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1 Introduction

In the paper introducing event structures [15] a ‘curious mismatch’ was noted.
There event structures represent domains, so types. But they also represent
processes which belong to a type. How are we to reconcile these two views?

One answer has arisen in recent work under the banner of ‘domain theory
for concurrency’ (see [17] for a summary). This slogan stands for an attempt
to push the methodology of domain theory and denotational semantics into the
areas of interactive/concurrent/distributed computation, where presently more
syntactic, operational or more informal methodologies prevail. Certain general-
ized relations (profunctors [4]) play a strong unifying role and it was discovered
that in several contexts that they could be represented in a more informative
operational way by spans of event structures [16, 28, 19].

A span of event structures is typically of the form
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where in and out are maps of event structures—the maps are not necessarily of
the same kind. The event structure E represents a process computing from an
input type, represented by the event structure A, to output type represented by
B. A span with no input amounts to just a single map E

out−→B which we can read
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as expressing that the process E has type B. So spans are a way to reconcile the
double role that event structures can take, as processes and as types.

Of course spans should compose. So one would like systematic ways to vary
the in and out maps of spans which ensure they do. One way is to derive the
maps by a Kleisli construction from monads on a fundamental category of event
structures. With respect to suitable monads S and T satisfying a suitable dis-
tributivity law, one can form a bicategory of more general spans
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It becomes important that event structures are able to support a reasonable
repertoire of monads, including monads which produce multiple, essentially sim-
ilar, copies of an event structure. For this the introduction of symmetry seems
essential.1

In fact, there are several reasons for introducing symmetry to event structures
and related models:

– It’s there—at least informally. Symmetry often plays a role in the analysis
of distributed algorithms. In particular, symmetry has always been present
at least informally in the model of strand spaces, and has recently been ex-
ploited in exploring their behaviour [8], and was used to understand their
expressivity [6]. Strand spaces are forms of event structures used in the anal-
ysis of security protocols. They comprise a collection of strands of input and
output events, possibly with the generation of fresh values. Most often there
are collections of strands which are essentially indistinguishable and can be
permuted one for another without changing the strand space’s behaviour.

– To obtain categorical characterizations of unfoldings of higher-dimensional
automata [7], and more specifically Petri nets in which places may hold with
multiplicity greater than one. There are well-known ways to unfold such
general nets; for example by distinguishing the tokens through ‘colours,’
splitting the places and events accordingly and reducing the problem to the
unfolding in [15]. But the folding maps are not unique (w.r.t. an obvious
cofreeness property). They are however unique ‘up to symmetry.’

– Event structures are sometimes criticized for not being abstract enough.
One precise way in which this manifests itself is that the category of event
structures does not support monads and comonads of the kind discovered
for more general presheaf models [4]. The computation paths of an event
structure, its configurations, are ordered by inclusion. In contrast the paths
of presheaf models can be related more generally by maps. Some (co)monads
used for presheaf models allow the explicit copying of processes and produce
a proper category of paths even when starting with a partial order of paths—
this arises because of the similarity of one copy of a process with another.

1 Symmetry was introduced into game semantics specifically to support a ‘copying’
comonad [1].
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The last point is especially pertinent to the versatility of spans of event
structures. This paper presents a definition of a symmetry on an event struc-
ture. Roughly a symmetry will express the similarity of finite behaviours of an
event structure. The introduction of symmetries to event structures will, in ef-
fect, put the structure of a category on their finite configurations, and so broaden
the structure of computation paths event structures can represent. The ensuing
category of event structures with symmetries will support a much richer class of
(pseudo) monads, from which we can then obtain more general kinds of span.
The category of event structures with symmetry with rigid maps emerges as
fundamental; other maps on event structures can be obtained by a Kleisli con-
struction or as instances of general spans starting from rigid maps.

Several applications, to be developed in future work, are outlined in Section 6:

– Event types: One reason why so-called ‘interleaving’ models for concurrency
have gained prevalence is that they support definitions by cases on the ini-
tial actions processes can do; another is that they readily support higher-
order processes. Analogous facilities are lacking, at least in any reasonable
generality, in ‘true-concurrency’ models—models like Petri nets and event
structures, in which causal dependence and independence are represented
explicitly. It is sketched how processes can be associated with ‘event types’
which specify the kinds of events they can do, and how event types can
support definitions by cases on events. There are difficulties and much more
needs to be done. But the examples do demonstrate the key role that sym-
metry and the copying of processes could play in obtaining flexible event
types and event-based definitions.

– Nondeterministic dataflow and affine-HOPLA: ‘Stable’ spans of event struc-
tures, a direct generalisation of Berry’s stable functions [2], have been used
to give semantics to nondeterministic dataflow [19] and the higher-order pro-
cess language affine-HOPLA [16]. Stable spans can be obtained as instances
of general spans. The realization of the ‘demand’ maps used there as a Kleisli
construction on rigid maps provides a striking example of the power of sym-
metry.

– Unfoldings: One obvious application is to the unfolding of a general Petri
net to an event structure with symmetry; the symmetry reflects that present
in the original net through the interchangeability of tokens. Another related
issue is the unfolding of higher-dimensional automata, where identifications
of edges are reflected in the symmetry of the events to which they unfold.

This presentation concentrates on the model of (prime) event structures. But
the same techniques apply to many other models, including more algorithmically-
amenable models such as Petri nets or versions of transition systems. The model
of stable families [23] plays a significant, if hidden role, in the proofs—they
deserve a more forthright treatment in future. The work reported is based on
an extended article which appears in the Gordon Plotkin Festschrift [29], where
further details may be found. As well as streamlining the presentation, I have
taken the opportunity here to make corrections (chiefly in the unfinished work
on ‘Event types’, Section 6.2), additions (on ‘Event types’, Section 6.2 and on
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‘Unfoldings,’ Section 6.4), and replaced the condition of countability on event
structures by the weaker condition of ‘consistent-countable,’ which suffices for
the proofs in [29] and allows extra results, e.g. in Sections 6.2 and 6.4.

2 Event structures

Event structures [15, 22, 25, 26] are a model of computational processes. They
represent a process as a set of event occurrences with relations to express how
events causally depend on others, or exclude other events from occurring. In
one of their simpler forms they consist of a set of events on which there is a
consistency relation expressing when events can occur together in a history and
a partial order of causal dependency—writing e′ ≤ e if the occurrence of e
depends on the previous occurrence of e′.

An event structure comprises (E,Con,≤), consisting of a set E, of events
which are partially ordered by ≤, the causal dependency relation, and a consis-
tency relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆ X ∈ Con ⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

Here we insist that an event structure is consistent-countable,2 i.e. that there is
a function χ from its events to the natural numbers ω such that {e1, e2} ∈ Con
and χ(e1) = χ(e2) implies e1 = e2.

The events are to be thought of as event occurrences; in any history an event
is to appear at most once. A configuration is a set of events which have occurred
by some stage in a process. According to our understanding of the consistency
predicate and causal dependency relations a configuration should be consistent
and such that if an event appears in a configuration then so do all the events on
which it causally depends. Here we restrict attention to finite configurations.

The (finite) configurations, Co(E), of an event structure E consist of those
finite subsets x ⊆ E which are

Consistent: x ∈ Con and
Down-closed: ∀e, e′. e′ ≤ e ∈ x ⇒ e′ ∈ x.

The configurations of an event structure are ordered by inclusion, where x ⊆ x′,
i.e. x is a sub-configuration of x′, means that x is a sub-history of x′. Note that
an individual configuration inherits an order of causal dependency on its events
from the event structure so that the history of a process is captured through a
partial order of events. For an event e the set {e′ ∈ E | e′ ≤ e} is a configuration
describing the whole causal history of the event e.
2 The condition of consistent-countability replaces the stronger condition of countabil-

ity of event structures in [29]. Proofs there still go through with the weaker condition,
while the extra generality makes new results possible—see Sections 6.2, 6.4.
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When the consistency relation is determined by the pairwise consistency of
events we can replace it by a binary relation or, as is more usual, by a complemen-
tary binary conflict relation on events. It can be awkward to describe operations
such as certain parallel compositions directly on the simple event structures here,
because an event determines its whole causal history. One closely related and
more versatile model is that of stable families, described in Appendix B.

Let E and E′ be event structures. A partial map of event structures f : E ⇀
E′ is a partial function on events f : E ⇀ E′ such that for all configurations x
of E its direct image fx is a configuration of E′ for which

if e1, e2 ∈ x and f(e1) = f(e2) ∈ E′, then e1 = e2.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. The partial function
f respects the instantaneous nature of events: two distinct event occurrences
which are consistent with each other cannot both coincide with the occurrence
of a common event in the image. Maps of event structures compose as partial
functions.

We will say the map is total iff the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from
x is injective; the restriction of f to a function from x to fx is thus bijective.

We say the map f is rigid iff it is total and for all x ∈ Co(E) and y ∈ Co(E′)

y ⊆ f(x) ⇒ ∃z ∈ Co(E). z ⊆ x and fz = y .

(The configuration z is necessarily unique.)
A rigid map of event structures preserves the causal dependency relation

“rigidly,” so that the causal dependency relation on the image fx is a copy of
that on a configuration x of E; this is not so for general maps where x may
be augmented with extra causal dependency over that on fx. (Special forms of
rigid maps appeared as rigid embeddings in Kahn and Plotkin’s work on concrete
domains [12].)

Here we concentrate on the category of event structures with total maps.

Definition 1. Write E for the category of event structures with total maps. (In
future, unless further specified, by a map of event structures we will mean a total
map.)

Proposition 1. The category E of event structures with total maps of event
structures has (binary) products and pullbacks (though no terminal object).

In defining symmetries on event structures we will make use of open maps
w.r.t. finite elementary event structures (i.e. finite event structures in which all
subsets of events are consistent) as the particular choice of paths [11].

Say a map h : A → B, between event structures A and B, is open iff for
all maps j : p → q between finite elementary event structures, any commuting
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That the square commutes means that the path h ◦ x in B can be extended via
j to a path y in B. That the two triangles commute means that the path x can
be extended via j to a path z in A which matches y.

Open maps are a generalisation of functional bisimulations, known from tran-
sition systems.

Proposition 2. A map h : A → B of event structures is open iff h is rigid and
satisfies: ∀x ∈ Co(A), y′ ∈ Co(B). hx ⊆ y′ ⇒ ∃x′ ∈ Co(E). x ⊆ x′ & hx′ = y′ .

3 Event structures with symmetry

We shall present a general definition of symmetry, concentrating on the category
E of event structures with total maps. This category has (binary) products and
pullbacks (though no terminal object) and supports a notion of open map. For
the definition of symmetry we are about to give this is all we require.

A symmetry on an event structure should specify which events are similar in
such a way that similar events have similar pasts and futures. This is captured,
somewhat abstractly, by the following definition.

Definition 2. An event structure with symmetry (E, l, r) comprises an event
structure E together with open maps l : S → E and r : S → E from a common
event structure S such that the map 〈l, r〉 : S → E×E is an equivalence relation
(i.e., the map 〈l, r〉 is monic—equivalently, l, r are jointly monic—and satisfies
the standard diagramatic properties of reflexivity, symmetry and transitivity [10].
See Appendix A).

A bisimulation is given by a span of open maps [11], in the case of the above
definition by the pair of open maps l and r. So the definition expresses a sym-
metry on an event structure as a bisimulation equivalence. The definition has
the advantage of being abstract in that it readily makes sense for any category
with binary products and pullbacks for which there is a sensible choice of paths
in order to define open maps. It is sensible for the categories of event struc-
tures with rigid and partial maps, for stable families, transition systems, trace
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languages and Petri nets [21], because these categories also have products, pull-
backs and open maps; both categories of event structures with rigid and partial
maps would have the same class of open maps and so lead to precisely the same
event structures with symmetry as objects. We shall mainly concentrate on the
category with total maps to connect directly with the particular examples we
shall treat here.3

For the specific model of event structures there is an alternative way to
present a symmetry. We can express a symmetry l, r : S → E on an event struc-
ture E equivalently as a relation of similarity between its finite configurations.
More precisely, two finite configurations x, y of E are related by a bijection
θz =def {(l(s), r(s)) | s ∈ z} if they arise as images x = l z and y = r z of a
common finite configuration z of S; because l and r are locally injective θz is a
bijection between x and y. Because l and r are rigid the bijection is an order
isomorphism between x and y with the order of causal dependency inherited
from E. In this way a symmetry on E will determine an isomorphism family
expressing when and how two finite configurations are similar, or symmetric, in
the sense that one can replace the other. As expected, such similarity forms an
equivalence relation, and if two configurations are similar then so are their pasts
(restrictions to subconfigurations) and futures (extensions to larger configura-
tions).

Definition 3. An isomorphism family of an event structure E consists of a
family S of bijections

θ : x ∼= y

between pairs of finite configurations of E such that:
(i) the identities idx : x ∼= x are in S for all x ∈ Co(E); if θ : x ∼= y is in S, then
so is the inverse θ−1 : y ∼= x; and if θ : x ∼= y and ϕ : y ∼= z are in S, then so is
their composition ϕ ◦ θ : x ∼= z.
(ii) for θ : x ∼= y in S whenever x′ ⊆ x with x′ ∈ Co(E), then there is a
(necessarily unique) y′ ∈ Co(E) with y′ ⊆ y such that the restriction of θ to
θ′ : x′ ∼= y′ is in S.
(iii) for θ : x ∼= y in S whenever x ⊆ x′ for x′ ∈ Co(E), then there is an extension
of θ to θ′ : x′ ∼= y′ in S for some (not necessarily unique) y′ ∈ Co(E) with y ⊆ y′.
[Note that (i) implies that the converse forms of (ii) and (iii) also hold. Note
too that (ii) implies that the bijections in the family S respect the partial or-
der of causal dependency on configurations inherited from E; the bijections in
an isomorphism family are isomorphisms between the configurations regarded as
elementary event structures.]

Theorem 1. Let E be an event structure.
(i) A symmetry l, r : S → E determines an isomorphism family S: defining
θz = {(l(s), r(s)) | s ∈ z} for z a finite configuration of S, yields a bijection

3 There is a strong case for regarding rigid maps as the fundamental maps of event
structures, in that other maps on event structures can then ultimately be obtained
as Kleisli maps w.r.t. suitable pseudo monads once we have introduced symmetry.
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θz : l z ∼= r z; the family S consisting of all bijections θz : l z ∼= r z, for z a finite
configuration of S.
(ii) An isomorphism family S of E determines a symmetry l, r : S → E: the
family S forms a stable family; the event structure S is obtained as Pr(S) for
which the events are primes [(e1, e2)]θ for θ in S and (e1, e2) ∈ θ; the maps l and
r send a prime [(e1, e2)]θ to e1 and e2 respectively.

The operations of (i) and (ii) are mutually inverse (regarding relations as
subobjects).

Through the addition of symmetry event structures can represent a much
richer class of ‘path categories’ [4] than mere partial orders. The finite config-
urations of an event structure with symmetry can be extended by inclusion or
rearranged bijectively under an isomorphism allowed by the symmetry. In this
way an event structure with symmetry determines, in general, a category of fi-
nite configurations with maps obtained by repeatedly composing the inclusions
and allowed isomorphisms. By property (ii) in Definition 3 any such map factors
uniquely as an isomorphism of the symmetry followed by an inclusion. While
by property (iii) any such map factors (not necessarily uniquely) as an inclusion
followed by an isomorphism of the symmetry.

Example 1. Any event structure E can be identified with the event structure
with the identity symmetry (E, idE , idE). Its isomorphism family consists of all
identities idx : x ∼= x on finite configurations x ∈ Co(E).

Example 2. Identify the natural numbers ω with the event structure with events
ω, trivial causal dependency given by the identity relation and in which all finite
subsets of events are in the consistency relation. Define S to be the product of
event structures ω×ω in E ; the product comprises events all pairs (i, j) ∈ ω×ω
with trivlal causal dependency, and consistency relation consisting of all finite
subsets of ω × ω which are bijective (so we take two distinct pairs (i, j) and
(i′, j′) to be in conflict iff i = i′ or j = j′.) Define l and r to be the projections
l : S → E and r : S → E. Then $ =def (ω, l, r) forms an event structure with
symmetry. The corresponding isomorphism family in this case coincides with
all finite bijections between finite subsets of ω. Any finite subset of events of
$ is similar to any other. Of course, an analogous construction works for any
countable, possibly finite, set.

Example 3. Let E = (E, l : S → E, r : S → E) be an event structure with
symmetry. Define an event structure with symmetry !E = (E!, l! : S! → E!, r! :
S! → E!) comprising ω similar copies of E as follows. The event structure E! has
the set of events ω × E with causal dependency

(i, e) ≤! (i′, e′) iff i = i′ & e ≤E e′

and consistency relation

C ∈ Con! iff C is finite & ∀i ∈ ω. {e | (i, e) ∈ C} ∈ ConE .
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The symmetry S! has events ω × ω × S with causal dependency

(i, j, s) ≤S! (i′, j′, s′) iff i = i′ & j = j′ & s ≤S s′ .

A finite subset C ⊆ S! is in the consistency relation ConS! iff

{(i, j) | ∃s. (i, j, s) ∈ C} is bijective & ∀i, j ∈ ω. {s | (i, j, s) ∈ C} ∈ ConS .

Define l!(i, j, s) = (i, l(s)) and r!(i, j, s) = (j, r(s)) for i, j ∈ ω, s ∈ S.
The finite configurations of E! correspond to tuples (or indexed families)

〈xi〉i∈I of nonempty-finite configurations xi ∈ Co(E) indexed by i ∈ I, where I
is a finite subset of ω. With this view of the configurations of E!, the isomorphism
family corresponding to S! specifies isomorphisms between tuples

(σ, 〈θi〉i∈I) : 〈xi〉i∈I
∼= 〈yj〉j∈J

consisting of a bijection between indices σ : I ∼= J together with θi : xi
∼=

yσ(i) from the isomorphism family of S, for all i ∈ I.
The event structure with symmetry $ reappears as the special case !1, where

1 is the event structure with a single event.

We conclude this section with a general method for constructing symmetries.
Just as there is a least symmetry on an event structure, viz. the identity sym-
metry, so is there a greatest. Moreover any bisimulation on an event structure
generates a symmetry on it. We take a bisimulation on an event structure A to
be a pair of open maps l, r : R → A from an event structure R for which 〈l, r〉 is
monic. (In general we might specify a bisimulation on an event structure just by
a pair of open maps from a common event structure, and not insist that the pair
is monic. But here, no real generality is lost as such a pair of open maps on event
structures will always factor through its image, a bisimulation with monicity.) In
fact, the proof proceeds most easily by first establishing an analogous property
for isomorphism families, a property which depends on the notion of a bisimu-
lation family, defined to be a family of bijections between finite configurations
of A which satisfy (ii) and (iii) in Definition 3.

Proposition 3. Let A be an event structure.
(i) For any bisimulation family R on A there is a least isomorphism family S
for which R ⊆ S.
(ii) For any bisimulation 〈l0, r0〉 : R → A there is a least symmetry 〈l, r〉 : S → A
(understood as a subobject) for which R is a subobject of S. There is a greatest
symmetry on A (which coincides with the greatest bisimulation on A).

4 Maps preserving symmetry

Maps between event structures with symmetry are defined as maps between
event structures which preserve symmetry. Let (A, lA, rA) and (B, lB , rB) be
event structures with symmetry. A map f : (A, lA, rA) → (B, lB , rB) is a map
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of event structures f : A → B such that there is a (necessarily unique) map of
event structures h : SA → SB ensuring

〈lB , rB〉 ◦ h = (f × f) ◦ 〈lA, rA〉 .

Maps between event structures with symmetry compose as maps of event
structures and share the same identity maps.

Definition 4. We define SE to be category of event structures with symmetry.

We can characterize when maps of event structures preserve symmetry in
terms of isomorphism families. A map preserving symmetry should behave as a
functor both w.r.t. the inclusion between finite configurations and the isomor-
phisms of the symmetry.

Proposition 4. A map of event structures f : A → B is a map f : (A, lA, rA) →
(B, lB , rB) of event structures with symmetry iff whenever θ : x ∼= y is in the
isomorphism family of A then fθ : f x ∼= f y is in the isomorphism family of B,
where fθ =def {(f(e1), f(e2)) | (e1, e2) ∈ θ}.

We explore properties of the category SE . It is more fully described as a
category enriched in the category of equivalence relations and so, because equiv-
alence relations are a degenerate form of category, as a 2-category in which the
2-cells are instances of the equivalence ∼. This view informs the constructions in
SE which are often very simple examples of the (pseudo- and bi-) constructions
of 2-categories.

Definition 5. Let f, g : (A, lA, rA) → (B, lB , rB) be maps of event structures
with symmetry between (A, lA, rA) and (B, lB , rB). Define f ∼ g iff there is a
(necessarily unique) map of event structures h : A → SB such that

〈f, g〉 = 〈lB , rB〉 ◦ h .

Straightforward diagrammatic proofs show:

Proposition 5. The relation ∼ is an equivalence relation on maps SE(A,B)
between event structures with symmetry A and B. The relation ∼ respects com-
position in the sense that if f ∼ g then h ◦ f ◦ k ∼ h ◦ g ◦ k, for composable maps
h and k.

The category SE is enriched in the category of equivalence relations (com-
prising equivalence relations with functions which preserve the equivalence).

We can characterize the equivalence of maps between event structures with
symmetry in terms of isomorphism families which makes apparent how ∼ is an
instance of natural isomorphism between functors.

Proposition 6. Let f, g : (A, lA, rA) → (B, lB , rB) be maps of event structures
with symmetry. Then, f ∼ g iff θx : f x ∼= g x is in the isomorphism family of
(B, lB , rB) for all x ∈ Co(A), where θx =def {(f(a), g(a)) | a ∈ x}.

Equivalence on maps yields an equivalence on objects:
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Definition 6. Let A and B be event structures with symmetry. An equivalence
from A to B is a pair of maps f : A → B and g : B → A such that f ◦ g ∼ idB

and g ◦ f ∼ idA; then we say A and B are equivalent and write A ' B.

The category SE has products.

Theorem 2. Let (A, lA, rA) and (B, lB , rB) be event structures with symmetry.
Their product in SE is given by (A×B, lA × lB , rA × rB), based on the product
A×B of their underlying event structures in E, and sharing the same projections,
π1 : A×B → A and π2 : A×B → B.

The isomorphism family of the product consists of all order isomorphisms
θ : x ∼= x′ between finite configurations x, x′ of A×B, with order inherited from
the product, for which θA = {(π1(p), π1(p′)) | (p, p′) ∈ θ} is in the isomorphism
family of A and θB = {(π2(p), π2(p′)) | (p, p′) ∈ θ} is in the isomorphism family
of B.

Let f, f ′ : C → A and g, g′ : C → B in SE. If f ∼ f ′ and g ∼ g′, then
〈f, g〉 ∼ 〈f ′, g′〉.

The category SE does not have a terminal object. However, the event struc-
ture with symmetry $ defined in Example 2 satisfies an appropriately weakened
property (it is a simple instance of a biterminal object):

Proposition 7. For any event structure with symmetry A there is a map f :
A → $ in SE and moreover for any two maps f, g : A → $ we have f ∼ g.

The category SE does not have pullbacks and equalizers in general. However:

Theorem 3.
(i) Let f, g : A → B be two maps between event structures with symmetry.
They have a pseudo equalizer, i.e. an event structure with symmetry E and map
e : E → A such that f ◦ e ∼ g ◦ e which satisfies the further property that for any
event structure with symmetry E′ and map e′ : E′ → A such that f ◦ e′ ∼ g ◦ e′,
there is a unique map h : E′ → E such that e′ = e ◦ h.
(ii) Let f : A → C and g : B → C be two maps between event structures with
symmetry. They have a pseudo pullback, i.e. an event structure with symmetry
D and maps p : D → A and q : D → B such that f ◦ p ∼ g ◦ q which satisfies
the further property that for any event structure with symmetry D′ and maps
p′ : D′ → A and q′ : D′ → B such that f ◦ p′ ∼ g ◦ q′, there is a unique map
h : D′ → D such that p′ = p ◦ h and q′ = q ◦ h.

There are obvious weakenings of the conditions of (i) and (ii) in which the
uniqueness is replaced by uniqueness up to ∼ and equality by ∼—these are sim-
ple special cases of bilimits called biequalizers and bipullbacks when we regard
SE as a 2-category. As in Theorem 3, we follow tradition and call the stricter
construction described in (ii) a pseudo pullback. In Theorem 2, that pairing of
maps preserves ∼ means that the products described are 2-products in SE re-
garded as a 2-category. For an accessible introduction to limits in 2-categories
see [18].



12 Symmetry and Concurrency

5 Functors and pseudo monads

Certain functors on E , the category of event structures, straightforwardly induce
functors on SE , the enriched category of event structures with symmetry. Say
a functor F : A → B has monic mediators for products when for all products
A×A, π1, π2 in A and F (A)× F (A), p1, p2 in B the unique mediating map h in
the commuting diagram

F (A×A)
F (π2)

&&MMMMMMMMMM
F (π1)

xxqqqqqqqqqq
h

��
�
�
�

F (A) F (A)× F (A)
p1

oo
p2
// F (A)

is monic. A functor on several, even infinitely many, arguments F : E × · · · ×
E × · · · → E which preserves pullbacks, open maps and has monic mediatiors for
products will induce a functor on event structures with symmetry respecting ∼
on homsets. (A map in a product of categories, such as E × · · ·×E × · · ·, is taken
to be open iff it is open in each component.) We consider some examples.

5.1 Operations

Simple parallel composition For example, consider the functor ‖: E ×E → E
which given two event structures puts them in parallel. Let (A,ConA,≤A) and
(B,ConB ,≤B) be event structures. The events of A ‖ B are ({0}×A)∪({1}×B);
with (0, a) ≤ (0, a′) iff a ≤A a′ and (1, b) ≤ (1, b′) iff b ≤B b′; and with a subset of
events C consistent in A ‖ B iff {a | (0, a) ∈ C} ∈ ConA and {b | (1, b) ∈ C} ∈
ConB . The operation extends to a functor—put the two maps in parallel. It
is not hard to check that the functor ‖ preserves pullbacks and open maps,
and that the mediating maps (A × A) ‖ (B × B) → (A ‖ B) × (A ‖ B) are
monic. Consequently it induces a functor ‖: SE ×SE → SE which preserves ∼ on
homsets. On the same lines the functor giving the parallel composition ‖i∈I Ai

of countably-indexed event structures Ai, i ∈ I, extends to a functor on event
structures with symmetry.

Sum Similarly, the coproduct or sum of two event structures extends to the
sum of event structures with symmetry. Let (A,ConA,≤A) and (B,ConB ,≤B)
be event structures. The events of the sum A + B are ({0} × A) ∪ ({1} × B);
with (0, a) ≤ (0, a′) iff a ≤A a′ and (1, b) ≤ (1, b′) iff b ≤B b′; but now a
subset of events C is consistent in A + B iff there is C0 ∈ ConA such that
C = {(0, a) | a ∈ C0} or there is C1 ∈ ConB such that C = {(1, a) | a ∈ C1}.
We can also form a sum Σi∈IAi of event structures Ai indexed by a set I. Again
this extends to a functor on event structures with symmetry.
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5.2 Pseudo monads

That SE is enriched over equivalence relations ensures that it supports the defi-
nitions pseudo functors and pseudo natural transformations, which here parallel
those of functor and natural transformation, but with equality replaced by ∼.
In the same spirit a pseudo monad on SE satisfies variants of the usual monad
laws but expressed in terms of ∼ rather than equality (we can ignore the extra
coherence conditions [5] as they trivialize in the simple situation here). As ex-
amples we consider two particular pseudo monads which we can apply to the
semantics of higher-order nondeterministic processes.

The copying pseudo monad The copying operation ! of Example 3 extends
to a functor on SE . Let f : A → B be a map of event structures with symmetry.
Define !f :!A →!B by taking !f(i, a) = (i, f(a)) for all events a of A. The functor
! preserves ∼ on homsets. (It is not induced by a functor on E .)

The component of the unit η!
E : E →!E acts so η!

E(e) = (0, e) for all events
e ∈ E—it takes an event structure with symmetry E into its zeroth copy in !E.

The multiplication map relies on a subsidiary pairing function on natural
numbers [ , ] : ω × ω → ω which we assume is injective. The component of the
multiplication µ!

E :!!E →!E acts so µ!
E(i, j, e) = ([i, j], e).

It can be checked that the unit and the multiplication are natural transfor-
mations and that the usual monad laws, while they do not hold up to equality,
do hold up to ∼. The somewhat arbitrary choice of the zeroth copy in the def-
inition of the unit and pairing function on natural numbers in the definition of
the multiplication don’t really matter in the sense that other choices would lead
to components ∼-equivalent to those chosen. (Different choices lead to natural
transformations related by modifications with ∼ at all components.)

The partiality pseudo monad Let E be an event structure with symmetry.
Define E∗ =def E ‖ $, i.e. it consists of E and $ put in parallel.

The component of the unit η∗E : E → E∗ acts so η∗E(e) = (0, e) for all events
e ∈ E—so taking E to its copy in E ‖ $.

The component of the multiplication µ∗E : (E∗)∗ → E∗ acts so µ∗E(0, (0, e)) =
(0, e) and µ∗E(0, (1, j)) = [0, j] and µ∗E(1, k) = [1, k], where we use the pairing
function on natural numbers above to map the two disjoint copies of ω injectively
into ω.

Both η∗ and µ∗ are natural transformations and the usual monad laws hold
up to∼making a pseudo monad. Again, the definition of multiplication is robust;
if we used some alternative way to inject ω+ω into ω the resulting multiplication
would be ∼-related at each component to the one we have defined.

The category of event structures with partial maps has played a central
role in the event structure semantics of synchronizing processes [23]. It readily
generalizes to accommodate symmetry and reappears as the Kleisli bicategory
of ( )∗.
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Definition 7. Let (A, lA, rA) and (B, lB , rB) be event structure with symmetry.
A partial map of event structures with symmetry f : (A, lA, rA) ⇀ (B, lB , rB)
consists of a partial map of event structures f : A ⇀ B for which there is a
(necessarily unique) partial map of event structures h : SA ⇀ SB ensuring

〈lB , rB〉 ◦ h = (f × f) ◦ 〈lA, rA〉 .

Partial maps of event structures with symmetry form a category; they compose as
partial maps of event structures and share the same identity maps. We can define
an equivalence relation ∼ on partial maps of event structures with symmetry by
the obvious analogue of Definition 5. The category is enriched over equivalence
relations. (The full subcategory of event structures with identity symmetry is
isomorphic to the category of event structures with partial maps.)

Proposition 8. The Kleisli bicategory of the pseudo monad (−)∗ and the cat-
egory of event structures with symmetry and partial maps (regarded as a 2 cat-
egory) are biequivalent; the biequivalence is the identity on objects and takes
maps f : A → B∗ in the Kleisli bicategory to partial maps f̄ : A ⇀ B, undefined
precisely when the image is in $.

Equivalences We have enough operations to derive some useful equivalences.
Below we use 1 to denote the single-event event structure with symmetry and ⊗
for the product of event structures with symmetry with partial maps.

Proposition 9. For event structures with symmetry:

(i) !A ‖!B '!(A + B) and ‖k∈K !Ak '!Σk∈KAk where K is a countable set.
(ii) $ '!1 and A×$ ' A.
(iii) A∗ ' A ‖ $, (!A)∗ '!(A + 1) and (A⊗B)∗ ' A∗ ×B∗.

The equivalence !A ‖!B '!(A + B), and its infinite version in (i), express the
sense in which copying obviates choice. More importantly, they and the other the
equivalences enable definitions by case analysis on events, also in the presence
of asynchrony.

6 Applications

Here we present some unfinished applications, the subject of current work.

6.1 Spans

Because SE has pseudo pullbacks—Theorem 3, we can imitate the standard
construction of the bicategory of spans (see [14]) to produce a bicategory SpanSE .
Its objects are event structures with symmetry. Its maps SpanSE(A,B), from A
to B, are spans

E

��~~
~~

~~
~

  
@@

@@
@@

@

A B
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composed using the pseudo pullbacks of of Theorem 3 (ii). SpanSE has a tensor
and function space given by the product of SE .

An individual span can be thought of as a process computing from input
of type A to output of type B. But given the nature of maps in SE such a
process is rather restricted; from a computational view the process is unnaturally
symmetric and ‘ultra-linear’ because any output event is synchronized with an
event of input.

We wish to modify the maps of a span to allow for different regimes of input
and output. A systematic way to do this is through the use of pseudo monads
on SE and build more general spans

E

}}zz
zz

zz
zz

""D
DD

DD
DD

D

S(A) T (B)

for pseudo monads S and T . For example a span in which S = ( )∗ and T =!( )
would permit output while ignoring input and allow the output of arbitrarily
many similar events of type B. But for such general spans to compose, we require
that S and T satisfy several conditions, which we can only indicate here:

– in order to lift to pseudo comonads and monads on spans, S and T should
be ‘cartesian’ pseudo monads, now w.r.t. pseudo/bipullbacks (adapting [3]);

– in order to obtain a comonad-monad distributive law for the liftings of S
and T to spans it suffices to have a ‘cartesian’ distributive law for S and
T , with commutativity up to ∼, with extra pseudo/bipullback conditions on
two of the four diagrams (adapting [13]).

The two pseudo monads S = ( )∗ and T =!( ) do satisfy these requirements with
a distributive law with components λE : (!E)∗ →!(E∗) such that λE(0, (j, e)) =
(j, (0, e)) and λE(1, k) = (0, (1, k)).

The paper has concentrated on the categories of event structures E and SE
with total maps. In particular, general spans have been described for maps in
SE . Analogous definitions and results hold for rigid maps, and for spans in SEr—
event structures with symmetry and rigid maps. Total maps on event structures
with symmetry can be obtained as Kleisli maps w.r.t. a monad Saug on SEr—
see [29]. It appears that we can ground all the maps and spans of event structures
of interest in SEr. The category SEr is emerging as the fundamental category of
event structures.

6.2 Event types

The particular bicategory of spans

E

~~}}
}}

}}
}}

  
AA

AA
AA

AA

A∗ !B
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is already quite an interesting framework for the semantics of higher-order pro-
cesses. It supports types including:

- Prefix types •!T : in which a single event • prefixes !T for an event structure
with symmetry T .

- Sum types Σα∈ATα: the sum of a collection Tα, for α ∈ A, of event structures
with symmetry—the sum functor is described in Section 5.1. Sum types may
also be written a1T1 + · · ·+ anTn when the indexing set is finite. The empty
sum type is the empty event structure ∅.

- Tensor types T1 ⊗ T2: the product in SEp.
- Function types T1 ( T2: a form of function space, defined as the product

(T1)∗×!T2 in SE .4

- Recursively defined types: treated for example as in [23, 25].

The types describe the events and basic causalities of a process, and in this
sense are examples of event types, or causal types, of a process. (One can imagine
other kinds of spans and variations in the nature of event types.)

As an example, the type of a process only able to do actions within a1, · · · , ak

could be written
a1 • !∅+ · · ·+ ak • !∅ ,

which we condense to a1+· · ·+ak, as it comprises the event structure with events
a1, · · · , ak made in pairwise-conflict, with the identity relation of causal depen-
dency. The judgement that a closed process, represented by an event structure
with symmetry E, has this type would be associated with a degenerate span
from the biterminal ∅∗ to !(a1 + · · ·+ ak), so essentially with a map

l : E →!(a1 + · · ·+ ak)

in SE , ‘labelling’ events by their actions. By Proposition 9 (i), there is an equiv-
alence

!a1 ‖ · · · ‖!ak ' !(a1 + · · ·+ ak) ,

and a process of this type can only do actions a1, · · · , ak, though with no bound
on how many times any action can be done.

The type of CCS, with channels A, can be written as

Act = τ • !∅ + Σā∈Ā • !∅ + Σa∈A • !∅ .

We can describe the parallel composition of CCS by a partial function from
the events Act ⊗Act to the events !Act , expressing how events combine to form
synchronization events (the second line), or can occur asynchronously (the first):

(α, ∗) 7→ µ!
Act(0, η!

Act(α)) , (∗, α) 7→ µ!
Act(1, η!

Act(α)) ,

(a, ā), (ā, a) 7→ η!
Act(τ), and undefined otherwise.

4 Although this function space seems hard to avoid for this choice of span and tensor,
we don’t quite have ⊗B a left biadjoint to B ( .
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This partial function is also a partial map of event structures from Act ⊗ Act
to !Act—it would have violated local injectivity and not been a map of event
structures, had we chosen simply η!

Act(α) as the resulting events in the first two
clauses. The partial function is readily interpreted as a span from Act ⊗ Act to
!Act—its vertex is essentially the domain of definition of the partial function.
Post-composing its left ‘leg’ with η∗Act⊗Act we obtain a span from (Act⊗Act)∗ to
!Act which denotes the parallel composition of CCS. Given two CCS processes
represented by degenerate spans, we can combine them to a process with event
type Act⊗Act , denoting a degenerate span ending in !(Act⊗Act). Its composition
with the span for parallel composition can be shown to give the traditional event-
structure semantics of parallel composition in CCS [23, 25, 26, 21].

In fact there is a general way to define spans from partial functions on events
which respect symmetry. There is a functor from event structures with symme-
try SE to equivalence relations; it takes an event structure with symmetry A to
the equivalence relation |A| induced by the symmetry on the set of events. The
functor is enriched in equivalence relations and has a right biadjoint $ which
takes an equivalence relation (L,R ⊆ L × L) to the event structure with sym-
metry !(L, l, r : R → L), where we understand L as an event structure with
events in pairwise conflict with trivial causal dependency, R similarly, and with
symmetry maps given as the obvious projections from R to L. (The biadjunction
between event structures with symmetry and equivalence relations relies on the
event structures being consistent-countable.) For event structures with symme-
try A and B, a partial function respecting equivalence relations from |A| to |B|
can be regarded as a span

DN n

~~}}
}}
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AA

|A| |B|

in the category of equivalence relations—the equivalence relation D being where
the partial function is defined. The unit of the biadjunction with equivalence
relations has components A → $|A| and B → $|B|, so by applying $ to the span
above and taking successive pseudo pullbacks we obtain a span from A to B:
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A partial function between on events may not be so simple to define directly
by case analysis on events. This is because the events that arise in products
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of event structures can be quite complicated; the events of a product A ⊗ B
of event structures A and B are perhaps best seen as prime configurations of
a product of stable families—see Appendix B. Their complexity contrasts with
the simplicity of the events arising in constructions on stable families; the events
of the corresponding product of stable families are simple pairs (a, ∗), (∗, b) and
(a, b), where a and b are events of the components. For this reason it can be
easiest to define a partial map on event structures (so a partial function on their
events) via a partial map between their representations as stable families. This is
so below, in a putative ‘true concurrency’ definition of a version of higher-order
CCS and its parallel composition.

A form of higher-order CCS could reasonably be associated with the recursive
type

T = τ • !T + Σā∈Ā • !(T ⊗ T ) + Σa∈A • !(T ( T ) ,

specifying that an event of a higher-order CCS process is either a ‘process’ event
following a τ -event, a ‘concretion’ event following an output synchronization
ā ∈ Ā, or an ‘abstraction’ event following an input synchronization a ∈ A. Why
is the first component in the type T of the form τ • !T and not just τ • !∅ ? With-
out the present choice I cannot see how to ensure that in the parallel composition
an interaction between a concretion and abstraction event always follows a cor-
responding synchronization at their channels.

Parallel composition in higher-order CCS would be associated with a typing
judgment x : T, y : T ` (x | y) : T . The typing judgment should denote a span
from (T ⊗ T )∗ to !T . As above, we can define a tentative parallel composition
via a partial function from |T ⊗ T | to |!T |. The partial function should describe
when and how events of T combine. Because events of the product T ⊗ T are
quite complicated we must face the difficulties outlined above. However, first we
need a makeshift syntax for events in T . Events of higher-order CCS are either
internal events τ , subsequent process events τ.(i, t), output synchronizations ā,
subsequent concretion events ā.(i, c), input synchronizations a, or subsequent
abstraction events a.(j, f)—the natural numbers i, j index the copies in !-types.
In the notation for events of the product T ⊗ T we exploit the way it is built
from a product of stable families; in the product of stable families out of which
T ⊗ T is constructed events have the simple form of pairs (t, ∗), (∗, t) or (t, t′),
where t and t′ are events of T . We can define a partial map from this stable
family to the stable family of !T by case analysis on events:

t | ∗ = µ!
T (0, η!

T (t)) , ∗ | t = µ!
T (1, η!

T (t)) ,

a | ā = ā | a = η!
T (τ) ,

a.(i, f) | ā.(j, c) = ā.(i, c) | a.(j, f) = η!
T (τ.µ!

T ([i, j], (f | c)))
provided (f | c) is defined,

τ.(i, t) | τ.(j, t′) = µ!
T ([i, j], (t | t′)) provided (t | t′) is defined,

τ.(i, t) | α = µ!
T (i, (t |α)) , α | τ.(j, t) = µ!

T (j, (α | t))
provided α is not of the form τ.(k, t′′), and undefined otherwise.
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We have combined indices i, j using an injective pairing [i, j] of natural numbers.
The definition above relies on our simultaneously defining not just how process
events combine, but also how ‘abstraction’ events f in type T ( T and ‘con-
cretion’ events c in type T ⊗ T combine to form a process event (f | c) in type
!T . We postpone the full definition. Although provisional, I hope the example
helps illustrate the aims and present difficulties—there may be difficulties that
I’m not aware of.

Clearly the syntax of operations to accompany the types is unfinished and
really needed. But I believe the examples indicate the potential of a more thor-
ough study of event types and give a flavour of the style of definition they might
support, a method of definition which breaks away from traditional ‘interleaving’
approaches to concurrency.

6.3 Nondeterministic dataflow and affine-HOPLA

‘Stable’ spans of event structures have been used to give semantics to nondeter-
ministic dataflow [19] and the higher-order process language affine-HOPLA [16].
They are generalisations of Berry’s stable functions [2]: deterministic stable spans
correspond to stable functions—see [19]. A stable span
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A B

consists of a ‘demand’ map dem : E → A and a rigid map out : E → B. That
dem is a demand map means that it is a function from Co(A) to Co(B) which
preserves unions of configurations when they exist. An equivalent way to view the
demand map dem is as a function from the events of E to finite configurations
of A such that if e ≤ e′ then dem(e) ⊆ dem(e′), and if X ∈ Con then demX ↑,
i.e., the demands are compatible. The intuition is that dem(e) is the minimum
input required for the event e to occur; when it does out(e) is observed in the
output. (The stable span is deterministic when demX ↑ implies X ∈ Con, for X
a finite subset of events in E.)

On the face of it demand maps are radically different from rigid maps of
event structures. They can however be recovered as Kleisli maps associated with
a pseudo monad H on event structures with symmetry and rigid maps.

Roughly the pseudo monad H adjusts the nature of events so that they
record the demand history on the input. This enables stable spans to be realized
as spans
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of rigid maps in SEr. Such spans are a special case of the general spans of
Section 6.1, with the identity monad on the right-hand-side. Because of ‘Seely
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conditions’ H(E ‖ F ) ' H(E)×H(F ) and H(∅) ' > relating parallel composi-
tion ‖ and its unit, the empty event structure ∅, to product × and the biterminal
object > in SEr, we obtain a description of the function space, w.r.t. parallel
composition A ‖ B, as A ( B = H(A) × B. A very different route to the defi-
nition of function space using stable families is described in the PhD thesis [16].
The pseudo monad H and the biadjunction which induces it are described in [29].

6.4 Unfoldings

Another application of symmetry is to the unfolding of Petri nets with multiple
tokens, and the unfolding of higher-dimensional automata (hda’s) [7]. Unfoldings
of 1-safe Petri nets to occurrence nets and event structures were introduced
in [15], and have since been applied in a variety of areas from model checking
to self-timed circuits and the fault diagnosis of communication networks. The
unfoldings were given a universal characterisation a little later in [24] (or see [21])
and this had the useful consequence of providing a direct proof that unfolding
preserved products and so many parallel compositions. There is an obstacle
to an analogous universal characterisation of the unfolding of nets in which
places/conditions hold with multiplicities: the symmetry between the multiple
occurrences in the original net is lost in unfoldings to standard occurrence nets or
event structures, and this spoils universality through non-uniqueness. However
through the introduction of symmetry uniqueness up to symmetry obtains, and
a universal characterisation can be regained [9].

We can illustrate the role symmetry plays in the unfolding of nets and
hda’s through a recent result relating event structures with symmetry to cer-
tain presheaves.5 Let P be the category of finite elementary event structures (so
essentially finite partial orders) with rigid maps. Form the presheaf category P̂
which by definition is the functor category [Pop,Set]. From [27] we obtain that
event structures with rigid maps (called ’strong’ in [27]) embed fully and faith-
fully in P̂ and are equivalent to those presheaves which are separated w.r.t. the
Grothendieck topology with basis collections of jointly surjective maps in P, and
satisfy a further mono condition. Presheaves over P̂ are thus a kind of generalised
event structure.

There is clearly an inclusion functor I : P ↪→ SEr of finite elementary event
structures into event structures with symmetry and rigid maps. Thus there is a
functor F : SEr → P̂ taking an event structure with symmetry E to the presheaf
SEr(I( ), E)/∼. Event structures with symmetry yield more than just separated
presheaves, and quite which presheaves they give rise to is not yet understood.
But by restricting to event structures with symmetry (E, l, r : S → E) for
which the symmetry is strong, in the sense that the mono 〈l, r〉 : S → E ×
E reflects consistency, we will always obtain nonempty separated presheaves.
Let SSEr be the category of event structures with strong symmetry and rigid
maps. Let Sep(P) be the full subcategory of non-empty separated presheaves.

5 The result is inspired by joint work with the Sydney Concurrency Group: Richard
Buckland, Jon Cohen, Rob van Glabbeek and Mike Johnstone.
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So restricted, we obtain a functor F : SSEr → P̂ taking an event structure with
strong symmetry E to the nonempty separated presheaf SSEr(J( ), E)/∼. The
functor F can be shown to have a right biadjoint, a functor G, producing an
event structure with strong symmetry from a nonempty separated presheaf. The
right biadjoint G is full and faithful (once account is taken of the the equivalence
∼ on maps). (The existence of G relies on the event structures being consistent-
countable.) It shows how separated presheaves embed via a reflection fully and
faithfully in event structures with symmetry:

SSEr

F

⊥
--
Sep(P) .

G

ll (†)

The proof of the biadjunction has only been carried out for rigid maps, the
reason why we have insisted that the maps of event structures in this section be
rigid. (One could hope for a similar biadjunction without restricting F to strong
symmetries.)

Higher-dimensional automata [7] are most concisely described as cubical sets,
i.e. as presheaves over C, a category of cube shapes of all dimensions with maps
including e.g. ‘face’ maps, specifying how one cube may be viewed as a (higher-
dimensional) face of another. We can identify the category of hda’s with the
presheaf category Ĉ. There are some variations in the choice of maps in C,
according to whether the cubes are oriented and whether degeneracy maps are
allowed. For simplicity we assume here that the cubes are not oriented and have
no degeneracy maps, so the maps are purely face maps. Roughly, then the maps
of P and C only differ in that maps in P fix the initial empty configuration
whereas face maps in C are not so constrained. By modifying the maps of P to
allow the initial configuration to shift under maps, we obtain a category A into
which both P and C include:

P � � J // A C? _Koo

Now we can construct a functor from H : P → Ĉ; it takes p in P to the presheaf
A(K( ), J(p)). Taking its left Kan extension over the Yoneda embedding of P in
P̂ we obtain a functor

H! : P̂ → Ĉ .

For general reasons [4], the functor H! has a right adjoint H∗ taking an hda Y

in Ĉ to the presheaf Ĉ(H( ), Y ) in P̂:

P̂
H!

⊥ ++
Ĉ .

H∗

jj (‡)

We cannot quite compose the biadjunctions (†) and the adjunction (‡) be-
cause (†) is only for separated presheaves. However restricting to hda’s which are
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separated, now w.r.t. a basis of jointly surjective maps in C,6 will ensure that
they are sent to separated presheaves over P and so to event structures with
symmetry. General Petri nets give rise to separated hda’s (for example, with the
‘self-concurrent individual token interpretation’ of [7]). So we obtain a rather
abstract construction of an unfolding of general nets to event structures with
symmetry. Again, much more needs to be done, both mathematically in seeking
a generalisation of the biadjunction (†) to all event structures with symmetry,
and in understanding unfoldings concretely so that they can be made amenable
algorithmically.
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A Appendix: Equivalence relations [10]

Assume a category with pullbacks. Let E be an object of the category. A relation
on E is a pair of maps l, r : S → E for which l, r are jointly monic, i.e. for
all maps x, y : D → S, if lx = ly and rx = ry, then x = y. Equivalently, if the
category has binary products, a relation on E is a pair of maps l, r : S → E
for which the mediating map 〈l, r〉 : S → E × E is monic. The relation is an
equivalence relation in the category iff it is:
Reflexive: there is a (necessarily unique) map ρ such that
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Symmetric: there is a (necessarily unique) map σ such that
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Transitive: there is a (necessarily unique) map τ such that
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commutes, where P , f , g is a pullback of r, l.

B Appendix: Stable families

Event structures can be obtained from finitary prime algebraic domains. One
convenient way to construct finitary prime algebraic domains is from stable
families [23]. The use of stable families facilitates constructions such as products
and pullbacks of event structures.

The use of stable families facilitates definitions on event structures.

Definition A stable family comprises F , a family of finite subsets, called con-
figurations, satisfying:
Completeness: Z ⊆ F & Z ↑ ⇒

⋃
Z ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e 6= e′,

(∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y)) ;

Stability: ∀Z ⊆ F . Z 6= ∅ & Z ↑ ⇒
⋂

Z ∈ F .

For Z ⊆ F , we write Z ↑ to mean compatibility, i.e.

∃x ∈ F∀z ∈ Z. z ⊆ x .

Configurations of stable families each have their own local order of causal
dependency, so their own prime sub-configurations generated by their events.
We can build an event structure by taking the events of the event structure to
comprise the set of all prime sub-configurations of the stable family.
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Definitions and Proposition Let x be a configuration of a stable family F .
For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y ⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =
⋂

{y ∈ F | y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x | e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Definition and Proposition Let F be a stable family. Then, Pr(F) =def

(P,Con,≤) is an event structure where:

P = {[e]x | e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P &
⋃

Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

This proposition furnishes a way to construct an event structure with events
the prime configurations of a stable family. In fact we can equip the class of
stable families with maps (the definitions are the same as those for event struc-
tures). The configurations of an event structure form a stable family, so in this
sense event structures are included in stable families. With respect to any of
the maps (rigid, total or partial), the “inclusion” functor from the category of
event structures to the category of stable families has a right adjoint, which on
objects is the construction we have just given, producing an event structure from
a stable family. The products w.r.t. total and partial maps are hard to define
directly on the event structures of this article. It is however straightforward to
define the products of stable families [23, 29]. Right adjoints preserve limits, and
so products in particular. Consequently we obtain products of event structures
by first regarding them as stable families, and then producing the event struc-
ture from the product of the stable families. Pullbacks of event structures are
obtained by restricting products to the appropriate equalizing set. See [29] for
more details.


