic semantics. It shows that the possibility of a
causal loop (that o and 7 put opposing orders on events by and by) is detected
in the probabilistic but not in the nondeterministic semantics. |
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Chapter 16

Quantum games

We first explore a definition of quantum event structure in which events are
associated with projection or unitary operators. It is shown how this structure
induces configuration-valuations, and hence probability measures, on compatible
parts of the domain of configurations of the event structure. This elementary
situation is not preserved by the projection operation on event structures, so
we move to a more general definition. We conclude with a brief exploration
of quantum games and strategies. A quantum game is taken to be a quantum
event structure in which events carry polarities and a strategy in a quantum
game as a probabilistic strategy in its event structure.

16.1 Simple quantum event structures

Throughout let H be a Hilbert space over the complex numbers, with countable
basis. For operators A, B on ‘H we write [A, B] =qef AB — BA.

Definition 16.1. A (simple) quantum event structure (over H) comprises an
event structure (E,<,Con) together with an assignment Q. of projection or
unitary operators on H to events e € E such that for all z € C(F), ey, ez € E for

which z——c r1 and e To,
T TxZ e [Q617Q62:| = Oa

i.e. the two events occur concurrently at x implies their associated operators
commute. Say the quantum event structure is strong when

xlTl'Q Aand [Q617Q62]=07

i.e. the two events occur concurrently at = iff their associated operators com-
mute.

Definition 16.2. Given a finite configuration, x € C(E), define the operator
A, to be the composition Q., Qe, _, - Qe, e, for some covering chain

€1 €2 €n
G—Cr1—Cxy—CTp =T

267
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in C(E). This is well-defined as for any two covering chains up to  the sequences
of events are Mazurkiewicz trace equivalent, i.e. obtainable, one from the other,
by successively interchanging concurrent events. In particular Ay is the identity
operator on H.

Proposition 16.3. In a strong quantum event structure (E,<,Con) with as-
signment of operators @ the consistency predicate Con is determined in a pair-
wise fashion, i.e. for any finite subset of events X,

X eCon < Vey,ez€ X. {e1,e2} € Con.
Writing e1#tea <= qer {€1,€2} ¢ Con,

e1#es < Jej <ey,eh <ey. [e1]ules) € Con & [e1)u[ez] € Con & [P.,, P.,] #0.

Proof. Observe that if {e1,ea} € Con with both r—cz; and xfcmg, then
x1 1 wo. To see this argue from {ej,es} € Con, a:—elcxl and a:—e2cx2 that
[e1)Ufes)—c [e1] and [e1) U[e2)—c [ea] where [e1] 1 [ea] follows directly from
the consistency of {ej,ex}. It follows that [Q.,,Qe,] = 0, whence x1 1 x2, as
FE,Q is a strong quantum event structure. A simple induction on the size of
a finite pairwise-consistent down-closed subset of events X shows it to be a
configuration. As a finite set is consistent iff its down-closure is consistent, the
result follows. O

Example 16.4. In the quantum event structure £ with assignment of projec-
tion operators P. to events e, assume the event structure E comprises solely
concurrent events. In other words, no event causally depends on any other and
any two events are concurrent. This is an example of a strong quantum event
structure. Each projection operator P, commutes with every other P... There-
fore the eigenvectors of all the projection operators P, extend to an orthonormal
basis of H. Each projection operator corresponds to that subset of basis vectors
it fixes. Under this correspondence, a composition of projection operators is as-
sociated with the intersection of the sets of fixed basis vectors. In other words,
for any finite configuration x, the operator A, is the projection operator which
fixes precisely those basis vectors which are fixed by all the P., for e € z.

Example 16.5. Consider an event structure consisting of two events ej,es
incomparable under < with {e ez} ¢ Con. Only assignments of operators to
e1, es for which [Qe,, Qe,] # 0 will yield a strong quantum event structure.

Example 16.6. Consider an event structure consisting of two events for which
e; < es. Any assignment of projection operators to ej,es will yield a strong
quantum event structure.

Example 16.7. Let (M, L,I) be a Mazurkiewicz trace language consisting of
an alphabet L with independence relation I and subset of strings M ¢ L*, so
M is closed under prefixes and I-closed in the sense that if sabt € M and alb
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then sbat € M. Assume an assignment of projection and unitary operators @,
to symbols a € X such that

alb = [Qme] =0.

Then, M determines a quantum event structure: as shown in [2], M determines
an event structure with events e associated with the minimal ways a symbol,
say a, appears in a string in M—then the operator assigned to e is Q,. If we
assume that

saeM & sbe M & alb = sabe M .

and an assignment of operators @, to symbols a € ¥ such that
alb < a+b& [Q,,Qp] =0,
then M determines a strong quantum event structure.

The unitary and projection operators of ‘H form a Mazurkiewicz trace lan-
guage, and in turn a strong quantum event structure.

Definition 16.8. Take as Mazurkiewicz trace language that with alphabet
comprising (names for) all the unitary and projection operators on H with all
strings of such and with independence relation

AIB < A+ B & [A,B]=0,

between operators A and B. The Mazurkiewicz trace language determines a
strong quantum event structure, associated with the Hilbert space H.

16.2 From quantum to probabilistic

Consider a quantum event structure with an initial state given by a density
operator p on H. While it does not make sense to attribute a probability
distribution globally, over the whole space of configurations C*(FE), there is
a sensible probability distribution on compatible configurations of the event
structure. Below, by an unnormalized density operator we mean a positive,
self-adjoint operators with trace less than or equal to one.

Theorem 16.9. Let E,(Q) be a simple quantum event structure with initial
state a density operator p. Each configuration x € C(E) is associated with an
unnormalized density operator p, =qer Aszj; and a value in [0,1] given by
v() =qet Tr(pe) = Tr(ALA.p). For any w e C®°(E), the function v restricts
to a configuration-valuation vy, on finite configurations in the family of config-
urations Fy =def {x € C®°(E) | x S w}; hence vy, extends to a unique probability
Measure q,, on Fuy.

Proof. We show v restricts to a configuration-valuation on F,,. As Ay = idy,
v(@) = Tr(p) = 1. By Lemma 15.11, we need only to show a™ ly; 21, 2,] 20

€1 €n .
when y—cxy, -, y—Cx, in F.
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First, observe that if for some event e; the operator ()¢, is unitary, then

df)n)[y;x17~~~,xn] = 0. W.l.o.g. suppose e, is assigned the unitary operator U.
Then, A, =UA, so

v(zy) = Tr(ALnAmnp) = Tr(ALUTUAyp) = Tr(ALAyp) =v(y).

Let @ # I < {1,-~-,n}. Then, either Uses @; = Ujer ;i U Ty, oF User Ti— User ; U
Zn. In the either case—in the latter case by an argument similar to that above,

v(Jzi) =v(Jzivzy).

i€l i€l
Consequently,

A [y; 1, 2] =d D [y 20, 21 ] = A [ 2 Uy, ooy 2 Uiy ]
=0(y) - Y (-DIF (U z) - v(an) + Y (D) oz va,)
I iel I 1€l
=0

—above index I is understood to range over sets for which @ # I € {1,---,n}.

It remains to consider the case where all events e; are assigned projection
operators P.,. As x1,---,x, € w we must have that all the projection operators
P, -, P, commute. (Locally the situation resembles that of Example 16.4.)

As [P.,,P.,] =0, for 1 <4,j <n, we can assume an orthonormal basis which
extends the sub-basis of eigenvectors of all the projection operators P.,, for 1 <
i <n. Let y € o € Ujcicn ;- Define P, to be the projection operator got as the
composition of all the projection operators P. for e € x \ y—this is a projection
operator, well-defined irrespective of the order of composition as the relevant
projection operators commute. Define B, to be the set of those basis vectors
fixed by the projection operator P,. In particular, P, is the identity operator
and B, the set of all basis vectors. When z,2" € C(E) with y € & € U1<jcn 5
and y €z’ € Ui<icn i,

Ban;/ = Bw n Bml .

Also,
Pol)y= ), (il) i),

1€B,

SO

(WIP:) = 3 (ilo)li) = X I(ik),

i€B, i€B,

for all |o) € H.
Assume p = ¥ p|vx ) (W], where the 15 are normalised and all the pj are
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positive with sum Y, px = 1. For z with y € x € U1<ij<pn T4,
o(x) =Tr(Al A,p)
=Tr(Al PIP, A, p)
=Tr(A} P, A, zk:pka)(%//kD
= ;Pk TI“(ALPszWk)(ZDkD
Zk:pk(Ay¢k‘Pm|Aywk>
> Y pel(il Ay v

i€B, k

zria

1€B,

where we define 7; =qer Y pk|(z’|Aywk)|2, necessarily a non-negative real for
1€ B,.
We now establish that

di()n)[y7x177xn] = Z T,
1€By\Bg, UUBg,,

for all n € w, by mathematical induction—it then follows directly that its value
is non-negative.
The base case of the induction, when n = 0, follows as

dOy;]1=v(y) = Y ri,

€8y,

a special case of the result we have just established.
For the induction step, assume n > 0. Observe that

By~ By, UUBg, = (By\ By, U UBy, )U(By, N Byyuz, U UBs, us,)
where as signified the outer union is disjoint. Hence,

r; = Z r;+ Z Ti,

1€By\By, U--UB 1€By\Bg, UUB,,, 1€Bz,, N\Bgyuz, U UBg,, Uz,

Tp-1
By definition,
dz(;n) [y7 L1,y xn] =def d1()n—1) [y7 T,y xn—l] - df,n_l) [xn; L1 Uy, Tp-1 Y :En]

—making use of the fact that we are only forming unions of compatible config-
urations. From the induction hypothesis,

n-1 . — §
dq() )[y7xla"'7xn—1] - T
1€By\Bg, UUBy, |

n—1 . _
and d1() )[xn,xl Uy, ety Tpe1 U T | = Z ;.
1€Bg, N\Bx Uz, U UBg Uz,
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Hence
n)r,. _

d’g) )[y,l‘l,"'7$n]— Z T,

ieBy\Bmlu-uuB

Tn,

ensuring df,") [y; 21, 2] 2 0, as required.
By Theorem 15.14, the configuration-valuation v,, extends to a unique prob-
ability measure on F,,. O

Interpretation. We can regard w € C*°(E) as a quantum experiment. The
experiment specifies unitary and projection operators to apply and in which
order. The order being partial permits commuting operators to be applied con-
currently, independently of each other. The experiment can end in an element
of F,, with chance given by the probability measure got from the configuration-
valuation v,,. To say an experiment ends or results in w’ € F,, means it succeeds
in the confirmation, observation or test associated with w’, but goes no further.

In particular, we may take w to be a maximal configuration, obtaining a
maximal part of the space configurations over which it is sensible to attribute
a probability distribution. Compatible parts of the domain of configurations
of a quantum event structure with an initial state carry an intrinsic probabil-
ity distribution. With the reading of configurations as histories the theorem is
reminiscent of the consistent/decoherent histories view of quantum computa-
tion. Note however that the consistency/decoherence conditions traditional in
that approach have been replaced here, in the case of simple quantum event
structures, by compatibility w.r.t. the inclusion order on configurations, and
that compatibility respects traditional quantum notions of commuting observ-
ables.

Example 16.10. Let E comprise the quantum event structure with two con-
current events ey and ey associated with projectors Py and P;, where neces-
sarily [Py, P1] = 0. Assume an initial state |1)){)|. The configuration {eg, e}
is associated with the following probability distribution. The probability that
e succeeds is ||Py|)||?, that ey succeeds ||Pi|i)||?, and that both succeed is
[Py Pols) 2.

In the case where Py and P; commute because Py P; = P; Py = 0, the events e,
and e; are mutually exclusive. There is probability zero of both events ey and e;
succeeding, probability || Po|t)||* of eg succeeding, ||Py[1)||? of 1 succeeding, and
probability 1 — ||Po[)||? = ||P1|¥)]|* of getting stuck at the empty configuration
where neither event succeeds.

A special case of this is the measurement of a qubit in state 1, the measure-
ment of 0 where P =]0)(0|, and the measurement of 1 where P; = |1)(1], though
here ||Py|)||? + || Pi|¥)]|? = 1, as a measurement of the qubit will determine a
result of either O or 1.

Example 16.11. The measurement of two qubits with entanglement. *****

Example 16.12. Let E comprise the event structure with three events e1, ea, e3
with trivial causal dependency and consistency relation generated by taking
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{e1,e2} € Con and {eq,e3} € Con—so {e1,e3} ¢ Con. To be a quantum event
structure we must have [Qe,,Qe,] = 0, [Qe,, Qes] = 0 and, to be strong, that
[Qeys Qes] # 0. The maximal configurations are {ej,ea} and {es,e3}. Assume
an initial state [tp)(1)|. The first maximal configuration is associated with a prob-
ability distribution where e; occurs with probability ||Q., |)||* and ey occurs
with probability ||Qe,|¥)||?>. The second maximal configuration is associated
with a probability distribution where e, occurs with probability ||Qe,[«)||* and
e3 occurs with probability ||Q.,[¥)]*.

16.3 An extension

Recall that by an unnormalized density operator we mean a positive, self-adjoint
operators with trace less than or equal to one.

Theorem 16.9shows how a quantum event structure with initial state in-
duces a probabilistic event structure on the sub event structure comprising the
events of a configuration. We can generalise this to sub event structures with
inconsistent events provided immediately conflicting events are associated with
operators whose composition is 0. (Accordingly in the sub event structure if an
event is associated with a unitary operator then it can only be in immediate
conflict with an event associated with the 0 operator.)

First let’s be precise on what we mean by a sub event structure. Let Fy =
(Ep,<0,Cong) and E = (F,<,Con) be event structures. Write Fy < F iff Ey is
a down-closed subset of F with

e’ <peiff e',ee Fyl& €’ <e, and
X € Cong iff X cq, Ey & X € Con;

in other words, Ey is a substructure of E. In this case,
xeC™(Ep) iff z € Ey and x € C*(E).

Theorem 16.13. Let E,Q be a simple quantum event structure with initial
state a density operator p. Each configuration x € C(E) is associated with an
unnormalized density operator p, =qet Aszj; and a value in [0,1] given by
V() =def Tr(px) = TI“(AZ;Axp)

Let Ey 4 be a sub event structure of E for which

whenever T—c r1 and r—c xo with 1 4 x4 in C*(Ey) then Qq, Qe, = 0.

Then the restriction vy of v to the finite configurations of Eqg is a configuration-
valuation; hence vy extends to a unique probability measure on C*(Ey).
Proof. As Ay =idy, v(@) = Tr(p) = 1. By Lemma 15.11, we need only to show

am [y; 21, -, Ty] > 0 when Y Ty, Y Ty i C(Ep).
To this end construct a finite quantum event structure Fq,Q; as the event
structure with events
yu U =

1<isn
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and causal dependency and assigment of operators inherited from E (and Ep)
but with all finite subsets of events consistent. Note that any immediate con-
flicts between events e; and e; at y amongst the events ey, -+, e;,, are replaced by
instances of the concurrency relation e; co e;. For such ‘new’ instances of con-
currency we shall have [Qc,Qc,] = 0 as both compositions Q.,Q.; and Qc,Q.,
are 0. Thus F1,Q is a quantum event structure. The event structure E; may
have configurations which are not configurations of Ey. However such additional
configurations z will be associated with the operator A, = 0 by the assumption
on Fy. Consequently, the value of the drop df,") [y;x1, -, 2n] in By equals that
of d{™ ly;x1,,Zn] in E7. But by Theorem 16.9 the drop in F; is always non-
negative, yielding the required drop condition for Fj. O

16.3.1 A notion of distributed quantum tests

We can refine our description of quantum experiments. We base the idea on
confusion-free event structures in which conflict (inconsistency) is localised at
cells.

Let E = (E,<,Con) be an event structure. Say two events ej,es € F are
in émmediate conflict at a configuration z € C*°(F) iff both z U {e1},z U {ea} €
C*(F) and yet their union zu{eq,es} is not a configuration. Say E has binary
conflict iff

X eCon < X Cg, F & Ver,eq € X. {e1,ea} € Con.
Then, defining the conflict relation by
e1ftes < {ey,e2} ¢ Con,

as set is consistent iff it is conflct-free, i.e. no pairs of events within it are in
conflict. We can further define e;#,e2, the immediate-conflict relation, iff e;
and e are in immediate conflict at some configuration.

Say an event structure E is confusion-free iff it has binary conflict, the
relation #, Uidg is an equivalence relation and moreover

61#;&2 S [61) = [62)-

In this case we call the equivalence classes of #, Uidg cells.

It follows that iff an event e in a cell ¢ is enabled at a configuration z, all
the events of ¢ are enabled as well. In this sense conflict is localised at cells.
A finite subset is inconsistent iff it has two events which share distinct events
from a common cell in their causal history. Consequently, a configuration is a
down-closed subset of events in which no two distinct events belong to a com-
mon cell. Confusion-free event structures correspond to deterministic concrete
data structures [?, ?] and are those event structures derived from confusion-free
occurrence nets [?].

A form of distributed quantum test is represented by a quantum event struc-
ture F, Q) where E is a confusion-free event structure, Q. # 0 for all events e,
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and for any two distinct events e, es of a common cell Q., Q., = 0. This for-
malises the idea of a making local measurements in a distributed fashion where
the outcomes of measurements determine those future measurements to make.
It follows that any event e associated with a unitary operation . is the sole
member of its cell. Note the measurements need not be complete in that the
sum of the operators associated with a cell need not be the identity.

Proposition 16.14. In a quantum test E,Q if Q. is unitary, for an event
e € E, then the cell of e is a singleton.

By Theorem 16.13, once provided with an initial state p, such a quantum
test forms a probabilistic event structure with configuration-valuation v(x) =qet
Tr(A,.pAl) on its finite configurations z.

Example 16.15. A single measurement by the following quantum test***

Example 16.16. Quantum teleportation can be represented by the following
quantum test***

16.3.2 Measurement with values

To support measurements yielding values we associate values with configurations
of a quantum event structure F, (@, in the form of a measurable function, V :
C=(F) —» R. If the experiment results in z € C*(F) we obtain V(z) as the
measurement value resulting from the experiment. By Theorem 16.9, assuming
an initial state given by a density operator p, we obtain a probability measure
Gw on the sub-configurations of w € C*(FE). This is interpreted as giving a
probability distribution on the final results of an experiment w. Accordingly,
w.r.t. an experiment w € C*(FE), the expected value is

Bu(V)=at [ V(@) dgu(v)
zeFy
—cf. Section 15.5.1.

Traditionally quantum measurement is associated with an Hermitian oper-
ator A on H where the possible values of a measurement are eigenvalues of A.
How is this realized by a quantum event structure? Suppose the Hermitian
operator has spectral decomposition

A= NP,
iel

where orthogonal projection operators P; are associated with eigenvalue A\;. The
projection operators satisfy Y ;.; P; = idy and P P; =0 if i # j.

Form the quantum event structure with concurrent events e;, for ¢ € I,
and Q(e;) = P;. Because the projection operators are orthogonal, [P;, P;] = 0
when i # j, so we do indeed obtain a (strong) quantum event structure. Let
V({e;}) = A, and take arbitrary values on all other configurations. The event
structure has a single, maximum configuration w =qer {€; |i€I}. It is the
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experiment w which will correspond to traditional measurement via A. Assume
an initial state [10){(1)]. As above, the expected value of the experiment w is

E,(V)= . V(x) dgw(x).
It can be checked that the probability ascribed to each of the singleton config-
urations {e;} is (| P;|v), and is zero elsewhere. Consequently,

E.(V) = X Xiy|Pilv) = (Y] Aly)

iel

—the well-known expression for the expected value of the measurement A on
pure state |i).

Example 16.17. The spin state of a spin-1/2 particle is an element of two-
dimensional Hilbert space, Ho. Traditionally the Hermitian operator for mea-
suring spin in a particular fixed direction is

N = -

It has eigenvectors [t) (spin up) with eigenvalue +1 and ||) (spin down) with
eigenvalue —1. Accordingly, its quantum event structure comprises the two
concurrent events u associated with projector |1){1| and d with projector [{}{{|.

Its configurations are:
/u, d)\
{u}\ / N
(%]

The value associated with the configuration {u} is +1, and that with {d} is
—1. Given an initial pure state 1 = a|t) + b|{}, the probability of the experiment
{u,d} yielding value +1 is |a|? and that of yielding ~1 is |b|>. The probability
that the experiment ends in configurations @ or {u,d} is zero. Its expected
value is |a|?> —|b|?. This would be the average value resulting from measuring the
spin of a large number of particles initially in pure state . O

16.4 Probabilistic quantum experiments

It can be useful, or even necessary, to allow the choice of which quantum mea-
surements to perform to be made probabilistically. For example, experiments
to invalidate the Bell inequalities, to demonstrate the non-locality of quantum
physics, make use of probabilistic quantum experiments.
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Formally, a probability distribution over quantum experiments can be real-
ized by a total map of event structures f: P — FE where P,v is a probabilistic
event structure and F, @ is a quantum event structure; the configurations of F
correspond to quantum experiments assigned probabilities through P. Through
the map f we can integrate the probabilistic and quantum features. Via the
map f, the event structure E inherits a configuration valuation, making it itself
a probabilistic event structure; we can see this indirectly by noting that if v, is a
continuous valuation on the open sets of P then v, f~! is a continuous valuation
on the open sets of E. On the other hand, via f the event structure P becomes
a quantum event structure; an event p € P is interpreted as operation Q(f(p)).
Of course, f can be the identity map, as is so in the example below.

Suppose E,Q is a quantum event structure with initial state p and a mea-
surable value function V : C*(FE) - R. Recall, from Section 16.3.2, that the
expected value of a quantum experiment w € C*°(E) is

Bu(V)=aer [, V(@) dau(w).

w’e

where g, is the probability measure induced on F,, by @ and p. The expected
value of a probabilistic quantum experiment f: P — F, where P,v is a proba-
bilistic event structure is

ey B (V) s (),

where p is the probability measure induced on C*(P) by the configuration-
valuation v.

Example 16.18. Imagine an observer who randomly chooses between measur-
ing spin in a first fixed direction a; or in a second fixed direction ap. Assume
that the probability of measuring in the a;-direction is p; and in the as-direction
is pa, where p1 + po = 1. The two directions a; and as correspond to choices of
bases |ta1), [Va1) and |taz), [{az) in Ha. We describe this scenario as a prob-
abilistic quantum experiment. The quantum event structure has four events,
tay,lai,tas,|as, in which taq,| a; are concurrent, as are 1 as, | as; all other
pairs of events are in conflict. The event 1a; is associated with measuring spin
up in direction a; and the event | a; with measuring spin down in direction
aj. Similarly, events 1as and | as correspond to measuring spin up and down,
respectively, in direction as. Correspondingly, we associate events with the
following projection operators:

Q(tar) = [tai)(tas],  QUa1)=a){la|,
Q(u2) = [taz)(taz|,  Q(d2) =[laz){lazl.
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The configurations of the event structure take the form
where we have taken the liberty of inscribing the events just on the covering
intervals. Measurement in the aj-direction corresponds to the configuration
{ta1,}a; }—the configuration to the far left in the diagram—and in the as-
direction to the configuration {fas,|as}—that to the far right. To describe

that the probability of the measurement in the a;-direction is p; and that in
the ag-direction is ps, we assign a configuration valuation v for which

v({tai,lai}) =v({ta1}) =v({lai}) =p1,
v({taz,las}) =v({taz}) =v({laz}) =p2 and v(v)=1.

Such an probabilistic quantum experiment is not very interesting on its own.
But imagine that there are two similar observers A and B measuring the spins
in directions aj, ag and by, ba, respectively, of two particles created so that
together they have zero angular momentum, ensuring they have a total spin
of zero in any direction. Then quantum mechanics predicts some remarkable
correlations between the observations of A and B, even at distances where their
individual choices of what directions to perform their measurements could not
possibly be communicated from one observer to another. For example, were both
observers to choose the same direction to measure spin, then if one measured
spin up then other would have to measure spin down even though the observers
were light years apart.

We can describe such scenarios by a probabilistic quantum experiment which
is essentially a simple parallel composition of two versions of the (single-observer)
experiment above. In more detail, make two copies of the single-observer event
structure: that for A, the event structure E,4, has events 1 ay,| a1, as,| as,
while that for B, the event structure Ep, has events 1b1,b1,1b2,|bs. Assume
they possess configuration valuations v4 and vp, respectively, determined by
the probabilistic choices of directions made by A and B. Write Q4 and Qp
for the respective assignments of projection operators to events of £4 and Eg.
The probabilistic event structure for the two observers together is got as F 4 ||Fp
with configuration valuation v(x) =va(za)xvp(xp), for x € C(EA| Ep), where
x4 and zp are projections of z to configurations of A and B. In this com-
pound system an event such as e.g. 1a; is interpreted as the projection operator
Qa(1ar) ®idy, on the Hilbert space Ha ® Ha, where the combined state of
the two particles belongs. We can capture the correlation or anti-correlation of
the observers’ measurements for spin through a value function on configurations
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given by
V({tai,1b;}) =V({lai,ib;}) =1, V({tai,ib;}) =V({{ai, 1b;}) = -1, and
V(z) = 0 otherwise.

For example, assuming an initial state, the correlation between A observing in
direction a; and B in direction bj is E,, (V') where w is the experiment

{Ta/ial'ai7Tbj)‘l’bj} '

16.5 More general quantum event structures

Definition 16.19. A (general) quantum event structure comprises an event
structure (F, <, Con) together with a functor @ from the partial-order (C(E), <)
(regarded as a category) to the monoid of 1-bounded operators on H (regarded
as a one-object category) which satisfy

idy- Y (-DMQy, Ufﬂl) Qy,Uw:)

g+Ic{l,,n} iel
is a positive operator, for all y € xq, -+, 2, with {1, 2, }1.

Proposition 16.20. Assume an assignment Q(x,y) of 1-bounded operators on
H to all covering intervals x—y in C(E), such that

Q('Tlvy) Q(xwxl) = Q(.ﬁz,y) Q(l‘,l‘g)

RN
N

idy — Z ( 1)‘I‘+1Q(y sz)fQ(y sz)

@+Ic{l,n} iel

whenever

and

is a positive operator, whenever y—cxy, -+, T, with {x1,-, x, }1. Then, extending
Q to all intervals x €y by defining

Q(z,y) =det Q(Tn-1,Y) Q(Tn-2,7n-1) - Q(z,71)
for any covering chain
T—CL1—C - CLp-2CTp-1—CY

yields a general quantum event structure E,Q.
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Corollary 16.21. A simple quantum event structure E with assignment e — Q.
of unitary or projection operators to events e, determines a general quantum

event structure E,Q for which Q(x,y) = Q. when x—ecy

Theorem 16.22. Let E,Q be a general quantum event structure with initial
state a density operator p. Each configuration x € C(E) is associated with an
unnormalized density operator

Pz =def Q(@,.’L‘) pQ(®7x)7L

and a value in [0,1] given by

() =aet Tr(ps) = Te(Q(2,2)'Q(2,2) p) -

For any w e C*®(E), the function v restricts to a configuration-valuation v, on
finite configurations in the family of configurations

Fuw =det {r€CZ(E) | z S w};
hence vy, extends to a unique probability measure q,, on the Borel sets of F,.

We would like a result showing how to realize a general quantum event
structure from a simple quantum event structure by projection, possibly with
tracing-out.

16.6 Quantum strategies

We define a quantum game to comprise A, pol,Ha,Q where A, pol is a race-
free event structure with polarity and A, @ is a quantum event structure, with
Hilbert space H4. A quantum game with initial state is a quantum game with
p a density operator.

A strategy in a quantum game A, pol, Q comprises a probabilistic strategy in
A, so a strategy o : .S - A together with configuration-valuation v on C(S).

Given a strategy vg,o : S - A and counter-strategy vp,7 : T — A’ in a
quantum game A, Q we obtain a probabilistic event structure P via pull-back,

vz,
P
o\
S T
A

with a configuration-valuation v(z) =4er v5II; (z) x v715(2) on finite configura-
tions « € C(P). This induces a probabilistic measure p on the event structure
P. Write f =gef olly = 7II,. We can interpret f : P — A as the probabilistic



16.6. QUANTUM STRATEGIES 281

quantum experiment which results from the interaction of the strategy o and
the counter-strategy 7.

Suppose now the quantum game has an initial state p. We now investigate
the probability the interaction of o with 7 produces a result in a Borel subset U
of of C*(A), that the probabilistic experiment the interaction induces succeeds
inU.

First note that P becomes a quantum event structure via the map f to
the quantum event structure A: the assignment of operators is given by the
composition of  with f. By Theorems 16.9 and 16.22, w.r.t. any x € C*(P),
we obtain a probability measure g, on F, =get {2’ € C®°(P) | 2’ € z}. Write f,
for the restriction of f to F,. The expression

%(fale)

gives the probability of obtaining a result in U conditional on = € C*(P). I
believe (***but haven’t yet proved***) that the function

T Qz(fﬂglU)

from C*°(P) to [0, 1] is measurable, making the function a random variable. If
so, the probability of a result in U € C*°(A) is given by the Lebesgue integral

[ .00 du(a).

We examine some special cases.

Consider the case where o and 7 are deterministic, with configuration val-
uations assigning one to each finite configuration. Then, P will also be deter-
ministic in the sense that all its finite subsets will be consistent. It will thus
have a single maximal configuration w € C*°(P). The configuration-valuation
v will assign one to each finite configuration of P. In this case the probability
measure on Borel subsets V' of C*(P) is simple to describe:

1 fweV,

0 otherwise,

(V) ={

leading to
[ a5 () = 0 (5710,

Consider now the case where Opponent initially offers n € {1,---, N} mutually-
inconsistent alternatives to Player and resumes with a deterministic strategy.
Suppose too that initially Player chooses amongst the alternatives probabilis-
tically, choosing option n with probability p,,, and then resumes deterministi-
cally. This will result in an event structure P taking the form of a prefixed sum
Y 1<n<n €n-Pn in which all the events of P,, causally depend on event e,,. In this
situation,

[ (D an@) = Y puau, (5'0),

1<n<N
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where w, is the maximal configuration of e,.P, and f, : e,.P, - A is the re-
striction of f, for 1 <n < N.

Example 16.23. Quantum-coin tossing demonstrates the extra power quan-
tum moves can have over classical moves. Initially Player and Opponent are
presented with a quantum coin in the form of a qubit, the two bits being asso-
ciated with heads H or tails T'. ***

16.7 A bicategory of quantum games

Quantum games inherit the structure of a bicategory from probabilistic games.
A strategy from a quantum game A to a quantum game B is a strategy in the
quantum game A*| B. For this to make sense we have to extend the definitions
of simple parallel composition and dual to quantum games. Assume A and B
are quantum games. In defining their simple parallel composition A| B and dual
At we take:

Happ=Ha®Hp, Qap(l,a)=Qa®idy, and Q4 p(2,0)=idy, ® Qp;
Har=Ha and Qar=Q4.

Although we do obtain a bicategory of quantum games in this way, it is not
likely to be the final story. One possible awkwardness is that we need to supply
initial states, before we can determine the probabilities of quantum experiments.
Perhaps the simple parallel composition of games, A|| B, is not the most appro-
priate for quantum games in that it would appear to exclude moves introducing
entanglement between the two games. A more apt parallel composition might
obtain by basing games directly on Hilbert spaces with parallel composition as
tensor; then quantum games can result, e.g. by Definition 16.8. There is also
the issue of adjoining value functions (cf. Section 16.3.2) to quantum games in a
way that respects their bicategorical structure. Providing a structured account
and analysis of quantum experiments, as in the simple experiment discussed in
Example 16.18, should provide guidelines.

Acknowledgments [ originally tried unsuccessfully to build a definition of
quantum event structures around the decoherence/consistency conditions used
in the decoherent/consistent histories approach to quantum theory; the con-
ditions appear to be too sensitive to what one considers to be the initial and
final events of a finite configuration. Both Prakash Panangaden and Samson
Abramsky suggested the alternative of basing compatiblity more directly, and
more traditionally, on the commutation of operators, which led to the definitions
above.



Chapter 17

Event structures with
disjunctive causes

*rrkkintroductiont

17.1 Motivation

within distributed strategies

hiding and parallel causes

how to attribute differing probabilities to differing parallel causes

More generally, through a careful analysis of the “ways” in which events
occur, also

solves the problems of how to mix probability with nondeterminism, and
higher-order

provides a compositional way to build up probability spaces **** For “con-
venience” probabilists generally separate the probability space from the space
of values™* would be interesting to learn if this is sometimes used to build up
probability space in a compositional fashion from simpler spaces.

17.2 Disjunctive causes and general event struc-
tures

Probabilistic strategies, as presented previously, do not cope with stochastic
behaviour such as races as in the game

B~/.

IThis and the following chapter are based on joint work with Marc de Visme for his M1
report for ENS Paris written while he was on an internship at Cambridge, Spring 2015.
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To do such we would expect to have to equip events in the strategy with stochas-
tic rates (which isn’t hard to do if synchronisation events are not hidden). So
this is to be expected. But at present probabilistic strategies do not cope with
benign Player-Player races either! Consider the game

=] =]

where Player would like a strategy in which they play a move iff Opponent
plays one of theirs. We might stipulate that Player wins if a play of any 8 is
accompanied by the play of @ and wvice versa. Intuitively a winning strategy
would be got by assigning watchers (in the team Player) for each 8 who on
seeing their 8 race to play @. This strategy should win with certainty against
any counter-strategy: no matter how Opponent plays one or both of their moves
at least one of the watchers will report this with the Player move. But we cannot
express this with event structures. The best we can do is a probabilistic strategy

~~—

o —>E
o0 —>H

with configuration valuation assigning 1/2 to configurations containing either
Player move and 1 otherwise. Against a counter-strategy with Opponent playing
one of their two moves with probability 1/2 this strategy only wins half the time.
In fact, the strategy together with the counter-strategy form a Nash equilibrium
when a winning configuration for Player is assigned payoff +1 and a loss -1 —
see Section ?7. This strategy really is the best we can do presently in that it is
optimal amongst those expressible using the simple (prime) event structures.

If we are to be able to express the intuitively strategy which wins with
certainty we need to develop distributed probabilistic strategies to allow ‘dis-
junctive’ causal dependence as in ‘general event structures’ (E,+,Con) which
allow e.g. two distinct compatible causes X + e and Y + e. In this specific
strategy both Opponent moves would enable the Player move, with all events
being consistent.

But, as we’ll see, for general event structures there is problem with the
operation of hiding.

17.3 General event structures and families

A general event structure[35, ?] is a structure (E,Con,+) where E is a set of
event occurrences, the consistency relation Con is a non-empty collection of
finite subsets of E satisfying

XcY eCon = X eCon
and the enabling relation < Con x E satisfies

YecCom&YoX&Xre = Yt+e.
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A configuration is a subset of E which is
consistent: X S, + = X € Con and
secured: Ve € xdey, e, €x. e =e & Vi<n. {e1,-,e;1} - €.

Write C*(E) for the configurations of E and C(FE) for its finite configurations.

The notion of secured has been expressed through the existence of a securing
chain to express an enabling of an event within a set which is a complete enabling
in the sense that everything in the securing chain is itself enabled by earlier
members of the chain. One can imagine more refined ways in which to express
complete enablings which are rather like proofs, perhaps as trees or partial
orders in which events are enabled by those events earlier in the order. Later
the idea that complete enablings are consistent partial orders of events in which
all events are enabled by earlier events in the order will play an important role
in generalising general event structures to structures suitable for supporting
strategies with parallel causes and their attendant constructions.

A map of general event structures f : (E,Con,+) — (E’,Con’, ") is a partial
function f: E — E’ such that

X eCon = fX eCon’ & Vey,ez e X. f(e1) = f(e2) = e1 = ey and
Xre& f(e) is defined = fX +' f(e).

It follows that the image fx of a configuration = of E is itself a configuration
and moreover that

Ver,eaex. f(e1) = f(ea) = e1=ea.

Maps compose as partial functions with identity maps being identity functions.
Write GES for the category of general event structures.
A family of configurations comprises a family F of sets such that

if X ¢ F is finitely compatible in F then U X € F’; and

if e € € F then there exists a securing chain eq, -+, e, = ein z s.t. {e1,-+, e; } €
F for all i <n.

The latter condition is equivalent to saying (i) that whenever e € x € F there is
a finite g € F s.t. e € zp € F and (ii) that if e,e’ € x and e # €’ then there is
yeF withycaxst. ecy — € #y. The elements of the underlying set | F
stand for events.

Such a family is stable when for any compatible non-empty subset X of F
its intersection M X is a member of F.

A configuration x € F is irreducible, with top element e iff e € x and Vy «
F.eecycximplies y = x. Notice that because the top element of an irreducible
has a securing chain the irreducible is a finite set with a unique top element, e.
Irreducibles coincide with complete join irreducibles w.r.t. the order of inclusion.
There is a maximum configuration Z strictly included in any irreducible x with
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top e; so F—cz. Itis tempting to think of irreducibles as representing minimal
complete enablings (as I did for a while). But, as sets, irreducibles both lack
sufficient structure: in the formulation we are led to, several minimal complete
enabling can correspond to the same irreducible; and are not general enough:
in our formulation of minimal complete enabling there are minimal complete
enablings whose underlying set is not an irreducible.

A map between families of configurations from F to G is a partial function
f:UF = UG between their events such that for any x € F its image fz € G and

Ver,eaex. f(e1) = f(ea) = e1=ea.

Maps compose as partial functions with identity maps being identity functions.
We obtain a category SFam of families of configurations.

The forgetful functor from GES to SFam taking a general event structure
to its family of configurations has a left adjoint, which constructs a canonical
general event structure from a family: Let A be a family of configurations with
underlying events A. Construct a general event structure

ges(A) =ger (A, Con, +)
with
e X ¢ Con iff X cg, y, for some y € A, and
e Xtaiffae A, X eCon and a €y c X u{a}, for some y € A.

The unit of the adjunction has typical component ids : A - C*®(ges(A))
given as the identity function on events.

Theorem 17.1. Let A € SFam with underlying set A. Then, A=C>(ges(A)).

Suppose B = (B,Cong,+p5) € GES and that g : A — C*(B) is a map in
Fam=. Then, g: ges(A) - B in GES.

The functor from GES to SFam taking a map of general event structures to
the corresponding map of families of configurations has a left adjoint acting as
ges on objects. The unit of the adjunction has typical component idg : A —
C>=(ges(A)) given as the identity function on events A of a family of configu-
rations A.

The above yields a coreflection of families of configurations in general event
structures. It cuts down to an equivalence between families of configurations
and replete event structures. Say a general event structure (F, Con, ) is replete
when eg is an isomorphism. A general event structure E is replete iff

Vee E3X eCon. X + e,
VX € Condz e C(F). X €z and
X+e = JzeC(E).ecx&rcXule}.
The last condition is equivalent to stipulating that each minimal enabling X +

e—where X is a minimal consistent set enabling e—corresponds to an irreducible
configuration X u {e}.
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Sometimes when it’s important to disambiguate general event structures
from those we have studied previously we shall use ‘prime event structures’ for
event structures of the form (F,<,Con). We can regard such a prime event
structure as a (replete) general event structure (E,Con,+) where X + e iff
X eCon, ec E and [e) ¢ X.

Clearly the partial functions which are maps of prime event structures can
be understood as maps of the associated general event structures. We obtain
a full embedding of prime event structures S in GES, and indeed in F as the
general event structures in the image are replete. Neither of these is a left ad-
joint (despite what is claimed in [5]). However, later, in Section 17.12, we shall
recover an adjunction from prime to (replete) general event structures at the
slight cost of adding an equivalence relation to prime event structures and their
maps.

Remark Although general event structures do not support hiding, so do not
support strategies fully, their relative simplicity recommends them as a model for
strategies with parallel causes provided they carry unhidden neutral events (so
called partial strategies [?]), which have advantages when it comes to operational
semantics and more discriminating equivalences. This line of research is being
followed up in the PhD work of Tamas Kispeter.

17.4 The problem

With one exception, all the operations we have used in building strategies and, in
particular, the bicategory of strategies extend easily to general event structures.
The one exception, that of hiding, has been crucial in building a bicategory.

We present an argument to show general event structures are not closed
under hiding. The following describes a general event structure.

Events: a,b,c,d and e.

Enabling: (1) b,c + e and (2) d + e, with all events other than e being
enabled by the empty set.

Consistency: all subsets are consistent unless they contain the events a
and b; in other words, the events a and b are in conflict.

Any configuration will satisfy the assertion
(ane) = d

because if e has occurred it has to have been enabled by (1) or (2) and if a has
occurred its conflict with b has prevented the enabling (1), so e can only have
occurred via enabling (2).

Now imagine the event b is hidden, so allowed to occur invisibly in the
background. The “configurations after hiding” are those obtained by hiding
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(i.e. removing) the invisible event b from the configurations of the original event
structure. The assertion above will still hold of the configurations after hiding.

There isn’t a general event structure with events a,c,d and e, and configu-
rations those which result when we hide (or remove) b from the configurations
of the original event structure. One way to see this is to observe that amongst
the configurations after hiding we have

{c}<{c,e} and {c}—<{a,c}

where both {c,e} and {a,c} have upper bound {a,c,d,e}, and yet {a,c,e} is
not a configuration after hiding as it fails to satisfy the assertion. (In the
configurations of any general event structure if z—cy and x—cz and y and z are
bounded above, then y U z is a configuration.)

The first general event structure can be built out of the composition without
hiding of strategies described by general event structures, one from a game A to
a game B and the other from B to C; the second structure, not a general event
structure, arises when hiding the events over the intermediate game B.

To obtain a bicategory of strategies with disjunctive causes we need to sup-
port hiding. We need to look for structures more general than general event
structures. The example above gives a clue: the inconsistency is one of incon-
sistency between (minimal complete) enablings rather than events.

17.5 Adding disjunctive causes to prime event
structures

To cope with disjunctive causes and hiding we must go beyond general event
structures. We introduce structures in which we objectify cause; a minimal
complete causal enabling is no longer an instance of a relation but a structure
that realises that instance (¢f. a proof in contrast to an entailment, or judgement
of theorem-hood). This is in order to express inconsistency between minimal
complete enablings, inexpressible as inconsistencies on events, that can arise
when hiding.

Fortunately we can do this while staying close to prime event structures.
The twist is to regard “disjunctive events” as comprising subsets of events of
a prime event structure, the events of which are thought of as representing
“prime causes,” i.e. a particular formalisation of minimal complete enablings.
Technically, we do this by extending prime event structures with an equivalence
relation on its events.

In detail, an event structure with equivalence (an ese) is a structure

(P,<,Conp, =)

where (P, <, Conp) satisfies the axioms of a (prime) event structure and = is an
equivalence relation on P.

The intention is that the events of P represent prime causes while the =-
equivalence classes of P represent disjunctive events: p in P is a prime cause
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of the event {p}_. Notice there may be several prime causes of the same event
and that these may be parallel causes in the sense that they are consistent with
each other and causally independent.

A configuration of the ese is a configuration of (P,<,Conp) and we shall
use the notation of earlier on event structures C*°(P) and C(P) for its config-
urations, respectively finite configurations. Say a configuration is unambiguous
when it has no two distinct elements which are =-equivalent. We modify the
relation of concurrency and say pi,ps € P are concurrent and write pjco ps iff
[p1]U[p2] is an unambiguous configuration of P and neither p; < ps nor ps < p;.

An ese dissociates the two roles of enabling and atomic action conflated in
the events of a prime event structures. The elements of P are to be thought of as
minimal complete enablings and the equivalence classes as actions representing
the occurrence of at least one prime cause.

When the equivalence relation = of an ese is the identity we essentially have
a prime event structure. This view is reinforced in our choice of maps. A map
from (P,<p,Conp,=p) to (Q,<q,Cong,=q) is a partial function f: P -~ Q
which preserves =, i.e.

if p1 =p po then either both f(p1) and f(p2) are undefined or both defined
with f(p1) =q f(p2)

s.t. for all z € C(P)
(i) the direct image fz € C(Q), and

(ii) Vpi,p2ex. f(p1) =q f(p2) = p1=pp2.

Maps compose as partial functions with the usual identity.
We sometimes use an alternative description of maps:

Proposition 17.2. A map of ese’s from P to @ is a partial function f: P -~ Q
which preserves = s.t.

(i) for all X € Conp the direct image fX € Cong and
Vp1,p2 € X. f(p1) =@ f(p2) = p1=pp2, and

(i) whenever g <g f(p) thereis p’' <p ps.t. f(p')=q.

Such maps preserve the concurrency relation.

We regard two maps f1, fo : P = @ as equivalent, and write f; = fo, iff they
are equi-defined and yield equivalent results, i.e.

if f1(p) is defined then so is fa(p) and f1(p) =¢ f2(p), and

if fo(p) is defined then so is f1(p) and f1(p) =¢ f2(p).

Composition respects =: if fi, fo: P > Q with f; = fo and ¢g1,¢92: Q@ - R
with g1 = g2, then g1 f1 = g2 fo. Write ES< for the category of ese’s; it is enriched
in the category of sets with equivalence relations (sometimes called setoids).

Ese’s support a hiding operation. Let (P,<,Conp,=) be an ese. Let V ¢ P
be a =-closed subset of ‘visible’ events. Define the projection of P on V', to
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be PV =4t (V,<y,Cony,=y), where v <y o' iff v < v’ & v,0" € V and X «
Cony iff XeCon& XcVandv=y v iffv=v &v,v' eV.
Hiding is associated with a factorisation of partial maps. Let

f:(P,<p,Conp,=p) - (Q,<g,Cong,=q)
be a partial map between two ese’s. Let
V =qet {e € E | f(e) is defined} .
Then f factors into the composition

P fo PV f1 0

of fo, a partial map of ese’s taking p € P to itself if p € V and undefined
otherwise, and f;, a total map of ese’s acting like f on V. We call f; the
defined part of the partial map f. Because =-equivalent maps share the same
domain of definition, =-equivalent maps will determine the same projection and
=-equivalent defined parts. We say a map f : E — E’ is a projection if its
defined part is an isomorphism. The factorisation is characterised to within
isomorphism by the following universal characterisation: for any factorisation

P2 P L @ where g¢ is partial and g; is total there is a (necessarily
total) unique map h: P{V — P; such that

p fo PV f1 0

|
0 % g1
Py

commutes.

17.6 Equivalence families

We shall relate ese’s to general event structures by an adjunction (strictly, a
form of pseudo adjunction or biadjunction as it shall rely on the enrichment
by equivalence). This will provide a way to embed families of configurations
and so replete general event structures in ese’s. The adjunction will factor
through a more basic adjunction to families of configurations which also bear
an equivalence relation on their underlying sets (we’ll call them equivalence-
families). This latter adjunction provides a full embedding of ese’s in ef’s and is
itself important as it provides a way to do key constructions such as bipullback
within ese’s; just as it can be hard to constructions such as pullback within
event structures, so that we often rely on first carrying out the constructions in
stable families.

A family with equivalence or an equivalence-family (ef) is a family of con-
figurations A with an equivalence relation =4 on its underlying set A =qo¢ U.A.
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We can identify a family of configurations A with the equivalence family (A, =),
taking the equivalence to be simply equality on the underlying set.

Let (A,=4) and (B,=p) be ef’s, with respective underlying sets A and B.
A map f:(A,=4) — (B,=p) is a partial function f: A — B which preserves =
st. xe A = freB & Vai,asex. f(a1)=p f(az) = a1 =4 az.
Composition is composition of partial functions. We regard two maps

f17f2 : (szA) - (BazB)

as equivalent, and write f; = fo, iff they are equidefined and yield equivalent
results. Composition respects =. This yields a category of equivalence families
Famsz; it is enriched in the category of sets with equivalence relations.

Later stable ef’s will come to play an important role. In an equivalence
family (A, =4) say a configuration = € A is unambiguous iff

Vai,as €x. a1 =4 a0 = a1 =0as.

An equivalence family (A,=4), with underlying set of events A, is stable iff it
satisfies

Vr,y,z€ A. x,y € z & z is unambiguous =— znye A and

Vae Ajxre A. aex =—> 3z € A. z is unambiguous & ae€zCx.

In effect a stable equivalence family contains a stable subfamily of unambiguous
configurations out of which all other configurations are obtainable as unions.
Local to any unambiguous configuration there is a partial order on its events.

Clearly we can regard an ese (P,<,Con,=p) as an ef (C*(P),=p) and a
function which is a map of ese’s as a map between the associated ef’s and this
operation is functorial. However, the converse, how to construct an ese from
a family, is much less clear. To do so we follow up on the idea introduced in
Section 17.3 of basing minimal complete enablings on partial orders. A minimal
complete enabling will correspond to an extremal (causal) realisations with top.
realisations and how to obtain extremal realisations, among these the primes
with a top element, will be our topic over the next few sections.

17.7 Realisations

Let A be a family of configurations with underlying set A.
Definition 17.3. A (causal) realisation comprises a partial order
(B.<),

its carrier, such that the set {¢’ € E' | ¢’ < e} is finite for all events e € E, together
with a function

p:E—>A
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s.t. its image pE € A and
VeeE.p{e'e E|e'<e}eA.

(Equivalently, instead of the latter condition, we can say p sends down-closed
subsets of its carrier E to configurations of A.)
We say the realisation p is injective when p is injective as a function.

We define maps between realisations (E, <), p and (E’,<"), p’ as partial sur-
jective functions f: E — E’ s.t.

Vee E. f(e) is defined == p(e) = p'(f(e)) &
fleoeE|eg<et2{e' cE | < f(e)}.

Equivalently we could define such a map as a partial surjective function f: E —
E’ which preserves down-closed subsets and satisfies p(e) = p’(f(e)) when f(e)
is defined. It is convenient to write such a map as
fipz=p' or pzf o
Occasionally we shall write p > p’, or the converse p’ < p, to mean there is a
map of realisations from p to p’.
Such a map factors into a “projection” followed by a total map, as

p=l" po =l o'

where pg stands for the realisation (Fy,<q), po where
Ey={reR| f(r) is defined},

the domain of definition of f, with <y the restriction of <, and f; is the inverse
relation to the inclusion Ey € E, and fy is the total function fo : Ey — E'.
We are using >; and >3 to signify the two kinds of maps. Notice that >;-maps
are reverse inclusions. Notice too that >o-maps are exactly the total maps of
realisations. Total maps p zg p’ are precisely those surjective functions f from
the carrier of p to the carrier of p’ which preserve down-closed subsets and
satisfy p=p'f.
We shall say a realisation p is extremal when

P 2£ p/ = f is an isomorphism

for any realisation p'.

17.8 Extremal realisations

Let A be a configuration family with underlying set A. Any realisation in A
can be coarsened to an extremal realisation.
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Lemma 17.4. For any realisation p there is an extremal realisation p’ with
pxyp.
Proof. The category of realisations with total maps has colimits of total-order
diagrams. A diagram d from a total order (I,<) to realisations, comprises a
collection of total maps of realisations d; ; : d(i) — d(j) when i < j s.t. d;; is
always the identity map and if ¢ < j and j < k then d; j, = dj; od; ;. We suppose
each realisation d(¢) has carrier (E;,<;) with d(i) : E; > A. We construct the
colimit realisation of the diagram as follows.

The elements of the colimit realisation consist of equivalence classes of ele-
ments of the disjoint union

E =4t H E;
i€l
under the equivalence
(i,ei) ~ (j,ej) — Jkel. i<k & j <k & di,k(ei) = dj,k(ej) .

Consequently we may define a function pg : F - A by taking pg({e;}.) = pi(e;).
Because every d; ; is a surjective function, every equivalence class in £ has a
representative in F; for every i € I. Moreover, for any e € E there is k € [ s.t.

{e"eE|e <pel={{e,}.| e <kexr},

where e = {er}., so is finite. It follows that pg is a realisation. The maps
fi:pi =2 pp, where i € I, given by f;(e;) = {e;}. form a colimiting cone.
Suppose p is a realisation. Consider all total-order diagrams d from a total
order (I,<) to realisations starting from p with d; ; not an isomorphism if 7 <
j. Amongst them there is a maximal diagram by Zorn’s lemma. From the
maximality of the diagram its colimit is necessarily extremal. In more detail,
construct a colimiting cone f; : d(i) >2 pg, ¢ € I, with the same notation as above.
By maximality of the diagram some f; must be an isomorphism; otherwise we
could extend the diagram by adding a top element to the total order and sending
it to pp. If j should satisfy k < j then fjody; = fr so fi'fjody; =idg,. It
would follow that dj ; is injective, as well as surjective, it being a total map
of realisations, and consequently that dy ; is an isomorphism—a contradiction.
Hence k is the maximum element in (I, <). If the colimit were not extremal we
could again adjoin a new top element above k thus extending the diagram—a
contradiction. O

Corollary 17.5. Every countable configuration of a family of configurations
has an injective extremal realisation.

Proof. Let x be a countable configuration of a family of configurations A. By
serialising the countable configuration,

ay <ag << Ap <o

where {e1, -, e, } € Afor all n, we obtain an injective realisation p. By Lemma 17.4
we can coarsen p to an extremal realisation p’ with p 2£ p. As p=p'f the sur-
jective function f is also injective, so a bijection, ensuring that the extremal
realisation p’ is also injective. O
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The following lemma and corollary are central.

Lemma 17.6. Assume (R,<),p, (Ro,<0),po0 and (R1,<1),p1 are realisations.
(i) Suppose f:p 2{1 0o 252 p1. Then there are maps so that f: p =3 p' =" py,

as shown below:
g2 ’

P >p
f1j 91
fo ¥

PO —=P1

(ii) Suppose p 2{1 po where Ry is not a down-closed subset of R. Then there are
maps so f1=p =3 p' =" po with go not an isomorphism.:

> p

p -
" L 91
#

Po
Proof. (i) Construct the realisation (R',<"), p" as follows. Define
RIZ (R\Ro)URl

where w.l.0.g. we assume the sets R\ Ry and R; are disjoint. Define the function
g2 : R — R’ to act as the identity on elements of R\ Ry and as f2 on elements
of Ry. Because f, reflects the order so does go, and go preserves down-closed
subsets.

When b€ R\ Ry, define

a<'b iff JageR. ag<b & g2(ap) =a.

When b € Ry, define
a<'b iff aceRy & a<ib.

Define p’ to act as p on elements of R\ Ry and as p; on elements of R;.
Then p = p’go directly. To see <’ is a partial order observe that reflexivity and
antisymmetry follow directly from the corresponding properties of < and <;.
Transitivity requires an argument by cases. For example, in the most involved
case, where

c< awithaeR; and a < b withbe R\ Ry

we obtain
c<iaandag<b

for some ag € Ry with fa(ag) = a. As fy is surjective and reflects the order,
co <o ap and ag < b

for some cg,€ Ry with fa(co) = ¢. Consequently, cg < b with g2(cg) = ¢, making
c <'b, as required for transitivity.
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We should check that p' is a realisation. Let b e R’. If b e Ry then p'[b] =
p1[b]1 € C(A). If b € R~ Ry then p'[b]' = pga[b] the image under p of the
down-closed subset gs[b], so in C(A).

We have already remarked that go reflects the order and p = p’gs making it
a map of realisations. This concludes the proof of (i).

(ii) This follows from the construction of (R’ <), p" used in (i) but in the special
case where f5 is the identity map. Then R’ = R but <’#< as there is e € Ry with
[e]o & [e] ensuring that [e]” = [e]o # [e]- O

Corollary 17.7. If p is extremal and p =/ p', then p' is extremal and there is
po s.t. f:p=1po2p. Moreover, the carrier Ry of py is a down-closed subset
of the carrier R of p, with order the restriction of that on R.

Proof. Directly from Lemma 17.6. Assume p is extremal and p =/ p’. We can
factor f into p 2{1 00 252 p'. From (i), if pg were not extremal nor would p
be—a contradiction; hence fy is an isomorphism. From (ii), the carrier Ry of
po has to be a down-closed subset of the carrier R of p, as otherwise we would

contradict the extremality of p. O

It follows that if p is extremal and p =/ p’ then p’ is extremal and the inverse
relation g =qef ! is an injective function preserving and reflecting down-closed
subsets, i.e. g[r'] = [g(r")] for all ' € R'. In other words:

Corollary 17.8. If p is extremal and p =T p', then p' is extremal and the
inverse g =qet £ is a rigid embedding from the carrier of p' to the carrier of p

s.t.p'=pf.

Lemma 17.9. Let (R,<),p be an extremal realisation. Then
(i) if ' <r and p(r) = p(r') thenr=1';
(i) if [r) =[r'") and p(r) = p(r') then r=1".

Proof. (i) Suppose r’ < r and p(r) = p(r'). By Corollary 17.8, we may project
to [r] to obtain an extremal realisation pg : [r] - A. Suppose r and r’ were
unequal. We can define a realisation as the restriction of pg to [r). The function
from [r] to [r) taking r to " and otherwise acting as the identity function is
a map of realisations from the realisation py and clearly not an isomorphism,
showing pg to be non-extremal—a contradiction. Hence r = 7/, as required.

(ii) Suppose [r) = [r') and p(r) = p(r"). Projecting to [r,r'] we obtain an
extremal realisation. If r and ' were unequal there would be a non-isomorphism
map to the realisation obtained by projecting to [r], viz. the map from [r,r’]
to [r] sending ' to r and fixing all other elements. O

By modifying condition (i) in the lemma above a little we obtain a charac-
terisation of extremal realisations:

Lemma 17.10. Let (R,<),p be a realisation. Then p is extremal iff
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(i) if X ¢ [r), with X down-closed and r € R, and p(X u {r}) € A then
X =[r); and

(it) if [r) =[r") and p(r) = p(r') then v =1".

Proof. “Only if”: Assume p is extremal. We have already established (ii) in
Lemma 17.9. To show (i), suppose X is down-closed and X ¢ [r) in R with
p(Xu{r}) e A. By Corollary 17.8, we may project to [r] to obtain an extremal
realisation pg : [r] = A. Modify the restricted order [r] to one in which ' < r iff
r’ € X, and is otherwise unchanged. The same underlying function py remains
a realisation, call it p{, on the modified order. The identity function gives us a
map [ : po =2 pj which is an isomorphism between realisations iff X = [r).
“If”: Assume (i) and (ii). Suppose f:p >3 p', where R',p is a realisation. We
show f is injective and order-preserving. As f is presumed to be surjective and
to preserve down-closed subsets we can then conclude it is an isomorphism.

To see f is injective suppose f(r1) = f(r2). W.l.o.g. we may suppose 1 and
r9 are minimal in the sense that

ri<r &rh<r & f(r)) = f(ry) = ri=ri &rh=rs.
Define r' =q¢¢ f(r1) = f(r2). Then
[r]c flr] & [r'] € flr2].
Furthermore, by the minimality of 71,73,
() € flr1) & [r'] < fra).

It follows that
[r") € flr1) 0 flr2) = f([r1) n[r2))

where the equality is again a consequence of the minimality of rq,7o. Taking
X =get [11) N [r2) we have (fX)u{r'} is down-closed in R'. Therefore

p(Xu{r})=p f(Xu{r})=p(fXu{r})eA

By condition (ii), X = [r1). Similarly, X = [r2), so [r1) = [r2). Obviously

p(r1) =p' f(r1) = p'f(r1) = p(r2), so we obtain r1 =14 by (i).
We now check that f preserves the order. Let r € R. Define

X =get [{r1 <7 | f(r1) < f(r)}],

where the square brackets signify down-closure in R. Then X is down-closed in
R by definition and X ¢ [r). We have [f(r)] ¢ f[r] whence

fX=flrlnlf(r) =1f(r)).
Therefore fX u{f(r)} is down-closed in R’, so

p(Xu{r}) =p f(Xu{r})=p(fXU{f(r)})eA.



17.8. EXTREMAL REALISATIONS 297

Hence X =[r), by (ii). It follows that

rr—->r — r 1 e€X

= f(r1) < f(r)in R'.

As the order on R is the transitive closure of immediate dependency, this in
turn that f preserves the order. O

Lemma 17.11. There is at most one map between extremal realisations.

Proof. Let (R,<),pand (R’,<"), p’ be extremal realisations. Let f, f": p - p’ be
maps with converse relations g and g’ respectively. We show the two functions g
and ¢’ are equal, and hence so are their converses f and f’. Suppose otherwise
that g # g’. Then there is an <-minimal r’ € R’ for which g(r') # ¢'(r') and
glr) = g'[r"). Hence [g(r")) = [¢'(r")) and p(g(r")) = p'(r") = p(¢'(r")). As p is
extremal, by Lemma 17.9(ii) we obtain g(r') = ¢'(r")—a contradiction. O

Hence extremal realisations of A under < form a preorder. The order of ex-
tremal realisations has as elements isomorphism classes of extremal realisations
ordered according to the existence of a map between representatives of isomor-
phism classes. Alternatively, we could take a choice of representative from each
isomorphism class and order these according to whether there is a map from one
to the other. We say a realisation has a top element when its carrier contains an
element which dominates all other elements in the carrier. In fact, the following
is a direct corollary of Proposition 17.17 in the next section.

Proposition 17.12. The order of extremal realisations of a family of configu-
rations A forms a prime-algebraic domain [1] with complete primes represented
by those extremal realisations which have a top element.

The proofs of the following observations are straightforward. They empha-
sise that extremal realisations with top are for our purposes (among them to
develop probabilistic strategies with parallel causes) an appropriate generalisa-
tion of (complete) primes when we move from prime event structures to general
event structures.

Proposition 17.13. Let (A,<4,Cony) be a prime event structure. For an
extremal realisation (R,<gr),p of C*(A), the function p: R - pR is an order
isomorphism between (R,<g) and the configuration pR € C*(A) ordered by the
restriction of <4. The function taking an extremal realisation (R,<g),p to the
configuration pR is an order isomorphism from the order of extremal realisations
of C*(A) to the configurations of A; extremal realisations with a top correspond
complete primes of C=°(A).

We conclude with examples illustrating the nature of extremal realisations.
It is convenient to describe families of configurations by general event structures,
taking advantage of the economic representation they provide.
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Example 17.14. This and the following example shows that prime extremal
realisations do not correspond to irreducible configurations. Below, on the right
we show a general event structure with irreducible configuration {a,b,c,d}. On
the left we show two prime extremals with tops dy and do which both have the
same irreducible configuration {a, b, ¢, d} as their image. The lettering indicates
the functions associated with the realisations, e.g. events dy and ds in the partial
orders map to d in the general event structure.

AND

OR

Example 17.15. On the other hand there are prime extremal realisations of
which the image is not an irreducible configuration. Below the prime extremal
on the left describes a situation where d is enabled by b and ¢ being enabled by
a. It has image the configuration {a,b,c,d} which is not irreducible, being the
union of the two configurations {a} and {b,c,d}.

AND

OR

@ @ @)

Example 17.16. It is also possible to have prime extremal realisations in which
an event depends on another event having been enabled in two distinct ways,
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as in the following extremal realisation on the left.

dq €1

OO

The extremal describes the event f being enabled by d and e where they are in
turn enabled by different ways of enabling c¢. Although an extremal (with top
element) it is clearly not an injective realisation.

17.9 An adjunction from &5- to Fam-

We exhibit an adjunction (precisely, a very simple case of biadjunction) from
ES-, the category of ese’s, to Fam=, the category of equivalence families.

The left adjoint I : ES= - Fame= is the full and faithful functor which takes
an ese to its family of configurations with the original equivalence.

The right adjoint er : Fam= — £S= is defined on objects as follows. Let A be
an equivalence family with underlying set A. Define er(A) = (P,Conp,<p,=p)
where

e P consists of a choice from within each isomorphism class of those ex-
tremals p of A with a top element—we write top(p) for the image of the
top element in A;

e Causal dependency <p is < on P;

e X € Conp iff X Ch, P and top[X]p € A —the set [X]p is the <p-
downwards closure of X, so equal to {p’ € P | 3pe X. p' < p};

® D1 =p P2 iﬂpl’pg € P and top(pl) =A tOp(pg)

Proposition 17.17. The configurations of P, ordered by inclusion, are order-
isomorphic to the order of extremal realisations: an extremal realisation p corre-
sponds, up to isomorphism, to the configuration {p € P | p < p} of P; conversely,
a configuration x of P corresponds to an extremal realisation top : © — A with
carrier (xz,<), the restriction of the order of P to x.
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Proof. It will be helpful to recall, from Corollary 17.8 , that if p >/ p’ between
extremal realisations, then the inverse relation f~! is a rigid embedding of (the
carrier of ) p’ in (the carrier of) p; so p’ < p stands for a rigid embedding. Suppose
x € C®(P). Then x determines an extremal realisation

0(x) =qet top : (z,2) > A.

The function f(x) is a realisation because each p in z is, and extremal because,
if not, one of the p in 2 would fail to be extremal, a contradiction. Clearly p’ < p
implies 6(p") € 6(p). Conversely, it is easily checked that any extremal realisa-
tion p: (R, <) — A defines a configuration {p € P | p < p}. If z € y in C*(P) then
p(x) < p(y). It can be checked that 6 and ¢ are mutual inverses, i.e. pf(x) = x
and Op(p) = p for all configurations x of P and extremal realisations p. O

From the above proposition we see that the events of er(A) correspond to
completely-prime extremal realisations [1]. This justifies our future use of the
term ‘prime extremal’ instead of the clumsier ‘extremal with top element.’

The component of the counit of the adjunction €4 : I'(er(A)) — A is given
by the function

ea(p) = top(p) -

It is a routine check to see that €4 preserves = and that any configuration = of
P images under top to a configuration in A, moreover in a way that reflects =.

Let Q = (Q,Cong,<g,=q) be an ese and f:I(Q) - A a map in Fam=. We
shall define a map h: Q — er(A) s.t. f= eah.

We define the map h : Q — er(A) by induction on the depth of @. The
depth of an event in an event structure is the length of a longest <-chain up to
it—so an initial event has depth 1. We take the depth of an event structure to
be the maximum depth of its events. (Because of our reliance on Lemma 17.4,
we use the axiom of choice implicitly.)

Assume inductively that 2(") defines a map from Q" to er(A) where Q™
is the restriction of @ to depth below or equal to n such that (") the restriction
of f to QU™ satisfies f(™) = e,h(™. (In particular, QO is the empty ese and
R the empty function.) Then, by Proposition 17.17, any configuration x of
Q™) determines an extremal realisation p, : k("™ z - A with carrier (h(")fv7 <).

Suppose ¢ € Q has depth n + 1. If f(q) is undefined take R("*(q) to be
undefined. Otherwise, note there is an extremal realisation pp,) with carrier
(hlq),<). Extend pp,) to a realisation pgq) with carrier that of pp,y with a new

top element T adjoined, and make p[Tq) extend the function pr,) by taking T to
f(g). By Lemma 17.4, there is an an extremal realisation p such that p[Tq) >9 p.
Because ppg) is extremal pp,y <1 p, so p only extends the order of pp,) with
extra dependencies of T. (For notational simplicity we identify the carrier of
p with the set h[q) Uu{T}.) Project p to the extremal with top T. Define this
to be the value of h(””)(q). In this way, we extend h{™ to a partial function
R 2 Q1) s er(A) such that f*D) = e4h("*1) To see that h("*1) is a
map we can use Proposition 17.2. By construction h("*1) satisfies property (ii)
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of Proposition 17.2 and the other properties are inherited fairly directly from f
via the definition of er(A).

Defining h = Upe,, h™) we obtain a map h: Q — er(A) such that f = e4h.
Suppose h': Q - er(A) is a map s.t. f = €4 0h’. Then, for any g€ Q,

top(h'(q)) = eaoh'(q) =a f(q) = €aoh(q) = top(h(q)),

so h'(q) =p h(q) in er(A). Thus h' = h.

In summary, we have proved the following;:

Theorem 17.18. Let A € Fam=. For all f: I(Q) — A in Fam=, there is a
map h:Q — er(A) in ES= such that f = eqoI(h) i.e. so the diagram

A<= I(erA(A))
) %1(h>
I(Q)

commutes. Moreover, if h' : Q — er(A) is a map in ES= s.t. f = eq o I(R'),
i.e. the diagram above commutes up to =, then h' = h.

The theorem does not quite exhibit an adjunction, because the usual cofree-
ness condition specifying an adjunction is weakened to only having uniqueness
up to =. However the condition it describes does specify an exceedingly sim-
ple case of a biadjunction (or pseudo adjunction) between 2-categories—a set
together with an equivalence relation (a setoid) is a very simple example of a
category. As a consequence, whereas with the usual cofreeness condition allows
us to extend the right adjoint to arrows, so obtaining a functor, in this case
following that same line will only yield a pseudo functor er as right adjoint:
thus extended, er will only preserve composition and identities up to =.

The map
(P,=) = er(C”(P),=)

which takes p € P to the realisation with carrier ([p], <), the restriction of the
causal dependency of P, with the inclusion function [p] — P is an isomorphism;
recall from Proposition 17.13 that the configurations of a prime event structure
correspond to its extremal realisations. Such maps furnish the components of
the unit of the adjunction.

Example 17.19. On the right we show a general event structure and on its left
the ese which its family of configurations (with equivalence the identity relation)
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gives rise to under the construction er:
AND

OR

17.10 An adjunction from Fam- to GES

The right adjoint fam : GES — Fam- is most simply described. Given (E,Con, +
) in GES it returns the equivalence family (C*°(FE),=) in Fam= comprising the
configurations together with the identity equivalence between events that appear
within some configuration; the partial functions between events that are maps
in GES are automatically maps in Fam=—the action of fam on maps.

For the effect of the left adjoint col : Fam= — GES on objects, define the
collapse

col(A) =get (E,Con,+)

where
e = A., the equivalence classes of events in A =g0r U.A
e X e Con iff X Cg, y=, for some ye A
e Xteiffee F, X e Con and e € y= € X U {e}, for some y € A.

Let (A, =) € Fam=. Assume that A has underlying set A. The unit of the
adjunction is defined to have typical component 14 : (A,=) - fam(col(A,=))

given by
/’714(0’) = {a}z °
It is easy to check that n4 is a map in Fame=.

Theorem 17.20. Suppose that B = (B,Cong,+g) € GES and that g: (A,=) >
(C*(B),=) is a map in Fam=. Then, there is a unique map k : col(A,=) - B
in GES s.t. the diagram

(A,=) —2 fam(col(A, =))

x fam(k)

\
(C=(B),=)

commutes.
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Proof. The map k : col(A,=) — B is given as the function
k(e) = g(a) where e = {a}_.

It is easily checked to be a map in GES and moreover to be the unique map from
col(A, =) to B making the above diagram commute. O

Theorem 17.20 determines an adjunction from Fam= to GES. The construc-
tion col automatically extends from objects to maps; maps in Fam= preserve
equivalence so collapse to functions preserving equivalence classes.

The counit of the adjunction has components eg : col((C*(E),=)) - E
which send singleton equivalence classes {e} to e. The conunit is an isomorphism
at precisely those general event structures F which are replete.

17.11 An adjunction from &£S- to GES

Composing the adjunctions

er fam
£, Fam. < e
I col

we obtain a adjunction

Strictly speaking this is only a pseudo adjunction because the first adjunction
from &S- to Fam:= is only a pseudo adjunction.

The composite adjunction from &£S- to GES cuts down to a reflection, in
which the counit is a natural isomorphism, when we restrict to the subcategory
of GES where all general event structures are replete. The right adjoint provides
a full and faithful embedding of replete general event structures (and so families
of configurations) in ese’s. Recall the right adjoint constructs an ese out of the
prime extremal realisations of a general event structure.

We can ask on what subcategory of ES= the adjunction further cuts down to
an equivalence of categories. We now provide those extra axioms an ese’s should
satisfy in order that the subcategory of such is equivalent to that of replete
general event structures. This amounts to characterising those ese’s which are
obtained to within isomorphi