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Abstract. Nondeterministic concurrent strategies—those strategies com-
patible with copy-cat behaving as identity w.r.t. composition—have been
characterised as certain maps of event structures. This leads to a bicate-
gory of general concurrent games in which the maps are nondeterministic
concurrent strategies. This paper explores the consequences of extend-
ing concurrent games with (1) winning, losing and, implicitly, neutral
configurations, and (2) access levels, to address situations where Player
or Opponent have imperfect information as to what has occurred in the
game. In both cases winning strategies are shown to form bicategories of
games. The bicategories become equivalent to order-enriched categories
when restricted to deterministic strategies.

1 Introduction

Dexter Kozen is an inspiring speaker, enjoys teaching, and has a history of involv-
ing students, including undergraduates, in research. We share a close association
with the Computer Science department at Aarhus, Denmark, going back over
several decades—we first met there in 1979. This paper, in Dexter’s honour, is
based on a recent student project from a lecture course on concurrent games I
gave in Aarhus last summer (August-September, 2011) [1].

Its roots lie in John Conway’s “Numbers and Games” [2]. There Conway
defined his “surreal numbers” as strengths of certain games: he defined a pre-
order between games G and H if a winning strategy for G gives rise to a winning
strategy for H; the surreal numbers appeared as equivalence classes induced by
the preorder. Shortly afterwards André Joyal uncovered a category underpinning
Conway’s work. Conway’s games support two important operations on two-party
games: a form of parallel compositionG∥H, which Conway called a sum of games;
a dualizing operation G⊥ which reverses the roles of Player and Opponent in G,
which Conway called negation. Joyal, following the method used in Conway’s
proofs, defined a strategy σ from a game G to a game H, written σ ∶ G + //H, to
be a strategy σ in G⊥∥H. Joyal showed that strategies compose, with identities
given by copy-cat strategies. A strategy in H corresponds to a strategy from the
empty game ∅ to H. Note that

∅ + //G + //H composes to give ∅ + //H ,
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so a strategy in G gives rise to a strategy in H when there is a strategy from
G to H. Conway’s pre-order between games G and H is witnessed through the
presence of a winning strategy of from G to H.

This article takes the ideas of Conway and Joyal into the realm of concur-
rent/distributed processes. It brings the experience of concurrency (event struc-
tures, stable families, their techniques and constructions originally used in the
semantics of process languages [3]) to bear on the theory of games. It considers
a very general definition of 2-party concurrent games in which Player (more ac-
curately thought of as a team of players) competes against Opponent (a team
of opponents) in a potentially highly-distributed fashion, without for instance
insisting on the alternation of Player and Opponent moves. For most of the
article the games will be games of perfect information, in that Player can see
all moves of Opponent, and vice versa. An example of such a concurrent game
would be simultaneous chess, possibly with collaboration between players. How-
ever, the dichotomy Player/Opponent can also be read as process/environment,
proof/refutation, or ally/enemy, and there are many other examples of concur-
rent games in Computer Science and Logic, and beyond.

The methodology is essentially that of Joyal, following Conway, developed
within a general model for concurrent computation. Two-party games and strate-
gies are represented as event structures with polarity, in which polarities distin-
guish the moves of Player and Opponent—cf. [4]. A pre-strategy is a total map
σ ∶ S → A of event structures with polarity. The map expresses how moves of
Player and Opponent, the events of S, correspond to the moves permitted by
the game, the events of A; that σ is a map ensures that play of respects the con-
straints of the game. Following Joyal, a pre-strategy from a game A to a game B
is understood as a pre-strategy in a composite game got by setting the dual game
of A, reversing the roles of Player and Opponent, in parallel with B. From this
general scheme nondeterministic concurrent strategies—pre-strategies for which
copy-cat strategies behave as identities w.r.t. composition of pre-strategies—have
recently been characterized as those pre-strategies which satisfy the two condi-
tions of receptivity and innocence [5]. The extension with winning conditions and
the question of when and whether concurrent games are determined (i.e. there
is either a winning strategy for Player or Opponent) is considered in the Aarhus
lecture notes [1] and the forthcoming article [6]. The two contributions of this
paper are: (1) an extension of the framework to games with neutral positions,
which as outcomes of a play yield a draw (the student project at Aarhus); (2)
an extension to concurrent games with imperfect information, where moves may
be hidden, so cannot be taken account of by strategies. Where the article builds
on earlier results proofs can be found in the Aarhus lecture notes [1].

A word on related work. A general motivation has been the search for a form
of generalized domain theory suitable for the semantics of concurrent processes
and proofs [7]. An early definition of concurrent games appears in [8], where
Samson Abramsky and Paul-André Melliès presented deterministic concurrent
strategies as, essentially, partial closure operators on the domain of configura-
tions of an event structure; such an operator takes any reachable configuration
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of the game to the result of playing the intended moves of Player. Their motiva-
tion was the representation of proofs in linear logic. There followed a battery of
insightful papers by Melliès and colleagues on asynchronous games culminating
in the definition of ingenuous strategies—see e.g. [4, 9]. The receptive ingenu-
ous strategies of Melliès and Samuel Mimram have been shown to coincide with
the deterministic concurrent strategies of [5], so justifying receptive ingenuous
strategies as the most general deterministic concurrent strategies for which copy-
cat behaves as identity. In comparison with early work of Abramsky and Martin
Hyland on winning conditions in sequential games, the work here is closer to
Hyland’s, which it can be seen as extending [10, 11]. The extension to games of
imperfect information was guided solely by the wish to handle such games in a
way that respected the bicategorical structure on concurrent games. There are
however striking similarities with work by Abramsky and Radha Jagadeesan on
games for access control [12].

2 Event structures and stable families

An event structure comprises (E,Con,≤), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty con-
sistency relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The configurations,C∞(E), of an event structure E consist of those subsets x ⊆ E
which are

Consistent: ∀X ⊆ x. X is finite⇒X ∈ Con , and
Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations of an event struc-
ture. We write C(E) for the finite configurations of an event structure E.

Two events which are both consistent and incomparable w.r.t. causal depen-
dency in an event structure are regarded as concurrent. In games the relation of
immediate dependency e _ e′, meaning e and e′ are distinct with e ≤ e′ and no
event in between, will play a very important role. For X ⊆ E we write [X] for
{e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of X; note if X ∈ Con, then [X] ∈ Con.

Example 1. The diagram below represents an event structure with five events in
which, for example, d causally depends on the previous occurrence of a and b,
while the two events b and c are inconsistent with each other (the squiggly line
represents that the {b, c} is not consistent).

d e

a

_LLR_LLR

b

}YYd =======

_LLR

/o/o/o c
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As {b, c} is not consistent neither is {e, c}, but we need not draw this as it is en-
tailed by the axioms on the consistency relation. Often consistency/inconsistency
is determined in a binary fashion and we can take advantage of this in a diagram
of the event structure. However, this is not always the case. Consider for instance
the event structure consisting of the three events 1,2,3 with the discrete order
and consistency relation

Con = { ∅, {1},{2},{3}, {1,2},{1,3},{2,3} }

◻

Operations such as synchronized parallel composition are awkward to define
directly on the simple event structures above. It is useful to broaden event struc-
tures to stable families, where operations are often carried out more easily, and
then turned into event structures by the operation Pr below.

A stable family comprises F , a nonempty family of finite subsets, called con-
figurations, which satisfy:
Completeness: ∀Z ⊆ F . Z ↑ Ô⇒ ⋃Z ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Stability: ∀x, y ∈ F . x ↑ y Ô⇒ x ∩ y ∈ F .
Above, Z ↑ means ∃x ∈ F∀z ∈ Z. z ⊆ x, and expresses the compatibility of Z in
F ; we use x ↑ y for {x, y} ↑. We call elements of ⋃F events of F .

Proposition 1. Let x be a configuration of a stable family F . For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y Ô⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =⋂{y ∈ F ∣ y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x ∣ e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Proposition 2. Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an
event structure where:

P = {[e]x ∣ e ∈ x & x ∈ F} ,
Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,
p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .
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A (partial) map of stable families f ∶ F → G is a partial function f from the
events of F to the events of G such that for all configurations x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2) .
Maps of event structures are maps of their stable families of configurations. Maps
compose as functions. We say a map is total when it is total as a function.

Pr is the right adjoint of the “inclusion” functor, taking an event structure
E to the stable family C(E). The unit of the adjunction E → Pr(C(E)) takes
an event e to the prime configuration [e] =def {e′ ∈ E ∣ e′ ≤ e}. The counit max ∶
C(Pr(F))→ F takes prime configuration [e]x to its maximum event e; the image
of a configuration x ∈ C(Pr(F)) under the map max is ⋃x ∈ F .

Definition 1. Let F be a stable family. We use x−⊂y to mean y covers x in
F , i.e. x ⊂ y in F with nothing in between, and x

e−Ð⊂ y to mean x ∪ {e} = y
for x, y ∈ F and event e ∉ x. We sometimes use x

e−Ð⊂ , expressing that event
e is enabled at configuration x, when x

e−Ð⊂ y for some y. W.r.t. x ∈ F , write
[e)x =def {e′ ∈ E ∣ e′ ≤x e & e′ /= e}, so, for example, [e)x

e−Ð⊂ [e]x. The relation
of immediate dependence of event structures generalizes: with respect to x ∈ F ,
the relation e _x e

′ means e ≤x e′ with e /= e′ and no event in between.

3 Process operations

3.1 Products

Let A and B be stable families with events A and B, respectively. Their product,
the stable familyA×B, has events comprising pairs inA×∗B =def {(a,∗) ∣ a ∈ A}∪
{(a, b) ∣ a ∈ A & b ∈ B} ∪ {(∗, b) ∣ b ∈ B}, the product of sets with partial func-
tions, with (partial) projections π1 and π2—treating ∗ as ‘undefined’—with con-
figurations x ∈ A × B iff

x is a finite subset of A ×∗ B s.t. π1x ∈ A & π2x ∈ B,
∀e, e′ ∈ x. π1(e) = π1(e′) or π2(e) = π2(e′)⇒ e = e′ ,&
∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B & (e ∈ y ⇐⇒ e′ ∉ y) .

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B by first regarding them as stable families C(A) and C(B),
forming their product C(A)×C(B), π1, π2, and then constructing the event struc-
ture

A ×B =def Pr(C(A) × C(B))
and its projections as Π1 =def π1max and Π2 =def π2max .

Later we shall use the following lemma relating immediate causal dependency
in a product of stable families to immediate dependency in the components.

Lemma 1. Suppose e _x e
′ in a product of stable families A × B, π1, π2.

(i) If e = (a,∗) then e′ = (a′, b) or e′ = (a′,∗) with a _π1x a
′ in A.

(ii) If e′ = (a′,∗) then e = (a, b) or e = (a,∗) with a _π1x a
′ in A.

(iii) If e = (a, b) and e′ = (a′, b′) then a _π1x a
′ in A or b _π2x b

′ in B.
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3.2 Restriction

The restriction of F to a subset of events R is the stable family F ↾ R =def

{x ∈ F ∣ x ⊆ R} . Defining E ↾ R, the restriction of an event structure E to a
subset of events R, to have events E′ = {e ∈ E ∣ [e] ⊆ R} with causal dependency
and consistency induced by E, we obtain C(E ↾R) = C(E) ↾R .

Proposition 3. Let F be a stable family and R a subset of its events. Then,
Pr(F ↾R) = Pr(F)↾max−1R .

3.3 Synchronized compositions

Synchronized parallel compositions are obtained as restrictions of products to
those events which are allowed to synchronize or occur asynchronously according
to the specific synchronized composition. For example, the synchronized compo-
sition of Milner’s CCS on stable families A and B (with labelled events) is defined
as A × B ↾R where R comprises events which are pairs (a,∗), (∗, b) and (a, b),
where in the latter case the events a of A and b of B carry complementary labels.
Similarly, synchronized compositions of event structures A and B are obtained
as restrictions A×B ↾R. By Proposition 3, we can equivalently form a synchro-
nized composition of event structures by forming the synchronized composition
of their stable families of configurations, and then obtaining the resulting event
structure—this has the advantage of eliminating superfluous events earlier.

3.4 Projection

Event structures support a simple form of hiding. Let (E,≤,Con) be an event
structure. Let V ⊆ E be a subset of ‘visible’ events. Define the projection of E
on V , to be E↓V =def (V,≤V ,ConV ), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and
X ∈ ConV iff X ∈ Con & X ⊆ V .

4 Event structures with polarities

We shall represent both a game and a strategy in a game as an event structure
with polarity, which comprises (E,pol) where E is an event structure with a
polarity function pol ∶ E → {+,−} ascribing a polarity + (Player) or − (Opponent)
to its events. The events correspond to (occurrences of) moves. Maps of event
structures with polarity are maps of event structures which preserve polarity.

4.1 Operations

Dual The dual, E⊥, of an event structure with polarity E comprises a copy of
the event structure E but with a reversal of polarities. It obviously extends to a
functor. Write e ∈ E⊥ for the event complementary to e ∈ E and vice versa.
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Simple parallel composition This operation simply juxtaposes two event
structures with polarity. Let (A,≤A,ConA,polA) and (B,≤B ,ConB ,polB) be
event structures with polarity. The events of A∥B are ({1} × A) ∪ ({2} × B),
their polarities unchanged, with: the only relations of causal dependency given
by (1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤ (2, b′) iff b ≤B b′; a subset of events C
is consistent in A∥B iff {a ∣ (1, a) ∈ C} ∈ ConA and {b ∣ (2, b) ∈ C} ∈ ConB . The
operation extends to a functor—put the two maps in parallel. The empty event
structure with polarity , written ∅, is the unit w.r.t. ∥.

5 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events stand
for the possible occurrences of moves of Player and Opponent and its causal
dependency and consistency relations for the constraints imposed by the game.
A pre-strategy in A is a total map σ ∶ S → A from an event structure with polarity
S. A pre-strategy represents a nondeterministic play of the game—all its moves
are moves allowed by the game and obey the constraints of the game; the concept
will later be refined to that of strategy (and winning strategy in Section 7). Two
pre-strategies σ ∶ S → A and τ ∶ T → A in A will be essentially the same when
they are isomorphic, i.e. there is an isomorphism S ≅ T such that

S

σ
��??????? ≅ T

τ

��
A

commutes. Then we write σ ≅ τ .
Let A and B be event structures with polarity. Following Joyal [13], a pre-

strategy from A to B is a pre-strategy in A⊥∥B, so a total map σ ∶ S → A⊥∥B.
It thus determines a span

S
σ1

~~~~~~~~~~
σ2

  @@@@@@@@

A⊥ B ,

of event structures with polarity where σ1, σ2 are partial maps. In fact, a pre-
strategy from A to B corresponds to such spans where for all s ∈ S either, but
not both, σ1(s) or σ2(s) is defined. Two pre-strategies from A to B will be
isomorphic when they are isomorphic as pre-strategies in A⊥∥B, or equivalently
are isomorphic as spans. We write σ ∶ A + //B to express that σ is a pre-strategy
from A to B. Note a pre-strategy σ in a game A coincides with a pre-strategy
from the empty game σ ∶ ∅ + //A.
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5.1 Composing pre-strategies

Consider two pre-strategies σ ∶ A + //B and τ ∶ B + //C as spans:

S
σ1

~~}}}}}}}}
σ2

��???????

A⊥ B

T
τ1

~~}}}}}}}}
τ2

  AAAAAAAA

B⊥ C .

We show how to define their composition τ⊙σ ∶ A + //C as the result of a syn-
chronized composition, followed by projection to hide internal synchronization
events. We first form the synchronized composition of S and T by restricting
the product S ×T , with projections Π1 ∶ S ×T → S and Π2 ∶ S ×T → T , to allow
only those synchronizations associated with complementary events, of different
polarities, in B and B⊥. Specifically, the synchronized composition is S ×T ↾Syn
where

Syn = {p ∈ S × T ∣ σ1Π1(p) is defined & Π2(p) is undefined} ∪
{p ∈ S × T ∣ τ2Π2(p) is defined & Π1(p) is undefined} ∪
{p ∈ S × T ∣ σ2Π1(p) = τ1Π2(p) with both defined} .

We define T⊙S =def (S × T ↾ Syn) ↓ V where

V = {p ∈ S × T ↾ Syn ∣ σ1Π1(p) is defined} ∪{p ∈ S × T ↾ Syn ∣ τ2Π2(p) is defined} .

Finally, the composition τ⊙σ is defined to be the span

T⊙S
σ1Π1

||yyyyyyyy
τ2Π2

""EEEEEEEE

A⊥ C .

As remarked in Section 3.3, the same construction is achieved by first forming
the synchronized composition of the stable families C(S) and C(T ) (we often use
this description in proofs):

Proposition 4. The composition T⊙S = Pr(C(S) × C(T ) ↾R) ↓ V , where

R = {(s,∗) ∣ s ∈ S & σ1(s) is defined} ∪ {(∗, t) ∣ t ∈ T & τ2(t) is defined} ∪
{(s, t) ∣ s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined} .

The span τ⊙σ comprises maps υ1 ∶ T⊙S → A⊥ and υ2 ∶ T⊙S → C, which on
events p of T⊙S act so υ1(p) = σ1(s) when max(p) = (s,∗) and υ2(p) = τ2(t)
when max(p) = (∗, t), and are undefined elsewhere.

The natural isomorphism S×(T×U) ≅ (S×T )×U , associated with the product
of event structures S,T,U , restricts to the required isomorphism of spans as the
synchronizations involved in successive compositions are disjoint:

Proposition 5. Let σ ∶ A + //B, τ ∶ B + //C and υ ∶ C + //D be pre-strategies.
The two compositions υ⊙(τ⊙σ) and (υ⊙τ)⊙σ are isomorphic.
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5.2 Concurrent copy-cat

Identities w.r.t. composition are given by copy-cat strategies. Let A be an event
structure with polarity. The copy-cat strategy from A to A is an instance of
a pre-strategy, so a total map γA ∶ CCA → A⊥∥A. It describes a concurrent, or
distributed, strategy based on the idea that Player moves, of +ve polarity, always
copy previous corresponding moves of Opponent, of −ve polarity.

For c ∈ A⊥∥A we use c to mean the corresponding copy of c, of opposite
polarity, in the alternative component, i.e. (1, a) = (2, a) and (2, a) = (1, a) .
Define CCA to comprise the event structure with polarity A⊥∥A together with
extra causal dependencies c ≤CCA

c for all events c with polA⊥∥A(c) = +.

Proposition 6. Let A be an event structure with polarity. Then CCA is an event
structure with polarity. Moreover,

x ∈ C(CCA) iff x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + Ô⇒ c ∈ x .

The copy-cat pre-strategy γA ∶ A + //A is defined to be the map γA ∶ CCA →
A⊥∥A where γA is the identity on the common set of events.

Example 2. We illustrate the construction of the copy-cat strategy for the event
structure A comprising the single immediate dependency a1 _ a2 from an Op-
ponent move a1 to a Player move a2. The event structure CCA is obtained from
A⊥∥A by adjoining the additional immediate dependencies shown:

A⊥ a2 ⊖ � ,,2___ ⊕ a2 A

a1 ⊕

_LLR

⊖ a1

_LLR

�llr _ _ _

The pre-strategy γA ∶ CCA → A⊥∥A is defined to act simply as the identity
function on events. ◻

6 Strategies

The main result of [5], presented summarily here, is that two conditions on pre-
strategies, receptivity and innocence, are necessary and sufficient for copy-cat to
behave as identity w.r.t. the composition of pre-strategies. Receptivity ensures
an openness to all possible moves of Opponent. Innocence restricts the behaviour
of Player; Player may only introduce new relations of immediate causality of the
form ⊖ _ ⊕ beyond those imposed by the game.

Receptivity. A pre-strategy σ is receptive iff σx
a−Ð⊂ & polA(a) = − ⇒ ∃!s ∈

S. x
s−Ð⊂ & σ(s) = a .

Innocence. A pre-strategy σ is innocent when it is both
+-innocent: if s _ s′ & pol(s) = + then σ(s) _ σ(s′), and
−-innocent: if s _ s′ & pol(s′) = − then σ(s) _ σ(s′).
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Theorem 1. Let σ ∶ A + //B be pre-strategy. Copy-cat behaves as identity w.r.t. com-
position, i.e. σ ○ γA ≅ σ and γB ○σ ≅ σ, iff σ is receptive and innocent. Copy-cat
pre-stategies γA ∶ A + //A are receptive and innocent.

6.1 The bicategory of concurrent games and strategies

Theorem 1 motivates the definition of a strategy as a pre-strategy which is recep-
tive and innocent. In fact, we obtain a bicategory, Games, in which the objects
are event structures with polarity—the games, the arrows from A to B are strate-
gies σ ∶ A + //B and the 2-cells are maps of spans. The vertical composition of
2-cells is the usual composition of maps of spans. Horizontal composition is given
by the composition of strategies ⊙ (which extends to a functor on 2-cells via the
functoriality of synchronized composition).

A strategy σ ∶ A + //B corresponds to a dual strategy σ⊥ ∶ B⊥ + //A⊥. This
duality arises from the correspondence

S
σ1

~~}}}}}}}}
σ2

��???????

A⊥ B

←→ S

σ2

||zzzzzzzz
σ1

  AAAAAAAA

(B⊥)⊥ A⊥ .

The dual of copy-cat, γ⊥A, is isomorphic to the copy-cat of the dual, γA⊥ , for
A an event structure with polarity. The dual of a composition of pre-strategies
(τ⊙σ)⊥ is isomorphic to the composition σ⊥⊙τ⊥. This duality will be maintained
in all the bicategories of games we shall consider.

6.2 The subcategory of deterministic strategies

Say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg[X] ∈ ConS Ô⇒ X ∈ ConS ,

where Neg[X] =def {s′ ∈ S ∣ pol(s′) = − & ∃s ∈X. s′ ≤ s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends only
on a consistent set of opponent moves. Say a strategy σ ∶ S → A is deterministic
if S is deterministic.

Lemma 2. An event structure with polarityS is deterministic iff

∀s, s′ ∈ S,x ∈ C(S). x
s−Ð⊂ & x

s′−Ð⊂ & pol(s) = + Ô⇒ x ∪ {s, s′} ∈ C(S) .

In general, a copy-cat strategy can fail to be deterministic, illustrated below.

Example 3. Take A to consist of two events, one +ve and one −ve event, incon-
sistent with each other. The construction CCA:

A⊥ ⊖ � ,,2___

�O
�O
�O

⊕ A

�O
�O
�O

⊕ ⊖�llr _ _ _
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To see CCA is not deterministic, take x to be the singleton set consisting e.g. of
the −ve event on the left and s, s′ to be the +ve and −ve events on the right. ◻

Copy-cat γA is deterministic iff immediate conflict in A respects polarity, or
equivalently that there is no immediate conflict between +ve and −ve events, a
condition we call ‘race-free.’

Lemma 3. Let A be an event structure with polarity. The copy-cat strategy γA
is deterministic iff

∀x ∈ C(A). x
a−Ð⊂ & x

a′−Ð⊂ & pol(a) = + & pol(a′) = −
Ô⇒ x ∪ {a, a′} ∈ C(A) .

(Race − free)

Lemma 4. The composition of deterministic strategies is deterministic.

Lemma 5. A deterministic strategy σ ∶ S → A is injective on configurations
(equivalently, σ is mono in the category of event structures with polarity).

We obtain a sub-bicategory DGames of Games by restricting objects to
race-free games and strategies to being deterministic. Via Lemma 5, determin-
istic strategies in a game correspond to certain subfamilies of configurations of
the game. A characterization of those subfamilies which correspond to determin-
istic strategies shows them to coincide with the receptive ingenuous strategies
of Mimram and Melliès [9]. Via the presentation of deterministic strategies as
families DGames is equivalent to an order-enriched category.

7 Winning, losing and drawing

A game with winning/losing conditions comprises G = (A,W,L) where A is an
event structure with polarity and W ⊆ C∞(A) consists of the winning configu-
rations disjoint from the losing configurations L ⊆ C∞(A) for Player. We do not
insist that W and L partition the set C∞(A)—there may be neutral configura-
tions at which Player and Opponent draw.

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy σ ∶ S → A in G
is winning (for Player) if σx ∈W for all +-maximal configurations x ∈ C∞(S)—
a configuration x is +-maximal if whenever x

s−Ð⊂ then the event s has −ve
polarity. Any achievable position z ∈ C∞(S) of the game can be extended to a +-
maximal, so winning, configuration (via Zorn’s Lemma). So a strategy prescribes
Player moves to reach a winning configuration whatever state of play is achieved
following the strategy. Note that for a game A, if winning conditions W =C∞(A),
i.e. every configuration is winning, then any strategy in A is a winning strategy.

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
Player. Suppose σ ∶ S → A is a strategy in a game (A,W ). A counter-strategy is
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strategy of Opponent, so a strategy τ ∶ T → A⊥ in the dual game. We can view
σ as a strategy σ ∶ ∅ + //A and τ as a strategy τ ∶ A + //∅. Their composition
τ⊙σ ∶ ∅ + //∅ is not in itself so informative. Rather it is the status of the config-
urations in C∞(A) their full interaction induces which decides which of Player
or Opponent wins. For this we should consider the composition of σ and τ before
hiding internal synchronizations:

S × T ↾ Syn
Π1

yytttttttttt
Π2

%%JJJJJJJJJJ

S

����������
σ

%%JJJJJJJJJJ T
τ

yyssssssssss

��????????

∅ A A⊥ ∅

where
Syn = {p ∈ S × T ∣ σΠ1(p) = τΠ2(p) with both defined} .

Because σ or τ may be nondeterministic there can be more than one maximal
configuration z in C∞(S×T ↾Syn). A maximal configuration z in C∞(S×T ↾Syn)
images to a configuration σΠ1z = τΠ2z in C∞(A). Define the set of results of
the interaction of σ and τ to be

⟨σ, τ⟩ =def {σΠ1z ∣ z is maximal in C∞(S × T ↾ Syn)} .

A configuration x ∈ ⟨σ, τ⟩, resulting from a play of σ against τ may be a win for
Player, if x ∈W , a loss for Player and a win for Opponent, if x ∈ L, or a draw,
when x ∉W ∪L.

Lemma 6. Let σ ∶ S → A be a strategy in a game (A,W,L). The strategy σ is
a winning for Player iff ⟨σ, τ⟩ ⊆W for all (deterministic) strategies τ ∶ T → A⊥.

Corollary 1. There are the following three equivalent ways to say that a strategy
σ ∶ S → A is winning in (A,W,L):

1. σx ∈ W for all +-maximal configurations x ∈ C∞(S), i.e. the strategy pre-
scribes Player moves to reach a winning configuration, no matter what the
activity or inactivity of Opponent;

2. ⟨σ, τ⟩ ⊆ W for all strategies τ ∶ T → A⊥, i.e. all plays against counter-
strategies of the Opponent result in a win for Player;

3. ⟨σ, τ⟩ ⊆ W for all deterministic strategies τ ∶ T → A⊥, i.e. all plays against
deterministic counter-strategies of the Opponent result in a win for Player.

The proof of Lemma 6 relies on the following general lemma which will be
useful later. Its proof and those of the lemma and corollary above can be found
in [1]—they are essentially repeats of the corresponding proofs for games with
just winning conditions.
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Lemma 7. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be receptive pre-strategies.
Then,

z ∈ C∞(T × S ↾ Syn) is +-maximal iff
Π1z ∈ C∞(S) is +-maximal & Π2z ∈ C∞(T ) is +-maximal.

A convention is being adopted in Lemma 7. The events of T × S ↾ Syn are con-
structed as prime configurations p of a stable family, and as such max(p) has
the form (s,∗), (∗, t) or (s, t), with s ∈ S and t ∈ T . An event p with max(p) of
the form (s,∗) or (∗, t) adopts the polarity of the event s or t, while those p with
max(p) = (s, t) are regarded as not having a polarity. By x ∈ C∞(T ×S ↾ Syn) is
+-maximal is meant that whenever x

e−Ð⊂ the event e has −ve polarity.

8 Operations

8.1 Dual

There is an obvious dual of a game G = (A,WG, LG) which reverses the role of
Player and Opponent: G⊥ = (A⊥,WG⊥ , LG⊥) where

x ∈WG⊥ ⇐⇒ x ∈ LG and
x ∈ LG⊥ ⇐⇒ x ∈WG .

Here, and in future, we extend the bar-notation for the bijection between events
of A and A⊥ to configurations: a configuration x ∈ C∞(A) corresponds to a
configuration x =def {a ∣ a ∈ x} ∈ C∞(A⊥).

8.2 Parallel composition

The parallel composition of two games G = (A,WG, LG), H = (B,WH , LH) is

G∥H =def (A∥B, WG∥C∞(B) ∪ C∞(A)∥WH , LG∥LH)

where X∥Y = {{1} × x ∪ {2} × y ∣ x ∈X & y ∈ Y } when X and Y are subsets of
configurations. In other words, for x ∈ C∞(A∥B),

x ∈WG∥H ⇐⇒ x1 ∈WG or x2 ∈WH , and
x ∈ LG∥H ⇐⇒ x1 ∈ LG & x2 ∈ LH ,

where x1 = {a ∣ (1, a) ∈ x} and x2 = {b ∣ (2, b) ∈ x}. To win in G∥H is to win in
either game; to lose is to lose in both games. The unit of ∥ is (∅,∅,{∅}).

8.3 Tensor

For games G = (A,WG, LG), H = (B,WH , LH), defining G ⊗H =def (G⊥∥H⊥)⊥
we obtain a game where to win is to win in both games G and H, and to lose is
to lose in either game. More explicitly,

(A,WG, LG)⊗ (B,WH , LH) =def (A∥B, WG∥WH , LG∥C∞(B) ∪ C∞(A)∥LH) .

The unit of ⊗ is (∅,{∅},∅).
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8.4 Function space

With G⊸H =def G
⊥∥H a win in G⊸H is a win in H conditional on not losing

in G:

Proposition 1 Let G = (A,WG, LG) and H = (B,WH , LH) be games with win-
ning conditions. Write WG⊸H , LG⊸H for the winning, respectively losing con-
ditions of G⊸H. For x ∈ C∞(A⊥∥B),

x ∈WG⊸H iff x1 ∉ LG Ô⇒ x2 ∈WH , and
x ∈ LG⊸H iff x2 ∉ LH Ô⇒ x1 ∈WG .

Proof. Letting x ∈ C∞(A⊥∥B),

x ∈WG⊸H iff x ∈WG⊥∥H

iff x1 ∈WG⊥ or x2 ∈WH

iff x1 ∈ LG or x2 ∈WH

iff x1 ∉ LG Ô⇒ x2 ∈WH .

The other part is proved similarly. ◻

9 The bicategory of winning strategies

We can again follow Joyal and define strategies between games now with win-
ning/losing conditions: a (winning) strategy from G, a game with winning/losing
conditions, to another H is a (winning) strategy in G ⊸ H = G⊥∥H. We com-
pose strategies as before. We show that the composition of winning strategies is
winning.

Lemma 8. Let σ be a winning strategy in G⊥∥H and τ be a winning strategy
in H⊥∥K. Their composition τ⊙σ is a winning strategy in G⊥∥K.

Proof. Suppose x ∈ C∞(T⊙S) is +-maximal. The event structure T⊙S is ob-
tained as the projection of S × T ↾ Syn to the set of ‘visible’ events V . Hence
the down-closure [x] in S ×T ↾ Syn forms a configuration [x] ∈ C∞(S ×T ↾ Syn).
By Zorn’s Lemma we can extend [x] to a maximal configuration z ⊇ [x] in
C∞(S ×T ↾Syn) with the property that all events of z ∖ [x] are synchronizations
of the form p with max(p) = (s, t) for s ∈ S and t ∈ T . Then, z will be +-maximal
in C∞(S × T ↾ Syn) with

σ1Π1z = σ1Π1[x] & τ2Π2z = τ2Π2[x] . (1)

By Lemma 7,

Π1z is +-maximal in S & Π2z is +-maximal in T .

As σ and τ are winning,

σΠ1z ∈WG⊥∥H & τΠ2z ∈WH⊥∥K .
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Now σΠ1z ∈WG⊥∥H expresses that

σ1Π1z ∉ LG Ô⇒ σ2Π1z ∈WH (2)

and τΠ2z ∈WH⊥∥K that

τ1Π2z ∉ LH Ô⇒ τ2Π2z ∈WK , (3)

by Proposition 1. But

σ2Π1z ∈WH Ô⇒ σ2Π1z ∉ LH (4)

as WH and LH are disjoint. Moreover, σ2Π1z = τ1Π2z. So (2), (3) and (4) yield

σ1Π1z ∉ LG Ô⇒ τ2Π2z ∈WK .

By (1)
σ1Π1[x] ∉ LG Ô⇒ τ2Π2[x] ∈WK ,

i.e. from the definition of τ⊙σ,

(τ⊙σ)1 x ∉ LG Ô⇒ (τ⊙σ)2 x ∈WK

in the span of the composition τ⊙σ. Hence τ⊙σ x ∈ WG⊥∥K whenever x is a
+-maximal configuration of T⊙S, ensuring τ⊙σ is a winning strategy. ◻

For a general game with winning/losing conditions (A,W,L) the copy-cat
strategy need not be winning:

Example 4. Let A consist of two events, one +ve event ⊕ and one −ve event ⊖,
inconsistent with each other. Take as winning conditions the set W = {{⊕}} and
as losing conditions the set L = {{⊖}}. The event structure CCA:

A⊥ ⊖ � ,,2

�O
�O
�O

⊕

�O
�O
�O

A

⊕ ⊖�llr

To see CCA is not winning consider the configuration x consisting of the two −ve
events in CCA. Then x is +-maximal as any +ve event is inconsistent with x.
However, x1 ∉ L while x2 ∉ W , failing the winning conditions of (A,W,L) ⊸
(A,W,L). ◻

Each event structure with polarityA possesses a ‘Scott order’ on its configu-
rations C∞(A):

x′ ⊑ x iff x′ ⊇− x ∩ x′ ⊆+ x .
Above we use the special inclusions

x ⊆− y iff x ⊆ y & polA(y ∖ x) ⊆ {−} , and
x ⊆+ y iff x ⊆ y & polA(y ∖ x) ⊆ {+}
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for x, y ∈ C∞(A). A necessary and sufficient for copy-cat to be winning w.r.t. a
game (A,W,L):

∀x,x′ ∈ C∞(A). if x′ ⊑ x & x′ is +-maximal & x is −-maximal,
then x ∈ L or x′ ∈W .

(Cwins)

Lemma 9. Let (A,W,L) be a game with winning/losing conditions. The copy-
cat strategy γA ∶ CCA → A⊥∥A is winning iff (A,W,L) satisfies (Cwins).

Proof. It can be shown that

z ∈ C∞(CCA) iff z = {1} × x ∪ {2} × x′ with x′ ⊑A x ,

for x,x′ ∈ C∞(A)—see Lemma 54 in the Aarhus notes [1]. In this situation z is +-
maximal iff both x is −-maximal and x′ is +-maximal. Thus (Cwins) expresses
precisely that copy-cat is winning in (A,W,L)⊸ (A,W,L). ◻

For race-free games we can simplify (Cwins), the condition for copy-cat to
be winning. Copy-cat is a winning strategy for a race-free game iff no maximal
configuration of the game is neutral.

Proposition 2 Assume A is a race-free event structure with polarity. For a
game (A,W,L), the property (Cwins) holds iff x ∈W ∪L for all maximal con-
figurations x ∈ C∞(A).

Proof. For x,x′ ∈ C∞(A), assume

x′ ⊑ x & x′ is +-maximal & x is −-maximal.

As x′ ⊇− x ∩ x′ ⊆+ x, there are covering chains associated with purely +ve and
−ve events from x ∩ x′ to x and x′, respectively:

x ∩ x′ +−Ð⊂ ⋯ +−Ð⊂ x ,

x ∩ x′ −−Ð⊂ ⋯ −−Ð⊂ x′ .

If one of the covering chains is of zero length then so must the other be—
otherwise we contradict one or other of the maximality assumptions. On the
other hand, if both are nonempty, by repeated use of (Race-free) we again
contradict a maximality assumption, e.g.

y1 −Ð⊂
+

x1 ∪ x′1 −Ð⊂
+ ⋯ −Ð⊂

+
x ∪ x′1

x ∩ x′

−Ð
⊂−

−Ð⊂
+ x1

−Ð
⊂−

−Ð⊂
+ ⋯ −Ð⊂

+
x

−Ð
⊂−

shows how a repeated use of (Race-free) contradicts the −-maximality of x. We
conclude that both covering chains must be of zero length, making x = x ∩ x′ =
x′. As configurations which are both + and −-maximal are simply maximal,
the property (Cwins) now expresses that all maximal configurations are either
winning or losing. ◻
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We can now refine the bicategory of strategies Games to the bicategory
WLGames with objects G,H,⋯, games with winning/losing conditions satis-
fying (Cwins), and arrows winning strategies G + //H; 2-cells, their vertical and
horizontal composition is as before. Via the constructions of Section 8, the bi-
category is rich in categorical structure, and is in particular monoidal-closed. Its
restriction to deterministic strategies yields a bicategory equivalent to a simpler
order-enriched category.

10 Games with imperfect information

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”) or p (“paper”).
The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP , the event structure with
polarity

r1⊕

~>
~>
~>
~>
~>

 `
 `
 `
 `
 `

⊖ r2

~>
~>
~>
~>
~>

 `
 `
 `
 `
 `

s1⊕ /o/o/o/o/o/o/o ⊕p1 s2⊖ /o/o/o/o/o/o/o ⊖p2

comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. What are the win-
ning/losing conditions? A reasonable choice is to take the winning and losing
configurations (for Player) to be given by

W = {{r1, s2},{s1, p2},{p1, r2}} and L = {{s1, r2},{p1, s2},{r1, p2}} .
All other configurations are neutral, neither winning nor losing.

In this game it turns out that no participant has a winning strategy, which
agrees with our informal understanding of the game “rock, scissors, paper.”
However on closer inspection there is a mismatch between the possible strategies
allowed in our idealised mathematical and those of the real game. To make the
mismatch clearer, let us bias the game in favour of Player by making the empty
configuration winning, i.e. now ∅ ∈ W . In this case there is a winning strategy
for Player, viz. await the move of Opponent and then beat it with a dominant
move. Explicitly, the winning strategy σ ∶ S → RSP is given as the obvious map
from S, the following event structure with polarity:

r1⊕

~>
~>
~>
~>
~>

 `
 `
 `
 `
 `

s1⊕ /o/o/o/o/o/o/o ⊕p1 ⊖ s2

�hho X X X X X X X X X X X X X X X X

~>
~>
~>
~>
~>

 `
 `
 `
 `
 `

p2⊖

�ggn W W W W W W W W W W W W W W
/o/o/o/o/o/o/o ⊖ r2

�ggn W W W W W W W W W W W W W W
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But this strategy hardly enters into the spirit of “rock, scissors, paper” where
the participants are intended to make their moves independently. The problem
with the game RSP as it stands is that it is a game of perfect information
in the sense that all moves are visible to both participants. This permits the
winning strategy above with its unwanted dependencies on moves which should
be unseen by Player. To adequately model “rock, scissors, paper” requires a
game of imperfect information where some moves are masked, or inaccessible,
and strategies with dependencies on unseen moves are ruled out.

We extend concurrent games to games with imperfect information. To do so
in way that respects the operations of the bicategory of games we suppose a
fixed preorder of levels (Λ,⪯). The levels are to be thought of as levels of access,
or permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

An Λ-game (G, l) comprises a game G = (A,W,L) with winning/losing con-
ditions together with a level function l ∶ A→ Λ such that

a ≤A a′ Ô⇒ l(a) ⪯ l(a′)

for all a, a′ ∈ A. A Λ-strategy in the Λ-game (G, l) is a strategy σ ∶ S → A for
which

s ≤S s′ Ô⇒ lσ(s) ⪯ lσ(s′)

for all s, s′ ∈ S.
For example, for “rock, scissors, paper” we can take Λ to be the discrete

preorder consisting of levels 1 and 2 unrelated to each other under ⪯. To make
RSP into a suitable Λ-game the level function l takes +ve events in RSP to level
1 and −ve events to level 2. The strategy above, where Player awaits the move
of Opponent then beats it with a dominant move, is now disallowed because it is
not a Λ-strategy—it introduces causal dependencies which do not respect levels.
If instead we took Λ to be the unique preorder on a single level the Λ-strategies
would coincide with all the strategies.

Games with imperfect information are central to the semantics of Hintikka
and Sandu’s independence-friendly (IF) logic in which special quantifiers restrict
those strategies permitted to establish an assertion [14]. A recent paper [15],
building on a concurrent-game semantics of predicate calculus [6], proposes a
compositional semantics for a variant of IF logic in which assertions of IF logic
denote concurrent games with imperfect information.

10.1 The bicategory of Λ-games

The introduction of levels meshes smoothly with the bicategorical structure on
games.

For a Λ-game (G, lG), define its dual (G, lG)⊥ to be (G⊥, lG⊥) where lG⊥(a) =
lG(a), for a an event of G.
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For Λ-games (G, lG) and (H, lH), define their parallel composition (G, lG)∥(H, lH)
to be (G∥H, lG∥H) where lG∥H((1, a)) = lG(a), for a an event ofG, and lG∥H((2, b)) =
lH(b), for b an event of H.

A strategy between Λ-games from (G, lG) to (H, lH) is a strategy in (G, lG)⊥∥(H, lH).

Proposition 3
(i) Let (G, lG) be a Λ-game where G satisfies (Cwins). The copy-cat strategy
on G is a Λ-strategy.
(ii) The composition of Λ-strategies is a Λ-strategy.

Proof. (i) The additional causal links introduced in the construction of the copy-
cat strategy are between complementary events in G⊥ and G, at the same level
in Λ, and so respect ⪯.

(ii) Let (G, lG), (H, lH) and (K, lK) be Λ-games. Let σ ∶ G + //H and τ ∶H + //K
be Λ-strategies. We show their composition τ⊙σ is a Λ-strategy.

It suffices to show p _ p′ in T⊙S implies lG⊥∥Kτ⊙σ(p) ⪯ lG⊥∥Kτ⊙σ(p′).
Suppose p _ p′ in T⊙S with max(p) = e and max(p′) = e′. Take x ∈ C(T⊙S)
containing p′ so p too. Then, referring to Proposition 4,

e _⋃x e1 _⋃x ⋯ _⋃x en−1 _⋃x e
′

where e, e′ ∈ V0 and ei ∉ V0 for 1 ≤ i ≤ n − 1. (V0 consists of ‘visible’ events
of the stable family, those of the form (s,∗) with σ1(s) defined, or (∗, t), with
τ2(t) defined.) The events ei have the form (si, ti) where σ2(si) = τ1(ti), for
1 ≤ i ≤ n − 1.

Any individual link in the chain above has one of the forms:

(s, t) _⋃x (s′, t′) , (s,∗) _⋃x (s′, t′) ,
(∗, t) _⋃x (s′, t′) , (s, t) _⋃x (s′,∗) , or (s, t) _⋃x (∗, t′) .

By Lemma 6, for any link either s _S s
′ or t _T t

′. As σ and τ are Λ-strategies,
this entails

lG⊥∥Hσ(s) ⪯ lG⊥∥Hσ(s′) or lH⊥∥Kτ(t) ⪯ lH⊥∥Kτ(t′)

for any link. Consequently ⪯ is respected across the chain and lG⊥∥Kτ⊙σ(p) ⪯
lG⊥∥Kτ⊙σ(p′), as required. ◻

W.r.t. a particular choice of access levels (Λ,⪯) we obtain a bicategory
WLGamesΛ. Its objects are Λ-games (G, l) where G satisfies (Cwins) with
arrows the Λ-strategies and 2-cells maps of spans. It restricts to a sub-bicategory
of deterministic Λ-strategies, which as before is equivalent to an order-enriched
category.

We can shift between different access levels. Let r ∶ (Λ,⪯) → (Λ′,⪯′) be a
monotonic function between preorders of levels. By composition with r a Λ-
game (G, l) becomes a Λ′-game (G, r ○ l), giving rise to a (pseudo) functor from
WGamesΛ to WGamesΛ′ . Provided r is injective, the functor has a right
adjoint from WGamesΛ′ to WGamesΛ.
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