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Abstract. We present a compositional method for deciding whether a process satisfies an assertion.
Assertions are formulas in a modal v-calculus, and processes are drawn from a very general process
algebra inspired by CCS and CSP. Well-known operators from CCS, CSP, and other process algebras
appear as derived operators. The method is compositional in the structure of processes and works purely
on the syntax of processes. It consists of applying a sequence of reductions, each of which only takes
into account the top-level operatar of the process. A reduction transforms a satisfaction problem
for a composite process into equivalent satisfaction problems for the immediate subcomponents.
Using process variables, systems with undefined subcomponents can be defined, and given an overall
requirement to the system, necessary and sufficient conditions on these subcomponents can be found.
Hence the process variables make it possible to specify and reason about what are often referred
1o as conlexts, environments, and partial implementations. Since reductions are algorithms that work
on syntax, they can be considered as forming a bridge between traditional noncompositional model
checking and compositional proof systems.

Keywords: process calculi, modal p-calculus, model checking, compasitionality

1. Introduction

In this article we present a compositional method for deciding whether a finite-
state process satisfies a specification. Processes will be described in a very
general and rich process algebra, which includes common operators from process
algebras such as CCS and CSP. This algebra contains primitive operators to reflect
sequentiality (by the well-known operation of prefixing), nondeterministic choice,
asynchronous and synchronous parallel composition, recursion, relabeling, and
restriction. Specifications will be drawn from a modal v-calculus with negation,
in which a variety of properties can be specified. These include the usual liveness,
safety, and faimess properties, as well as all operators from ordinary linear and
branching-time temporal logics (see, e.g., [1] and [2]).

The method we advocate is compositional in the structure of processes and works
purely on the syntactical level without any explicit references to the underlying
transition system. Compositionality is important for at least the following two
reasons. Firstly, it makes the verification modular, so that when changing a part
of a system only the part of the verification concerning that particular component
must be redone. Secondly, when designing a system or synthesizing a process,
the compositionality makes it possible to have undefined parts of a process and
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still be able to reason about it. For instance, it might be possible to reveal
inconsistencies in the specification or prove that with the choices already taken
in the design, no component supplied for the missing parts will ever be able to
make the overall system satisfy the original specification.

This approach is unlike traditional model checking, where a transition system
model of a process is built and the specification formula is checked by applying
some algorithm to the transition system. There are several versions of this basic
idea in the literature, e.g., Emerson and Lei [3], Clarke et al. [4], Stirling and
Walker [5], Larsen [6], Winskel (7], Cleaveland [8], and Arnold and Crubille [9].
Recently there have been attempts to extend some of these methods based on
transition systems to compositional methods by Clarke, Long, and McMillan [10]
and Larsen and Xinxin [11], but none of these are compositional in the structure
of processes.

Our method consists of applying a sequence of reductions, each of which
removes the top-most operator of the process, i.e., a reduction transforms a
satisfaction problem for a composite process to satisfaction problems for the
immediate subcomponents of the process—without inspecting these. Starting
with a process term, one can repeatedly use the reductions until a trivial process
(for which satisfaction is easily decided) or a variable remains.

2. The languages
2.1. Syntax

Assume given a set of state names Nam, and a finite set of actions Act. Processes
are denoted by syntactic terms ¢t constructed from the following grammar:

tu=mnil|at [to+ 4 | tgx by |[t1 A|t{E} |rec Pt|P,

where P is an element in Nam, i.e., a state identifier. The usual notion of free
and bound will apply to state identifiers P, so that P will be bound in rec P.t
but free in P + nil.

Nil is the inactive process, and at is the usual prefix and ¢, + t; the usual sum
operations known from CCS. The product term t, x t; denotes a very general
kind of parallel composition that allows the components f, and ¢; to proceed
both synchronously and asynchronously. The exact semantics is defined below.

A state identifier P in the body of rec P.t works as a recursion point, and
in effect will behave as the normal recursion in CCS: a term rec P.t has the
same behavior as the unfolded term t{rec P.t/P] (the result of substituting rec P.t
for all free occurrences of P in ¢). We impose the syntactic resfriction on
recursive terms, that no product must appear in the body, which ensures that
all definable processes are finite state, and for technical reasons we also require
every occurrence of P in rec P.t to be strongly guarded, i.e., appear immediately
under a prefix.
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In the prefix at, a denotes an action in Act. For a given set of actions Act, we
define a set of composite actions. Let = be a distinguished symbol not contained
in Act. The symbol * is called the idling action and is interpreted as “no action”
or “inaction.” Define Act, to be the least set including Acf U{x} and such that
o, 3 € Act, implies o x 3 € Act, taking *« x x = x, Now Z : Act, — Act, is a
relabeling that is a partial function, with finite domain, mapping nonidling actions
to nonidling actions. This relabeling can be extended to a total function on Act,
by taking it to behave as the identity outside the domain. The term ¢[A is a
restriction where A is a finite subset of Act,.

Properties of processes are denoted by assertions A from a modal »-calculus:

An=-A|AVA | @A| X |vXA|(t: A),

where X ranges over a set of assertion variables. In the maximal fixed-point
formula v X. A, any free occurrence of X must be within an even number of
negations in order to guarantee the existence of a unique maximal fixed point.
The action name a belongs to the set of composite actions Act,. The correctness
assertion (t: A) denotes true if ¢ satisfies A and false otherwise. An assertion is
said to be pure if it does not contain any correctness assertions.

Many derived operators can easily be defined in terms of the core language
and will be used throughout this article:

[e]A = —{a)-4, pX.A = -wX-A[-X/X],
T = vX.X, A—-B = -AVB,
F = =T, A~=B = (A— B)A(B— A).

Here we have used the notation A[B/X], which denotes the assertion resulting
from substituting B for all free occurrences of X in A. We will say that an
assertion A is closed if it contains no free variables. Furthermore, for a finite
set K C Act, we define {K)A = \/ . (x)A where disjunction over an empty set
gives false (F).

The correctness assertions (¢ : A) are atoms in a propositional logic that will
be used to express reductions. A grammar for the logic is

Lu=T|-L|LyvL|(t:A).

In the logical language L, we are able to express complex relationships between
properties of different processes. For example,

(p+gq: (@A) e (p: ()A)V(g: (a)4),

expresses a very simple example of a reduction. It states that the process p + g
can do an o and get into a state that satisfies A if and only if p or ¢ can do an
o and get into a state that satisfies A. It is a reduction because the formula is
valid for all p’s and ¢’s, and the validity of (p + ¢ : (e)A) is reduced to validity
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of correctness assertions over the subterms p and q. Although this reduction is
almost trivial, in general, it might be quite difficult to get reductions. Consider,
for example, the problem of choosing a B such that

(rec Pt:vX.A) « (t: B)

holds. The aim of this article is to describe a method for supplying such a B
and analogous assertions for all the other operators.

2.2. Semantics

In order to define the semantics, we first recall some well-known definitions of
transition systems.

Definition 1. A transition system T is a triple (S, L,—) where S is a set of
states, L a set of labels, and —C § x L x S a transition relation. The set of
reachable states R, from a state p € S is defined as the least subset of S containing

p and closed under L where 5= Ve 2a A pointed transition system T is a
guadruple (S, L,—,i) where (S, L,—) is a transition system, ¢ € S is an initial
state, and all states in S must be reachable from i, i.e., S must equal R;.
Given a pointed transition system T = (S5, L, —, 1), the rooting of T is a pointed
transition system T = (S U {i}, L,—’,i), where i is a new state assumed not to
be in S, and the transition relation —'C (S U {i}) x L x (S U {i}) is defined by

= U{(ia““f) l i = Q}

Pictorially, the rooting of a pointed transition system is constructed by adjoining
a new initial state with the same outgoing transitions as the old initial state.

The rooting of a transition system 7 is just as good as 7' with respect to
satisfaction in our logic. This claim is made precise by the rooting lemma below.

The semantics of process terms is given by the transition system 7 =
(8,Act,,—), where S is the set of process terms (including terms with free
state identifiers), Act. the set of composite actions, and —C S x Aet, x S is the
transition relation given as the least relation satisfying the following rules:

(3 @
P— D ap — p,

p=p g q
e PN, RSO S N #]
p+ag—p ptg—¢

pSgqlyq tirec P.t/P] S ¢/ o
pXQ‘i’L”p!xq*’ rec Pt '

o« 4 i K
2 g Bpapa p o W B Pimge 18 g%

p{Z} L p{E} plASPIA
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Note in particular the rule for product. One of the components in the product
may idle by means of the idling action *, allowing the other component to proceed
independently, as in the transition
axE
p— Py
where the left component of p performs an a-action and the right component
idles.

For a transition system T = (5, L, —), an assertion A denotes a property of T,
which we take to be a subset of S. Hence, the set of all properties of T is the
powerset P(S5). Since assertions may contain free variables, we introduce the
notion of an environment that describes the interpretation of the variables. An
environment of assertions for T is a map

¢ : Varg — P(S5),

which assigns properties to assertion variables. The environment ¢[U/X] is like
¢ except that the variable X is mapped to U.

Formally, relative to the transition system T = (S,L,—), the assertion A
denotes the property [[A]l ¢ defined inductively on the structure of A :

[-Al¢ = S\[Allr¢
[4oV Aillpd = [Aollpd U [Ailr¢
[{e)A]lyé = {s€8|3/€Ss>5 & & € [A]y¢}
[xTr¢ = #X)
[vX.Ally¢ = vUCS9)
where ¢ : U — [A]lyo[U/X]
[ Dled = { %ialhipd el
® otherwise

The powerset P(S) ordered by inclusion is a complete lattice, and since we require
all variables to appear under an even number of negations, the map ¢ will always
be monotonic. Consequently, by Tarski’s lemma [2], ¢ will have a maximum
fixed point (the largest postfixed point), which we denote by vU C S.(U).

Define [[A]l¢ = [[A]l;¢. This gives the standard global interpretation of assertions
over all states S.

For a transition system T' = (S, L,—), and for a subset @ of S we have the
induced transition system

Ty =(Q,L,—~ Q@ x LxQ)),

which is T restricted to the set of states Q. Writing [A]lo¢ for [A]l, ¢, we get
a local interpretation of A. For particular choices of the subset @, the local and
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global interpretations coincide, as is captured by the locality lemma below. Let
¢ denote the environment that on the variable X gives ¢(X) N Q.

Lemma 1 (locality lemma). Let 7' = (S, L, —) be a transition system. Given
an assertion A, an environment ¢ and a subset Q of S, suppose @ satisfies

the closedness criterion: @ is closed under f», where K is the set of actions
appearing inside diamonds in A. Then the following equality holds:

[Allz,4q = [Alré N Q-

Proof. The proof is straightforward using structural induction on A. a

With the transition system 7, one particularly interesting choice of @ is the set
of reachable states R, from a state p that by definition satisfies the closedness
criterion of the locality lemma. Suppose we wanted to check whether a particular
state p belongs to the set of states denoted by an assertion A. Then by the
locality lemma we obtain:

pefAl¢ iff pe[Al¢nR,
iff pe€[Alg¢n,

As mentioned previously, the rooting of a transition system 7' is “just as good
as” T with respect to satisfaction in our logic—which is the intuitive content of
the following lemma.

Lemma 2 (rooting lemma). Given a pointed transition system, T =
(S, Lr,—7, ir), with the rooting T, let r : P(Sr) — P(S5r) be the map on
properties that take the initial state of 7" to the two copies of it in T and that
take all other states to their obvious counterparts. Let ¢ : Vary — P(Sr) be an
environment of assertions. Assume Sy is countable and A pure. Then

r([Alr¢) = [Ally(r o ¢).
Proof. See appendix 1. ]

The connection given by the rooting lemma between pointed transition systems
T and their rootings I is very useful: the set of states satisfying an assertion will
be the same in both interpretations up to application of the map ». In particular
the initial state of 7" will satisfy A if and only if the initial state of 7T satisfies
A—an observation central to our development of reductions in section 3.

There is another technical lemma that states a close relationship between
syntactic and semantic substitution on assertions and that will be used frequently
in the proofs.
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Lemma 3 (substitution lemma). For B a closed assertion, X a variable, A
an arbifrary, pure assertion, and ¢ an environment for 7", we have

[A[B/X]lr¢ = [AllrollBlro/X]-
Proof. The proof is straightforward using structural induction on A. O

For the propositional logic, we define the satisfaction predicate |=, relative to
an environment ¢ :

T always
EsL iff not |=,L
EgloVv Ly iff |=4Lg or =, Ly
gt A iff t € [A]l¢
Furthermore, we define the derived predicate |= as
= L iff for all ¢ |=,L.

Taking e to be the trivial transition system with one state (denoted ) and no
transitions, we observe that the set of assertions built from correctness assertions,
negations, and conjunctions when interpreted over e is essentially a copy of the
logic L, i.e., for such an assertion A we have [A]l,¢ = {e} if and only if |=,A4,
where A is interpreted as a formula in the propositional logic.

3. Reductions

Our method for compositional checking of satisfaction is based on the notion of
a reduction, which we explain in terms of the prefix operator.

Given a pure and closed assertion A and a prefix af, we would like to find a
propositional expression B over atoms (¢ : B;) such that the following holds:

= (at: A) « B.

Having found such a B, the validity of (at : A) has been reduced to validity of
a propositional expression containing only atoms on the subterm t. In other
words, B is a necessary and sufficient condition on the subterm ¢ ensuring that af
satisfies A. By the word reduction we will henceforth understand an algorithmic
description of how to find B given A and at.

It is not obvious that such a B exists. Although we can easily express the set
of processes that will make the correctness assertion valid as

{teS| Fat: A},
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it is not necessarily the case that this set can be expressed within the logic L as
an assertion B over atoms (f: B;) such that

{teS|=B}={teS|=at: A}.

In general, the ability to do so will depend on the expressive power of the logic
and on the kind of operation for which we are trying to find a reduction. We
will show that for our modal logic and all operators of our process algebra, such
a B does indeed exist, and furthermore we give for each operator an algorithm
that computes one particular choice of B.

In providing this B, the most difficult part concerns—not surprisingly —the
fixed points. The single most important property of fixed points around which
all the reductions are centered is expressed by the reduction lemma. Recall that
a map on a complete meet semilattice is w-anticontinuous if it preserves mects
of all decreasing w-chains.

Lemma 4 (reduction lemma). Suppose D and E are powersets over countable
sets, and in: D — E an w-anticontinuous function with in(Tp) = Tg. Suppose
Y: B — Eand @:D — D are both monotonic and have the property

WPoin =jnof.
We can then conclude that

vip = in(v8).

Proof. See appendix 2. (]

To understand the role of the reduction lemma, take F io be the lattice of
properties of a compound process and D to be a lattice built from properties of
immediate subprocesses. The lemma allows us to express a fixed-point property
of the original compound process in terms of fixed points of functions over
properties of its immediate subcomponents via the transformation in.

For example, the properties of a process at can be identified with certain
subsets of the states S, in the rooting of the transition system pointed by at,
and the properties of £ can be identified with subscts of the states S; of the
transition system pointed by t. Now we take the transformation to be

in: P(5;) x P({e}) — P(Su),

where in(Vy,V}) = VyU {at | » € V1}. The role of the extra product component
is to record whether or not the property holds at the initial state at of 5, (The
rooting is required to ensurc that the initial state at is not confused with Jater
occurrences. )’

An assertion with a free variable occurring positively cssentially denotes a
monotonic function v : P(Sy) — P(Sg). The definition of the reduction is
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given by structural induction on assertions ensuring that assertions denoting
such functions ¢ and their reductions denoting monotonic functions 8 : P(S5;) x
P({e}) — P(S5;) x P({e}), are related by in in the manner demanded by the
reduction lemma. The lemma then allows the reduction to proceed for fixed
points. As this case of prefixing makes clear, reductions of fixed points can be
simultancous fixed points. However, the use of Bekié¢'s theorem [13] replaces
the simultancous fixed points by fixed points in the individual components. In
the case where these individual components lie in powersets of singletons, they
end up being replaced by Boolean values for closed assertions.

In the course of this definition by structural induction, we will be faced with
the problem of giving a reduction for assertion variables. Onc solution to this
problem can be found by introducing a syntactic counterpart of in called IN and
defining a change of vanables o to be a map taking all variables X to IN{Xj, X,).
An application of such a substitution to an assertion A has to satisfy certain
technical requirements: it should be fresh, i.c., for an assertion A when 1) for all
variables X at which o is defined, the free variables in o{X) are disjoint from
those in A, and 2) for distinct variables X and X', at which ¢ is defined, the
free variables in o(X) and ¢{X') are disjoint. We will use the notation A{c] to
denote the assertion resulting from pertforming the substitution o, and we use
o\X to denote the substitution that is like o except that X is left unchanged.
The meaning of IN can be summarized by the equation

[IN(Xo, X1)]e# = in($(Xo0), 6(X1)),

justifying that IN is the “syntactic counterpart of in.” It is emphasized that while
the syntactic counterparts IN of the transformations play the important part in
reductions of expressing relationships between variables, they do not appear in
the reductions themselves.

Reductions for all operators can be established along the lines sketched. Each
operator involves a judicious choice of in, which IN is to denote. In the following
sections we present this choice and the accompanying reductions.

3.1 Prefix

The reduction for prefix is defined inductively on the structure of assertions and
is shown in figure 1. Note that red"(af : A; o) just renames the variables of 4
from X to Xp. The transformation in was explained in the previous section.?

The reduction is constructed in such a way that the two components are related
to A through in by

[Ale]],.¢ = in(fred’(at : A; )], [Ired’ (at : 4;0)],6), (1)
where o is a change of variables for 4. From the rooting lemma, we know that
at € ﬂAqu‘vﬁ iff at € [[Aﬂg'?s
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red®(at : X;0) ST

where a(X) = IN(X,, Xi)
vXo.red’(at : A;0)

where ¢(X) = IN(Xo, X1)
(e)red®(at : A;0)

—red®(at : A;0)

red®(at : A;0)V red®(at: B;o)

red’(at : vX.A4;0)

1l

red’(at :
red’(at : ~A; o)
red’(at: AV B; o)

)
-

2
I

redl(at : X a) X,
where a(X) = IN(Xo, X1)
red' (at : A;o)[red’(at : vX.A;0)] Xo) [T/ X:)
where o(X) = IN(X,, X1)
t:red(at: A;0) fa=a
F Hfa#a
-red'(at : A;0)
red(at : A;0) Vred'(at : B;o)

red'(at : v.X.A;0)

red'(at : (a)A; o)

red’(at : ~A;0)
red'(at: AV B;a)

I n

Figure 1. Reduction for prefix defined inductively on the structure of assertions.

and from the definition of in and equation (1), we get
at € [A],.¢ iff e € [[red'(at : 4;0)],¢.

As red'(at : A; o) consists of correctness assertions, negations, and conjunctions
only, we can consider it to be a formula in our propositional logic, yiclding our
reduction

= (at : A) < red'(at : 4;0).

Theorem 1 (reduction for prefix). Given a closed, pure assertion A, a change
of variables o that is fresh for A, and an arbitrary process term ¢, then

I= (at : A) & red'(at : 4;0).

Proof. See appendix 3. O

3.2. Nil

The reduction for nil is defined inductively on the structure of assertions and is
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red(nil: X; o)
red(nil: vX . A; o)
red{nil : (a)A; o)

Y where ¢(X) = IN(Y)
red(nil 1 A;¢){T/Y)] where o(X) = IN(Y)
F

o

Figure 2. Reduction for nil.

red®(to + t;

red®(fy + #

I‘Ed1 (fu + 1

L

Iﬁdo(tg + tl .

re'dl(zu + 4

red!(to + ¢ :

1 X;o)

v X . A; o)

(@)A;0)

1 Xo)

vX. A;o)

{a)A; 0)

fi

i

]

X

where o(X) = IN(Xo, X1)
vXored(to+ 1ty ¢ A;a)
where O'(X) = HV{XQ,X;)
(ayred®(to + 1 : A;0)

Xy

where a(X) = IM Xo, X1)

red' (fo + 11 & A;0)[red®(to + t) : vX.A;0)/ Xo)[T/ X,)
where o(X) = IN(Xq, X1)

(to: (a)AD) V (t; : (a}A?)

where A® = red®(fo + t, : A;0)

Figure 3. Reduction for sum.

shown in figure 2. The definitions of -~ and Vv are similar to the definitions for
prefix and are therefore omitted. The transformation in: P({e}) — P({nil}) is
just the direct image of the obvious isomorphism between {e} and {nil}. Note
that the reduction for nil is quite trivial and just gives true (7') or false (F).

Theorem 2 (reduction for nil). Given a closed, pure assertion A and a change
of variables o that is fresh for 4, then |= (nil : 4) & red(nil : A;0).

Proof. See appendix 3.

3.3. Sum

O

The reduction for sum is presented in figure 3. The definitions for ~ and V are
omitted since they are similar to the definitions for prefix.
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red(t{Z} : X;0)
red(t{Z} : v X.A; 0)
red(t{Z} : {a)A;0)

Y where o(X) = IN(Y)
vY.red(t{Z} : A;0) where o(X) = INY)
(E~Ya))red(t{Z) : A;0)

Il

Figure 4. Reduction for relabeling.

To understand the transformation, first note that we have a map j: 5;, + 5;, —
Si,++, taking the initial states of ¢y and t; to the state ¢, + t; in S 4 and taking
all other states to their obvious counterparts. 5 b

We take the transformation to be

in : P(Sy, + Si,) x P({8}) = P(Siysr,),

where in(Vy, V) = {j(s) |[se Vgl U {to + ¢, | e € Vi }.

Theorem 3 (reduction for sum). Given a closed, pure assertion A, a change
of variables o that is fresh for A, and arbitrary process terms ty and ¢; then

= (to + ¢ : A) o red' (&g + & : 4;0).
Proof. The proof is very similar to the proof of correctness for the reduction
of prefix (appendix 3). |
3.4. Relabeling

For relabeling we take the transformation to be in : P(S,) — P(S(=)), where
in(V) = {p{Z} | p € V}. The reduction is given in figure 4.

Theorem 4 (reduction for relabeling). Assume A closed and pure, a change
of variables o that is fresh for A, and an arbitrary process term t; then

= @#{Z}: A) o (t:red(t{Z} : 4;0)).

Proof. The proof is like that for restriction; see appendix 4. m|

3.5. Resiriction

For restriction, we take the transformation to be in : P(8:) — P(S,;,), where
in(V)={p[A|peV}nS, 4 The reduction is given in figure 5.
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red(t t A : X;0)
red(t t A 1 vX.A;0)

red(t | A : {a)A;0)

Y where o(X) = IN(Y)

vYored(t t A : A;o) where o(X) = IN(Y)
{a)red(t 1 A: A;0) ifa€ A
F ifad A

([

Figure 5. Reduction for restriction.

red(rec Pt : X;0)
red(rec Pt : vX.A;0)
red(rec P.t: (a)A; o)

Y where ¢(X) = IMY)

v¥.red(rec P.t: A;o) where (X)) = IN(Y)
(a)A' V(P A(t: (a)A"))

where A’ = red(rec P.t : A;0)

o

Figure 6. Reduction for recursion. The definitions for — and v are omitted, since they again are
similar to the definitions for prefix.

Theorem 5 (reduction for restriction). Assume A closed and pure, a change
of variables o that is fresh for A, and an arbitrary process term ¢; then

(A A) <« (t:red(t[A: A;a)).

Proof. See appendix 4. O

3.6. Recursion

In order to define the reduction for recursion (see figure 6), we will need to
extend our assertion language with an assertion P to identify recursion points.
The semantics of P is simply®

[Ply¢ = {P} N Sr.

It can be verified that the locality and the rooting lemma still hold. All the
reductions mentioned in the previous sections should be extended to take care of
the assertions P, and this is easily done —they should all give F. Furthermore,
we add a reduction for P, and this is like the one for nil, except that it gives T
0n ?’

For the first time we will need to put in extra correctness assertions in our
reductions, which furthermore might contain free assertion variables. These
correctness assertions can, however, be closed by a closure lemma and then



336 ANDERSEN AND WINSKEL

“pulled out” by a purifying lemma, yielding an expression that belongs to the
propositional language without any correctness assertions appearing inside other
assertions, and hence being applicable for further reductions.

Theorem 6 (purifying lemma). Let A be an assertion with all correctness
assertions closed and let ¢ be a process term. Then there exists an expression B
over unnested correctness assertions such that |= (2: 4) < B.

Proof. See appendix 5. a

Moreover, the proof of the lemma gives an algorithm for computing such a
B. The closure lemma can be found in [14).

Take j: S; — Srecp: to be the map that takes £ to rec P.t and all other states
s to s[rec P.t/P). The transformation for recursion in : P(S,) — P(Srec p1) is
defined to be the direct image of j.

Theorem 7 (reduction for recursion). Given a closed, pure assertion 4, a
change of variables ¢ that is fresh for A, and an arbitrary process term ¢, then

= (rec P.t: A) < (t:red(rec Pt: A;0)).

Proof. See appendix 6. O

3.7. Product

A reduction for a product ¢ x p should be an assertion B over atoms (g : B;)
and (p: C;) such that

EFgxp:Aiff = B.

Unfortunately, if we insist on finding such a B without inspecting either p or
g, we can get a very complex cxpression, which in the case of fixed points will
even become infinite unless assumptions on the possible sizes of p and g are
made (cf. the remarks at the end of [14]). In [14] it is shown how a very
reasonably sized B can be found, when the assertion language is restricted rather
severely, excluding disjunctions, negations, minimum fixed points, and general
box formulas, but still having maximum fixed points, diamond formulas, a strong
version of box formulas, and conjunctions.

Here we present another approach. We give a reduction when p is a process
term without restrictions and relabelings, i.e., we find & B (depending on p) such
that

Egxp:Aiff =q:B.
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~A/p = ~(A/p)
AoV Ay/p = (Ao/p) V (Ai/p)
X/p = X, )
vX.Alp = Ce(W(Xppyeoo s Xpa).(Afp1y. .. A/P2))
where {p;}; denotes the set of reachable
states from p with p = ps.
Algxr = (A/r)/q
with the actions in the modalities of A reassociated
- _ ) (a)(A/nil) B =x
{axB)A/nil = { F if8
(a)(A/vq) i B=x
(axB)A[vq = $ {)(Afq) fB=7
F otherwise
(axB)Alg+r = ({axB)A/q)V ({axB)A[r)
(axP)Afrec Pt = (axB)Aft[rec P.t/P)

Figure 7. Reduction for pmw:h.u:t.“i Cyp(vX.A) denotes the kth component of the n-ary fixed point
vX.A, closed by repeated application of Beki¢'s theorem.

Let R, = {py,...,pa} be the finite set of reachable states of p in some fixed
enumeration. We define the map in : P(R,) x ... x P(R,) — P(R;x,) as

g
n

in(Uy,,...,Uy) = Uy, xp1)U...UUy, xpa),
where U xp = {uxp | u € U}. As usual, we have a change of variables o

with o(X) = IN(X,,,..., X,,). As a notational convenience, we write A/p for
red{g x p : A;¢) omitting the o, which is always assumed to map an X into
Xyv---+ Xy,. The reduction is shown in figure 7.

Theorem 8 (reduction for product). Assume given a pure and closed assertion
A, a change of variables ¢, and a term p with no restrictions and relabelings.
We then have for an arbitrary term g¢:

= (gxp:A) o (q:red(g x p: 4;0)).
Proof. See appendix 7. |

The case of the maximal fixed point is established by repeated application
of Beki¢’s theorem, and the resulting assertion might become rather complex,
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since in the worst case a fixed point will appear for each reachable state of
p, and on top of this, Bekic¢’s theorem might increase the size of the assertion
considerably. We are currently investigating methods to control the potential
blowup in general. We present in the next section an example that indicates that
in practice this need not be the case.

4. Examples

[t is an important property of all our reductions {except product) that they only
depend on the top-most operator of the process term. Hence, we can leave part
of a process unspecified and still apply the reductions. Technically this can be
done by adding process variables to our language of processes. Given an assertion
and a process with variables, we can then compute a propositional expression
with correctness assertions over the variables, expressing what relationship there
should be between them in order to make the process satisfy the assertion. In
this way the reductions compute what corresponds to weakest preconditions in
Hoare logic.

As pointed out in the previous section, the reductions for product have the
potential of becoming rather complex. In this section we show by a small example
that, in practice, the reductions need not turn out to be too complex.

First we define a binary parallel operator ||, ; which allows its left and right
components to independently perform the actions indicated by the sets K and
L, except that they are required to synchronize on common actions of K and L.
The precise definition is

def —
P"K,Lq = (px @ [A{Z},
where A={axalac KNL}U{ax=*|ae K\L}U{xxa|a€ L\K} and

Z(axa) = a, forallae KNL
E(ax*) = a, forallae K\L
E(xxa) = a, forall a e L\K
E(a) undefined otherwise.

Now assume that we want to construct a small system consisting of a coffee
vending machine and a researcher. The coffee machine should be able to accept
money and then supply a cup of coffee. The researcher should be able to pay out
money, drink coffee, and publish papers. Suppose we know how the rescarcher
behaves, specified by a process term =, but would like to find out what kind of
coffee machine = to put into the system, such that eventually the researcher has
no other choice than to publish a paper.

In general a property of the form “eventually only the action « can happen”
can be expressed by the assertion
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pX AT Al—-alX
where
(—)A = (Ac)A [-K]A = [Ac\K]A.

Our problem can now be restated.

Assume the actions to be p for publish, ¢ for taking/giving coffee,
and m for taking/giving money, and define X = {m,c},L = {m, ¢, p}.
Which values of # make the following correctness assertion valid?

ol gy X ()T A[-p]X

Suppose the researcher r behaves as rec P.m.c.(m.c.P + p.P). Then expanding
the definition of ||, , and applying the reduction for restriction and relabeling,
we get the equivalent correctness assertion

gxr:pX(mxmexe*xp)T Almxm,exclX,
and then, by applying the reduction for product, the equivalent
2 : uX (T A [m)((ST A [ellm]()T A [c]X). @

One can now use equation (2) to verify different proposals for coffee machines,
without redoing the first two steps. This might be done by our method, or for
closed terms by other model-checking algorithms.

An interesting point to note about the assertion in equation (2) is that, although
the researcher » had four reachable states, and then potentially four fixed points
could appear, only one fixed point appears in the resulting assertion.

Returning to the example, we can verify that a successful choice of « is m.c.nil,
i.e., a coffee machine that accepts money and give coffee once, and then breaks
down, whereas rec P.m.c.P is an unsuccessful choice. Reading the assertion in
equation (2) carefully, we can express the requirement to the machine as “after
having offered a finite and odd number of m’s followed by ¢’s no m should be
offered.”

Changing the behavior of the researcher slightly and taking r = rec P.m.c.P +
m.c.p.P and performing the reductions for restriction, relabeling, and product,
we arrive at the correctness assertion z : F, i.e., there are no coffee machines
that will make the system fulfill the requirement.
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Appendix 1. Proof of rooting lemma

The proof is by structural induction on A.
A = X. By the definition of [X];¢, we immediately get

([ X1r4) = r(¢(X)) = 7 0 $(X) = [X]g(r © ¢).
A = vpX.B. By definition, we have
r([vX.B]p¢) = r(v8), (A1)
where 6 : P(Sp) — P(Sr) is defined by &(U) = [Blly4[U/X). Taking ¥(V) =
[Bllz(r 0 $)[V/X], we obtain
r o 8(U) r([Blr¢[U/X])
[Blz(r o #)[r(U)/X]
by the induction hypothesis
Wr(U)) = ¢ or(U)

Furthermore, r is easily seen to be T-strict and w-anticontinuous, and since we
assume Sy to be countable, the reduction lemma yields

r(vl) = v,
which by expanding 4 and equation (Al) gives the result

r([vX.Blly¢) = vV CSr[Bl(rod)[V/X]
= [vX.Bllp(r o ¢).
A= {a)B,a # *. We proceed by rewriting the left-hand side:
r([{e)Bl¢) = r({s€Sr|3¢ € Sr.s>s & s € [Blp¢})
by definition
= r({s€8r |3 €8r.s>5 & & € r([Bly9)})
by definition of rooting
= r({s€8Sr |3 eSrufi}s > & & er([Blrd)})
since no transitions enter i
= r({s€Sr |3 €Sru{ils > & ' € [Blp(ro9)})
by the induction hypothesis
= {i,i|3s' € Sp.i S8 &€ [[B]]z(r o ¢)}
U{s € S7\{i,i} | 3¢' € Sp.s = 5’ & &' € [B]p(r 0 9)}
by applying r
= [{)B]ir(r 0 ¢).
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A= AyVv A, and A = —-B. The proof is immediate, since r distributes over
disjunction and negation. O

Appendix 2. Proof of reduction lemma

We prove the reduction lemma as a corollary of a more general result, for which
we need the notion of height of a partial order.

Definition 2. Define the height of a partial order (D, <) to be the smallest
cardinal & such that for any T C D, where (I,< NT x T') is totally ordered,
| T"|< . Say a partial order has countable height if its height is countable.

Note that if X is a countable set, then the partial orders (P(X),C) and
(P(X),2) have countable height.

We carry out the proof for minimum fixed points, and then derive the result
for maximum fixed points by duality from which the reduction lemma directly
follows. We will use L and T as names for the bottom and top elements of
lattices, respectively.

Lemma 5. Let D, E be complete lattices of countable height. Letin: D — E
be an w-continuous function such that in(Lp) = Lg. Suppose ¢ : £ — E and
#; D — D are monotonic functions such that

inof = poin.
Then

in(uf) = pep.

Proof. The following facts are well known (see, e.g., [15]): For a monotonic
function #: D — D,

1’ P‘S = VnEOn ga("LD)l
where

90(:':)=ch z,
9“+i($)=d,.f S(W(z))‘and
0N z)=des Ve 0%(z) for X a limit-ordinal,

are such that o < o' = 6°(Lp) < 6¥(Lp).

2. In addition, there is a least ordinal 3 (the closure ordinal) such that #°(Lp) =
9"'?+'(_Lg). Then ué = W(_Lp).
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Further,

3. If D is of height w, when § is a countable ordinal: the function a — §*(Lp)
for o € 7 is 1-1 and has range a total order in D; hence, because D has height
w, the ordinal 3 is countable. It follows that when D has height w, then

w8 = \/ 7(Lp), (A2)

aeCon

where Con is the set of countable ordinals.

Now, we proceed to the main proof. Under the assumptions stated in the lemma,

we see
in(ud) = in (Vnecmﬁ“(_l_u))
= in(0°(Lp)),
where 4 is the closure ordinal as in 2 above
- vnec in{6°(_Lp)) by w—continuity of in. (A3)

By ordinal induction, we show
in(6*(Lp)) = ¢"(in(Lp)) (A%)
for all a € Con:
When « = 0, then in(6°(Lp)) = in(Lp)) = ¢"(in{Lp)).
For a successor ordinal,
in(0°*'(Lp)) =in(f(#"(Lp))) by definition
= (in(8*(Lp))) asinob = poin
= p(p*(in(Lp))) by induction
= p**(in(Lp)).

Assume A is a countable limit ordinal. Then A is cofinal with w in the sense
that there is an w-sequence of elements of A

}ﬁlhrﬁl‘---\ﬁn,-..

such that for all & € )\ there is some n € w such that < 3, : with respect ta
QQy Xy e sy Gyy..., @ countable enumeration of elements of A, take Ay = ag and
inductively take 3,4, to be the maximum of 3, and o, .

Now we argue:
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in(0*(Lp)) =in(V,,8*(Lp))
=in (\V,c.0%(Lp)) by cofinality
=V, ein(6™(Lp)) by w—continuity of in
=V,e¥™(inLp)) by induction.
=V, 9®(in(Lp)) by cofinality
= pMin(Lp)).
This completes the inductive proof of equation (A4).
Recalling in(Lp) = Lp we conclude:
in(ud) =V ecamin(8°(Lp)) by (A3)
= Vaeco?”(in(Lp)) by (A4)
= Vaecon?*(LE)

- by (A2).
4 y (A2) -

By duality we obtain the following result for maximum fixed points in which the
assumptions of w-continuity and L-strictness are replaced by the dual conditions
of w-anticontinuity and T-strictness.

Corollary. Let D, E be complete lattices of countable height. Letin: D — E
be an w-anticontinuous function such that in(Tp) = Tg. Suppose ¢ : E — E
and @ : D — D are monotonic functions such that

inof = poin.
Then
in{vd) = vé.

We remark that the w-continuity of in is necessary, as the following example
shows.

Example. Let E consist of L < T and D be the ordinal w + 1 ordered by
the usual ordering on ordinals. Let in : D — E be the monotonic (but not
continuous) function such that

in(n) = L for n € w,

in(w)=T.

Take ¢ : E — E to be the identity on E, and ¢ : D — D to act so that
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#n)=n+1, for n €w,
H(w) = w.
Then pyp = L and uf = w. Hence in this case where in is monotonic and not

continuous, we have pp = L and in{uf) = T, so pe # in(120). (Monotonicity of
in guarantees py < in(ub).) o

If D,E are powersets of countable sets, then they are complete lattices of
height w and so meet the conditions required by the reduction lemma and its
dual, yielding the special case, lemma 4, used in this article.

Appendix 3. Proof of reduction for prefix

We prove by structural induction on A that for a change of variables o that is
fresh for A, we have for all environments ¢:

[Alo]l,¢ = in(lred’(at : A; o), ¢, [red' (at : 4;0)],9). (A3)

The result then follows from the discussion preceding theorem 1.
A= X. Assuming that o(X) = IN(Xq, X,), we get

[X{o)]y 0 in($(Xo), #(X1))
in([Xol,¢, [ X11.¢)
= in([red’(at : X;0)],¢, [red'(at : X;0)].4).
A =vX.B. By definition, we have
[(vX.B)[o]lu6 = v,
where v is defined by
W(U) = [Blo\X]]l0lU/X].
Taking as abbreviations B® = red’(at : B; o) and B' = red'(at : B; o) and defining
6(Vo, Vi) = ([B"16[Va/Xo, Vi/ X)) [ B NugVo/ Xo, Vi /X1 ))s
we can show that ¢ and ¥ are related as required by the reduction lemma:
ino6(Vo,Vi) = in([B"N¢{Vo/ X0, Vi/X1), [B'1.6[Vo/ X0, V1 / X1])
IIB[C’HIg_d’[%/Xo‘VL/Xl]
by the induction hypothesis
[B{e\X ]l élin(Vo, V1)/ X]
as g(X) = IN(Xy, X,) and ¢ is fresh for vX.B
voin(Vy, V)
by definition of

Il

Il

]
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It is easy to see that in is T-strict and w-anticontinuous. Hence, the reduction
lemma yields

in(v®) = 1.
Writing out »# in full detail, we can proceed by applying Bekic¢'s theorem:

v(Vo, Vi)(I BT ¢[Vo/ X0, Vi/ X1], [B' 1.6[Va/ X0, Vi/X1])

(Vo [B"1.0[Vo/ Xol, vVi.[B' L[(vVa- [ B 1 ¢ [Va/ XaD)/ Xo, Vi / X))
by Bekié’s theorem and the observation that X; is not free in B’

= ([vXo.B"}4.vVi.[B' 19 llvXo. BT,/ Xo, i/ X1))
by definition

= ([vXo-B")o, vVi.[B'[vXo.B°/ Xo] 1. 4[Vi/ X1])
by the substitution lemma

= ([vX0.B],0,[B'[vXo.B"/ Xo]l.4[{e}/X:])
since P ({e}) is just a two-point lattice with top element {e}

= ([#X0.B")9, [B'[vXo.B"/ Xo)IT/ X1]).#)
by the substitution lemma

= ([[red"(at: vX.B; o)1, 2, [red'(at : vX.B;0)].6).
We have established that
[(vX.B)[o]] ¢ = in([red’(at : vX.B; o)1, 4, [[red' (at : vX.B;0)],6)

v

]

il

as required.
A= (0)B,a # *. We rewrite from the definition:

[{a) Blo]ll ¢

{s € Su|3s’ € Su.s s & § € [Blo]].%}
= {s€ Sul3s' € Su.s > & & & €in([B°],¢, [B'].4)}
by the induction hypothesis where
B" abbreviates red’(at : B; o)
and B' abbreviates red'(at : B; o)
= {5 € Su|3s' € Su\{at}s > ¢
& ¢ € in([B°],4,[B'1.9)}
since no transitions enter at
= {s€ Su|35 € Su\{at}.s 5§ & § € [B%],4}
by definition of in
= {at|3s' € Sy\{at}.at > &' & s’ € [B"],¢}
U{s € Su\{at}|3¢' € Su\{at}s > s & ¢ € [B°],¢}
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by simple splitting

{atla = a & t € [B"],4}
since the only transition from at is at ¢
and by observing Sy \{at} = 5

= { [{a) B].¢ if o #a
{at]t € [B°]¢} U(2)B°li¢ if a=a
from the definition of [(a)B"],¢
in([[red’(at : (o) B;0)]|,0, [red'(at : (o) B; 0)],4)

by definition of red”, red', and in.

A= AyVv A and A= -B. The proof is straightforward. m}

Appendix 4. Proof of reduction for restriction

We show by structural induction on A that for a change of variables o that is
fresh for A, we have for all ¢:

[A[o1], 46 = in([red(t | A: 4;0)],). (AS)
From equation (AS) and the definition of in, it follows that

ti A€ [Alo]lly; 1@ iff t € [[red(t [ A: 4;0)];¢.
Hence, by the locality lemma,

E{#r1A: A) < (t:red(t:red(t[A: A 0)),

as required.
A=X. Assuming that o(X) = IN(Y), we get:

[Xi{ell 40 = in(¢(Y))

"'”([[Y]]t@l')

in([fred(t | A: X; o) ] 9).

A=vX.B. By definition, we have
[(vX.B)e]l,; 1@ = v¥,

where 1 : P(S;;4) — P(5; 4) is defined by
W(U) = [Blo\X]]l,; 40U/ X]-

Defining 6 : P(S;) — P(S;) by
B(V) = [[red(t [ A: B;o)],¢[V/Y],

Il
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we show that € and ¢ are related as required by the reduction lemma:
ino®(V) = in([red(t|A: B;o)],e[V/Y])

= [BlollIV/Y]
by the induction hypothesis

= [Blo\X],4lin(V)/X]
since ¢(X) = IN(Y') and o is fresh for vX.B

= poin(V)
by definition of ).

It is easy to see that in is T-strict and w-anticontinuous. Hence, the reduction
lemma applies, yielding

v = in{vh).
Therefore,

[[(VX-B)[U”].* (AP

in(vV C S 4.[red(t [ A: B; o), o{V/Y])
in(fleYored(t [ A: B;0)],¢)
by definition of the v—operator
in([red(t | A: vY.B; a)],¢)
by definition of red(t [ A: vY.B;0).
A= (a)B,« # . We rewrite the left-hand side:
[{a) Blo; 49
= {s€5,14B5 € S,145> & & &' € [Blo]], 49}
by definition
{s€8,143¢ € 8,148 & & & €in(red(t[ 4: B;o)],9) }
by the induction hypothesis (equation (AS))
{slAls€ S5 & IF€Ss>5
& s efred(tA:B;o),¢}N Sy facA
] if o g A
by definition of in and the restriction operator
_ ) in([[(ajred(t[A: Byo)];¢) ifacA
h { in(0) if o & 4
by definition of in and ()
in([[red(t | A : {«)B; 0)],¢)
by definition of red(t[ A : (a)B; o).

I
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A= Ayv A, and A=-B. The proof is straightforward. O

Appendix 5. Proof of purifying lemma

For an assertion A4, let s(A) denote the number of correctness assertions appearing
in A. We show by mathematical induction that for all n, the theorem holds for
all assertions A with s(A) = n.

For n = 0, the proof is trivial: take B = (t: A). For n > (, assume 4 is a
closed assertion in which all correctness assertions are closed. Pick a correctness
assertion (e.g., the leftmost) in A4, (¢' : A'), say, (writing A[(t' : A")] to identify the
occurrence). Define

C=((t: AYAATYV (= : A) A A[F)),

where A[T'] denotes the resulting of replacing T for (¢’ : A") in A, and similarly for
A[F]. Obviously, |= (t: A) < (t: C). Now, since s(A[T]) < n and s(A[F]) < n,
we have by the induction hypothesis that there exist By and B; with no nested
correctness assertions, such that

= (t: A[T]) « By and |= (t: A[F]) « B;.
Since
E@:C)o (- AYAQE: ATV ((E : A) At A[F]),
we get
E({:C)=((t' : AYABy) Vv ((: A) A By),
which proves the result by taking B = ((t' : A) A Bg) vV (=(t' : A") A By). O

Appendix 6. Proof of reduction for recursion

In order to show the correctness of the reduction for recursion, we will need
a small lemma that describes a useful relationship between transitions in ¢ and
rec Pt.

Lemma 6. Let 7 be the function described in the main text. Then for ali
s,8' € §; and a # %, we have

i(s) = i(s)
if and only if
3" € 8.5(s") =i(s) & (s =P & t 5 s")or (s # P & s-5 s™).



COMPOSITIONAL CHECKING OF SATISFACTION 349

Proof. Suppose s = P. Then j(s) = rec P.t, and

rec Pt j(s') iff tlrec Pt/P]= j(s")
since only the “unfolding rule” applies when a # %
iff 35" € 5.t = s" & s"[rec P.t/P] = j(s')
since P is strongly guarded
iff 35" € 5.t = 5" & j(s") = j(s)
by definition of j.

Now suppose s # P. We first consider the case where j(s) # rec Pit, ie.,
s & {t,rec P.t}. Then, since P is strongly guarded, the first transition from j(s)
is independent of whether rec P.t is substituted for P or not:

§(8) = j(s) iff 3" € Sp.s > 8" & j(8") = j(&).
When s = t we get by the same arguments as in the case of s = P, that
3(s) = §(s) iff 3&" € St = " & j(s") = §(s),
which by definition of rooting is equivalent to
35" € Sp.s = & & §(s") = i(d).
For s = rec P.t the result is trivial since j(s) = s. a

In the inductive proof of correctness it turns out that we will need a stronger
induction hypothesis than for the other reductions. We will introduce a notion
of “balanced subset,” in the sense that if a state s € 5, belongs to the subset,
then every other state, which under § maps to the same state in s;.. p; belongs
to the subset. Formally, a subset U C S, is said to be balanced if j~' o in(U) = U.
Note that if j is injective, all subsets are trivially balanced. An environment ¢
is said to be balanced if ¢(X) is balanced for all variables X. It is easily seen
that D = {U C 5,|U is balanced} is a complete sublattice of P(S,).

We are now able to prove theorem 7, (reduction for recursion).

Proof. By structural induction on A, we show that P(A) holds for all A, where
F is defined by:

P(A) &4y for all balanced ¢.

[Alo]] ec peb = in([[red(rec P.t: A;0)],¢)
and [red(rec Pt: A;0)],¢ € D (A6)

From this it follows that
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= (rec Pt : A) « (t: red(rec Pt : A;a))

for all closed, pure A.
A= X. By definition, we have

ﬂX[a]]]rcc EI‘I’ = m((b(Y)) = '”(HYHL¢)‘

assuming that o(X) = IN(Y). From the assumption that ¢ is balanced, we
immediately get [Y],¢ € D.
A = vX.B. By definition, we have

[(vX.B)o]],ec p® = v,

where ¥ : P(Srec 21) — P(Srec po) is defined by
W(U) = [Bo\XTl,ec pdlU/X).
Defining 6 : P(S,) — P(S5,) by
(V) = [red(rec Pt: B;o)],$[V/Y],
we show that ¢ and # are related as required by the reduction lemma:

in([[red(rec Pt: B;o)],¢[V/Y])
"B[J]]]rec PI¢IV/Y]

by the induction hypothesis (equation (A6))
[[BIJ\/YH]:&': p(lf)[lﬂ(V)/X]

since o(X) = IN(Y) and o is fresh for vX.B
Y oin(l)

by definition of .

ino6(V)

I

It is easy to sec that in is T-strict and w-anticontinuous. Hence, the reduction
lemma yields

in(vd) = wip.
Writing out ¢ and ¢ and using the definition of the v-operator, we get

[(vX.B)o]] e ¢ = in{[red(rec Pt : vY.B;0)],5).

Morecover, @ restricts to a function #° on [, as can be seen from the induction
hypothesis: for a balanced environment ¢, P(B) states that 8(1) is balanced for all
balanced V, i.e., # maps balanced sets to balanced sets. Hence, letting in’ be the
embedding of D into P(S;)— easily seen to be T-strict and w-anticontinuous —we
have that

foin' =in' of,
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which by the reduction lemma gives v8 = in'(v#). In other words, v8 € D.
A= (a)B,a # *. We rewrite from the left-hand side:

[{c)Blo]lrec pe?
= {8 € Srec p1|35' € Srec pr5 = &' & §' € [Blo]]ec p?}

by definition
{5 € Srec pi|35' € Srec s = &' & 5 € in ([B'],9)}

by the induction hypothesis, where B’ = red(rec Pt : B; o)
in({s € 5|35’ € S.j(s) = j(s) & in j(s) € ([B74)1

by the fact that j is surjective (in is T —strict)
in({s € §;|3¢' € S,.5(s") € fﬂ([[B’][icﬁ)
& ((s=Pand t> ¢ or s> §)})

[

by lemma 6.
= in({s € 5;|3s' € 5.5 € [B]},¢
& ((s=P &t s)or s—s8)})
by the second part of the induction hypothesis
= in([(P A (t: () B)) V (@) BT, )
by definition of [[_]l,¢
= in([[red(rec Pt : (a)B;0)],¢)
by definition.
Let in(U) be the right-hand side of the third equality (marked ). It is easy to
observe that 5 '(in(U)) = U, since the predicate determining whether s € U only
depends on the value of j(s). Moreover, notice that the last five equalities hold
without in; hence [[red(rec Pt : (@) B;0)],¢ = U and is therefore balanced (this

property actually dictated the construction of the reduction for (a}).
A= Aygv Ay and A = —B. The proof is simple. m|

Appendix 7. Proof of reduction for product

We will prove that
[Ale]lyxp¢ = in([A/p1],: - - [A/Pa]l,4) (A7)

for all environments ¢. Assuming without loss of generality that p = p,, it follows
that
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Fagxp:Aeq:(A/p)

Let slice; : P(S,xp) — P(S,) be the function that projects onto the ith component,
i.e.,

slice;(U) = {s € S|s x p; € U}.

From the definition of in, it is easy to see that equation (A7) is equivalent to
the following:

V1 <i < n. slicei([A[o]],.,$) = [A/pill ¢, (A8)

which we will take as our induction hypothesis (but apply equation (A7) when
most appropriate).
A= X. By definition, we immediately have

slice;([X[o]l,xp$) = ¢(Xp) = [X/pill 9.
A= pX.B. Let 0:P(S,)" — P(S,)" be defined by

éWy,...,V,) = (I]B/Pll]qéf,--~.IIB/Pn]],,¢')‘
where

= O[Vi/ Xpyywr ey Vol Xp. )

Let ¢ : P(Sgxp) — P(S,«p) be defined by

'Q')(U) . [[B[U\X]Iqup¢[U/X]‘
We show that ¢ and ¢ are related as required by the reduction lemma:

inob(Vy,...,\Vi) = [BlolllxolVi/Xps - Va/ Xy
by the induction hypothesis
= [Blo\X]] xpolin(Vr,..., Vu)/X]
since o(X) = IN(X,,,...,X,,) and o is fresh
= doin(V,..., V)
by definition of .

From the reduction lemma, we now conclude:
in(vd) = v,
which, by writing out 8 and 1, yields

in(V.([B/pill,0[Y/X], ... [1B/pa]l, 91V /X]) = [vX.B],., -
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By repeated application of Bekié’s theorem, the simultancous fixed point on the
left-hand side can be converted into a unary fixed point, yielding the claimed
reduction.

=B and A = Ay Vv A;. This is immediate by definition.
pi =7 x 5. We rewrite from the left-hand side:
slice;([Alo])],xp9). = {u € Sylux (r x s) € [Alo]],,4}
by definition of slice;
{u € Sgl(u x 1) x 5 € [A]0]] 1,9}
by reassociating modalities in A
[(A/8)/T]gp®
by definition.

Il

A={axf)and p; =nil,a x 8 # x. We immediately get

slice;([{a x BYBlyxp?)
| {ue 83 € SpuSu and v xp; € [Blo]],, ¢} if 8=«
] if B # x

by definition
_ { () (B/p)],8) i B =+

0 if B # %
by the induction hypothesis
= [[A/Pi]]qéf’
by definition.
The missing cases are all similar to the last case considered. O
Notes

1. Because of the isomorphism P{A4g) X+ X P(A,) x -+ = P(Ag+ -+ A, +-),
we can still meet the conditions of the reduction lemma when D is a countable
product of powersets of countable sets.

2. For this and the following reductions, we have that red(at : (x); o) = red(at :
A; o), and henceforth we will omit these trivial cases from the presentation.

3. The general semantics should be ﬂfi’]]Tqﬁ = {P,P} N Sy, but due to our
requirement of guardedness, we will never be involved with rooting a state
identifier, so the stated semantics is sufficient.

4, Termination is ensured by the well-founded order consisting of the number
of products in the process term combined lexicographically with the structure
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of assertions again combined lexicographically with the maximal depth to a
prefix in the process term.
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