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Preface

These notes introduce a theory of two-party games still under development.
A lot can be said for a general theory to unify all manner of games found in
the literature. But this has not been the main motivation. That has been the
development of a generalized domain theory, to lift the methodology of domain
theory and denotational semantics to address the highly interactive nature of
computation we find today.

There are several arguments why the next generation of domain theory
should be an intensional theory, one which pays careful attention to the ways
in which output is computed from input. One is that if the theory is to be
able to reason about operational concerns it had better address them, albeit
abstractly. Another is that sometimes the demands of compositionality force
denotations to be more intensional than one would at first expect; this occurs
for example with nondeterministic dataflow—see the Introduction. These notes
take seriously the idea that intensional aspects be described by strategies, and,
to fit computational needs adequately, try to understand the concept of strategy
very broadly.

This idea comes from game semantics where the domains and continuous
functions of traditional domain theory and denotational semantics are replaced
by games and strategies. Strategies supercede functions because they give a
much better account of interaction extended in time. (Functions, if you like,
have too clean a separation of interaction into input and output.) In traditional
denotational semantics a program phrase or process term denotes a continuous
function, whereas in game semantics a program phrase or process term denotes
a strategy.

However, traditional game semantics is not always general enough, for in-
stance in accounting for nondeterministic or concurrent computation. Rather
than extending traditional game semantics with various bells and whistles, these
notes attempt to carve out a general theory of games within a general model
of nondeterministic, concurrent computation. The model chosen is the partial-
order model of event structures, and for technical reasons, its enlargement to
stable families. Event structures have the advantage of occupying a central po-
sition within models for concurrency, and the development here should suggest
analogous developments for other ‘partial-order’ models such as Mazurkiewicz
trace languages, Petri nets and asynchronous transition systems, and even ‘in-
terleaving’ models based on transition systems or sequences.

In their present state, these notes are incomplete in several ways. First, they
don’t account for games with back-tracking, games where play can revisit previ-
ous positions. While a little odd from the point of view of everyday games, this
feature is very important in game semantics, for instance in order to re-evaluate
the argument to a function.! Second, the notes don’t have enough examples.
Third, the notes say too little on the uses of games and strategies in semantics,

IThe theory has been extended to allow back-tracking and copying via event structures
with symmetry, which support a rich variety of pseudo (co)monads to achieve this.



types, logic and verification. Fourth, they don’t address the issue of parallel
causes thoroughly. I hope to some extent to make up for these inadequacies
in the lectures and some are addressed in the broader “ECSYM Notes” [1].
What I claim the notes do do, is begin to unify a variety of approaches and pro-
vide canonical general constructions and results, which leave the student better
placed to structure and analyse critically the often arcane world of games and
strategies in the literature.
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Chapter 1

Introduction

Games and strategies are everywhere, in logic, philosophy, computer science,
economics, in leisure and in life.

Slogan: Processes are nondeterministic concurrent strategies.

1.1 Motivation

We summarise some reasons for developing a theory of nondeterministic con-
current games and strategies.

1.1.1 What is a process?

In the earliest days of computer science it became accepted that a computation
was essentially an (effective) partial function f : N - N between the natural
numbers. This view underpins the Church-Turing thesis on the universality of
computability.

As computer science matured it demanded increasingly sophisticated mathe-
matical representations of processes. The pioneering work of Strachey and Scott
in the denotational semantics of programs assumed a view of a process still as a
function f: D — D’ but now acting in a continuous fashion between datatypes
represented as special topological spaces, ‘domains’ D and D’; reflecting the
fact that computers can act on complicated, conceptually-infinite objects, but
only by virtue of their finite approximations.

In the 1960’s, around the time that Strachey started the programme of de-
notational semantics, Petri advocated his radical view of a process, expressed
in terms of its events and their effect on local states—a model which addressed
directly the potentially distributed nature of computation, but which, in com-
mon with many other current models, ignored the distinction between data and
process implicit in regarding a process as a function. Here it seems that an
adequate notion of process requires a marriage of Petri’s view of a process and
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the vision of Scott and Strachey. An early hint in this direction came in answer
to the following question.

What is the information order in domains? There are essentially two answers
in the literature, the ‘topological,’” the most well-known from Scott’s work, and
the ‘temporal,’ arising from the work of Berry:

e Topological: the basic units of information are propositions describing fi-
nite properties; more information corresponds to more propositions being true.
Functions are ordered pointwise.

e Temporal: the basic units of information are events; more information corre-
sponds to more events having occurred over time. Functions are restricted to
‘stable’ functions and ordered by the intensional ‘stable order,” in which com-
mon output has to be produced for the same minimal input. Berry’s specialized
domains ‘dI-domains’ are represented by event structures.

In truth, Berry developed ‘stable domain theory’ by a careful study of how to
obtain a suitable category of domains with stable rather than all continuous
functions. He arrived at the axioms for his ‘dI-domains’ because he wanted
function spaces (so a cartesian-closed category). The realization that dI-domains
were precisely those domains which could be represented by event structures,
came a little later.

1.1.2 From models for concurrency

Causal models are alternatively described as: causal-dependence models; in-
dependence models; non-interleaving models; true-concurrency models; and
partial-order models. They include Petri nets, event structures, Mazurkiewicz
trace languages, transition systems with independence, multiset rewriting, and
many more. The models share the central feature that they represent processes
in terms of the events they can perform, and that they make explicit the causal
dependency and conflicts between events.

Causal models have arisen, and have sometimes been rediscovered as the
natural model, in many diverse and often unexpected areas of application:
Security protocols: for example, forms of event structure, strand spaces, sup-
port reasoning about secrecy and authentication through causal relations and
the freshness of names;

Systems biology: ideas from Petri nets and event structures are used in taming
the state-explosion in the stochastic simulation of biochemical processes and in
the analysis of biochemical pathways;

Hardware: in the design and analysis of asynchronous circuits;

Types and proof: event structures appear as representations of propositions as
types, and of proofs;

Nondeterministic dataflow: where numerous researchers have used or rediscov-
ered causal models in providing a compositional semantics to nondeterministic
dataflow;

Network diagnostics: in the patching together local of fault diagnoses of com-
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munication networks;

Logic of programs: in concurrent separation logic where artificialities in Brookes’
pioneering soundness proof are obviated through a Petri-net model,

Partial order model checking: following the seminal work of McMillan the un-
folding of Petri nets (described below) is exploited in recent automated analysis
of systems;

Distributed computation: event structures appear both classically,e.g. in early
work of Lamport, and recently in the Bayesian analysis of trust and modelling
multicore memory.

To illustrate the close relationship between Petri nets and the ‘partial-order
models’ of occurrence nets and event structures, we sketch how a (1-safe) Petri
net can be unfolded first to a net of occurrences and from there to an event
structure [2]. The unfolding construction is analogous to the well-known method
of unfolding a transition system to a tree, and is central to several analysis tools
in the applications above. In the figure, the net on top has loops. The net below
it is its occurrence-net unfolding. It consists of all the occurrences of conditions
and events of the original net, and is infinite because of the original repetitive
behaviour. The occurrences keep track of what enabled them. The simplest
form of event structure, the one we shall consider here, arises by abstracting
away the conditions in the occurrence net and capturing their role in relations
of causal dependency and conflict on event occurrences.

The relations between the different forms of causal models are well under-
stood [3]. Despite this and their often very successful, specialized applications,
causal models lack a comprehensive theory which would support their systematic
use in giving semantics to a broad range of programming and process languages,
in particular we lack an expressive form of ‘domain theory for causal models
with rich higher-order type constructions needed by mathematical semantics.

1.1.3 From semantics

Denotational semantics and domain theory of Scott and Strachey set the stan-
dard for semantics of computation. The theory provided a global mathematical
setting for sequential computation, and thereby placed programming languages
in connection with each other; connected with the mathematical worlds of alge-
bra, topology and logic; and inspired programming languages, type disciplines
and methods of reasoning. Despite the many striking successes it has become
very clear that many aspects of computation do not fit within the traditional
framework of denotational semantics and domain theory. In particular, classical
domain theory has not scaled up to the more intricate models used in interac-
tive/distributed computation. Nor has it been as operationally informative as
one could hope.

While, as Kahn was early to show, deterministic dataflow is a shining appli-
cation of simple domain theory, nondeterministic dataflow is beyond its scope.
The compositional semantics of nondeterministic dataflow needs a form of gen-
eralized relation which specifies the ways input-output pairs are realized.A com-
pelling example comes from the early work of Brock and Ackerman who were
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A Petri net and its occurrence-net unfolding
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the first to emphasize the difficulties in giving a compositional semantics to non-
deterministic dataflow, though our example is based on simplifications in the
later work of Rabinovich and Trakhtenbrot, and Russell.

Nondeterministic dataflow—Brock-Ackerman anomaly

—

ClA] = CAi F >

There are two simple nondeterministic processes A; and A, which have the
same input-output relation, and yet behave differently in the common feedback
context C[-], illustrated above. The context consists of a fork process F' (a
process that copies every input to two outputs), through which the output of
the automata A; is fed back to the input channel, as shown in the figure. Process
Aj has a choice between two behaviours: either it outputs a token and stops, or
it outputs a token, waits for a token on input and then outputs another token.
Process A, has a similar nondeterministic behaviour: Either it outputs a token
and stops, or it waits for an input token, then outputs two tokens. For both
automata, the input-output relation relates empty input to the eventual output
of one token, and non-empty input to one or two output tokens. But C[A;]
can output two tokens, whereas C[As] can only output a single token. Notice
that A; has two ways to realize the output of a single token from empty input,
while As only has one. It is this extra way, not caught in a simple input-output
relation, that gives A; the richer behaviour in the feedback context.

Over the years there have been many solutions to giving a compositional
semantics to nondeterministic dataflow. But they all hinge on some form of
generalized relation, to distinguish the different ways in which output is pro-
duced from input. A compositional semantics can be given using stable spans
of event structures, an extension of Berry’s stable functions to include nonde-
terminism [4]—see Section 6.2.1.

How are we to extend the methodology of denotational semantics to the
much broader forms of computational processes we need to design, understand
and analyze today? How are we to maintain clean algebraic structure and
abstraction alongside the operational nature of computation?

Game semantics advanced the idea of replacing the traditional continuous
functions of domain theory and denotational semantics by strategies. The rea-
son for doing this was to obtain a representation of interaction in computation
that was more faithful to operational reality. It is not always convenient or
mathematically tractable to assume that the environment interacts with a com-
putation in the form of an input argument. It is built into the view of a process
as a strategy that the environment can direct the course of evolution of a pro-
cess throughout its duration. Game semantics has had many dramatic successes.
But it has developed from simple well-understood games, based on alternating
sequences of player and opponent moves, to sometimes arcane extensions and
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generalizations designed to fit the demands of a succession of additional pro-
gramming or process features. It is perhaps time to stand back and see how
games fit within a very general model of computation, to understand better
what current features of games in computer science are simply artefacts of the
particular history of their development.

1.1.4 From logic

An informal understanding of games and strategies goes back at least as far as
the ancient Greeks where truth was sought through debate using the dialectic
method; a contention being true if there was an argument for it that could
survive all counter-arguments. Formalizing this idea, logicians such as Lorenzen
and Blass investigated the meaning of a logical assertion through strategies
in a game built up from the assertion. These ideas were reinforced in game
semantics which can provide semantics to proofs as well as programs. The
study of the mathematics and computational nature of proof continues. There
are several strands of motivation for games in logic. Along with automata games
constitute one of the tools of logic and algorithmics; often a logical or algorithmic
question can be reduced to the question of whether a particular game has a
winning/optimal strategy or counterstrategy. Games are used in verification
and, for example, the central equivalence of bisimulation on processes has a
reading in terms of strategies.



Chapter 2

Event structures

Event structures are a fundamental model of concurrent computation and, along
with their extension to stable families, provide a mathematical foundation for
the course.

2.1 Event structures

Event structures are a model of computational processes. They represent a
process, or system, as a set of event occurrences with relations to express how
events causally depend on others, or exclude other events from occurring. In
one of their simpler forms they consist of a set of events on which there is
a consistency relation expressing when events can occur together in a history
and a partial order of causal dependency—writing e’ < e if the occurrence of e
depends on the previous occurrence of e’

An event structure comprises (E,<,Con), consisting of a set E, of events
which are partially ordered by <, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e' | ' < e} is finite for all e € E,

{e} eCon for all e € E,

YcXeCon =— Y eCon, and
XeCon&e<e'e X = Xu{e}eCon.

The events are to be thought of as event occurrences without significant dura-
tion; in any history an event is to appear at most once. We say that events e,
e’ are concurrent, and write e coe’ if {e,e’} e Con & ef e’ & €’ £ e. Concurrent
events can occur together, independently of each other. The relation of imme-
diate dependency e — €’ means e and e’ are distinct with e < ¢’ and no event in
between. Clearly < is the reflexive transitive closure of —».

An event structure represents a process. A configuration is the set of all
events which may have occurred by some stage, or history, in the evolution of

15
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the process. According to our understanding of the consistency relation and
causal dependency relations a configuration should be consistent and such that
if an event appears in a configuration then so do all the events on which it
causally depends.

The configurations of an event structure E consist of those subsets x ¢ E
which are

Consistent: YX € x. X is finite = X € Con, and
Down-closed: Ve,e'. e’ <eex = ¢’ ex.

We shall largely work with finite configurations, written C(E). Write C*(FE)
for the set of finite and infinite configurations of the event structure E.

The configurations of an event structure are ordered by inclusion, where
x €2, i.e. x is a sub-configuration of z', means that z is a sub-history of z'.
Note that an individual configuration inherits an order of causal dependency on
its events from the event structure so that the history of a process is captured
through a partial order of events. The finite configurations correspond to those
events which have occurred by some finite stage in the evolution of the process,
and so describe the possible (finite) states of the process.

For X ¢ E we write [X] for {e€ E | 3¢’ € X. e < €'}, the down-closure of X.
The axioms on the consistency relation ensure that the down-closure of any finite
set in the consistency relation s a finite configuration, and that any event appears
in a configuration: given X € Con its down-closure {¢/ € E | dJee X. ¢’ <e} is a
finite configuration; in particular, for an event e, the set [e] =qof {€' € F' | €’ < e}
is a configuration describing the whole causal history of the event e. We shall
sometimes write [e) =gct {€' € E | €’ < e}.

When the consistency relation is determined by the pairwise consistency of
events we can replace it by a binary relation or, as is more usual, by a comple-
mentary binary conflict relation on events (written as # or -).

Remark on the use of “cause.” In an event structure (E,<,Con) the rela-
tion €’ < e means that the occurrence of e depends on the previous occurrence
of the event €’; if the event e has occurred then the event ¢’ must have occurred
previously. In informal speech cause is also used in the forward-lookciaing sense
of one thing arising because of another. Often when used in this way the history
of events is understood beforehand. According to the history around my life,
the meeting of my parents caused my birth. But the history might have been
very different: in an alternative world the meeting of my parents might not
have led to my birth. More formally, w.r.t. a configuration x in which an event
e occurs while it seems sensible to talk about the events [e) causing e, it is so
only by virtue of the understood configuration .

We also encounter events which in a history may have been caused in more
than one way. There are generalisations of the current event structures which
do this—see the chapter in [1] on “disjunctive causes.” But for now we will work
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with the simple definition above in which an event, or really an event occur-
rence, e is causally dependent on a unique set of events [e). Much of the math-
ematics we develop around these simpler forms of event structures (sometimes
called prime event structures in the literature) will be reusable when we come
to consider events with several causes. Roughly the simpler event structures
will suffice in considering nondeterministic strategies. Where their limitations
will first show up is in our treatment of probabilistic strategies.

Example 2.1. The diagram below illustrates an event structure representing
streams of Os and 1s:

000 ~~~~ 001 010 ~~~~ 011 110 ~~~ 111

NN e

OOVN<9T 3711
0~ 1

Above we have indicated conflict (or inconsistency) between events by . The
event structure representing pairs of 0/1-streams and a/b-streams is represented
by the juxtaposition of two event structures:

—

000 ~~~—" 001 010 ~~~" 011 1 ~—~— 111

Nz

aaq ~~——— ab D~~~ bh

N

A~~~

Exercise 2.2. Draw the event structure of the occurrence net unfolding in the
introduction. O
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2.2 Maps of event structures

Let E and E' be event structures. A (partial) map of event structures f : E — E’
is a partial function on events f : E — E’ such that for all x € C(F) its direct
image fz e C(E') and

if e1,e9 €x and f(e1) = f(ez) (with both defined), then e = es.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E' whenever it is defined. The map f respects
the instantaneous nature of events: two distinct event occurrences which are
consistent with each other cannot both coincide with the occurrence of a com-
mon event in the image. Partial maps of event structures compose as partial
functions, with identity maps given by identity functions.

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from xz
is injective; the restriction of f to a function from x to fz is thus bijective. Say
a total map of event structures is rigid when it preserves causal dependency.

Maps preserve the concurrency relation, when defined.

Definition 2.3. Write £ for the category of event structures with (partial)
maps. Write & and &, for the categories of event structures with total, respec-
tively rigid, maps.

Exercise 2.4. Show a map f: A — B of £ is mono if the functionC(A) - C(B)
taking configuration x to its direct image fx is injective. [Recall a map f: A - B
is mono iff for all maps g,h:C - A if fg= fh then g = h.] Show the converse
does not hold, that it is possible for a map to be mono but not injective on
configurations. O

Proposition 2.5. Let E and E’ be event structures. Suppose
0y :x 20z, indexed by x € C(E),

is a family of bijections such that whenever 8, :y = 0,y is in the family then its
restriction 0, : z 2 0,z is also in the family, whenever z € C(E) and z Cy. Then,
0 =det Uzec(p) Oz is the unique total map of event structures from E to E' such
that 0 x = 0,x for all x € C(E).

Proof. The conditions ensure that  =qet Uzec(a) 0z is a function 6 : A - B such
that the image of any finite configuration z of A under 6 is a configuration of
B and local injectivity holds. O

2.2.1 Partial-total factorisation

Let (E,<,Con) be an event structure. Let V' € E be a subset of ‘visible’ events.
Define the projection of E on V, to be E|V =get (V,<y,Cony ), where v <y
v iffv<v &v,0' eV and X € Cony if X eCon & X c V.
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Consider a partial map of event structures f: F — E’. Let
V =get {e € E| f(e) is defined}.
Then f clearly factors into the composition

-l pv o
of fy, a partial map of event structures taking e € E to itself if e € V and
undefined otherwise, and f1, a total map of event structures acting like f on V.
We call f; the defined part of the partial map f. We say amap f: E - E’ is a
projection if its defined part is an isomorphism.
The factorisation is characterised to within isomorphism by the following
universal characterisation: for any factorisation

E 90 El g1 E,

where go is partial and g; is total there is a (necessarily total) unique map

h:E|lV — E; such that
—— FE|V ——
\ Ih/

comimutes.

2.3 Rigid maps

Recall a map f is rigid iff it is total and f preserves causal dependency, i.e., if
e’ <ein E then f(e') < f(e) in E'.

Proposition 2.6. A total map f: E — E' of event structures is rigid iff for all
2z e€C(E) andyeC(E")

yc f(x) = 3zeC(E). zCx and fz=y

The configuration z is necessarily unique by the local injectivity of f. (The
class of maps would be unaffected if we allow all configurations in the definition
above.)

Proof. “Only if’: Total maps reflect causal dependency. So, if f preserves
causal dependency, then for any configuration x of E, the bijection f:xz — fzx
preserves and reflects causal dependency. Hence for any subconfiguration y
of fx, the bijection restricts to a bijection f : z - y with z a down-closed
subset of z. But then z must be a configuration of E. “If’: Let e € E. Then
[f(e)] < f[e]. Hence there is a subconfiguration z of [e] such that fz =[f(e)].
By local injectivity, e € z, so z = [e]. Hence f[e] = [f(e)]. It follows that if
e’ <e then f(€') < f(e). O
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A rigid map of event structures preserves the causal dependency relation
“rigidly,” so that the causal dependency relation on the image fz is a copy of
that on a configuration x of F—in this sense f is a local isomorphism. This is not
so for general maps where z may be augmented with extra causal dependency
over that on fux.

Proposition 2.7. The inclusion functor &. — & has a right adjoint. The
category & is isomorphic to the Kleisli category of the monad for the adjunction.

Proof. The right adjoint’s action on objects is given as follows. Let B be an
event structure. For x € C(B), an augmentation of x is a partial order (z,«)
where Vb,b' € z. b <g b/ == bal’. We can regard such augmentations as
elementary event structures in which all subsets of events are consistent. Order
all augmentations by taking (x,«) € (2, ') iff z € 2" and the inclusion i : x <
x' is a rigid map i : (z,a) > (2/,a’). Augmentations under £ form a prime
algebraic domain; the complete primes are precisely the augmentations with a
top element. Define aug(B) to be its associated event structure.

There is an obvious total map of event structures ep : aug(B) — B taking
a complete prime to the event which is its top element. It can be checked that
post-composition by ep yields a bijection

ego_:& (A, aug(B))zE(A,B) .

Hence aug extends to a right adjoint to the inclusion &, < &;.
Write aug also for the monad induced by the adjunction and Kl(aug) for
its Kleisli category. Under the bijection of the adjunction

Kl(aug)(A, B) =qet &-(A, aug(B)) = £(A, B) .

The categories Kl(aug) and € share the same objects, and so are isomorphic. [

2.3.1 Rigid image

Rigid maps f : A — B have a useful image given by restricting the causal
dependency of B to the set of events in the image of A under f and taking a
finite set of events to be consistent if they are the image of a consistent set in
A. More generally, a total map f: A — B has a rigid image given by the image
of its corresponding Kleisli map, the rigid map f: A — aug(B). A total map
f:A— B has a rigid image comprising

A% B,

N

B,
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where fj is rigid epi and f; is a total map, with the universal property sum-
marised in the diagram below:

fo

Al ot lp,

|/

B

for a unique rigid h; the map h is necessarily also epi. If we don’t specify further
we shall take the rigid image of a total map f: A - B to be a substructure of
aug(B). By a substructure of B we mean an event structure By with events
included in those of B so that the inclusion is a map.

2.3.2 Rigid embeddings and inclusions

Special forms of rigid maps appeared as rigid embeddings in Kahn and Plotkin’s
work on concrete domains. Their extension to event structures can be used in
defining event structures recursively.

A total map f: E — E’ is a rigid embedding iff it is rigid and an injective
function on events for which the inverse relation f°P is a (partial) map of event
structures f°P : E' - E. (There are several alternative equivalent definitions.)

Rigid embeddings include as a special case those in which the function f
is an inclusion. These give the well-known approximation order 4 on event
structures:

(E',<',Con’) < (E,<,Con) <= E'cE &
ve'e E'. [€] =[] &
VX'cE'. X"eCon' <= X eCon.

The order < forms a ‘large cpo,” with bottom the empty event structure, and
is useful when defining event structures recursively [5, 6, 3]. With some care in
defining the precise constructions on event structures they can be ensured to be
continuous w.r.t. <; for this it suffices to check that they are <~-monotonic and
continuous on event sets. Further details can be found in [5, 6].

2.3.3 Rigid families

It is occasionally useful to build an event structure out of a non-empty family
Q of finite partial orders.

For Q to be a rigid family we require that its is closed under rigid inclusions,
or equivalently, that any down-closed subset of any element ¢, with order the
restriction of that of ¢, is itself an element of Q. (In this case rigid inclusions
coincide withn rigid embeddings.)

From a rigid family Q we construct an event structure as follows. Its events
are those partial orders in Q with a top element. Its causal dependency is given
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by rigid inclusion. We say a finite subset of partial orders with top is consistent
iff all its members are rigidly included in a common member of Q.

2.4 Products of event structures
The category of event structures has products, which essentially allow arbitrary

synchronizations between their components. For example, here is an illustration
of the product of two event structures a — b and ¢, the later comprising just a

single event named c: /W"‘Mx\_\\\

b (b, *) (b, *) (b,¢)

(a,c) (x,c)

The original event b has split into three events, one a synchronization with c,
another b occurring unsynchronized after an unsynchronized a, and the third b
occurring unsynchronized after a synchronizes with c¢. The splittings correspond
to the different histories of the event.

It can be awkward to describe operations such as products, pullbacks and
synchronized parallel compositions directly on the simple event structures here,
essentially because an event determines its whole causal history. One closely
related and more versatile, though perhaps less intuitive and familiar, model is
that of stable families. Stable families will play an important technical role in
establishing and reasoning about constructions on event structures.

a c (a,*)



Chapter 3

Stable families

Stable families, their basic properties and relations to event structures are de-
veloped.!

3.1 Stable families

The notion of stable family extends that of finite configurations of an event
structure to allow an event can occur in several incompatible ways.

Notation 3.1. Let F be a family of subsets. Let X ¢ F. We write X1 for
JyeF. Ve e X.x €y and say X s compatible. When z,y € F we write x 1 y

for {z,y}1.

A stable family comprises F, a nonempty family of finite subsets, satisfying:
Completeness: NZ ¢ F. 71 — UZ e F,;
Stability: VZcF. Z+ 2 & Zt = NZeF;
Coincidence-freeness: For all x € F, e, e’ € x with e # €,

JyeF.ycz & (eey < e ¢y).

Proposition 3.2. The family of finite configurations of an event structure
forms a stable family.

On the other hand stable families are more general than finite configurations
of an event structure, as the following example shows.

1A useful reference for stable families is the report “Event structure semantics for CCS and
related languages,” a full version of the article [5], available from www.cl.cam.ac.uk/~gw104,
though its terminology can differ from that here.

23



24 CHAPTER 3. STABLE FAMILIES

Example 3.3. Let F be the stable family, with events E = {0, 1,2},

{0,2} {0,1} {1,2}

u < O U

{0} {1}

or equivalently

{0,2} {0,1} {1,2}

{0} {1}

L

1%}

where —c is the covering relation representing an occurrence of one event.
The events 0 and 1 are concurrent, neither depends on the occurrence or non-
occurrence of the other to occur. The event 2 can occur in two incompatible
ways, either through event 0 having occurred or event 1 having occurred. This
possibility can make stable families more flexible to work with than event struc-
tures.

A (partial) map of stable families f : F — G is a partial function f from the
events of F to the events of G such that for all x € F,

freG & (Ver,ezex. f(e1) = f(e2) = e1=¢2).

Maps of stable families compose as partial functions, with identity maps given
by identity functions. We call a map f : F - G of stable families total when it
is total as a function; the f restricts to a bijection z = fx for all z € F.

Definition 3.4. Let F be a stable family. We use z—cy to mean y covers x in
F,i.e. xcyin F with nothing in between, and z—cy to mean z U {e} = y
for x,y € F and event e ¢ x. We sometimes use x—ec7 expressing that event e is
enabled at configuration x, when r—c y for some y.

Exercise 3.5. Let F be a nonempty family of sets satisfying the Completeness
axiom in the definition of stable families. Show F is coincidence-free iff

Ve,ye F. x ¢y = 3Jx1,e;. a:—elcasl Cy.

[Hint: For ‘only if’ use induction on the size of y \ z.] i
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3.1.1 Stable families and event structures

Finite configurations of an event structure form a stable family. Conversely, a
stable family determines an event structure:

Proposition 3.6. Let x be a configuration of a stable family F. For e,e’ € x
define
e <eiff VyeF.ycax & eey = e ey.

When e € x define the prime configuration
lele={yeF|lycz &eecy}.
Then <, is a partial order and [e], is a configuration such that
[ele ={e"ex | e <z e}

Moreover the configurations y € x are exactly the down-closed subsets of <.

Proposition 3.7. Let F be a stable family. Then, Pr(F) =qer (P, Con, <) is an
event structure where:

P={le], |ecx & veF},
ZeConiff ZcP & | JZeF and,

p<p iffp,p' e P &pcy.
Exercise 3.8. Prove the two propositions 3.6 and 3.7. O

The operation Pr is right adjoint to the “inclusion” functor, taking an event
structure F to the stable family C(E). The unit of the adjunction E - Pr(C(FE))
takes an event e to the prime configuration [e] =4ct {€' € E' | €’ < e}. The counit
top : C(Pr(F)) - F takes prime configuration [e], to e.

Definition 3.9. Let F be a stable family. W.r.t. x € F, write [€)s =def
{/e E|e <, e& e #e}. The relation of immediate dependence of event struc-
tures generalizes: with respect to x € F, the relation e —, ¢ means e <, €
with e # ¢’ and no event in between. For e e’ € z € F we write e co, ¢/ when
neither e <, €’ nor ¢’ <, e. Note the relations <,, —, and co,, ‘local’ to a

configuration x, coincide with the ‘global’ versions <, — and co when the stable
family comprises the finite configurations of an event structure.

We shall use the following property of maps repeatedly, both for stable fam-
ilies and the special case of event structures. It says that their maps locally
reflect causal dependency.

Proposition 3.10. Let f : F - G be a map of stable families. Let e e’ € x,
a configuration of F. If f(e) and f(e') are defined and f(e) <z, f(e') then
e<, €.
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Proof. Let e,e’ € x € F. Suppose f(e) and f(e’) are defined and f(e) <z, f(€’).
Suppose ¥ is a subconfiguration of z, i.e. y € F and y € x, which contains €’.
Then clearly fy is a subconfiguration of fx which contains f(e’). We have
f(e) e fyas f(e) <y f(e'). Hence there is €” € y such that f(e”) = f(e). But
now e, e” € x with f(e) = f(e”), so e =€”. We deduce e € y. The argument was
for an arbitrary y, so e <, €’ as required. O

The next two propositions relate immediate causal dependency between
events to the covering relation between configurations.

Proposition 3.11. Let F be a stable family. Let e e’ € x € F.

’

Jy. 1 €F. gy Ca & y—cy1—< <> e, ¢ or ecoy e, (7)
and e—vye = JypeF.yy1Cz & y—ecyl—ec & -ecoy e (i7)
= Iy eF. ypce & y—cy—c & ~y—c. (i)

The proposition simplifies in the special case of event structures:

Proposition 3.12. Let E be an event structure. Let e,e¢’ € E.

Jy,y1 € C®(E). y—cy1—c < e—¢e' or ecoe’,
and e —e' < y,y1 € C*(E). y—cy—c & -~ecoe,

<~ Jy,y1 € C7(E). y—ecyl—ec & —.y—ec .

3.2 Infinite configurations

We can extend a stable family to include infinite configurations, by constructing
its “ideal completion.”

Definition 3.13. Let F be a stable family. Define F*° to comprise all |JI
where I € F is an ideal (i.e., I is a nonempty subset of F closed downwards
w.r.t. €in F and such that if 2,y € I then zuy e I).

Exercise 3.14. For an event structure E, show C*(E) =C(E)*. O

Exercise 3.15. Let F be a stable family. Show F*° satisfies:

Completeness: VZ € F* (VX S Z. X 1) = UZ e F>;
Stability: VZcF®. Z+@ & Zt = NZeF*>;
Coincidence-freeness: For all x € F>~, e,e’ e x with e # ¢/,

JyeFe. ycax & (eey < € ¢y);
Finiteness: For all x € F*°,

VeexdyeF.ecy & ycx & y is finite .
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Show that F consists of precisely the finite sets in F*. O

Remark Above the conditions of Finiteness and Coincidence-freeness together
can be replaced by the equivalent condition

Secured: if e € x € F then there exists a securing chain e;,---,e, = e in z
s.t. {e1,-,e;} € F for all i <n.

3.3 Process constructions

3.3.1 Products

Let A and B be stable families with events A and B, respectively. Their
product, the stable family A4 x B, has events comprising pairs in A x, B =4ef
{(a,*) | ae A} u{(a,b) |ac A& be B} u{(*0b)|be B}, the product of sets
with partial functions, with (partial) projections m; and me—treating = as
‘undefined’—with configurations

reAxBiff
x is a finite subset of A x, B such that mx € A & mox € B,
Ve,e' ex. m(e) =mi(e') or ma(e) =ma(e') =>e=¢",&
Ve,elex.ete’ = Iycao. mye A& myeB &

(eey <= €'¢y).

Theorem 3.16. For stable families A and B the construction AxB with projec-
tions my and mo described above is the product in the category of stable families.

Proof. Essentially in the report for [5]. O

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B by first regarding them as stable families C(A) and C(B),
forming their product C(A)xC(B), 71,72, and then constructing the event struc-
ture

A x B =4et Pr(C(A) x C(B))
and its projections as Il =gqef m1top and Iy =ger motop.

Exercise 3.17. Let A be the event structure consisting of two distinct events
a1 < as and B the event structure with a single event b. Following the method
above describe the product of event structures A x B. O

Proposition 3.18. Let x € Ax B, a product of stable families with projections
m and wo. Then, for ally c x,

YyeAxB < myec A& myeB.

Proof. Straightforwardly from the definition of A x B. O
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Later we shall use the following properties of — in a product of stable families
or event structures.

Lemma 3.19. Let x € AxB, a product of stable families with projections 7y, ms.

Lete,e’ ex. If e —, €', then
either

(i) m1(e) and w(e") are both defined with m(€) —>r,, m1(€e') in A and

if ma(e), ma(e’) are defined then ma(e) —>ryq ma(e’) or ma(e) coryqy ma(e') in B,
or

(ii) ma(e) and ma(e’) are both defined with ma(€) —rye m2(€’) in B and

if m1(e), m1(e") are defined then mi(e) —n,» m1(e") or mi(e) con,» m1(e") in A.

Proof. By Proposition 3.11(iii), e —s, ¢’ iff (I) y—<c y1—c and (II) ~y—c, for
subconfigurations y,y; of . From (I),

(a) if m1(e), m1(e') are defined then ﬁlyﬂ?ﬂ-lylm—(z)

and
m2(e) ma(e’)

(b) if ma(e), ma(e’) are defined then moy—c moys —< .
Suppose both (7 (e') defined = my—c ) and (m2(e’) defined = moy—c ).
Then yu{e’'} ¢ x with m(yu{e'}) € A and ma(yu {e’'}) € B. So, by Proposi-

tion 3.18, yu{e’'} € Ax B—contradicting (IT). Hence, either —my—< , with m€’
defined, or —may——c, with me’ defined.
Assume the case —|7r1y£?:7 with e’ defined. Supposing 7 (e) is unde-

fined, from (I) we obtain the contradictory my = 7le17r—16C. Hence, in this

. (e) (e") /
case, both me and e’ are defined with 7y~ my; —< and ~my—c. So

m1(e) = m1(e’) in A, by Proposition 3.11(iii). Meanwhile from (b), this time
by Proposition 3.11(1), if m2(e), ma(e’) are defined then my(€) —>nys m2(€’) or
m2(€e) comye m2(e’) in B. Hence (i), above.

Similarly, the case —|7r2y3?:, with moe’ defined, yields (ii).
O

Corollary 3.20. Let Ax B, Iy, IIy be a product of event structures. If p — p’
in Ax B, then
either
(i) 1 (p) and 111 (p’) are both defined with 11y (p) — Iy (p") in A and
if I2(p), I2(p') are defined then I (p) — Ia(p’) or Ila(p) coIla2(p') in B,
or
(i1) o (p) and Ha(p’) are both defined with Ts(p) — Mo (p') in B and
if 11 (p), 1 (p") are defined then Iy (p) — 111 (p") or W1(p) coII;(p") in A.

Proof. Directly by Lemma 3.19, because p — p’ in A x B implies top(p) —>p
top(p") in C(A) x C(B). O

The converse to Lemma 3.19, above, is false. A more explicit, case-by-case,
form of the above Lemma 3.19 is helpful:
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Lemma 3.21. Suppose e —, €' in a product of stable families A x B,my,ms.
(i) If e = (a,*) then e = (a’,b) or e’ =(a,*) with a —,,, a’ in A.
(ii) If ' = (a’, %) then e = (a,b) or e =(a,*) with a —, , a’ in A.
(i1i) If e = (a,b) and €' = (a’,b") then a —5,, a’ in A or b —, . b in B.
Furthermore both (@ —>x, . 0’ or a cor,z a') and (b =,z b 01 b coryy b').

The obvious analogues of (i) and (ii) hold for e = (x,b) and e’ = (*,b").

Proof. A restatement of Lemma 3.19, writing a = m1(e), b = ma(e), o’ = m1(e)
and b = ma(e’) when these results of projections are defined. O

Exercise 3.22. Let z € A x BB, the product of stable families. For any chain
(CL, >(') TPz €1 Py TP €y = (*76)
show there is e; = (a;,b;) for some events a; of A and b; of B.

Corollary 3.23. Let f: A— A" and g: B — B’ be rigid maps of event struc-
tures. Then the map (f,g9): Ax B - A’ x B is rigid.

Proof. Write I1;, I and II{, IT), for the projections of Ax B and A’ x B’ respec-
tively. It is easy to check that the totality of f and g above implies (f, g) is total.
To show that their rigidity implies ( f, g) is rigid we use Corollary 3.20 above. As-
suming p — p’ in Ax B the corollary implies IT; (p) — II; (p”) or I (p) — M2 (p’).
From the rigidity of f and g, we obtain fII; (p) — fII;(p") or glla(p) — glla(p).
But I} (f, g)(p") = fI11(p") and TI5(f, g)(p") = fT2(p") whence as (f, g) is a map
so reflects causal dependency locally we deduce (f,g)(p) < (f,g)(p’) (or in fact
(f,9)(p) = (f.9)(p")), showing (f, g) is rigid. O

3.3.2 Restriction

The restriction of F to a subset of events R is the stable family F | R =qef
{x e F |z cR}. Defining E | R, the restriction of an event structure F to a
subset of events R, to have events E’ = {e € F' | [e] € R} with causal dependency
and consistency induced by E, we obtain C(E | R) =C(F) | R.

Proposition 3.24. Let F be a stable family and R a subset of its events. Then,
Pr(F ' R) =Pr(F)ltop™ ' R.

We remark that we can regard restriction as arising as an equaliser. FE.g. for
an event structure E write |E| for the event structure comprising the events
of F but with discrete causal dependency and all subsets consistent. W.r.t. a
subset R of events, the inclusion map F | R — E is the equaliser of the two maps
I: E - |E|, acting as identity on events, and U : E — |E|, acting as identity on
events in R and undefined elsewhere.
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3.3.3 Synchronized compositions

Synchronized parallel compositions are obtained as restrictions of products to
those events which are allowed to synchronize or occur asynchronously. For
example, the synchronized composition of Milner’s CCS on stable families A and
B (with labelled events) is defined as A x B | R where R comprises events which
are pairs (a, *), (*,b) and (a,b), where in the latter case the events a of A and b
of B carry complementary labels. Similarly, synchronized compositions of event
structures A and B are obtained as restrictions A x B | R. By Proposition 3.24,
we can equivalently form a synchronized composition of event structures by
forming the synchronized composition of their stable families of configurations,
and then obtaining the resulting event structure—this has the advantage of
eliminating superfluous events earlier.

Products of stable families within the subcategory of total maps can be
obtained by restricting the product (w.r.t. partial maps). Construct

Ax;B=AxBlAxB

where we restrict to the cartesian product of the sets of events of A and B,
called A and B respectively; projection maps are obtained from the projection
functions from the cartesian product. Products of stable families within the
subcategory of total maps have a particularly simple characterisation:

Proposition 3.25. Finite configurations of a product A x; B of stable families
with total maps are secured bijections 6 : x = y between configurations x € A and
y € B, such that the transitive relation generated on 6 by taking (a,b) < (a’,b")
if a <y a’ orb<y b is a partial order.

Proof. Let z € A xy B. By Proposition3.10 the projections m; and my locally
reflect causal dependency. Hence the partial order <, satisfies: (a,b) <, (a’,b")
if a <z a or b <y, b, for all (a,b),(a’,b") € z. Thus the transitive relation on z
generated by taking (a,b) < (a',0") if a <, a’ or b <, V' is certainly a partial order;
failure of antisymmetry for the relation generated would imply its failure for <.,
a contradiction. To see that <, is precisely the transitive relation generated in
this way, let 8 be the elementary event structure comprising events the set z
with causal dependency the least transitive relation < for which (a,b) < (a’,b")
if a<ya orb<, b'. Let O be its stable family of configurations with 71 : © - A
and ry : © - B the obvious projection maps. By the universal properties of the
product A x; B, w1, w9 there is a unique map h: © - A x; B s.t. ry = m1h and
ro = moh. As a function on the underlying sets of events h : § — z acts as the
identity on events and reflects causal dependency. Hence <.c<,. It follows that
<, and <, coincide, so that <, is a secured bijection.

Conversely, suppose 6 is a secured bijection between x € A and y € B with
generated partial order <. Regard 6,< as an elementary event structure with
stable family of configurations ©. From the way < is generated, there are pro-
jection maps r1 : © - A and 19 : © - B. Hence by universality, there is a unique
map h: © - Ax; B st. r1 = mh and r9 = moh. But then A must act as the
identity function, ensuring 6 € A x; B. O
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3.3.4 Pullbacks

The construction of pullbacks can be viewed as a special case of synchronized
composition. Once we have products of event structures pullbacks are obtained
by restricting products to the appropriate equalizing set. Pullbacks of event
structures can also be constructed via pullbacks of stable families, in a similar
manner to the way we have constructed products of event structures. We obtain
pullbacks of stable families as restrictions of products. Suppose f; : F; — G and
fo: Fo — G are maps of stable families. Let E1, F> and C be the sets of events
of Fy, F» and G, respectively. The set P =gor {(e1,€2) | f(e1) = f(e2)} with
projections 7y, mo to the left and right, forms the pullback, in the category of
sets, of the functions f1 : By - C, fy : B — C. We obtain the pullback in
stable families of fi, fo as the stable family P, consisting of those subsets of P
which are also configurations of the product F; x Fo—its associated maps are
the projections 1, mo from the events of P. When f; and fs> are total maps we
obtain the pullback in the subcategory of stable families with total maps.

As a corollary of Proposition 3.25 we obtain a simple characterization of
pullbacks of total maps within stable families:

Lemma 3.26. Let P,my,mo form a pullback of total maps f : A - C and g :
B — C in the category of stable families. Configurations of P are precisely
those composite bijections 0 : x = fx = gy = y between configurations x € A and
y € B s.t. fx = gy for which the transitive relation generated on 6 by taking
(a,b) < (a',0") ifa<y a" orb<, b is a partial order.

For future reference we give the detailed construction of pullbacks of to-
tal maps in stable families. Let f : A - C and g : B — C be total maps
of stable families. Assume A and B have underlying sets A and B. Define
D =4er {(a,b) e Ax B | f(a) = g(b)} with projections m; and 75 to the left and
right components. Define a family of configurations of the pullback to consist of

reD iff
x is a finite subset of D such that mz € A & mox € B,
Ve,e'ez.ete = ycr. mye A& myeB &

(eey < €' ¢y).

The extra local injectivity property we needed in the definition of product is
not necessary here; it follows from the definition of D and that o1 and o9 are
locally injective.

We obtain the pullback of event structures by first forming the pullback in
stable families of their families of configurations and then applying Pr.

As a corollary of Lemma 3.26 we obtain a useful way to understand config-
urations of the pullback of total maps on event structures.

Proposition 3.27. When f: A - C and g: B - C are total, maps of event
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structures, in their pullback P,111,1I5
P
2N
A B
\ /
C.

the finite configurations of P correspond to composite bijections

0:x>fr=qgyy

between finite configurations x of A andy of B such that fx = gy, for which the
transitive relation generated on 0 by (a,b) < (a’,b") if a<a d’ orb<p b forms
a partial order.

As a consequence the pullback of rigid maps, respectively rigid epi maps,
across total maps are rigid, respectively rigid epi.

Proposition 3.28. Let P, 111,15 be a pullback of total maps f: A - C and
g: B — C in the category of event structures. If f is rigid so is Ily. If f is rigid
and epi so is 1.

Proof. Use Proposition 3.27 to construct the appropriate configurations of the
pullback of event structures; the rigidity of f ensures their existence. O

3.3.5 Projection

As we have seen, event structures support a simple form of hiding associated
with the partial-total factorisation of a partial map. Let (E, <, Con) be an event
structure. Let V € E be a subset of ‘visible’ events. Define the projection of E
on V, to be E|V =4e¢ (V,<y,Cony ), where v <y v iff v < 0" & v,0v" € V and
XeCony iff XeCon & XcV.

Proposition 3.29. Let f : E - E’ be a total map of event structures. Let
VcFE and V' € E' be such that

VeeE.ecV < f(e)eV'.

Then f restricts to a total map f |V :E |V - E' | V'. Moreover, if f is rigid
then sois fI'V.

3.3.6 Recursion

Both stable families and event structures support recursive definitions via the
‘large cpo’ based on the substructure relation < [5, 6]. For two stable families
F and G with events F' and G respectively,

FAGit FeG & Ve csn F.xeF < x€@G.
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Games and strategies

Very general nondeterministic concurrent games and strategies are presented.
The intention is to formalize distributed games in which both Player (or a
team of players) and Opponent (or a team of opponents) can interact in highly
distributed fashion, without, for instance, enforcing that their moves alter-
nate. Strategies, those nondeterministic plays which compose well with copy-cat
strategies, are characterized.!

4.1 Event structures with polarities

We shall represent both a game and a strategy in a game as an event structure
with polarity, comprising an event structure together with a polarity function
pol : E - {+,-} ascribing a polarity + or — to its events E. The events corre-
spond to (occurrences of) moves. The two polarities +/— express the dichotomy:
Player/Opponent; Process/Environment; Prover/Disprover; or Ally /Enemy. Maps
of event structures with polarity are maps of event structures which preserve po-
larity.

4.2 Operations
4.2.1 Dual

The dual, E*, of an event structure with polarity E comprises a copy of the
event structure E but with a reversal of polarities. It obviously extends to a
functor. Write € € E* for the event complementary to ¢ € E and vice versa.

4.2.2 Simple parallel composition

This operation simply juxtaposes two event structures with polarity. Let (A4,<4
,Cony, pol 4) and (B,<p,Conp,polg) be event structures with polarity. The

IThis key chapter is the result of joint work with Silvain Rideau [7].
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events of A||B are ({1}xA)u({2}xB), their polarities unchanged, with: the only
relations of causal dependency given by (1,a) < (1,a") iff a <4 o' and (2,b) <
(2,0") iff b<p b'; a subset of events C' is consistent in A||B iff {a | (1,a) e C} €
Cony and {b | (2,b) € C'} € Conpg. The operation extends to a functor—put the
two maps in parallel. The empty event structure with polarity @& is the unit
w.r.t. ||

4.3 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events
stand for the possible occurrences of moves of Player and Opponent and its
causal dependency and consistency relations the constraints imposed by the
game. A pre-strategy in A is a total map o : S - A from an event structure with
polarity S. A pre-strategy represents a nondeterministic play of the game—all
its moves are moves allowed by the game and obey the constraints of the game;
the concept will later be refined to that of strategy (and winning strategy in
Section 8.1).

A map from a pre-strategy o: S — A to a pre-strategy ¢’ : S’ - A is a map
f:S — 8" such that

st g

!

A

commutes. Accordingly, we regard two pre-strategies 0:S - A and ¢’ : §' - A
as essentially the same when they are isomorphic, and write o = o', i.e. when
there is an isomorphism of event structures #:.S = S’ such that

Sl
N
A
commutes.

Let A and B be event structures with polarity. Following Joyal [8], a pre-
strategy from A to B is a pre-strategy in A*||B, so a total map o: S — A'||B.

It thus determines a span
S
A
At B,

of event structures with polarity where 01,09 are partial maps. In fact, a pre-
strategy from A to B corresponds to such spans where for all s € S either, but

S



4.3. PRE-STRATEGIES 35

not both, o1(s) or o2(s) is defined. Two pre-strategies o and 7 from A to B
are isomorphic, o 2 7, when their spans are isomorphic, i.e.

S
I
2l
\
g1 T g2
At B

commutes. We write o : A—= B to express that o is a pre-strategy from A to B.
Note a pre-strategy in a game A coincides with a pre-strategy from the empty
game o : @F—=A.

4.3.1 Concurrent copy-cat

Identities on games are given by copy-cat strategies—strategies for Player based
on copying the latest moves made by Opponent.

Let A be an event structure with polarity. The copy-cat strategy from A to
A is an instance of a pre-strategy, so a total map v, : (C4 — A*||A. It describes
a concurrent, or distributed, strategy based on the idea that Player moves, of
+ve polarity, always copy previous corresponding moves of Opponent, of —ve
polarity.

For ¢ € A*||A we use ¢ to mean the corresponding copy of ¢, of opposite
polarity, in the alternative component, i.e.

m: (2,@) and m: (L,a@).

Proposition 4.1. Let A be an event structure with polarity. There is an event
structure with polarity GC4 having the same events and polarity as A*||A but
with causal dependency <cc, given as the transitive closure of the relation

<ara U {(Gc) | ce A|A & polguya(c) =+}.

and finite subsets of (C4 consistent if their down-closure w.r.t. <cc, are con-
sistent in A*||A. Moreover,
(i) ¢ — ¢ in C4 iff

c—c in A A or pol gy 4(c') =+ & e=¢';
(ii) x e C(QC4) iff
xeC(AM|A) & Yeex. polya(c) =+ = Cew.
Proof. It can first be checked that defining

c<a, ¢ M (i) c<avpac or
(’L’L) deg € AlHA pOZALHA(Co) =+ &

— ’
C<AL|A Co & ¢ <ALjA €,
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yields a partial order. Note that
c<aL|A d iff C<pLA g,

used in verifying transitivity and antisymmetry. The relation <, is clearly
the transitive closure of <4. 4 together with all extra causal dependencies (¢, c)
where pol 4. 4(¢) = +. The remaining properties required for (C 4 to be an event
structure follow routinely.

(i) From the above characterization of <.

(ii) From (C4 and A*| A sharing the same consistency relation and the extra
causal dependency adjoined to (4. O

Based on Proposition 4.1, define the copy-cat pre-strategy from A to A to be
the pre-strategy v : (C4 » A*|| A where (C 4 comprises the event structure with
polarity A*| A together with extra causal dependencies ¢ <, ¢ for all events
c with pol i a(c) = +, and 4 is the identity on the set of events common to
both (C4 and A*| A.

4.3.2 Composing pre-strategies

Consider two pre-strategies 0 : A—=B and 7: B—(C as spans:

S T
At B B* C.

We show how to define their composition 700 : A—=C'". If we ignore polarities
the partial maps of event structures o, and 7, have a common codomain, the
underlying event structure of B and B*. The composition 7@ will be con-
structed as a synchronized composition of S and T', in which output events of S
synchronize with input events of T, followed by an operation of hiding ‘internal’
synchronization events. Only those events s from S and ¢ from T for which
o2(s) = 11(t) synchronize; note that then s and ¢ must have opposite polarities
as this is so for their images o2(s) in B and 71(¢) in B*. The event result-
ing from the synchronization of s and ¢ has indeterminate polarity and will be
hidden in the composition 7@0o.

Formally, we use the construction of synchronized composition and projec-
tion of Section 3.3.3. Via projection we hide all those events with undefined
polarity.

We first define the composition of the families of configurations of S and T
as a synchronized composition of stable families. We form the product of stable
families C(S) x C(T") with projections m; and s, and then form a restriction:

C(T)®C(S) =aet C(S) xC(T) I R
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where
R = {(s,%) ]| s€S & o1(s) is defined} u

{(s,t) | s€S & teT & o3(s) = 11(¢t) with both defined}u
{(*,t) | teT & 72(t) is defined} .

The stable family C(T") ® C(S) is the synchronized composition of the stable
families C(.S) and C(T") in which synchronizations are between events of S and
T which project, under o5 and 7 respectively, to complementary events in B
and B*. The stable family C(T") ® C(S) represents all the configurations of the
composition of pre-strategies, including internal events arising from synchro-
nizations. We obtain the synchronized composition as an event structure by
forming Pr(C(T") ® C(.9)), in which events are the primes of C(T") ® C(.S). This
synchronized composition still has internal events.

To obtain the composition of pre-strategies we hide the internal events due
to synchronizations. The event structure of the composition of pre-strategies is
defined to be

ToS =gt Pr(C(T)® C(S)) LV,

the projection onto “visible” events,

V={pePr(C(T)®C(S)) | IseS. top(p)=(s,*)} U
{pePr(C(T)®C(S)) | IteT. top(p) = (*,t)}.

Finally, the composition 7®c is defined by the span

TeS
At C

where v; and vy are maps of event structures, which on events p of T®S act so
v1(p) = 01(s) when top(p) = (s,*) and va(p) = 72(t) when top(p) = (*,t), and
are undefined elsewhere.

Proposition 4.2. Above, vy and ve are partial maps of event structures with
polarity, which together define a pre-strategy v: A—=C. For x € C(T®S),

vz =oym | Jz and vexr =mm|Jx.
Proof. Consider the two maps of event structures
u1 :Pr(C(T) ® C(S))—55-25 A* |
us :Pr(C(T) ® C(8))~>T-2C,

where Iy, 15 are (restrictions of) projections of the product of event structures.
E.g. for pe Pr(C(T)®C(S)), ;1 (p) = s precisely when top(p) = (s, *), so o1(s)
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is defined, or when top(p) = (s,t), so o1(s) is undefined. The partial functions
vy and vo are restrictions of the two maps u; and us to the projection set V.
But V consists exactly of those events in Pr(C(T) ® C(S)) where uy or uy is
defined. It follows that v; and vy are maps of event structures.

Clearly one and only one of vy, vs are defined on any event in T®.S so they
form a pre-strategy. Their effect on x € C(T®S) follows directly from their
definition. O

Proposition 4.3. Letoc: A—=B, 7: B—=C and v : C—=D be pre-strategies.
The two compositions vE(Tec) and (VOT)®0 are isomorphic.

Proof. The natural isomorphism S x (T'x U) = (S xT) x U, associated with
the product of event structures S, T, U, restricts to the required isomorphism of
spans as the synchronizations involved in successive compositions are disjoint.O

4.3.3 Composition via pullback

We can alternatively present the composition of pre-strategies via pullbacks.?
For this section assume that the correspondence a < @ between the events of
A and its dual A' is the identity, so A and A* share the same events, though
assign opposite polarities to them. Given two pre-strategies o : S - A'||B and
7:T — B*||C, ignoring polarities we can consider the maps on the underlying
event structures, viz. o:S5 — A||B and 7:T — BJ|C. Viewed this way we can
form the pullback in € (or &, as the maps along which we are pulling back are
total)

pP

ST

S|C A|T

A|B|C.

There is an obvious partial map of event structures A||B||C - A||C undefined
on B and acting as identity on A and C. The partial map from P to A||C given

2I’m grateful to Nathan Bowler for the observations of this section.
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by following the diagram (either way round the pullback square)

P

4
S| A|T

o|lC Al
AlBJlC

|

AlC

factors through the projection of P to V', those events at which the partial map
is defined:

PPV - A|C.

The resulting total map v: P | V - A|C gives us the composition 7@0 : P |
V — A*||C once we reinstate polarities.

4.3.4 Duality

A pre-strategy o : A—= B corresponds to a dual pre-strategy o* : B*—=A*'.
This duality arises from the correspondence

S > S
NN
A B (BY)* At

It is easy to check that the dual of copy-cat, 3, is isomorphic, as a span, to
the copy-cat of the dual, y4:, for A an event structure with polarity. It is also
straightforward, though more involved, to show that the dual of a composition
of pre-strategies (7®o)* is isomorphic as a span to the composition oto7t.
Duality, as usual, will save us work.

4.4 Strategies

This section is devoted to the main result of this chapter: that two conditions
on pre-strategies, receptivity and innocence, are necessary and sufficient in order
for copy-cat to behave as identity w.r.t. the composition of pre-strategies. It be-
comes compelling to define a (nondeterministic) concurrent strategy, in general,
as a pre-strategy which is receptive and innocent.
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4.4.1 Necessity of receptivity and innocence

The properties of receptivity and innocence of a pre-strategy, described below,
will play a central role.

Receptivity. Say a pre-strategy o : S — A is receptive when cz—c & pol 4(a) =
-=3seS. a—c & o(s) =a, for all z € C(S), a € A. Receptivity ensures that
no Opponent move which is possible is disallowed.

Innocence. Say a pre-strategy o is innocent when it is both +-innocent and
—-innocent:

+-Innocence: If s — s' & pol(s) = + then o(s) — o(s').

—-Innocence: If s — s' & pol(s’) = — then o(s) — o(s’).

The definition of a pre-strategy o : S — A ensures that the moves of Player
and Opponent respect the causal constraints of the game A. Innocence restricts
Player further. Locally, within a configuration, Player may only introduce new
relations of immediate causality of the form © — @ . Thus innocence gives Player
the freedom to await Opponent moves before making their move, but prevents
Player having any influence on the moves of Opponent beyond those stipulated
in the game A; more surprisingly, innocence also disallows any immediate causal-
ity of the form @ — @, purely between Player moves, not already stipulated in
the game A.

Two important consequences of —-innocence:

Lemma 4.4. Let 0:S — A be a pre-strateqy. Suppose, for s,s’ € S, that
[s) 1[s") & polg(s) =polg(s') =— & o(s) =0(s).

(i) If o is —-innocent, then [s) = [s').
(i) If o is receptive and —-innocent, then s =s'.
[x 1y expresses the compatibility of x,y € C(S).]

Proof. (i) Assume the property above holds of s, s’ € S. Assume o is —-innocent.
Suppose s; — s. Then by —innocence, o(s1) — o(s). As o(s’) =c(s) and o is
a map of event structures there is sy < s’ such that o(s2) = o(s1). But s1, $2
both belong to the configuration [s) U[s) so s1 = s2, as ¢ is a map, and s1 < s'.
Symmetrically, if s; — s” then s; < s. It follows that [s) = [s’). (ii) Now both

[s)—sc and [s)—sc with o(s) = o(s’) where both s,s” have —ve polarity. If,
further, o is receptive, s = s'. O
Let  and 2’ be configurations of an event structure with polarity. Write
x €~ ' tomean x €z’ and pol(z'~z) € {-}, i.e. the configuration z’ extends the
configuration z solely by events of —ve polarity. In the presence of —-innocence,
receptivity strengthens to the following useful strong-receptivity property:

Lemma 4.5. Let 0 : S - A be a —-innocent pre-strategy. The pre-strategy o
is receptive iff whenever cx €~y in C(A) there is a unique x’ € C(S) so that
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zca' & ox' =y. Diagrammatically,

X

\
ox < Y.

in
8

[Tt will necessarily be the case that v <~ x'.]

. af”: . if”: ing ox €~y w veri i
Proof. “if”: Clear. “Only if”: Assuming ox C e can form a covering chain
al (e 7%
Or——CY1——CYn =Y.

By repeated use of receptivity we obtain the existence of z’ where x ¢ z’ and
oz’ = y. To show the uniqueness of z’ suppose = € z,2" and oz = 02’ = y.
Suppose that z # z’. Then, without loss of generality, suppose there is a <g-
minimal s’ € z" with s’ ¢ z. Then [s") € z. Now o(s’) € y so there is s € z for
which o(s) = o(s"). We have [s),[s") € z so [s) 1 [s"). By Lemma 4.4(ii) we
deduce s = s’ so s’ € 2, a contradiction. Hence, z = 2’. O

It is useful to define innocence and receptivity on partial maps of event
structures with polarity.

Definition 4.6. Let f : S - A be a partial map of event structures with
polarity. Say f is receptive when

f(ac)—ac & poly(a)=- = 3lseS. r—c & f(s)=a

for all z € C(S), a € A.
Say f is innocent when it is both +-innocent and —-innocent, i.e.

s— s & pol(s) =+ & f(s) is defined =

f(s") is defined & f(s) — f(s'),
s— s & pol(s') =—- & f(s') is defined =

f(s) is defined & f(s) — f(s').

Proposition 4.7. A pre-strategy o : A—=B is receptive, respectively +/—-
innocent, iff both the partial maps o1 and oy of its span are receptive, respectively
+/—-innocent.

Proposition 4.8. For 0 : A—=DB a pre-strateqy, o1 is receptive, respectively
+/—-innocent, iff (o*)2 is receptive, respectively +/—-innocent; o is receptive and
innocent iff o+ is receptive and innocent.

The next lemma will play a major role in importing receptivity and innocence
to compositions of pre-strategies.

Lemma 4.9. For pre-strategies 0 : A—=B and 7 : B—=C, if o1 is receptive,
respectively +/—-innocent, then (7®c); is receptive, respectively +/—-innocent.
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Proof. Abbreviate TGc to v.
Receptivity: We show the receptivity of v; assuming that oy is receptive. Let

z € C(TS) such that viz—c in C(AY) with pol 4. (a) = —. By Proposition 4.2,
oym Uz—c with m Uz € C(S). As oy is receptive there is a unique s € S such

that m Ux—sc in S and o1(s) = a. It follows that Ux(i*c)z, for some z, in
C(T) ® C(S). Defining p =40 [(s,*)]. we obtain z—c and vi(p) = a, with p
the unique such event.

Innocence: Assume that o; is innocent. To show the +-innocence of v we first
establish a property of the —-relation in the event structure Pr(C(T) ® C(S5)),

the synchronized composition of event structures S and 7', before projection to
V:

If e = ¢ in Pr(C(T) ® C(S)) with e € V, pol(e) = + and v1(e)
defined, then e’ € V and vi(e") is defined.

Assume e — ¢’ in Pr(C(T) ® C(S)), eV, pol(e) =+ and vy (e) is defined.
From the definition of Pr(C(T") ® C(.5)), the event e is a prime configuration
of C(T) ® C(S) where top(e) must have the form (s, *), for some event s of S
where 01(s) is defined. By Lemma 3.21, top(e’) has the form (s’,*) or (¢,t)
with s = ¢’ in S. Now, as s — s’ and pol(s) = +, from the +-innocence of
o1, we obtain o1(s) — o1(s’) in A*||A. Whence o1(s’) is defined ensuring
top(e') = (s',*). It follows that ¢’ € V and vy (e) is defined.

Now suppose ¢ — ¢’ in T®S. Then either

(i) e —» ¢’ in Pr(C(T) ® C(S5)), or

(ii) e = e <€’ in Pr(C(T) ® C(S)) for some ‘invisible’ event e; ¢ V.

But the above argument shows that case (ii) cannot occur when pol(e) = +
and v (e) is defined. It follows that whenever e — e’ in T®S with pol(e) = +
and vy (e) defined, then vy(e’) is defined and vyi(e) — vi(e’), as required.

The argument showing —innocence of v assuming that of ¢; is similar. O

Corollary 4.10. For pre-strategies 0 : A—=B and 7 : B—=C, if 1o is re-
ceptive, respectively +[—-innocent, then (T®0)s is receptive, respectively +/—-
mnocent.

Proof. By duality using Lemma 4.9: if 75 is receptive, respectively +/—-innocent,
then (71); is receptive, respectively +/—-innocent, and hence (c*@7t); = ((7@0)*); =
(7®0)4 is receptive, respectively +/—-innocent. i

Lemma 4.11. For an event structure with polarity A, the pre-strategy copy-cat
va i A—= A is receptive and innocent.

Proof. Receptive: Suppose x € C(QC4) such that Yaz—c in C(A*||A) where
pol g1y 4(c) == Now yax =z and 2’ =qef 2 U {c} € C(A*||A). Proposition 4.1(ii)
characterizes those configurations of A*|| A which are also configurations of (C 4:
the characterization applies to x and to its extension 2’ = z U {c} because of the



4.4. STRATEGIES 43

—ve polarity of c. Hence 2’ € C((C4) and z—c 2’ in C((C,), and clearly ¢ is
unique so y4(c) =c.

—-Innocent: Suppose ¢ — ¢ in Cy4 and pol(¢’) = —. By Proposition 4.1(i),
c¢— ¢ in A*||A. The argument for +-innocence is similar. O

Theorem 4.12. Let 0 : A—=B be a pre-strategqy from A to B. If c0vy 2 o
and yp®o 2 g, then o is receptive and innocent.

Let o0 : A—=DB and 7 : B—=C' be pre-strategies which are both receptive and
innocent. Then their composition T®c : A—=C is receptive and innocent.

Proof. We know the copy-cat pre-strategies 74 and 7yp are receptive and
innocent—Lemma 4.11. Assume 0®y4 2 0 and yp®0 % . By Lemma 4.9,
(0®7v4)1 is receptive and innocent so o7 is receptive and innocent. From its
dual, Corollary 4.10, (yg®c)2 so o9 is receptive and innocent. Hence o is
receptive and innocent.

Assume that o0 : A—= B and 7 : B—= (' are receptive and innocent. The fact
that o is receptive and innocent ensures that (7®c); is receptive and innocent,
that 7 is receptive and innocent that (7®0)s is too. Combining, we obtain that
TO0 is receptive and innocent. m]

In other words, if a pre-strategy is to compose well with copy-cat, in the
sense that copy-cat behaves as an identity w.r.t. composition, the pre-strategy
must be receptive and innocent. Copy-cat behaving as identity is a hallmark
of game-based semantics, so any sensible definition of concurrent strategy will
have to ensure receptivity and innocence.

4.4.2 Sufficiency of receptivity and innocence

In fact, as we will now see, not only are the conditions of receptivity and inno-
cence on pre-strategies necessary to ensure that copy-cat acts as identity. They
are also sufficient.

Technically, this section establishes that for a pre-strategy o : A—= B which
is receptive and innocent both the compositions c®y4 and yp®o are isomor-
phic to 0. We shall concentrate on the isomorphism from c®vy4 to o. The
isomorphism from vp®c to o follows by duality.

Recall, from Section 4.3.2; the construction of the pre-strategy c®va as
a total map SO, - A'||B. The event structure S®UC,4 is built from the
synchronized composition of stable families C(.S) ® C((C4), a restriction of the
product of stable families to events

{(e,*) | ce @4 & va;(c) is defined}u

{(c,s) | ce@a & s€8 & vay(c) = 01(s)} U
{(*,5) | s€ S & oa(t) is defined} :
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C(8)®C(T 1)

YA1 YA2 / x

caly c(A) c(Ab) c(B)

Finally So(C4 is obtained from the prime configurations of C(S) ® C(C(C4)
whose maximum events are defined under y4,m or oams.

We will first present the putative isomorphism from c®y4 to o as a total
map of event structures 6 : S©(C4 — S. The definition of 6 depends crucially
on the lemmas below. They involve special configurations of C(S) ® C(CC4),
viz. those of the form Jx , where x is a configuration of SO 4.

Lemma 4.13. For xz € C(So(C4),
(,;8)elJz = (g, %) eUx=.

Proof. The case when pol(c) = + follows directly because then ¢ — ¢ in (C4 so
(E, *) Uz (C,S).
Suppose the lemma fails in the case when pol(c) = -, so there is a < ,-maximal
(¢,s) € Uz such that

pol(c) =- & (¢,*) ¢ Jz. @)
The event (¢, s) cannot be maximal in Uz as its maximal events take the form
(¢, *) or (*,s"). There must be e € Uz for which

(C,S) —yzx €.

Consider the possible forms of e:

Case e = (¢/,s'): Then, by Lemma 3.21, either ¢ — ¢/ in (CC4 or s — s" in S.

However if s — s’ then, as pol(s) = + by innocence, o1(s) — o1(s’) in A*, so

vas(c) = vas(c') in A; but then ¢ — ¢’ in (C4. Either way, ¢ — ¢ in (C4.
Suppose pol(c’) = +. Then,

(¢:8) =ua (6,%) —ya (¢,%) —ya ()57).

But this contradicts (¢, s) —. (¢, s').

Suppose pol(c’) = —. Because (c,s) is maximal such that (1), (¢/,*) € U.
But (¢, *) —y. (¢, *) whence (¢, *) € Uz, contradicting ().
Case e = (*,8"): Now (¢,8) =z (*,8'). By Lemma 3.21, s — s’ in S with
pol(s) = +. By innocence, o1(s) — o1(s’) and in particular o1(s’) is defined,
which forbids (*,s") as an event of C(S) ® C((C4).
Case e = (c/,*): Now (¢,8) =z (¢/,*). By Lemma 3.21, ¢ — ¢’ in (Cy4.
Because (¢, s) and (¢/, *) are events of C(S) ® C((C4) we must have y2(c) and
~1(c") are defined—they are in different components of (C4. By Proposition 4.1,
¢ = ¢, contradicting ().

In all cases we obtain a contradiction—hence the lemma. O
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Lemma 4.14. For z € C(So(C,),

017T2U.’E S Y4171 UZL’

Proof. As a direct corollary of Lemma 4.13, we obtain:

0'17T2U£L’§"}/A17T1 U.Z

The current lemma will follow provided all events of +ve polarity in y4,m Uz
are in oyme Uz. However, (¢,s) —yz (¢, *), for some s € S, when pol(c) =+. O

Lemma 4.15. For z € C(SoC4),

om|Jr ¢ ooyaz.
Proof.
omJz={1} xoymJz U {2} xooma|Jz
< {1} xyam Uz u {2} xoame|Jz, by Lemma 4.14
=00@y42, by Proposition 4.2.
O

Lemma 4.15 is the key to defining a map 6 : S©(C 4 — S via the following
map-lifting property of receptive maps:

Lemma 4.16. Let 0 : S - C be a total map of event structures with polar-
ity which is receptive and —-innocent. Let p : C(V) — C(S) be a monotonic
function, i.e. such that p(z) € p(y) whenever x Cy in C(V). Letv:V — C be
a total map of event structures with polarity such that

VeeC(V). op(xz) S ve.

Then, there is a unique total map of event structures with polarity 6 : V. — S

such that Vx e C(V). p(x) €~ 02 and v =00 :

: b V
v-Ls-5
\ la
%
C.
[We use a broken arrow to signify that p is not a map of event structures.]

Proof. Let x € C(V). Then op(z) €~ vz. Define ©(x) to be the unique
configuration of C(S), determined by the receptivity of o, such that

p(x) e @(_x)

[ B
;

op(z) < wvz.
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Define 6,, to be the composite bijection
Op:x = v = O(x)

where the bijection = 2 vz is that determined locally by the total map of event
structures v, and the bijection v = ©(x) is the inverse of the bijection o 1O (x) :
O(x) 2 vz determined locally by the total map o.

Now, let y e C(V') with x € y. We claim that 6, is the restriction of 6,. This
will follow once we have shown that ©(z) € O(y). Then, treating the inclusions
as inclusion maps, both squares in the diagram below will commute:

Oy0y = vy = O(y)
O.:x = vz = O(x)

This will make the composite rectangle commute, i.e. make 6, the restriction

of 0,.
To show O(z) € ©(y) we suppose otherwise. Then there is an event s € O(x)
of minimum depth w.r.t. <g such that s ¢ ©(y). Note that pol(s) = -, as

otherwise s € p(z) € p(y) € O(y). As o(s) € vz € vy there is s’ € O(y) such
that o(s") = o(s). From the minimality of s, both [s),[s) € ©(y) ensuring
the compatibility of [s) and [s’). By Lemma 4.4(ii), s = s’ and s € O(y)—a
contradiction.

By Proposition 2.5, the family ,., z € C(V'), determines the unique total map
6:V — S such that §z = ©(z). By construction, p(x) ¢~ 0z, for all x € C(V),
and v = of. This property in itself ensures that 6z = ©(x) so determines 6
uniquely. O

In Lemma 4.16, instantiate p : C(S®Q4) — C(S) to the function p(z) =
moUx for € C(S©UC 1), the map o to the pre-strategy o : S - A*||B and v to
the pre-strategy c®v4. By Lemma 4.15, oma Uz S~ 0@v4 x, so the conditions
of Lemma 4.16 are met and we obtain a total map 6 : S©(C4 — S such that
moUx € Oz, for all z € C(SOWC,), and 06 = 00y4:

ul

» il
SoCy—=—-=8

=)
(o8
oOYA

At||B.
The next lemma is used in showing € is an isomorphism.

Lemma 4.17. (i) Let z € C(S) ® C((C4). Ife<, €' and ma(e) and m2(e’) are
defined, then ma(e) <s mo(e’). (i) The map ms is surjective on configurations.
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Proof. (i) It suffices to show when
€y €1 Py Py Ep1 2 6,

with m2(e) and ma(e’) defined and all ma(e;), 1 <@ < n— 1, undefined, that
7T2(6) <s 7T2(6,).

Case n =1, so e —, €’: Use Lemma 3.21. If either e or e’ has the form (%, s)
then the other event must have the form (x,s") or (¢’,s") with s — s’ in S.
In the remaining case e = (¢,s) and ¢’ = (¢/,s") with either (1) ¢ — ¢’ in (C4,
and ya5(c) = ya5(¢") in A, or (2) s — ¢ in S. If (1), 01(s) — o1(s’) in
A* where 5,5’ € maz. By Proposition 3.10, s <g s’. In either case (1) or (2),
7T2(6) <s 7T2(6,).

Case n > 1: Each e; has the form (¢;, *), for 1 <4 <n-1. By Lemma 3.21, events
e and ¢’ must have the form (¢, s) and (¢’,s’) with ¢ — ¢; and ¢,—1 — ¢/ in (C 4.
As y4;(c) and v45(c1) are defined, ¢; = ¢ and similarly ¢, ; = ¢/. Again by
Lemma 3.21, ¢; — ¢;41 in (C4 for 1 < i <i-2. Consequently va,(c) <4 va5(c").
Now, s,s" € moz with o1 (s) <a: 01(s"). By Proposition 3.10, s <g s', as required.
(ii) Let y € C(S). Then o1y € C(A*) and by the clear surjectivity of v44 on
configurations there exists w € C((C4) such that y4,w = 01y. Now let

z={(c,*) | cew & va(c) is defined}
Uf(e,s) [cew & sey & yas(c) =o01(s)}
U{(*,8) | sey & o2(s) is defined} .

Then, from the definition of the product of stable families—3.3.1, it can be
checked that z € C(S)®C(CC 4). By construction, moz = y. Hence 3 is surjective
on configurations. O

Theorem 4.18.0:00v4 2 0, an isomorphism of pre-strategies.

Proof. We show 6 is an isomorphism of event structures by showing 6 is rigid
and both surjective and injective on configurations (Lemma 3.3 of [9]). The rest
is routine.

Rigid: Tt suffices to show p — p’ in S©QC,4 implies 0(p) <5 6(p’). Suppose
p — p' in SeW, with top(p) = e and top(p’) = e¢’. Take z € C(SO,)
containing p’ so p too. Then

’
€ 2 yz €1 Pyz T PUzxz Gn-1 PUz €

where e, e’ € Vy and e; ¢ Vp for 1 <i<n-1. (Vj consists of ‘visible’ events of the
form (e, *) with y4,(c) defined, or (*,s), with o3(s) defined.)

Case n =1, so e =, €': By Lemma 3.21, either (i) e = (*,5) and €' = (*,s")
with s — s’ in S, or (ii) e = (¢, *) and e’ = (¢, *) with ¢ — ¢/ in (C 4.

If (i), we observe, via o) = 0®v4, that s € moUx € 0z and 0(p) € Oz with
a(0(p)) = a(s), so 8(p) = s by the local injectivity of o. Similarly, 8(p’) = s, so
0(p) <5 0).

If (ii), we obtain 6(p),8(p") € Ox with 010(p) = ya,(c), 010(p’) = v4,(c") and
va1(c) = va1(c¢") in A*. By Proposition 3.10, 6(p) <gs 6(p").
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Case n > 1: Note e; = (¢;,8;) for 1 < i < n -1, and that s; <g s,-1 by
Lemma 4.17(1). Consider the case in which e = (¢,*) and e’ = (¢, *)—the
other cases are similar. By Lemma 3.21, ¢ — ¢; and ¢,_; — ¢ in (C4. But
va1(c) and y45(c1) are defined, so ¢; = ¢, and similarly ¢,_; = ¢/. We remark
that 8(p) = s1, by the local injectivity of o, as both s; € mo Uz € 02 and 0(p) € Ox
with o(6(p)) = o(s1). Similarly 6(p) = s,—1, whence 0(p) <s 6(p").

Surjective: Let y € C(S). By Lemma 4.17(ii), there is z € C(S) @ C(QC4) such
that moz = y. Let

2'=z20{(c,*) | pol(c)=+ & Is€S. (¢,s) € z}.
It is straightforward to check 2z’ € C(S) ® C(CC4). Now let
2" =2"~{(e,*) | pol(c) =— & VseS. (¢,s) ¢2'}.

Then 2" € C(S) ® C((C4) by the following argument. The set 2"’ is certainly
consistent, so it suffices to show

pol(c)=- & (¢c,*) <y ee2’ = IseS. (¢,8) e,

for all ¢ € @C4 and e € 2”’. This we do by induction on the number of events
between (¢, *) and e. Suppose

pol(c) =— & (¢, %) = e1<eez’.

In the case where e; = (¢1,51), we deduce ¢ — ¢ in (C4 and as va;(c) is
defined while y45(c1) is defined, we must have ¢; = ¢, as required. In the case
where e1 = (¢1,*) and pol(cy) = —, by induction, we obtain (¢1,s1) € 2’ for some
s1€8S. Also ¢ — ¢1,s0 ¢ —¢1 in (C4. As 2z’ is a configuration we must have
(¢,8) <o (c1,81), for some s € S, so (¢,s) € z'. In the case where e; = (cy, *)
and pol(c1) = +, we have ¢ — ¢1 in (C4. Moreover, (¢;,s) € 2’, for some s € S,
as 2’ is a configuration and ¢ — ¢; in (C4. Again, from the fact that 2’ is a
configuration, there must be (¢, s) € 2’ for some s € S. We have exhausted all
cases and conclude 2" € C(S) ® C(QC4) with 02" = mo2 = y, as required to show
0 is surjective on configurations.

Injective: Abbreviate c®vy4 to v. Assume 0z = Oy, where z,y € C(S©U,4). Via
the commutativity v = 06, we observe

vr=c0z=00y=vy.
Recall by Proposition 4.2, that v = y4;m Uz =1 Ux. It follows that
(%) ez <= cevz < cevy < (¢,%) e Jy.

Observe
(%,8) ez <= 02(s) is defined & s € bz :

“=” by the local injectivity of o2, as p =get [(*,8)]ux yields 8(p) € Oz and
s emaUx € Ox with 02(8(p)) = 02(s), so 8(p) = s; “<=" as 0a2(s) defined and
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s € Oz entails s = §(p) for some p € x, necessarily with top(p) = (*,s). Hence

(*,8) e Jz < 02(s) is defined & s €z
<= 09(s) is defined & s € Oy

= (x5)eUy.

Assuming (¢,s) € Uz we now show (¢, s) € Uy. (The converse holds by
symmetry.) There is p € z, such that (¢,s) € p. If top(p) = (*,s") (also in
Uy as it is visible) then as mo is rigid, s < s’ and we must have (¢, s) € Uy.
Otherwise, top(p) = (d,*) and we can suppose (by taking p minimal) that
(e,8) <yz (d',8") =a (d,*). But then 0(p) = s’ € z = 0y. Also s <g s’, by the
rigidity of 7o, and, as we have seen before, d’ = d with d’ —ve. Hence s’ is +ve
and as Ay is a —ve extension of o Uy we must have s’ € mo Uy. Hence there is
(*,8") or (¢",s") in Uy, and as s <g s’ there is some (¢, s) € Uy. In both cases,
Yas(c') =01(8) =va5(c), so ¢’ = ¢, and thus (¢, s) € Uy.

We conclude Uz = Uy, so x =y, as required for injectivity. O

4.5 Concurrent strategies

Define a strategy to be a pre-strategy which is receptive and innocent. We obtain
a bicategory, Games, in which the objects are event structures with polarity—
the games, the arrows from A to B are strategies o : A—= B and the 2-cells
are maps of pre-strategies. The vertical composition of 2-cells is the usual com-
position of maps of spans. Horizontal composition is given by the composition
of strategies ® (which extends to a functor on 2-cells via the functoriality of
synchronized composition). The isomorphisms expressing associativity and the
identity of copy-cat are those of Proposition 4.3 and Theorem 4.18 with its dual.

We remark for future use that composition of strategies respects less gen-
eral notions of 2-cell. The horizontal composition of rigid 2-cells is rigid. The
essential ingredients in showing this are that the product and pullback of event
structures preserve rigid maps when regarded as functor (from Corollary 3.23)
and that under appropriate conditions hiding as formalized through projection
preserves rigid maps (Proposition 3.29).

4.5.1 Alternative characterizations
Via saturation conditions

An alternative description of concurrent strategies exhibits the correspondence
between innocence and earlier “saturation conditions,” reflecting specific inde-
pendence, in [10, 11, 12]:

Proposition 4.19. A strategy S in a game A comprises a total map of event
structures with polarityo : S — A such that

(i) cx—c & poly(a)=—=ANse 8. x—c & o(s) =a, for all z € C(S), ac A.
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(1) (+) Ifx—ecxl—e,C & polg(e) =+ in C(S) and oxa—(ec) in C(A), then x—P,C
in C(S).

(ii)(=) If 2—ca1—c & polg(e) = - in C(S) and axtiec) in C(A), then x—c
in C(S).

I’
. & & . . . .o .
Proof. Note that if z—cx;—c then either e co e’ or e — ¢’. Condition (ii) is
a contrapositive reformulation of innocence. |

Via lifting conditions

Let z and 2’ be configurations of an event structure with polarity. Write z c* 2’
to mean x € z’ and pol(x’ \ x) € {+}, i.e. the configuration x’ extends the
configuration x solely by events of +ve polarity. With this notation in place we
can give an attractive characterization of concurrent strategies:

Proposition 4.20. A strategy in a game A comprises a total map of event
structures with polarity o:S — A such that

(i) whenever y €* ox in C(A) there is a (necessarily unique) x' € C(S) so that
'cx & o’ =y, ie

.'L"

x

\
Y ct o,

N

and
(i1) whenever cx €~y inC(A) there is a unique x' € C(S) so that x €z’ & oz’ =
Y, i.e.

X = X

U[ o
\i

or < ¥y

Proof. Let 0 : S — A be a total map of event structures with polarity. It is
claimed that o is a strategy iff (i) and (ii).

“Only if”: Lemma 4.5 directly implies (ii). To establish (i) it suffices to show
the seemingly weaker property (i)’ that

y—cox & pol(a) =+ = a2’ € C(S).2'—cz & o2’ =y

for a e A,z € C(S),y € C(A). Then (i), with y c* oz, follows by considering a
covering chain y—<c---—cox. (The uniqueness of z is a direct consequence of
o being a total map of event structures.) To show (i)', suppose y—ac ox with a
+ve. Then o(s) = a for some unique s € x with s +ve. Supposing s were not <-
maximal in z, then s — ¢’ for some s’ € . By +-innocence a = o(s) — o(s') € ox
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implying a is not <-maximal in ox. This contradicts y—ac ox. Hence s is <-
maximal and ' =qer © \ {s} € C(S) with 2'—cz and oz’ = y.

“If”: Assume o satisfies (i) and (ii). Clearly o is receptive by (ii). We establish
innocence via Proposition 4.19.

Suppose 2—< 21— 2’ and pol(s) = + with aa:—S’C y2. Then ygisg oz’ with
pol(o(s)) = +. From (i) we obtain a unique z2 € C(S) such that xo € 2’ and
oxy = yo. As o is a total map of event structures, we obtain .TQ—SC ' and
subsequently SU—SIC X2, as required by Proposition 4.19(ii)+.

Suppose r—c xlic x' and pol(s') = - with O'.T,‘a—(s(,i)yg. The case where
pol(s) = + is covered by the previous argument: we obtain m—S,C Z9, as required

by Proposition 4.19(ii)-. Suppose pol(s) = —. We have

o(s) a(s)

ocrxr—Cys—<Cox .

As o is already known to be receptive, we obtain

’

(& e
r—cxo—cz” & oxo=ys & oz =01’

From the uniqueness part of (ii) we deduce 2" = z’. As o is a total map of event

structures, e = s and €’ = s’ ensuring r—c , as required by Proposition 4.19(ii)-.
O

As its proof makes clear, condition (i) in Proposition 4.20 can be replaced
by: for all a € A,z € C(S),y e C(A),

y—cor = 32’ €C(S).a'—<cz & oz’ =y, ie.

C” xr
¥

y e o,

where the relation —c signifies the covering relation induced by an event of
—+ve polarity.

The proposition above generalises to the situation in which configurations
may be infinite, but first a lemma extending receptivity to possibly infinite
configurations.

Lemma 4.21. Let 0: S — A be receptive and —-innocent. Then,
ocr—c & poly(a)=-=NseS. 1—< & o(s) =a,

for all z € C=(S), ac A.
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Proof. Suppose cz—c and pol 4(a) = —. Then there is z¢ €C(S) with 2 € z and

a .. . . s
oxop—=<. By receptivity, there is a unique s € S such that zp—c & o(s) = a.
In fact, x U {s} € C=(S). Suppose otherwise. Then there is x; € C(S) with

xg € o1 € x for which x1 U {s} ¢ C(S). But axl—ac so there is a unique s; € S
such that z1—c & o(s1) = a. Both [s) and [s1) are included in 27 so s = s1
by Lemma 4.4—a contradiction. Now that z u {s} € C*(S) we have z—c and

o(s) = a. Uniqueness of s follows by Lemma 4.4: if also z—c and o(s') =a
then [s) 1 [s'). O

Corollary 4.22. A strategy in a game A comprises a total map of event struc-
tures with polarity o:S — A such that

(i) whenever y c* ox in C*(A) there is a (necessarily unique) z' € C*(S) so
that ¥’ cx & ox' =y, i.e.

N

and
(ii) whenever cx €~ y in C*(A) there is a unique ' € C=(S) so that x ¢
' & ox' =y, ie.

Proof. Let o : S - A be a total map of event structures with polarity. It
is claimed that o is a strategy iff (i) and (ii). The “If” case is obvious by
Proposition 4.20. “Only if”:

(i) Take ' =qer {s€x | o(s) ¢ (cz) N\ y}. Suppose s’ — s in z. Then

o(s) € (ox) Ny = o(s) € (0x) Ny
by +-innocence. Hence its contrapositive, viz.
o(s) ¢ (o) Ny = o(s') ¢ (ox) Ny,

so that s € 2’ implies s’ € 2’. Thus, being down-closed and consistent, =’ € C*(S)
with oz’ = y from the definition of z’.

(ii) Let ' 2 # be a c-maximal 2’ € C*(S) for which oz’ ¢ y—this exists by
Zorn’s lemma. Then, ox ¢~ ox’ €~ y. Supposing oz’ ¢~ y there is a € A with
pol 4(a) = — such that ocz'—<cy; ¢ y. But, by Lemma 4.21, there is s € S for
which 2/—c and o(s) = a, contradicting the c-maximality of 2’. Hence oz’ = y.
Uniqueness of z’ follows as in the proof of Lemma 4.5. O
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Via +-moves

A strategy is determined by its +-moves. More precisely, a strategy o : S - A
determines a monotone function d : C(S*) - C(A) given by d(x) = o[x]s for
2 €C(S%). The event structure S* is the projection of S to its purely +-ve moves.
Intuitively, d specifies the position in the game at which Player moves occur.
The function d determines the original strategy o via the universal property
described in the proposition below.

Proposition 4.23. Let o : S — A be a receptive —-innocent pre-strateqgy. Define
q:S — 5" be the partial map of event structures with polarity mapping S to
its projection S* comprising only the +ve events of S, so qy =y* forye C(S).
Define the function d : C(S*) — C(A) to act as d(zx) = o[x]s for x € C(S*).
Then, d(qy) < oy for all y € C(S), i.e.

§ —> 5" (1)
|
Al

[The dotted line indicates that d is not a map of event structures.]
Suppose f : U — A is a total map and g : U — ST a partial map of event
structures with polarity such that d(gy) ¢~ fy for ally e C(U), i.e.

U—> 5" (2)
1%
Al

Then, there is a unique total map of event structures with polarity 60 : U — S
such that f =00 and g = 0,

g

N

U-2s95— g+ (3)

l q .
KA.P

Proof. We first check (1). Letting y € C(S),
d(qy) =d(y") =oly"ls < y.
Suppose (2). Define p: C(U) — C(S) by taking
P(2) =aet [92]s -
Clearly p is monotonic and

op(z) =olgzls=d(gz) ¢ fz
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for all z € C(U). By Lemma 4.16, there is a unique total map of event structures
with polarity 6:U — S such that

f=00 and VzeC(U).p(z)c 0z=.

From the latter, [gz]s € 0z from which gz = (g2)* = (02)*, so gz = g8 z, for
all z € C(U). Hence we have the commuting diagram (3). Noting

VzeC(U). gz=(02)" < [gz]s S 06z,
we see that 6 is the unique map making (3) commute. O

It follows that a strategy o is determined up to isomorphism by its ‘position
function’ d specifying at what state of the game Player moves are made. The
position functions d which arise from strategies have been characterized by Alex
Katovsky and GW [13].

4.6 Rigid-image strategies

It can be useful to replace a strategy by its rigid image in its game. As is to
be expected something can be lost in the process. Precisely what is related
to notions of equivalence between strategies. For now suffice it to say, that
while ‘may’ behaviour is preserved, ‘must’ behaviour need not be. What is
gained is that we can replace the bicategory of games by a category; a rigid-
image strategy can be identified with its rigid image, a substructure of the
game so we have canonical representatives of isomorphism classes of rigid-image
strategies. Rigid images are important for equivalences on strategies. For several
important behavioural equivalences, a representative of an equivallence class
of strategies can be found in their sharing a common rigid image and some
additional structure (probability or stopping configurations, for instance).
A strategy o :S — A factors through its rigid image

gt g %0,

where f is rigid surjective and og : Sy — A is itself a strategy. In a rigid-image
strategy such as og : Sg = A the rigid image Sy is bounded to be a substructure
of aug(A). This provides us with a characterisation of rigid-image strategies.
A rigid-image strategy in a game A is an innocent, receptive substructure Sy of
aug(A) in the sense that there is a rigid inclusion ig : So = aug(A) for which
the composition €4 o ig is innocent and iy is receptive. In other words Sy is a
down-closed subset of aug(A) which is closed under possible Opponent moves
and comprises only innocent augmentations of A.

The following example shows that the composition of the rigid images of two
strategies is not necessarily a rigid image, both for composition of strategies with
and without hiding.
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Example 4.24. Let B be the game

S) &<4+——0O.

Let C be the game consisting of a single Player move @. Let 0 :.S - B be the
strategy sending S equal to

N

to B in the obvious way indicated by the layout. Let 7 : T — B*||C be the
strategy sending T equal to

e —>d

e<t——Oo<4—

to BY||C, which we can draw as

® o4+— @,

in the obvious way. Their composition, before hiding, is given by T @ S:

/

© ©@ —>®

Ve

@<t——O<4—0O.

@

Both ¢ and 7 are rigid-image strategies yet there composition both before and
after hiding is not. Before hiding the two Player moves in T'®S over the common
move in C' go to a common image. After hiding T®S looks like

®

@

withn both moves going to the common sole move in C'; while distinct they
clearly go to a common event in the rigid image. O
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So the compositions, with and without hiding, 70®0y and 79 ® oy of the
rigid images of two strategies o and 7 is not necessarily a rigid-image strategies,
we are forced to take the rigid image of the result. However once we do, the
operation of forming the rigid image of a strategy respects composition, both
with and without hiding: letting o : S - A*||B and 7: T — B*||C be strategies,
(t@0)o = (10000)p and (7 & o) = (70 ® 00)o, as we shall now show in the
following.

Proposition 4.25. Let f: A —> B and g: B — C be maps of event structures.
Assume that f is rigid and epi. Then, the rigid image of g equals the rigid image
ofgof.

Proof. Write the rigid image of g as Im(g) and the rigid image of gf as Im(gf).
From the universal property associated with the rigid image of gf there is a
unique (necessarily rigid epi) map h:Im(g) - Im(gf) such that

A f B 9o Im(g) g1 C
h
'
Im(f)g

commutes. Write [ =g¢f hgo. Then [ is rigid epi being the composition of such.
From the universal property associated with the rigid image of g there is a
unique (necessarily rigid epi) map & : Im(g)f — Im(g) such that

B4go>>1m(g) L)
A
k

l H
Im(gf)

commutes. By uniqueness of the universal property of the rigid-image of g we
obtain kh = idyygy. By uniqueness of the universal property of the rigid-image
of gf we obtain hk =idyy,(4r). Hence the rigid images are isomorphic. Because
they are chosen to be substructures of aug(C') they are equal. O

Corollary 4.26. If two strategies are connected by a 2-cell which is Tigid epi,
then they share the same rigid image..

Lemma 4.27. Let 0:5 — > So —2% AY|B and 7:T T, — B*||C
be the rigid image factorisations of strategies o : S — A*||B and 7: T — B*||C.
Then,

(i) (o ®00)o=(T®0)o and (ii) (T9@00)o = (707 )o -
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Proof. (i) Consider the following compound pullback square in which all the
squares are pullbacks—we are ignoring polarites.

T®S
T()@S g&)f T@SO
s|c Ty ® So AllT
m / V \ A
SollC (To ® S0)o ATy
mﬂ@fo)%
AllB|C

In the diagram we have inserted the rigid-image factorisation of the map Ty ®
So = A||B||C. Notice that in the uppermost square all the maps are rigid epi
being the pullbacks of such maps. Consequently g® f is rigid epi. Now applying
Corollary 4.26 we deduce that the rigid image of the map T'® S coincides with
that of To ® Sy in A||B||C and is therefore (To ® Sp)o. This ensures that

(To®00)o=(T®0)g.
(ii) We can also deduce

(70000)0 = (TG0)g -

Recall we obtain 7®c as the defined part of the partial map

TeS-—2% A|B|C — A|C

and similarly 79®0q as the defined part of the partial map

To®00

To ® So — Al|B||C —— A||C

—in both cases the map A|B||C — A|C is that eliding B. From the diagram
in (i) we see
T®0=(10®00)o(9® f).

In the commuting diagram

T@SﬂT()@SO

L

TeS g@f) To®Sy

l‘ro@o‘o
TOO

A|C
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we have filled in the total map g®f given by the universal property of partial-
total factorisation. Asin (i) above g® f is rigid epi. It follows that the map gof
is also rigid epi: the map g® f preserves causal dependency because ¢® f does; it

is epi because the composite map T & S 98 Ty ® Sy — Ty®S, is epi—the
latter projection map is epi. Now by Corollary 4.26 we deduce that 7o®oy and
T7®0 share the same rigid image in A||C. Consequently (190®09)o = (700)p. O

Let Games be the order-enriched category of rigid-image strategies defined
as follows. Its objects are games. Its maps are rigid-image strategies. Its 2-cells
are rigid 2-cells between strategies which are necessarily rigid inclusions as they
are between rigid images. Under composition composable strategies ¢ and 7
are taken to (7®0)g. Recall that in a copycat strategy v4 : CC4 — A*||A the
underlying function of the map 4 acts as the identity on events; this ensures
that copycat strategies are rigid-image.

The operation of taking the rigid image of a strategy yields a functor from
Games,, the bicategory of strategies with with rigid 2-cells, to Games,. From
the results above composition is preserved. A rigid 2-cell f: o0 = 7 is sent to a
rigid inclusion between their rigid images: by taking its image, any rigid 2-cell
between strategies factors into a 2-cell which is a rigid epi, followed by 2-cells
which is a rigid inclusion; strategies connected by a rigid epi share the same
rigid image, while rigid inclusions are preserved in taking the rigid image.



Chapter 5

Deterministic strategies

This chapter concentrates on the important special case of deterministic con-
current strategies and their properties. They are shown to coincide with Mellies
and Mimram’s receptive ingenuous strategies.

5.1 Definition
We say an event structure with polarity S is deterministic iff
VX Cap S. Neg[X] € Cong = X € Cong,

where Neg[X] =qef {s' €S | pol(s’) = - & s e X. s’ < s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends
only on a consistent set of opponent moves. Say a strategy o : S — A is
deterministic if S is deterministic.

Lemma 5.1. An event structure with polarity S is deterministic iff
Vs,s' €S,z eC(S). 1—c & z—< & pol(s) =+ = zU{s,s'} €C(Y).

Proof. “Only if”: Assume S is deterministic, x—SC, r—c and pol(s) = +. Take
X =4t zU{s,8"}. Then Neg[X]caxu{s} so Neg[X] e Cong. As S is determin-
istic, X € Cong and being down-closed X =z U {s,s'} € C(S).

“If. Assume S satisfies the property stated above in the proposition. Let
X CSgp S with Neg[X] € Cong. Then the down-closure [ Neg[ X ]] € C(S). Clearly
[Neg[X]] ¢ [X] where all events in [X]\ [Neg[X]] are necessarily +ve. Sup-
pose, to obtain a contradiction, that X ¢ Cong. Then there is a maximal
z € C(S) such that

[Neg[X]] € z < [X]

and some e € [X ]\ z, necessarily +ve, for which [e) ¢ z. Take a covering chain

S1 S92 Sk
[e)—cz1—c-—Czp=2.

99
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As [e)—ec[e] with e +ve, by repeated use of the property of the lemma—
illustrated below—we obtain z—<c 2’ in C(S) with [Neg[X]] € 2’ € [X], which
contradicts the maximality of z.

[e] S1 7 S2 Sk 7 7

—< 27 —< ' —< Zp = z
ET eT e'T
[e) 2 2o % o 2 oz = 2z

O

So, above, an event structure with polarity can fail to be deterministic in
two ways, either with pol(s) = pol(s’) = + or with pol(s) =+ & pol(s’) =-. In
general for an event structure with polarity A the copy-cat strategy can fail to
be deterministic in either way, illustrated in the examples below.

Example 5.2. (i) Take A to consist of two +ve events and one —ve event, with
any two but not all three events consistent. The construction of (C 4 is pictured:

o — &
At o+ A
b +— O
Here 4 is not deterministic: take = to be the set of all three —ve events in (C4
and s, s’ to be the two +ve events in the A component.
(ii) Take A to consist of two events, one +ve and one —ve event, inconsistent
with each other. The construction (C 4:
At e—+@ A
b +— O

To see (I 4 is not deterministic, take x to be the singleton set consisting e.g. of
the —ve event on the left and s, s’ to be the +ve and —ve events on the right.

5.2 The bicategory of deterministic strategies

We first characterize those games for which copy-cat is deterministic; they only
allow immediate conflict between events of the same polarity; there can be no
races between Player and Opponent moves.

Lemma 5.3. Let A be an event structure with polarity. The copy-cat strategy
va 1s deterministic iff A satisfies

Vo eC(A). 1—< & :L'—alc & pol(a) =+ & pol(a') = - = zu{a,a’} e C(A).
(race-free)

Proof. “Only if”: Suppose x € C(A) with z—c and r—c where pol(a) =+ and
pol(a") = —. Construct y =get {(1,0) |bez}u{(1l,a)} u{(2,b) | bex}. Then
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2,a 2,a
y € C(QC4) with y(—c) and y(—c)7 by Proposition 4.1(ii). Assuming (C4 is

deterministic, we obtain y U {(2,a),(2,a")} € C(QC4), so yu {(2,a),(2,a’)} €
C(A*||A). This entails z U {a,a’} € C(A), as required to show (race-free).
“If7: Assume A satisfies (race-free). It suffices to show for X cq, (C4, with
X down-closed, that Neg[X ] € Cong, implies X € Cong,. Recall Z € Cong
iff Z e ConAl”A.

Let X cg, (C4 with X down-closed. Assume Neg[X] € Congz,. Observe

(i) {c|ce X & pol(c) = -} € Neg[X] and

(ii) {¢|ce X & pol(c) = +} € Neg[X] as by Proposition 4.1, X being down-
closed must contain ¢ if it contains ¢ with pol(c) = +.

Consider Xs =qef {a | (2,a) € X}. Then X» is a finite down-closed subset of A.
From (i),
X35 =def {a € X2 | pol(a) =-} € Cony .

From (ii),
X3 =get {a€ Xa | pol(a)=+}€Cony.

We show (race-free) implies X5 € Con 4.

Define z7 =qo¢ [X5] and z* =get [X5]. Being down-closures of consistent
sets, 27,27 € C(A). We show 2z~ 1 z* in C(A). First note z~ nz* € C(A). If
a €z Nz nz' then pol(a) = —; otherwise, if pol(a) = + then a € 2 a well as
a € z~ making a € z7 n z*, a contradiction. Similarly, if a € z* \ 27 n 2" then
pol(a) = +. We can form covering chains

P2 Pk

— + P1 _ n2 ny
zZ Nz —Cr1—C-—CTp=2

_ ni
and 2" nzt—cy—c-—cy = 2"

where each p; is +ve and each n; is —ve.

Consequently, by repeated use of (race-free), we obtain zx Uy, € C(A),
i.e. ztuz e C(A), as is illustrated below. But X5 € 2* U 27, so Xs € Congy.
A similar argument shows X =ger {a € A* | (1,a) € X} € Cona:. It follows that
X €Conyupa, so X € Cong, as required.

p1 p2 P3 Pk
Ui — T1VYy — 22Uy — - — TpUY

&

a3

o

!

&

3

o

o

P1 P2 p3 Pk
Y1 —< T1VUYy1 — T2UY; —< —< T YY1
ni T ni T ni T ni T
- + b1 P2 p3 Pk
zZ Nz —c 1 —c T2 —c —c Tl
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Proposition 5.4. Let A be an event structure with polarity. Then, A satisfies
(race-free) iff

Va,21,10 € C(A). 2" a1 & £ €™ 29 = 21 U0 € C(A).

Proof. “If” is obvious. “Only if”: by repeated use of (race-free) as in the
proof of Lemma 5.3. O

Via the next lemma, when games satisfy (race-free) we can simplify the
condition for a strategy to be deterministic.

Lemma 5.5. Let o : S — A be a strategy. Suppose :E—scy & r—2c y' & polg(s) =
—. Then, oy 1t oy’ in C(A) = y 1y in C(S). A fortiori, if A satisfies
(race-free) then so does S.

Proof. Assume oy t oy’ in C(A), so ay’a—(sc) oyuoy' in C(A). As o(s) is —ve, by
receptivity, there is a unique s” € S, necessarily —ve, such that o(s") = o(s) and
y'—cxu{s,s"} in C(S). In particular, z U {s’,s"} € C(S). By —-innocence,

we cannot have s’ — s”, so z U {s"} € C(S). But now 2—< and z—c with
o(s) = o(s"”) and both s,s” —ve and hence s” = s by the uniqueness part of
receptivity. We conclude that z u {s’,s} € C(S) so y 1 ¢'. O

Corollary 5.6. Assume A satisfies (race-free) of Lemma 5.8. A strategy
o: S - A is deterministic iff it is weakly-deterministic, i.e. for all +ve events
s,8' €S and configurations x € C(S),

z—c & 1—c = zu{s,s'}eC(9).

Proof. “Only if”: clear. “If”: Let r—c and z—c where polg(s) =+. For S to
be deterministic we require z U {s,s’} € C(S). The above assumption ensures

this when polg(s’) = +. Otherwise polg(s’) = — with amisc) and U.’L‘U—(SC). As A
satisfies (race-free), cx U o(s),o(s’) € C(A). Now by Lemma 5.5, z U {s,s'} €
C(9). O

Lemma 5.7. The composition T®c of deterministic strategies o and T is de-
terministic.

Proof. Let 0 : S —» AY||B and 7 : T — B*||C be deterministic strategies. The
composition TeS is constructed as Pr(C(T)© C(S)) | V, a synchronized com-
position of event structures S and T projected to visible events e € V' where
top(e) has the form (s, *) or (*,t).

We first note a fact about the effect of internal, or “invisible,” events not in
V on configurations of C(T)eC(S). If

t 't
z(ic)w & z(s—c)w' & wtw (1)
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within C(T)®C(S), then either

7
S S
mz—cmw & mz—cmuw & mw 3 mw’, (2)
within C(.5), or
t t' , ,
Toz—C maw & Taz—C mw' & mw 3 mow', (3)

within C(T"). Assume (1). If t = ¢/ then o(s) = 7(¢) = 7(¥') = o(s") and we obtain
(2) as o is a map of event structures. Similarly if s = s’ then (3). Supposing
s #s" and t # ¢’ then if both (2) and (3) failed we could construct a configuration
2" =qer 2U{(s,t),(s',t)} of C(T)®C(S), contradicting (1); it is easy to check
that 2z’ is a configuration of the product C(S) x C(T") and its events are clearly
within the restriction used in defining the synchronized composition.

We now show the impossibility of (2) and (3), and so (1). Assume (2) (case
(3) is similar). One of s or s’ being +ve would contradict S being deterministic.
Suppose otherwise, that both s and s’ are —ve. Then, because o is a strategy,
by Lemma 5.5, we have

U
oomw } oomw

in C(B). Also, then both ¢ and ¢’ are +ve ensuring mow 1 mow’ in C(T), as T is
deterministic. This entails
T1TW T 7'17T2’ZU,

in C(B*). But oomw and 1ymaw, respectively oomw’ and 7ymew’, are the same
configurations on the common event structure underlying B and B*, of which
we have obtained contradictory statements of compatibility.

As (1) is impossible, it follows that

(s,t) (s',t") ,

z—cw & z—cw' = wtw (4)

within C(T)®C(S).

Finally, we can show that 7@ is deterministic. Suppose z—Lc y and L y'
in C(T®S) with pol(p) = +. Then,

7 ’
€1 €2 €L €y €y €
Us-ea -tz =Uy and Uo—"eaf-eaf=Uy

in C(T)® C(S), where ej = top(p) and e; = top(p), and the events e; and e’
otherwise have the form e; = (s;,t;), when 1 <i < k, and €} = (s},1}), when
1< j < 1. By repeated use of (4) we obtain zx_1 1 2/_;. (The argument is like
that ending the proof of Lemma 5.3, though with the minor difference that now
we may have e; = e;.) We obtain w =ger 2x-1 U 2j_; € C(T)OC(S) with w—kc

and w—ec and pol(eg) = +.
Now, wu {ex,e;} € C(T)®C(S) provided wu {ex,e;} € C(S) x C(T'). Inspect
the definition of configurations of the product of stable families in Section 3.3.1.
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If e;, and €] have the form (s,*) and (s’, *) respectively, then determinacy of S
ensures that the projection mw u {s, s} € C(S) whence w u {e,e;} meets the
conditions needed to be in C(S) x C(T'). Similarly, wu {eg,e;} € C(S) x C(T)
if e, and e; have the form (*,¢) and (*,t"). Otherwise one of e; and e; has the
form (s, *) and the other (*,¢). In this case again an inspection of the definition
of configurations of the product yields w u {ey,e;} € C(S) x C(T'). Forming the
set of primes of w U {ey, e;} in V' we obtain z u {p,p'} € C(TOS).

This establishes that T©S' is deterministic. O

We thus obtain a sub-bicategory DGames of Games; its objects satisfy
(race-free) of Lemma 5.3 and its maps are deterministic strategies.

5.3 A category of deterministic strategies

In fact, DGames is equivalent to an order-enriched category via the following
lemma. It says weakly-deterministic strategies in a game A are essentially cer-
tain subfamilies of configurations C(A), for which we give a characterization
in the case of deterministic strategies. Recall, from Corollary 5.6, a weakly-
deterministic strategy o : § - A is a a strategy in which for all +ve events
s,s" € S and configurations x € C(.9),

g—c & x—c = U {s,s'} €C(S5).
Lemma 5.8. Let 0: S5 — A be a weakly-deterministic strategy. Then,
orcoy — r <y

for all x,y € C(S). In particular, a weakly-deterministic strategy o is injective
on configurations, i.e., ox = oy implies x =y, for all x,y € C(S) (so is mono as
a map of event structures).

Proof. Let 0: S - A be a weakly-deterministic strategy. We show
r2z<cy & oycCor = ycu,
for x,y,z € C(S9), by induction on |x \ z|.

Suppose x 2 z—ecy and oy € ox. There are z; and event e; € S such that
r—cay ca. If o(e1) = o(e) then e; and e have the same polarity; if —ve, e; =€
by receptivity; if +ve, e; = e because o is weakly-deterministic, using its local
injectivity. Either way y € x. Suppose o(e1) # o(e). We show in all cases
yu{ei}cz, s0ycua.

Case pol(e1) = pol(e) = +: As o is weakly-deterministic, e; and e are concurrent
giving 1 —cy U {e1}. By induction we obtain yu{e;} c x.

Case pol(e) = — or pol(e1) = —: From Lemma 5.5, we deduce that e; and e are
concurrent yielding 21 —cy U {e;}, and by induction y U {e1} € z.

Another, simpler induction on |y \ z| now yields
r2zcy & oycoxr = ycux,

for z,y,z € C(S), from which the result follows (taking z to be, for instance, @
or z Ny). Injectivity of o as a function on configurations is now obvious. O
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A deterministic strategy o : S - A determines, as the image of the configu-
rations C(S), a subfamily F =gt oC(S) of configurations of C(A) satisfying

reachability: & € F and if x € F there is a covering chain p—c xl—c S T) =

within F

determinacy: If z—c and x—alc in F with pol 4(a) = +, then z U {a,a’} € F;
receptivity: If x € F and x—c in C(A) and pol 4(a) = - then xu{a}eF;
+-innocence: If x—c xl—c & pol4(a) = + in F and 2— in C(A), then T—c
in F (here receptivity implies —-innocence)

cube: In F, 1 ——Cy 1mphes 21—

LN
v

Theorem 5.9. A subfamily F < C(A) satisfies the axioms above iff there is a
deterministic strateqy o : S - A such that F = cC(S), the image of C(S) under
.

Proof. (Sketch) It is routine to check that F', the image oC(.S) of a deterministic
strategy, satisfies the axioms. Conversely, suppose a subfamily F' cC(A) satisfies
the axioms. We show F is a stable family. First note that from the axioms of
determinacy and receptivity we can deduce:

if =—2c and —< in F with 2 U {a,a’} € C(A), then zu{a,a’} € F.

By repeated use of this property, using their reachability, if x,y € F and = 1 y
in C(A) then x Uy € F; the proof also yields a covering chain from z to x Uy
and from y to z Uy. (In particular, if z €y in F, then there is a covering chain
from x to y —a fact we shall use shortly.) Thus, if 1 y in F then zuy e F. As
also @ € F', we obtain Completeness, required of a stable family. Coincidence-
freeness is a direct consequence of reachability. Repeated use of the cube axiom
yields

Cube: In F| T ——y implies
N S

e
e —
T1 NIy T1Uxy —Y1 VY2 L1 02 :

T2 ———Y2
We use Cube to show stability. Assume v 1w in F. Let z € F' be maximal such
that z € v, w. We show z = vnw. Suppose not. Then, forming covering chains
in F,

c1 Cc2 dl d2 dl

Z—C U —<C-- —cvk—v and z—cwy;—<C--—Cw; =w,
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there are ¢; and d; such that ¢; = d;, where we may assume ¢; is the earliest
event to be repeated as some d;. Write e =qer ¢; = dj. Now, v;o1 nwj—q = 2.
Also, being bounded above v;_; Uw;_1 € F and v;uw; € F. We have an instance
of Cube: take 1 = vj_1, T2 = wj_1, y1 = v; and yo = w;. Hence 2—c and
zuU {e} ¢ x,y—contradicting the maximality of z. Therefore z = v Nnw, as
required for stability.

Now we can form an event structure S =q¢¢ Pr(F"). The inclusion F' ¢ C(A)
induces a total map o : S - A for which F' = 6C(.S). Note that —-innocence (viz.

if 2—c 21— & pol4(a’) = — in F and — inC(A), then z—c in F) is a direct
consequence of receptivity. That S is deterministic follows from determinacy,
that o is a strategy from the axioms of receptivity and +-innocence. O

We can thus identify deterministic strategies from A to B with subfamilies
of C(A*||B) satisfying the axioms above. Through this identification we obtain
an order-enriched category of deterministic strategies (presented as subfamilies)
equivalent to DGames; the order-enrichment is via the inclusion of subfamilies.
As the proof of Theorem 5.9 above makes clear, in the characterization of those
subfamilies F' corresponding to deterministic families, the cube axiom can be
replaced by

stability: if vt win F, thenvnw e F.



Chapter 6
Games people play

We briefly and incompletely examine special cases of nondeterministic concur-
rent games in the literature.

6.1 Categories for games

We remark that event structures with polarity appear to provide a rich environ-
ment in which to explore structural properties of games and strategies. There
are adjunctions

P.AT( T Pfr( T ’PET-( T 'Pgt

!

PA* =T _ PF?

relating PE;, the category of event structures with polarity with total maps,
to subcategories PE,., with rigid maps, PF,. of forest-like (or filiform) event
structures with rigid maps, and PA,., its full subcategory where polarities al-
ternate along a branch; in PF¥ and PA¥ distinct branches are inconsistent.
We shall mainly be considering games in P€,;. Lamarche games and those of
sequential algorithms belong to PA, [14]. Conway games inhabit PF f , in fact
a coreflective subcategory of PE; as the inclusion is now full; Conway’s ‘sum’ is
obtained by applying the right adjoint to the |-composition of Conway games
in PE;. Further refinements are possible. The ‘simple games’ of [15, 16] belong
to PA; 7, the coreflective subcategory of ’PAf comprising “polarized” games,
starting with moves of Opponent. The ‘tensor’ of simple games is recovered
by applying the right adjoint of PA;# < P&, to their ||-composition in PE;.
Generally, the right adjoints, got by composition, from PE; to the other cate-
gories fail to conserve immediate causal dependency. Such facts led Mellies et
al. to the insight that uses of pointers in game semantics can be an artifact of
working with models of games which do not take account of the independence
of moves [17, 12].

67
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6.2 Related work—early results

6.2.1 Stable spans, profunctors and stable functions

The sub-bicategory of Games where the events of games are purely +ve is equiv-
alent to the bicategory of stable spans [9]. In this case, strategies correspond to

stable spans:
s d st
2N N
At B A B,

where S is the projection of S to its +ve events; oy is the restriction of o2 to
S*, necessarily a rigid map by innocence; o3 is a demand map taking x € C(S*)
to o7 (x) = o1[x] ; here [z] is the down-closure of z in S. Composition of stable
spans coincides with composition of their associated profunctors—see [18, 19, 4].
If we further restrict strategies to be deterministic (and, strictly, event structures
to be countable) we obtain a bicategory equivalent to Berry’s dI-domains and
stable functions [4].

6.2.2 Ingenuous strategies

Via Theorem 5.9, deterministic concurrent strategies coincide with the receptive
ingenuous strategies of Mellies and Mimram [12].

6.2.3 Closure operators

In [20], deterministic strategies are presented as closure operators. A determin-

istic strategy o : S - A determines a closure operator ¢ on possibly infinite
configurations C*=(S): for x € C*(9),

o(x)=xu{seS | pol(s) =+ & Neg[{s}]cz}.

Clearly ¢ preserves intersections of configurations and is continuous. The closure
operator ¢ on C*(S) induces a partial closure operator ¢, on C*°(A). This in
turn determines a closure operator ¢, on C*(A)T, where configurations are
extended with a top T, ¢f. [20]: take y € C®°(A)" to the least, fixed point of ¢,
above y, if such exists, and T otherwise.

6.2.4 Simple games
“Simple games” [15, 16] arise when we restrict Games to objects and determin-
istic strategies in PA; ™, described in Section 6.1.

6.2.5 Extensions

Games, such as those of [21, 22], allowing copying are being systematized through
the use of monads and comonads [16], work now feasible on event structures with
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symmetry [9]. Nondeterministic strategies can potentially support probability
as probabilistic or stochastic event structures[23] to become probabilistic or
stochastic strategies.
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Chapter 7

Strategies as profunctors

This chapter relates strategies to profunctors, a generalization of relations from
sets to categories, and composition on strategies to composition of profunctors.
Profunctors themselves provide a rich framework in which to generalize domain
theory in a way that is arguably closer to that initiated by Dana Scott than
game semantics [24, 25].

7.1 The Scott order in games

Let A be an event structure with polarity. The c-order on its finite configura-
tions is obtained as compositions of two more fundamental orders (¢* u c7)*.
For z,y € C*(A),

zc yiff zcy & poly(y~ax)c{-}, and
rctyiff zcy & poly(y~x)c{+}.
We use 2~ as the converse order to €~. Define a new order, the Scott order,
between configurations x,y € C*°(A), by
TEpay < J2eC”(A). z27 zc"y.
It is an easy exercise to show that when such a z exists it is necessarily z ny.

Proposition 7.1. Let A be an event structure with polarity.

(i) If x € w2 y in C°(A), then x 2~ xny ct y in C*(A).

(i1) (C*(A),E4) is a partial order.

Proof. (i) Assume x €™ w2~ y in C*(A). Clearly 2 2 zny. Suppose a € x and
pol 4(a) = +. Then a € w, and because only —ve events are lost from w in w2~ y
we obtain a € y, so a € z ny. It follows that x 27 x Ny, as required. Similarly,
Ny <t y. Summed up diagrammatically:

2

Iy

71



72 CHAPTER 7. STRATEGIES AS PROFUNCTORS

(ii) Clearly c is reflexive. Supposing  Cy, i.e. £ 2~ z € y in C*(A) we see that
the +ve events of x are included in y, and the —ve events of y are included in
x. Hence if z £y and y € x in C*(A) then x and y have the same +ve and —ve
events and so are equal. Transitivity follows from (i):

z z
+§ +
'ﬁ” 'ﬁJ‘
Y DT entails y =27 -
+ +§
ul ul LAJ\
X 27 r 27 =5

Exercise 7.2. Show (C*(A),c4) is a complete partial order: any w-chain
ToEA X154 EATREA

has a least upper bound

|_|$n=(ﬂ93n)_U(U$n)+-

new new new

7.2 Strategies as presheaves

Let A be an event structure with polarity. A strategy in A determines a discrete
fibration so a presheaf over the order of finite configurations (C(A),Z4). In this
chapter we only need discrete fibrations over partial orders.

Definition 7.3. A discrete fibration over a partial order (Y,Sy ) is a partial
order (X,Ex) and an order-preserving function f: X — Y such that

Vee X,y eY. ycy fz) = W' cx z. f(a') =9,

as illustrated

:U_ Ex x

S
Y

y = f(x).

¢

Proposition 7.4. Let 0 : S - A be a pre-strategy in game A. The map o*
taking a finite configuration x € C(S) to ox € C(A) is a discrete fibration from
(C(S),c5) to (C(A),c4) iff o is a strategy.

Proof. A direct corollary of Proposition 4.20. O

As discrete fibrations correspond to presheaves, an alternative reading of
Proposition 7.4 is that a pre-strategy o : S — A is a strategy iff o“ determines
a presheaf over (C(A),E4)—the presheaf being the functor (C(A),E4)°" — Set
which sends y to the fibre {a € C(S) | ox = y} and instances 3’ €4 y to functions
from the fibre over y to the fibre over y’ determined by the fibration.
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7.3 Strategies as profunctors

A strategy
c:A—+=B

determines a discrete fibration over

(C(A*||B),EavB) -

(C(A*|B).Easy) = (C(AY),Ea0) x (C(B), Ep) (1)
% (C(A),c4)? x (C(B),ER). (2)
The first step (1) relies on the correspondence
zo ({a] (La)ex}, {b](2,0)cx})

between a configuration of A*| B and a pair, with left component a configuration
of A* and right component a configuration of B. In the last step (2) we are
using the correspondence between configurations of A* and A induced by the
correspondence a <> @ between their events: a configuration x of A* corresponds
to a configuration T =get {@ | a € 2} of A. Because A* reverses the roles of +
and — in A, the order x c4. y in C(A'),

v

PR
_,.<’/ ul

x TNy,

corresponds to the order €4 @, i.e. TE y, in C(A),

It follows that a strategy
o:S - A*|B
determines a discrete fibration
0“1 (C(5),E5) ~ (C(A),£4)°" x (C(B),EB)

where

o“(z) = (17, 097),
for z € C(S). The fibration can be vewed as a presheaf over (C(A),54)°P x
(C(B),cp)—it assigns the set

{reC(S) |1z =0v & 09 = 2}
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to the pair (v,z) € C(A)°® x C(B). One way to define a profunctor from
(C(A),=4) to (C(B),cp) is as a discrete fibration over (C(A),c4)° x (C(B),ER).
Hence the strategy o determines a profunctor!

ot (C(A)7EA)*F>(C(B)7EB) .

7.4 Composition of strategies and profunctors

The operation from strategies o to profunctors ¢“ preserves identities:

Lemma 7.5. Let A be an event structure with polarity. For x € C*(A*||A),
X € COO(CCA) Zﬁ To EA Ty,
where 1 = {a€ A* | (1,a) ex} and xo={ac A | (2,a) e z}.

Proof. Let © € C*(A*||A). From the dependency within copy-cat of the +ve
events a € A on corresponding —ve events @ € A, and vice versa, as expressed
in Proposition 4.1, we deduce: x € C*(CCy4) iff

(¢) Ty 2235 and (i) Ty Ca;,

where z* ={a ez | poly(a)=+} and 2z~ ={a €z | pol4,(a) = -} for z € C*(A).
It remains to argue that (i) and (ii) iff x2 27 Tynze € T1. “Only if”: Assume
(i) and (ii). Clearly, T1 N @2 € T1. Suppose a € T; with pol,(a) = —. By (ii),
a € x9. Consequently, 21 Nxo € 7. Similarly, (i) entails zo 27 Ty Nnay. “If”:
To show (i), let a € 3. Then as x2 2~ T3 N2 ensures only —ve events are lost
in moving from x5 to T3 N2, we see a € Ty N o, so a € T;. The proof of (ii) is
similar. O

Corollary 7.6. Let A be an event structure with polarity. The profunctor ~vy“
of the copy-cat strategy ya is an identity profunctor on (C(A),E4).

Proof. The profunctor y4“ : (C(A),E4)—+(C(A),c4) sends = € C((C4) to
(T1,22) € (C(A),24)°? x (C(A),c4) precisely when x5 4 T;. It is thus an
identity on (C(A),E4). O

We now relate the composition of strategies to the standard composition of
profunctors. Let o : S - A*||B and 7: T - B*||C be strategies, so 0 : A—=B
and 7 : B—>C. Abbreviating, for instance, (C(A),c4) to C(A), strategies
o and T give rise to profunctors o : C(A)—=C(B) and 7% : C(B)—=C(C).
Their composition is the profunctor 7%oc“: C(A)—=C(C) built as a discrete

IMost often a profunctor from (C(A),c4) to (C(B),cp) is defined as a functor
(C(A),24) x(C(B),=B)°P — Set, i.c., as a presheaf over (C(A),c4)°P x (C(B),Ep), and as
such corresponds to a discrete fibration.
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fibration from the discrete fibrations c“: C(S) - C(A)°*xC(B) and 7%: C(T) —»
C(B)°P x C(C).
First, we define the set of matching pairs,

M =ges {(2,y) € C(S) xC(T) | 02w =71y},
on which we define ~ as the least equivalence relation for which

(z,y) ~(2',y') if 2csga’ &ycryk

oz =012 & Ty =my.
Define an order on equivalence classes M/ ~ by:
mem' if m={(z,y)}. &m'={@"y)}. &
rcgx &ycry &

A !
oox =09x & Ty =119,

for some matching pairs (z,y), (z',3')—so then oox = o902’ =Ty = T1y'.

Exercise 7.7. Show that € above is transitive, so a partial order on M/ ~.
Verify that T “o o “ is a discrete fibration. O

Lemma 7.8. On matching pairs, define

(z,y) ~1 (2,y)) iff IseSteT. s—ca' & y—tcy' & oa(s) =71(t).
The smallest equivalence relation including ~1 coincides with the relation ~.

Proof. From their definitions, ~; is included in ~. To prove the converse, it
suffices to show that matching pairs (z,y), (2',y") satisfying

rcsx &y cry&
! !
o1z =01z & Ty =Ty,

—the clause used in the definition ~ —are in the equivalence relation generated
by ~1. Take a covering chain

!
TLST1 TG Ty TS

in (C(S),Eg). Here ¢ is the covering relation w.r.t. the order E, so x—gx
means z,z; are distinct and x Sg x7 with nothing strictly in between. Via the
map o we obtain

O9L-CROIT R 0oL, —p0o2L’

in C(B) where oax = 71y and oo’ = 11y’. Via the discrete fibration 7 we obtain
a covering chain in the reverse direction,
Y3—1Y1 31 Ym 31y’

in (C(T),5r), where each each (z;,y;), for 1 < i < m, is a matching pair.
Moreover, (3, v;) ~1 (Zi+1,Yi+1) at each ¢ with 1 < ¢ < m. Hence (x,y) and
(«',y") are in the equivalence relation generated by ~1. O
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The profunctor composition 7“o ¢ “ is given as the discrete fibration
T4 g M/"' N C(A)OPXC(C)

acting so
{(z,9)}. = (o1, 729) -

It is mot the case that (7®c)* and 7% o ¢* coincide up to isomorphism.
The profunctor composition 7o g“ will generally contain extra equivalence
classes {(z,y)}. for matching pairs (z,y) which are “unreachable.” Although
o9x = z = T1y automatically for a matching pair (z,y), the configurations = and
y may impose incompatible causal dependencies on their interface z so never be
realized as a configuration in the synchronized composition C(T)oC(S), used
in building the composition of strategies T®o.

Example 7.9. Let A and C both be the empty event structure @. Let B be
the event structure consisting of the two concurrent events by, assumed —ve,
and bg, assumed +ve in B . Let the strategy o : @—= B comprise the event
structure s; — s with s; —ve and ss +ve, o(s1) = by and o(s2) = by. In B* the
polarities are reversed so there is a strategy 7 : B—=@ comprising the event
structure to — t; with ¢t —ve and t; +ve yet with 7(¢;) = by and 7(t2) = bo.
The equivalence class {(x,y)}., where x = {s1,s2} and y = {t1,t2}, would be
present in the profunctor composition 7“0 ¢ “ whereas 7@ would be the empty
strategy and accordingly the profunctor (7®0)“ only has a single element, @.

Definition 7.10. For (z,y) a matching pair, define

-y =qet{(s,%) | s € x & o1(s) is defined }u
{(*,t) | t ey & m2(t) is defined ju
{(s,t) | sex & tey & oa(s) =71(t)}

Say (x,y) is reachable if x -y € C(T)®C(S), and unreachable otherwise.
For z € C(T)oC(S) say a wvisible prime of z is a prime of the form [(s, *)].,
for (s, %) € z, or [(*,t)]., for (*,t) € z.

Lemma 7.11. (i) If (z,y) is a reachable matching pair and (xz,y) ~ (z',y'),
then (x',y'") is a reachable matching pair;

(ii) For reachable matching pairs (x,y), («',y"), (x,y) ~ («',y") iff x-y and
z'-y" have the same visible primes.

Proof. We use the characterization of ~ in terms of the single-step relation ~;
given in Lemma 7.8.
(i) Suppose (z,y) ~1 (z',y") or (2',y") ~1 (z,y). By inspection of the construc-
tion of the product of stable families in Section 3.3.1, if z-y € C(T)®C(S) then
'y e C(T)oC(S).
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(ii) “If”: Suppose z -y and z’ -y’ have the same visible primes, forming the
set Q. Then z =gt UQ € C(T)®C(S), being the union of a compatible set of
configurations in C(T)®C(S). Moreover, z €z -y,x" - y'. Take a covering chain

pcy ey —cx -y
in C(T)eC(S). Each (mz;,m22;) is a matching pair, from the definition of
C(T)oC(S). Necessarily, e; = (s;,t;) for some s; € S, t; € T, with o9(s;) = 71 (¢;),
again by the definition of C(T)®C(S). Thus

(7T121‘77T221‘) ~1 (77121‘+177T2Zi+1) .

Hence (m12,m22) ~ (x,y), and similarly (m2,m22) ~ (2',y), so (z,y) ~ (z',y").

“Only if”: Tt suffices to observe that if (x,y) ~1 (2',9'), then z -y and 2’ -y’

it
have the same visible primes. But if (x,y) ~1 (z/,y’) then x - y(ic) ' -y, for

some s € S,t €T, and no visible prime in 2’ -y’ contains (s,t). O

Lemma 7.12. Let 0: A—=B and 7 : B—=C be strategies. Defining
Por:C(TOS) > M[~ by ¢s-(2) = {(ILz22)}_,

where Iy z =m Uz and sz = mo U 2, yields an injective, order-preserving func-
tion from (C(T®S),Eres) to (M] ~,E)—its range is precisely the equivalence
classes {(x,y)}. for reachable matching pairs (x,y). The diagram

(C(T©S),Eres) ——— (M/ ~, <)

(to0) “L i
(C(A),24)P x (C(C),=c)

commutes.

Proof. For z € C(T®S), we obtain that ¢, r(2) = (II12,1I32) = (m Uz, m2Uz)
is a matching pair, from the definition of C(T)®C(.S); it is clearly reachable as
m Uz -meUz=UzeC(T)oC(S). For any reachable matching pair (x,y) let z
be the set of visible primes of x -y. Then, z € C(T'®S) and, by Lemma 7.11(ii),
(II12,1az) ~ (2,y) 80 @or(2) = {(z,y)}.. Injectivity of ¢, , follows directly
from Lemma 7.11(ii).

To show that ¢, , is order-preserving it suffices to show if z—=2z" in (C(T'0.S5), )
then ¢o - (2) € @o,(2") in (M/ ~,2). (The covering relation — is the same as
that used in the proof of Lemma 7.8.) If z—=2’ then either S 2/, with p +ve,
or #'—c z, with p —ve, for p a visible prime of C(T)®C(S), i.e. with top(p) of
the form (s, *) or (*,%). We concentrate on the case where p is +ve (the proof
when p is —ve is similar). In the case where p is +ve,

Oz ez =Jzc|Jz =112 - Iz’
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in C(T)oC(S) and there is a covering chain

(s1,t1 (sns5tn)
Uz =wyp—<cwy+ —<

¢

W, 2Kg:J)Uz'

in C(T)oC(S). Each w;, for 0 <4 < m, is associated with a reachable matching
pair (mw;, mow; ) where mw; -mow; = w;. Also (mw;, mow;) ~1 (M1W;i41, ToWis1),
for 0 < i <m. Hence (II12,1152) ~ (mwy, mow, ), by Lemma 7.8(ii). If top(p) =
(s,#) then mw,—cIl;2, with s +ve, and mow, = Isz". If top(p) = (,t) then

t

mwy, = 112" and mow,—cIly2’, with ¢ +ve. In either case mw, Sg II;2’ and
mowy, Er Ilsz" with oomw, = o9ll1z" and Tymow, = 71IIx2’. Hence, from the
definition of € on M/ ~,

Po.r(2) = {2 I22)} . = {(mrwn, mown) }. € {(I2', 22")}. = @5+ (2) .

It remains to show commutativity of the diagram. Let z € C(T'®S). Then,

(T900) (o, (2)) = (140 0*)({(I12,1122)}.) = (011l12, T2ll22) = (T00)“(2),
via the definition of T@o—as required. O

Because (-)“ does not preserve composition up to isomorphism but only
up to the transformation ¢ of Lemma 7.12, ()¢ forms a laz functor from the
bicategory of strategies to that of profunctors.

7.5 Games as factorization systems

The results of Section 7.1 show an event structure with polarity determines a
factorization system; the ‘left’ maps are given by 27 and the ‘right’” maps by
c*. More specifically they form an instance of a rooted factorization system
(X,—>L,~Rr,0) where maps f :x - 2’ are the ‘left’ maps and g : x - 2’ the
‘right” maps of a factorization system on a small category X, with distinguished
object 0, such that any object x of X is reachable by a chain of maps:

O«p-—»Rr<p >RT;
and two ‘confluence’ conditions hold:

1 >px & 20 >gx = Jxg. To >r T1 & X9 >R T2, and its dual

r-op a1 &> 0 = Ix9. 1 oL To & 12 >R T

Think of objects of X as configurations, the R-maps as standing for (compound)
Player moves and L-maps for the reverse, or undoing, of (compound) Opponent
moves in a game.

The characterization of strategy, Proposition 4.20, exhibits a strategy as a
discrete fibration w.r.t. © whose functor preserves 2~ and c*. This generalizes.
Define a strategy in a rooted factorization system to be a functor from another



7.5. GAMES AS FACTORIZATION SYSTEMS 79

rooted factorization system preserving L-maps, R-maps, 0 and forming a dis-
crete fibration. To obtain strategies between rooted factorization systems we
again follow the methodology of Joyal [8], and take a strategy from X to Y to
be a strategy in the dual of X in parallel composition with Y. Now the dual op-
eration becomes the opposite construction on a factorization system, reversing
the roles and directions of the ‘left’ and ‘right’ maps. The parallel composition
of factorization systems is given by their product. Composition of strategies is
given essentially as that of profunctors, but restricting to reachable elements.
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Chapter 8
Winning ways

What does it mean to win a nondeterministic concurrent game and what is a
winning strategy? This chapter extends the work on games and strategies to
games with winning conditions and winning strategies.

8.1 Winning strategies

A game with winning conditions comprises G = (A,W) where A is an event
structure with polarity and W ¢ C*(A) consists of the winning configurations
for Player. We define the losing conditions to be L =40t C°(A) N\ W. Clearly a
game with winning conditions is determined once we specify either its winning
or losing conditions, and we can define such a game by specifying its losing
conditions.

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy 0: 5 - Ain G
is winning (for Player) if ox € W for all +-maximal configurations z € C*°(S)—

a configuration = is +-maximal if whenever z—c then the event s has —ve
polarity. Any achievable position z € C*°(S) of the game can be extended to
a +-maximal, so winning, configuration (via Zorn’s Lemma). So a strategy
prescribes Player moves to reach a winning configuration whatever state of play
is achieved following the strategy. Note that for a game A, if winning conditions
W = C=(A), i.e. every configuration is winning, then any strategy in A is a
winning strategy.

In the special case of a deterministic strategy o : S - A in G it is winning iff
op(xz) e W for all z eC*=(S), where ¢ is the closure operator ¢ :C*(S) - C>=(S)
determined by o or, equivalently, the images under o of fixed points of ¢ lie
outside L. Recall from Section 6.2.3 that a deterministic strategy o : S - A
determines a closure operator ¢ on C*(S): for x € C*(S),

p(x)=zu{seS | pol(s) =+ & Neg[{s}]cz}.

81
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Clearly, we can equivalently say a strategy o : S - A in G is winning if it
always prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent; a strategy o : S - A in G
is winning if oz ¢ L for all +-maximal configurations x € C*(.5)

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
Player. Suppose o :S — A is a strategy in a game (A, W). A counter-strategy
is strategy of Opponent, so a strategy 7 : T — A’ in the dual game. We
can view o as a strategy o : @—>A and 7 as a strategy 7 : A—=@. Their
composition TG0 : @—=& is not in itself so informative. Rather it is the status
of the configurations in C*°(A) their full interaction induces which decides which
of Player or Opponent wins. Ignoring polarities, we have total maps of event
structures o : S > A and 7: T - A. Form their pullback,

P
AN
S T
A,

to obtain the event structure P resulting from the interaction of ¢ and 7. (Note
P =Pr(C(T)eC(S)), in the terms of Chapter 4, by the remarks of Section 4.3.3.)
Because o or 7 may be nondeterministic there can be more than one maximal
configuration z in C*(P). A maximal configuration z in C*°(P) images to a
configuration oIl; z = 7Il52z in C*(A). Define the set of results of the interaction
of o0 and 7 to be

(0,7) =det {01112 | z is maximal in C*(P)}.

We shall show the strategy o is a winning for Player iff all the results of the inter-
action (o, ) lie within the winning configurations W, for any counter-strategy
7:T - A* of Opponent.

It will be convenient later to have proved facts about 4+-maximality in the
broader context of the composition of arbitrary strategies.

Convention 8.1. Refer to the construction of the composition of pre-strategies
c:8 - A'||B and 7 : B*||C in Chapter 4 We shall say a configuration x of either
C=(S),C*(T) or (C(T)eC(S))* is +maximal if whenever z—c then the event
e has —ve polarity. In the case of (C(T)®C(S))* an event of —ve polarity is
deemed to be one of the form (s, *), with s —ve in S, or (*,t), with ¢ —ve in T
We shall say a configuration z of C*° (Pr(C(T)@C(S))) is +-maximal if whenever

22 then top(p) has —ve polarity.
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Lemma 8.2. Let 0: S - A*||B and 7 : T — B*||C be receptive pre-strategies.
Then,

z e (C(T)oC(S))™ is +-mazximal iff

w1z € C(S) is +-mazimal & moz € C*(T) is +-maximal.

Proof. Let z € (C(T)®C(S))>. “Only if”: Assume z is +-maximal. Sup-
pose, for instance, w1z is not +-maximal. Then, 7r1z—sc for some +ve event
s € 5. Consider the two cases. Case o1(s) is defined: Form the configuration
zU{(s,*)} € (C(T)®C(S)), to contradict the +-maximality of z. Case o5(s) is
defined: As s is +-ve by the receptivity of 7 there is t € T' such that mz—tc and
71(t) = 02(s). Form the configuration zu{(s,t)} € (C(T)oC(S))>, to contradict
the +-maximality of z. The argument showing msz is +-maximal is similar.

“If”: Assume both 71z and 72z are +-maximal. Suppose z were not +-maximal.
Then, either

(s,%) (st) .
e z—C or z—<C with s a +ve event of S, or

(*,t) (s,t) .
e 2—C or z—<C with ¢t a +ve event of T'.

; t
But then either le—éc, contradicting the +-maximality of 72, or mez—c,
contradicting the +-maximality of moz. O

Corollary 8.3. Letc:S - AY||B and 7: T — B*||C be receptive pre-strategies.
Then,

x € C=(Pr(C(T)C(S))) is +-mazimal iff
Iz € C™(S) is +-mazimal & Hyz € C=(T) is +-mazimal.

Proof. From Lemma 8.2, noting the order isomorphism C* (Pr(C(T)®C(S))) =
(C(T)oC(S))* given by z +— Uz and that Iz =m Uz, oz = Ux. O

Lemma 8.4. Let 0: S — A be a strategy in a game (A, W). The strategy o is
winning for Player iff (o,7) €W for all (deterministic) strategies T:T — A*.

Proof. “Only if”: Suppose o is winning, i.e. ox € W for all +-maximal = €
C>=(S). Let 7: T — A* be a strategy. By Corollary 8.3,

x € C™(Pr(C(T)oC(S9))) is +-maximal
iff
ITyz € C™(S) is +-maximal & Ilpx € C*(T') is +-maximal.

Letting « be maximal in C*° (Pr(C(T)®C(S))) it is certainly +-maximal, whence
I 2 is +-maximal in C*(.S). It follows that olljz € W as ¢ is winning. Hence
(o, 7y cW.
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“If”: Assume (o,7) € W for all strategies 7: T — A*. Suppose z is +-maximal
in C*°(.5). Define T to be the event structure given as the restriction

T =qet At toxu{ae At | poly. =-}.

Let 7: T — A* be the inclusion map T < A*. The pre-strategy 7 can be checked
to be receptive and innocent, so a strategy. (In fact, 7 is a deterministic strategy
as all its +ve events lie within the configuration oz.) One way to describe a
pullback of 7 along o is as the “inverse image” P =qet S | {s€ S | o(s) e T}:

I
N

From the definition of T' and P we see z € C®(P); and moreover that z is
maximal in C*(P) as z is +-maximal in C*(S). Hence ox € (0, 7) ensuring
ox € W, as required.

The proof is unaffected if we restrict to deterministic counter-strategies 7 :
T At O

Corollary 8.5. There are the following four equivalent ways to say that a strat-
egy 0 : S — A is winning in (A, W)—we write L for the losing configurations
Co(ANW:

1. ox € W for all +-mazimal configurations x € C=(S), i.e. the strategy
prescribes Player moves to reach a winning configuration, no matter what
the activity or inactivity of Opponent;

2. ox ¢ L for all +-mazimal configurations x € C=(S), i.e. the strategy
prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent;

3. {o,7) € W for all strategies 7 : T — A*, i.e. «all plays against counter-
strategies of the Opponent result in a win for Player;

4. {o,7) €W for all deterministic strategies T: T — A*, i.e. all plays against
deterministic counter-strategies of the Opponent result in a win for Player.

Not all games with winning conditions have winning strategies. Consider
the game A consisting of one player move @ and one opponent move © incon-
sistent with each other, with {{®}} as its winning conditions. This game has
no winning strategy; any strategy o : S - A, being receptive, will have an event
s €S with o(s) =, and so the losing {s} as a +-maximal configuration.
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8.2 Operations

8.2.1 Dual
There is an obvious dual of a game with winning conditions G = (A, W¢):
Gt = (A", W)
where, for x € C*(A),
reWa iff T¢Wgq.

We are using the notation a < @, giving the correspondence between events of A
and A*, extended to their configurations: T =qet {@ | a € x}, for x € C*(A). As
usual the dual reverses the roles of Player and Opponent and correspondingly
the roles of winning and losing conditions.

8.2.2 Parallel composition

The parallel composition of two games with winning conditions G = (A, Wg),
H=(B,Wg) is

GIH =act (A B, Wg||C™(B)uC™(A)||Wr)

where X||Y = {{1} xz u {2} xy |ze X & y e Y} when X and Y are subsets of
configurations. In other words, for z € C*(A| B),

zeWg g it ©,eWgorazeWy,
where 21 = {a | (1,a) € 2} and 29 = {b| (2,b) e 2}. To win in G| H is to win in
either game. Its losing conditions are L 4||Lg—to lose is to lose in both games
G and H.' The unit of || is (@,@). In order to disambiguate the various forms

of parallel composition, we shall sometimes use the linear-logic notation G % H
for the parallel composition G||H of games with winning strategies.

8.2.3 Tensor

Defining G® H =4t (G*||H*)* we obtain a game where to win is to win in both
games G and H—so to lose is to lose in either game. More explicitly,

(A, Wa) @ (B,Wg) =aet (AllB, Wa[[Wg).

The unit of ® is (@, {2}).

'm grateful to Nathan Bowler, Pierre Clairambault and Julian Gutierrez for guidance in
the definition of parallel composition of games with winning conditions.
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8.2.4 Function space

With G — H =4 G*||H a win in G — H is a win in H conditional on a win in

G.

Proposition 8.6. Let G = (A,Wg) and H = (B,Wg) be games with winning
conditions. Write Wa_pg for the winning conditions of G — H, so G — H =
(AY|B,Wg—p). For x e C*(A*|B),

reWagpy iff T1eWg = zoe Wgy.
Proof. Letting x € C*(A*| B),

LUEWGAJH iff xGWGl”H
iff 1€ Wge or 29 € Wy
iff T7¢Wg or 20 € Wiy
iff T1eWg = x9eWgy.

8.3 The bicategory of winning strategies

We can again follow Joyal and define strategies between games now with winning
conditions: a (winning) strategy from G, a game with winning conditions, to
another H is a (winning) strategy in G — H = G*||H. We compose strategies
as before. We first show that the composition of winning strategies is winning.

Lemma 8.7. Let o be a winning strategy in G*||H and T be a winning strategy
in HY||K. Their composition T®0 is a winning strategqy in G*|| K.

Proof. Let G =(A,Wg), H=(B,Wg) and K = (C,Wg).

Suppose © € C*(ToS) is +-maximal. Then Uz € (C(T)oC(S))*°. By Zorn’s
Lemma we can extend Uz to a maximal configuration z 2 Uz in (C(T)@C(S))™
with the property that all events of z\ Uz are synchronizations of the form (s,t)
for se S and t € T. Then, z will be +-maximal in (C(T)®C(S))* with

0'17T12:O'17T1U[IJ & TQ?TQZ:TQ’]TQU{E. (].)
By Lemma 8.2,
Tz 18 +-maximal in S & ez is +-maximal in T .
As o and 7 are winning,
OT1% € WGL”H & TToZ € WHL”K.
Now om1z € Wy g expreses that

o1mz e Wg = oomizeWxy (2)
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and 7mez € Wik that

Timaz € Wy = Tomez € Wi, (3)
by Proposition 8.6. But oam1 2 = Tim22, so (2) and (3) yield

o1mz e Wag = momaze Wi .
By (1)

omJreWg = nm|Jre Wk,
1.e.by Proposition 4.2,
iz e Wg = vaw € Wi

in the span of the composition 700. Hence x € Wik, as required. O

For a general game with winning conditions (A, W) the copy-cat strategy
need not be winning, as shown in the following example.

Example 8.8. Let A consist of two events, one +ve event @ and one —ve event
©, inconsistent with each other. Take as winning conditions the set W = {{®}}.

The event structure (C 4:
At e—+@ A

® +— O

To see (T4 is not winning consider the configuration = consisting of the two
—ve events in (C 4. Then x is +-maximal as any +ve event is inconsistent with
x. However, T; € W while x5 ¢ W, failing the winning condition of (4, W) —

(A, W).

Recall from Chapter 7, that each event structure with polarity A possesses a
Scott order on its configurations C*(A):

rex iff 2’27 xna’'ct .
A necessary and sufficient for copy-cat to be winning w.r.t. a game (A, W):

Va,2' e C®(A). if 2’ €z & 2’ is +-maximal & z is —maximal,

, (Cwins)
then zeW — 2" eW.

Lemma 8.9. Let (A, W) be a game with winning conditions. The copy-cat
strategy va : (C4 — A*||A is winning iff (A, W) satisfies (Cwins).
Proof. By Lemma 7.5,

2eC®(WC,) iff 2={1} xT U {2} x2" with 2’ c, 2,

for z,2" €C*(A). In this situation z is +-maximal iff both z is —-maximal and 2’
is +-maximal. Thus (Cwins) expresses precisely that copy-cat is winning. O
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A robust sufficient condition on an event structure with polarity A which
ensures that copy-cat is a winning strategy for all choices of winning conditions
is the property

Va e C(A). 1—c & z—< & pol(a) =+ & pol(a') = - = zU{a,a’} € C(A).
(race-free)

This property, which says immediate conflict respects polarity, is seen earlier in

Lemma 5.3 (characteriziing those A for which copy-cat is deterministic).

Proposition 8.10. Let A be an event structure with polarity. Copy-cat is a
winning strategy for all games (A, W) with winning conditions W iff A satis-
fies (race-free).

Proof. “If”: Assume (race-free). Let W c C*(A). We show (Cwins) holds
for the game with winning conditions (A, W). For z,z’ € C*®(A), assume

' cz & 2’ is +-maximal & z is —-maximal.

Then, as ' 2~ znz’ c* z, there are covering chains associated with purely +ve
and —ve events from x Nz’ to z and ', respectively:

; o+ +
rny —C¢ - —C

! B B /
zng —c - —c 2.

If one of the covering chains is of zero length then so must the other be—
otherwise we contradict one or other of the maximality assumptions. On the
other hand, if both are nonempty, by repeated use of (race-free) we again
contradict a maximality assumption, e.g.

+ ;o + ,
Y1 —c 1 UT] — —c TUTy
; o+ + +
rnNnx —c T —c —c X

shows how a repeated use of (race-free) contradicts the —-maximality of z. We
conclude z = z N2’ = 2’ so certainly x € W == 2’ ¢ W, as required to fulfil
(Cwins).

“Only if”: Suppose A failed (race-free), i.c. r—2cxy & 1r—c 19 With 71 4 2o
and pol4(a) = + and pol(a’) = — within the finite configurations of A. The set
{1} xT1u{2} xxy is certainly a finite configuration of A*||A and is easily checked
to also be a configuration of (C4. Define winning conditions by

W={xeC”(A) |acz}.

Let z € C*(Q4) be a +-maximal extension of {1} x T; U {2} x x5 (the max-
imal extension exists by Zorn’s Lemma). Take z; = {a | (1,a) € z} and 25 =
{a] (2,a) € z}. Then z; 2 x1 and 25 2 x5. As a € Z; we obtain z; € W, whereas
zo ¢ W because 29 extends y which is inconsistent with a. Hence copy-cat is not
winning in (A, W)*| (A, W). O
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We can now refine the bicategory of strategies Games to the bicategory
WGames with objects games with winning conditions G, H, --- satisfying (Cwins)
and arrows winning strategies G —= H; 2-cells, their vertical and horizontal com-
position is as before. Its restriction to deterministic strategies yields a bicategory
WDGames equivalent to a simpler order-enriched category.

8.4 Total strategies

As an application of winning conditions we apply them to pick out a subcategory
of “total strategies,” informally strategies in which Player can always answer a
move of Opponent.?

We restrict attention to ‘simple games’ (games and strategies are alternating
and begin with opponent moves—see Section 6.2.4). Here a strategy is total if
all its finite maximal sequences are even, so ending in a +ve move, i.e. a move
of Player. In general, the composition of total strategies need not be total—see
the Exercise below. However, as we will see, we can pick out a subcategory of
‘simple games’ with suitable winning conditions. Within this full subcategory
of games with winning conditions winning strategies will be total and moreover
compose.

Exercise 8.11. Fxhibit two total strategies whose composition is not total. O

As objects of the subcategory we choose simple games with winning strate-
gies,
(A, Wa)

where A is a simple game and W4 is a subset of possibly infinite sequences
$189--- satisfying
W4 nFinite(A) = Even(A) (Tot)

i.e. the finite sequences in W, are precisely those of even length. Note that
winning strategies in such a game will be total. (Below we use ‘sequence’ to
mean allowable finite or infinite sequences of the appropriate simple game.)

The function space (A,W4) — (B,Wpg), given as (A, Wa)*|(B,Wg), has
winning conditions W such that

seWif s)AeWy = s BeWpg.

Lemma 8.12. For s a sequence of A*||B, s is even iff s A is odd or s | B is
even.

Proof. By parity, considering the final move of the sequence.

“Only if”: Assume s is even, i.e. its final event is +ve. If s ends in B, s | B ends
in + so is even. If s ends in A, s I A ends in - so is odd.

“If”: Assume s | A is odd or s | B is even. Suppose, to obtain a contradiction,
that s is not even, i.e. s is odd so ends in —. If s ends in B, s | B ends in — so

2This section is inspired by [26], though differs in several respects.
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is odd and consequently s I A even (as the length of s is the sum of the lengths
of s A and s B). Similarly, if s endsin A, s | A ends in + so s | A is even and
s | B is odd. Either case contradicts the initial assumption. Hence s is even. [

It follows that W, the winning conditions of the function space, satisfies
(Tot): Let s be a finite sequence of a strategy in A*||B. Then,

seWiff s AeWy = s BeWp
iffs)fA¢Waors| BeWpg
iff st Aisoddor s| B is even
iff s is even.
All maps in the subcategory (which are winning strategies in its function

spaces (A,Wa) — (B,Wg)) compose (because winning strategies do) and are
total (because winning conditions of its function spaces satisfy (Tot)).

8.5 On determined games

A game with winning conditions G is said to be determined when either Player
or Opponent has a winning strategy, i.e. either there is a winning strategy in
G or in G*.3 Not all games are determined. Neither the game G consisting of
one player move @ and one opponent move © inconsistent with each other, with
{{®}} as winning conditions, nor the game G* have a winning strategy.

Notation 8.13. Let 0:S — A be a strategy. We say y € C*(A) is o-reachable
iff y=ox for some x €C®(S). Lety cy inC®(A). Sayy' is —maximal in y iff
y—cy" implies y" ¢ y. Similarly, say y' is +-maximal in y iff y—+c y" implies
y' ty.

Lemma 8.14. Let (A, W) be a game with winning conditions. Let y e C*(A).
Suppose

vy' e C=(A).
y cy & vy is —-mazimal in y & not +-mazimal in y
.
{yeClA) |y "y & W' ~y)ny=a}nW=0.
Then y is o-reachable in all winning strategies o.
Proof. Assume the property above of y € C*(A). Suppose, to obtain a contra-
diction, that y is not o-reachable in a winning strategy o : S — A.

Let 2’ € C*(A) be c-maximal such that oz’ €y (this uses Zorn’s lemma).
By the receptivity of o, the configuration oz’ is —-maximal in y. By suppo-

sition, oz’ ¢ y, so we must therefore have or'—c Yo Sy in CP(A), i.e. o’ is
not +-maximal in y. From the property assumed of y we deduce both

o' ¢W & (Vy"'eW.ox' "y = (y'~Noz')ny+2).

3This section is based on work with Julian Gutierrez.
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As o is winning, there is +-maximal extension z’ c* 2 in C*(S) such that
oz € W. Hence
(ca"~Nox)Yny+ .

Taking a <4-minimal event a1, necessarily +ve, in the above set we obtain
ay
ox'—cy c* oz”.

By Corollary 4.22, y; = oz for some x1 € C=(S) with o'z, 2’ But this
contradicts the choice of 2’ as c-maximal such that oz’ ¢ y. Hence the original
assumption that y is not o-reachable must be false. O

Recall the property (race-free) of an event structure with polarity A, first
seen in Lemma 5.3, though here rephrased a little:

- +
Vy,y1,92 € C(A). y—c 1 & y—< yo = 111 v (race-free)

Corollary 8.15. If A, an event structure with polarity, fails to satisfy (race-free),
then there are winning conditions W, for which the game (A, W) is not deter-
mined.

Proof. Suppose (race-free) failed, that y—cy; and y—+cy2 and y; + yo in
C(A). Assign configurations C*(A) to winning conditions W or its complement
as follows:

!

(i) for y" with yy c* ", assign y"’ ¢ W;

(ii) for y"” with yo €™ 4", assign y"’ € W;

(iii) for " with ' ¢ ¢ and (y” ~y') Ny = @, for some sub-configuration y’ of
y with ¢/ —-maximal and not +-maximal in y, assign y" ¢ W;

(iv) for y"” with ' <~ 3" and (y” \y') ny = @, for some sub-configuration y’ of
y with ¥’ +-maximal and not —maximal in y, assign y" ¢ W

(v) assign arbitrarily in all other cases.

We should check the assignment is well-defined, that we do not assign a config-
uration both to W and its complement.
Clearly the first two cases (i) and (ii) are disjoint as y1 4 ya.
The two cases (iii) and (iv) are also disjoint. Suppose otherwise, that both
(iii) and (iv) hold for y", viz.
sy & @ yny=0&
y] is —maximal & not +-maximal in y, and
¢y &N yp)ny=0&

Yy is +-maximal & mnot —-maximal in y.

As
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we deduce 4~ €y}, i.e. all the —ve events of 4 are in y}. Now let a € 5 . Then
a €y as y, € y. Therefore a ¢ y'’ \ yi, by assumption. But a € y" as y ¢~ 3",
so a € yj. We conclude g4 € y;. A similar dual argument shows y; € y5. Thus
Y1 = y5. But this implies that y] is both —-maximal and not —maximal in y —a
contradiction.

Suppose both the conditions (i) and (iv) are met by y”. From (vi), as y is
+-maximal & not —-maximal in y,

/ a
Y—Cy%<y,
for some event a with pol4(a) = — and yg € C*(A). From (i), y € 3", so
y—cyocy”.

Therefore
aey’'~Ny &aey,

which contradicts (iv). Similarly the cases (ii) and (iii) are disjoint.

We conclude that the assignment of winning conditions is well-defined.

Then y is reachable for both winning strategies in (A, W) and winning strate-
gies in (A,W)*. Suppose o is a winning strategy o in (A,W). By (iii) and
Lemma 8.14, y is o-reachable. From receptivity y; is o-reachable, say y; = ox;
for some x1 € C(S). There is a +-maximal extension ] of x; in C*(S). By (i),
oz cannot be a winning configuration. Hence there can be no winning strategy
in (A, W). In a dual fashion, there can be no winning strategy in (4,W)*. O

It is tempting to believe that a nondeterministic winning strategy always
has a winning (weakly-)deterministic sub-strategy. However, this is not so, as
the following examples show.

Example 8.16. A winning strategy need not have a winning deterministic sub-
strategy. Consider the game (A, W) where A consists of two inconsistent events
© and @, of the indicated polarity, and W = {{e},{®}}. Consider the strategy
o in A given by the identity map id4 : @ - A. Then o is a nondeterministic
winning strategy—all +-maximal configurations in A are winning. However any
sub-strategy must include & by receptivity and cannot include @ if it is to be
deterministic, wherepon it has @& as a +-maximal configuration which is not
winning.

Example 8.17. Observe that the strategy o of Example 8.16 is already weakly-
deterministic—cf. Corollary 5.6. A winning strategy need not have a winning
weakly-deterministic sub-strategy. Consider the game (A, W) where A consists
of two —ve events 1,2 and one +ve event 3 all consistent with each other and

W ={@,{1,3},{2,3},{1,2,3}}.

Let S be the event structure

O —>
O —>D
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and o : .S — A the only possible total map of event structures with polarity:

T
S}
Then o is a winning strategy for which there is no weakly-deterministic sub-
strategy.

@

7. o) o

O ——>0

8.6 Determinacy for well-founded games

Definition 8.18. A game A is well-founded if every configuration in C*°(A) is
finite.

It is shown that any well-founded concurrent game satisfying (race-free) is
determined.

8.6.1 Preliminaries

Proposition 8.19. Let Q be a non-empty family of finite partial orders closed
under rigid inclusions, i.e. if ¢ € Q and ¢’ — q is a rigid inclusion (regarded
as a map of event structures) then q' € Q. The family Q determines an event
structure (P, <,Con) as follows:

e the events P are the prime partial orders in Q, i.e. those finite partial
orders in Q with a top element;

e the causal dependency relation p’ < p holds precisely when there is a rigid
inclusion from p’ < p;

e a finite subset X ¢ P is consistent, X € Con, iff there is q € @ and rigid
inclusions p = q for allpe X.

If x € C(P) then Uz, the union of the partial orders in x, is in Q. The function
x — Uz is an order-isomorphism from C(P), ordered by inclusion, to Q, ordered
by rigid inclusions.

Call a non-empty family of finite partial orders closed under rigid inclusions
a rigid family. Observe:

Proposition 8.20. Any stable family F determines a rigid family: its config-
urations x possess a partial order <, such that whenever x €y in F there is a
rigid inclusion (x,<;) = (y,<y) between the corresponding partial orders.

Notation 8.21. We shall use Pr(Q) for the construction described in Proposi-
tion 8.19. The construction extends that on stable families with the same name.
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Lemma 8.22. Let 0:5 — A be a strategy. Letting x,y € C(S5),
ztcyt & orcoy = zcy.

Proof. The proof relies on Proposition 4.20, characterising strategies. We first
prove two special cases of the lemma.
Special case ox €~ oy. By assumption z* € y*. Supposing s € y* \ z*, via
the injectivity of o on y, we obtain oy \ cx contains o(s) a +ve event—a
contradiction. Hence z* = y*.

From Proposition 4.20(ii), as ox €~ oy, we obtain (a unique) 2z’ € C(S) such
that ¢ 2’ and oz’ = oy:

8
in
8

Now [z*] ¢~ z, from which

—
8

T

[
n

Combining the two diagrams:

5

L
n

&\

—
<

T

—
n
<

oly*] < oy.

where, by Proposition 4.20(ii), y is the unique such configuration of S. But
y* = 2" so this same property is shared by z’. Hence ' =y and = c y.
Thus

tcyt &orc oy = xcy. (1)
Note that, in particular,

=yt &or=0y = z=y. (2)
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Special case ox €t oy. By Proposition 4.20(i), there is (a unique) y; € C(S)
with y; € y such that oy; = ox:

/1 Y

\

oxr <t oy,

<
—=
N

Now 2*,yf cy and ox* = (o))" = oy7. So by the local injectivity of o we
obtain z* = y{. By (2) above, z = y1, whence x € y. Thus

zrcyt &oxctoy = xcy. (3)

Any inclusion oz € oy can be built as a composition of inclusions €~ and ¢,
so the lemma follows from the special cases (1) and (3). O

Lemma 8.23. Let 0: S — A be a strategy for which no +ve event of S appears
as a —ve event in A. Defining

Fo =det {z"0(02)” |2€C(S5)}
yields a stable family for which

if s is +wve,

()=1
as(s) =
o(s) if s is —ve.
is a map of stable families ay : C(S) — F, which induces an order-isomorphism
(C(9),9) = (F5,9)

taking x € C(S) to apx =a* U (ox)”. Defining

£.(e) = {Z(e) if e is +ve,

if e is —ve
on events e of F, yields a map of stable families f, : F, — C(A) such that

C(S) === F,
Ny
c(4)
commutes.
Proof. A configuration x € C(S) has direct image

agr=2"U(ox)”
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under the function a,. Direct image under «,, is clearly surjective and preserves
inclusions, and by Lemma 8.22 yields an order-isomorphism (C(5),<) = (F,,<):
if apx € apy, for x,y € C(S), then z* c y* and (ox)~ € (oy)~ by the disjointness
of S* and A, whence ox S oy so x € y.

It is now routine to check that F, is a stable family and «, is a map of
stable families. For instance to show the stability property required of F,,
assume Q &, Qgy € Agz. Then z,y €2 s0 cxny=(ocx)n(oy) as o is a map of
event structures, and consequently (czny)” = (ocx)” n(oy)~. Now reason

(ax) N (agy) =(27 U (oz)7) N (y" U (oy)7)
@ Ay U ((02) 0 (0y)")
—Dby distributivity with the disjointness of S* and A,
=(zny) u(ocazny)”
=(azxzny)eFy.
From the definitions of a, and f, it is clear that f,a,(s) = o(s) for all events
of S. Any configuration of F, is sent under f, to a configuration in C(4) in a

locally injective fashion, making f, a map of stable families; this follows from
the matching properties of o. O

When we “glue” strategies together it can be helpful to assume that all the
initial —ve moves of the strategies are exactly the same:

Lemma 8.24. Let 0: S — A be a strategy. Then o =o', a strateqgy o' : 8" - A
for which
Vs' €S polg[s']s ={-} = s =[0(s)]a.

Proof. Without loss of generality we may assume no +ve event of S appears as
a —ve event in A. Take f, : F, » C(A) given by Lemma 8.24 and construct o’
as the composite map

Pr(F,) — D prc(a)) 'Y A

—recall top takes a prime [a]4 to a, where a € A. O

8.6.2 Determinacy proof

Definition 8.25. Let A be an event structure with polarity. Let W ¢ C*(A).
Let y € C*(A). Define Aly to be the event structure with polarity comprising
events
{ac ANy |yula]aeC™(A)},
also called Ay, with consistency relation
X € Conyyy, iff X Shn Aly & yu[X]aeC™(A),
and causal dependency the restriction of that on A. Define W[y c C*(Aly) by
zeWly iff ze C*(Aly) & yuzeW.
Finally, define (A,W)[y =aet (Aly, W [y).
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Proposition 8.26. Let A be an event structure with polarity and y € C*°(A).
Then,
zeC®(Aly) iff zc Aly & yuzeC™(A).

Assume A is a well-founded event structure with polarity with winning con-
ditions W ¢ C(A). Assume the property (race-free) of A:

- +
Vy,y1,92 € C(A). y—c 1 & y—< y2 = 1ty (race-free)

Observe that by repeated use of (race-free), if x,y € C(A) with x ny c* x and
xNyCc y, then xuy e C(A).

We show that the game (A,W) is determined. Assuming Player has no
winning strategy we build a winning (counter) strategy for Opponent based on
the following lemma.

Lemma 8.27. Assume game A is well-founded and satisfies (race-free). Let
W cC(A). Assume (A, W) has no winning strategy (for Player). Then,

VeeC(A). oz & axeW

E

JyeC(A). zc y & y¢W & (A, W)/y has no winning strategy.

Proof. Suppose otherwise, that under the assumption that (A, W) has no win-
ning strategy, there is some x € C(A) such that

gcrr&rzeW
&
VyeC(A). 2  y& y¢ W = (A,W)/y has a winning strategy.

We shall establish a contradiction by constructing a winning strategy for Player.
For each y € C(A) with z ¢~ y and y ¢ W, choose a winning strategy

oy Sy~ Aly.

By Lemma 8.24, we can replace o, by a stable family F, with all —ve events
in A and a map of stable families f, : 7, - C(A). It is easy to arrange that,
within the collection of all such stable families, F,,, and F,, are disjoint on +ve
events whenever y; and yy are distinct. We build a putative stable family as

F =det {y € C(A) | pola(y~z)c{-}} U
{yuv|yeC(A) &poly(y~z)c{-} &avy¢W &
veFuuy & +epolv & yu fuuveC(A)}.

[Note, in the second set-component, that zUy is a configuration by (race-free).|
We assign events of F the same polarities they have in A and the families F,,.
We check that F is indeed a stable family.
Clearly @ € F. Assuming z1, 25 € z in F, we require z1 U 29, 21 N 29 € F.
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It is easily seen that if both z; and z, belong to the first set-component, so
do their union and intersection. Suppose otherwise, without loss of generality,
that zo belongs to the second set-component. Then, necessarily, z is in the
second set-component of F and has the form z = y U v described there.

Consider the case where z; = y; Uv; and z3 = ys U v9, both belonging to the
second set-component of F. Then

TUYyr=rUys=ruy,

from the assumption that families F, are disjoint on +ve events for distinct y,
and
V1,02 S in Fryy .

It follows that z U (y1 Uy2) = xuy ¢ W and v1 Uy € Fouy = Fau(yiuys)- AS
21,22 €z,
(Y1 Y fauyv1), (Y2 U fouyv2) € (YU fouyv)
SO
(y1 U Y2) U fouy(v1 Uv2) = (Y1 U fouyv1) U (Y2 U fouyv2) € C(A).

This ensures z1 U 2z = (y1 Uya) U (v Uwg) € F. Similarly, z U (y1 ny2) =
(zuy)n(zuyz) =zuy ¢ W and vi Ny € Fouy = Fau(yiny,)- Checking

(y1 N y2) U fauy(v1 nv2) = (Y1 U fauyv1) N (Y2 U fauyv2) € C(A)

ensures z1 Nz = (y1 Ny2) U (v Nwo) € F.

Consider the case where z; € C(A) belongs to the first and 25 = yo U vs to
the second set-component of F. As z; € yuUw it has the form z; = y; Uv; where
y1 € C(A) with y1 €y and vy € Fyyy with v1 C v; all the events of vy = 21\ (zUYy)
have —ve polarity which ensures v; € Fpuy by the receptivity of o,. Because vy
and v have +ve events in common,

rTUYys = Uy,

while clearly
V1,02 S in Fryy .

We deduce z U (y1 Uy2) =z Uy ¢ W and vy U € Fauy = Fau(y,uy,) Whence
21Uz = (y1Uy2)U(v1 Uve) € F after an easy check that (y1 Uy2)U fruy (v1Uvs) €
C(A). We have yo U fuu,v2 € C(A). But fyy, is constant on —ve events so

Z1Nzg=21N(Y2Uw2) = 21N (Y2 U fa;UyUQ) €C(4),

and z; Nz belongs to the first set-component of F.

A routine check establishes that F is coincidence-free, and uses that each
family F, is coincidence-free when considering configurations of the second set-
component.

Having established that F is a stable family, we define a total map of stable
families

[iF =)
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by taking

£(e) e if eex or e is —ve,
e) =
fy(e) if eis a +ve event of F,,.

Defining o to be the composite map of stable families

C(Pr(F)) L F Lo c(a)
we also obtain a map of event structures
o:Pr(F)—- A

as the embedding of event structures in stable families is full and faithful. As-
cribe to events p of Pr(JF) the same polarities as events top(p) of F. Clearly
o preserves polarities as f does, so ¢ is a total map of event structures with
polarity. In fact, o is a winning strategy for (A, W).

To show receptivity of o it suffices to show for all z € F that fz—cy' in

C(A) implies 2—2c with o7 = 2 for some unique 2z’ € F. If z belongs to the
first set-component of F this is obvious—take 2z’ = 3'. Otherwise z belongs to
the second set-component, and takes the form y U v, when receptivity follows
from the receptivity of o,uy. No extra causal dependencies, over those of A,
are introduced into y in the first set-component of F. Considering y U v in the
second set-component of F, the only extra causal dependencies introduced in
y U v, above those inherited from its image y U fouyv in A, are from v in Fypyy
and those making a +ve event of v in y Uv depend on —ve events y \ x. For
these reasons o is also innocent, and a strategy in A.

To show o is a winning strategy for (A, W) it suffices to show that fz e W
for every +-maximal configuration z € F. Let z be a +-maximal configuration
of F.

Suppose that z belongs to the first set-component of F and, to obtain a
contradiction, that fz ¢ W. Then z = fz € C(A) and polz \ x € {-}. By axiom
(race-free), x 1 y, so x € z from the +-maximality of z. Asz <™ z and z ¢ W
the strategy o, is winning in (A, W)/z. Because z is +-maximal in F we must
have @ is +-maximal in F,. It follows that @ € W/z, i.e. z €¢ W—a contradiction.

Suppose that z belongs to the second set-component of F, so that z has
the form y u v with y € C(A) and v € Fpyy. By (race-free), x C y, as z is +-
maximal in F. Hence v € F,, and is necessarily +-maximal in F;, again from the
+-maximality of z. As o, is winning, f,v € W/y. Therefore fz =yu fyv e W.

Finally, we have constructed a winning strategy o in (A, W)—the contra-
diction required to establish the lemma. O

Remark. In the proof above we could instead build the strategy for Player, on
which the proof by contradiction depends, out of a rigid family of finite partial
orders. Recall that stable families, including configurations of event structures,
are rigid families w.r.t. the order induced on configurations; finite configurations
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x determine finite partial orders (z, <, ), which we call ¢(«) in the construction
below. Define

Q =aet {q(y) [y C(A) & poly(y~z)c{-}} u
{a(y);q(v) [ yeC(A) & poly(y~z)c{-} &zvy¢W &
veFuuy & +epolv & yu fouveC(A)}

where above ¢(y); q(v) is the least partial order on y Uv in which events inherit
causal dependencies from ¢(v), from their images in ¢(yU fyu,v) and in addition
have the causal dependencies y~ x v*. The family Q can be shown to be closed
under rigid inclusions, and so a rigid family. O

Theorem 8.28. Assume game A is well-founded, satisfies (race-free) and has
winning conditions W ¢ C(A). If (A,W) has no winning strategy for Player,
then there is a winning (counter) strategy for Opponent.

Proof. Assume (A, W) has no winning strategy for Player.

We build a winning counter-strategy for Opponent out of a rigid family of
partial orders, themselves constructed from ‘alternating sequences’ of configu-
rations of A.

Define an alternating sequence to be a sequence

T1,Y15%25 Y255 Lis Yiy 'y They Yk Thet 1

of length k + 1 > 1 of configurations of A such that

+

+ - + - - - +
JC 1€ Yy1S x9¢ Y& -C x; © Y; ©

S Y € T
with
x, €W & y; ¢ W & (A, W)/y; has no winning strategy,

when 1 < ¢ < k. It is important that zx.1, which may be @&, need not be in W.
In particular, we allow the alternating singleton sequence x; comprising a single
configuration of A with @ ¢* x1 without necessarily having x; € W.

For each alternating sequence x1,¥1, -, Tk, Yk, Tr+1 define the partial order
Q(z1,y1, " Tk, Yk, Ti+1) to comprise the partial order on xg,q inherited from A
together with additional causal dependencies given by the pairs in

xf x (y; N z;), where 1 <i<k.

We define Q to be the rigid family comprising the set of all partial orders got
from alternating sequences, closed under rigid inclusions.

Form the event structure Pr(Q) as described in Proposition 8.19. Assign
the same polarity to an event in Pr(Q) as its top event in A. Recall from
Proposition 8.19 the order-isomorphism C(Pr(Q)) = Q given by x —» Uz for
x € C(Pr(Q)). The map

7:Pr(Q)—> A
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taking p € Pr(Q) to its top event is a total map of event structures with polarity.
Writing T : @ - C(A) for the function taking ¢ € Q to its set of underlying events,
7 =T(Ux) for all z € C(Pr(Q)), i.e. the diagram

C(Pr(Q)) = T
C(A)

commutes. We shall reason about order-properties of 7 via the function 7.

We claim that 7 is a winning counter-strategy, in other words a winning
strategy for Opponent, in which the roles of + and — are reversed.

Because the construction of the partial orders in Q only introduces extra
causal dependencies of —ve events on +ve events, 7 is innocent (remember the
reversal of polarities). To check receptivity of 7 it suffices to show that for g € Q
assuming T(q)—ac 2" in C(A), where pol 4(a) = +, there is a unique ¢’ € Q such
that g—<c ¢’ and T'(¢') = z’. Any such extension ¢’ must comprise the partial
order ¢ extended by the event a. As a is 4+ve the events on which it immediately
depends in ¢" will coincide with those on which @ immediately depends in 2/,
guaranteeing the uniqueness of ¢’. It remains to show the existence of ¢'.

By assumption, ¢ rigidly embeds in Q(x1,y1,, Tk, Yk, Tk+1) for some alter-
nating sequence x1,y1,*, Tk, Yk, Lk+1- In the case where ¢ consists of purely
+ve events, take ¢’ =qef Q(2"). Otherwise, consider the largest ¢ for which
T(q) n(y; ;) #+ @. Then,

pol s T(q)~yi c{+}. (1)

From the construction of Q(x1,y1,"*, Tk, Yk, Tr+1) and the rigidity of the inclu-
sion of ¢ in Q(x1,y1,", Tk, Yk, Tk+1) We oObtain

xf € T(q). (2)

From (2), T(q) ¢ T(q) Uy; and, by assumption, T(q)—c 2’ with pol4(a) = +.
Using (race-free), their union remains in C(A), and we can define

2’ =qet T(q) Uy; u{a} e C(A).

Note that
Z‘layl7"'a$i7yi7$,

is an alternating sequence because y; €* 2’ by (1) and it is built from an al-
ternating sequence x1,y1, -, Tk, Yk, Tr+1- Restricting Q(z1,y1, -, i, yi, ') to
events z we obtain a partial order ¢’ for which g—<c ¢’ in Q and T(¢") = z.

We now show that 7 is winning for Opponent. For this it suffices to show
that if ¢ € Q is —maximal then T'(q) ¢ W. Assume ¢ € Q is —maximal in Q.
Necessarily g embeds rigidly in Q(xz1,y1, -, Tk, Yk, Tr+1) for some alternating
SeqUeNCe X1, Y1, s Tk, Yk, Th+1-
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In the case where ¢ consists of purely +ve events
@c* T(q) in C(A).
Suppose T'(g) € W. By Lemma 8.27, for some y € C(A),
T(@)c y&yeW.

But then there is a strict extension ¢ -~ Q(T'(q),y,@) of ¢ by —ve events in Q,
and ¢ is not —-maximal—a contradiction.

In the case where ¢ has —ve events, we may take the largest i for which
T(q) N (y; ~x;) #D. As earlier,

(1) polaT(q) Ny < {+} & (2) 27 <T(q).
As ¢ is —-maximal, y; € T'(¢), whence by (1),
yi € T(q).

Suppose, to obtain a contradiction, that T'(¢) € W. The game (A, W)/y; has
no winning strategy. By Lemma 8.27, given

@S 2 =qer T(q) N yi
in C((A,W)/y;) there is y € C((A,W)/y;) with
zSy & yeWly:.
Let x{,; =qet T'(q) and yj,; =def ¥s Uy ¢ W. Then,
L1 Y1, Tis Yir Tig 15 Yiar, B

is an alternating sequence which strictly extends ¢ by —ve events, contradicting
its —-maximality.
We conclude that 7 is a winning strategy for Opponent. O

Corollary 8.29. If a well-founded game A satisfies (race-free) then (A, W)
is determined for any winning conditions W.

8.7 Satisfaction in the predicate calculus

The syntax for predicate calculus: formulae are given by

G, Y, = R(xy, - mp) | oA [ oV [ —¢ [Tz ¢ | V. ¢

where R ranges over basic relation symbols of a fixed arity and z,x1, zo, -, x)
over variables.

A model M for the predicate calculus comprises a non-empty universe of
values V), and an interpretation for each of the relation symbols as a relation
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of appropriate arity on V,,. Following Tarski we can then define by structural
induction the truth of a formula of predicate logic w.r.t. an assignment of values
in V,, to the variables of the formula. We write

P':M¢

iff formula ¢ is true in M w.r.t. environment p; we take an environment to be
a function from variables to values.

W.r.t. a model M and an environment p, we can denote a formula ¢ by
[#]arp, & concurrent game with winning conditions, so that p =,, ¢ iff the game
[#]xp has a winning strategy.

The denotation as a game is defined by structural induction:

(2,{2}) ifpEy R(z1, k),
(2,2) otherwise.

[[R(xlv"'vxk)]]Mp = {

[ AY]np = [8lp ® [¥]up
[V lup=[6]up 3 [¥]up
[[_‘(bHMP = ([[(b]]Mp)l

[B3z. ¢lup = @ [#]aplv/x]

'UEV]\/[

[Vz. ¢lup = @ (@] plv/z].

veVir

We use p[v/z] to mean the environment p updated to assign value v to variable
x. The game (@, {@}) the unit w.r.t. ® is the game used to denote true and the
game (@, {@}) the unit w.r.t. % to denote false. Denotations of conjunctions and
disjunctions are denoted by the operations of ® and % on games, while negations
denote dual games. Universal and existential quantifiers denote prefized sums
of games, operations which we now describe.

The prefixed game @.(A, W) comprises the event structure with polarity ®.A
in which all the events of A are made to causally depend on a fresh +ve event ®.
Its winning conditions are those configurations x € C*°(®.A) of the form {@}uy
for some y € W. The game @,y (A, W,) has underlying event structure with
polarity the sum (=coproduct) ¥, .4, with a configuration winning iff it
is the image of a winning configuration in a component under the injection to
the sum. Note in particular that the empty configuration of @,y G, is not
winning—Player must make a move in order to win. The game ©,., G, is
defined dually, as (@,ey Gi)*. In this game the empty configuration is winning
but Opponent gets to make the first move. More explicitly, the prefixed game
©.(A, W) comprises the event structure with polarity ©.A4 in which all the events
of A are made to causally depend on the previous occurrence of an opponent
event ©, with winning configurations either the empty configuration or of the
form {6} Uy where y € W. Writing G, = (4,,W,), the underlying event
structure of O,y G, is the sum Y, 6.4, with a configuration winning iff it
is empty or the image under injection of a winning configuration in a prefixed
component.
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It is easy to check by structural induction that:

Proposition 8.30. For any formula ¢ the game [P]rnp is well-founded and
race-free (i.e. satisfies Aziom (race-free)), so a determined game by the result
of the last section.

The following facts are useful for building strategies.
Proposition 8.31.

(i) If 0 : S - A is a strategy in A and 7 : T — B is a strategy in B, then
oll7:S|T - A| B is a strategy in Al B.

(i) If 0 : S = T is a strategy in T and 7 : T — B is a strategy in B, then
their composition as maps of event structures with polarity To : S — B is
a strategy in B.

Proof. 1t is easy to check that the properties of receptivity and innocence are
preserved by parallel composition and composition of maps. O

There are ‘projection’ strategies from a tensor product of games to its com-
ponents:

Proposition 8.32. Let G = (A, W¢g) and H = (B, Wpy) be race-free games with
winning conditions. The map of event structures with polarity

idas|lvp - A*|Cp - A*|| BB
s a winning strategy py : GO H —=H. The map of event structures with polarity
idp: |4 : BY||(Ca » B*[|AM[|A = A*|B*||A
is a winning strategy pg : G H—=G.

Proof. By Proposition 8.31, as id 4. is a strategy in A* and g is a strategy in
B*||B the map py =id a:|yp is certainly a strategy in A'|B*| B.

We need to check that py is a winning strategy in G® H — H. Consider z,
a +-maximal configuration of A*||Cp. As B is race-free, the copy-cat strategy
vp is winning in H — H. Consequently if x images to a winning configuration in
G ® H on the left of G® H — H it will image to a winning configuration in H on
the right of G® H — H. (Recall a winning configuration of G ® H is essentially
the union of a winning configuration in G together with a winning configuration
in H.) Consequently, 2 images to a winning configuration in G ® H — H, as is
required for py to be a winning strategy.

The strategy pg is defined analogously but for the isomorphism B*|A*| A
A*||B*||A which does not disturb its winning nature. O

The following lemma is used to build and deconstruct strategies in prefixed
sums of games. The lemma concerns the more basic prefixed sums of event
structures. These are built as coproducts Y ,.; ¢.B; of event structures e.B; in
which an event e is prefixed to B;, making all the events in B; causally depend
on e.
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Lemma 8.33. Suppose f: A - Y, ;e.B; is a total map of event structures,
with codomain a prefived sum. Then, A is isomorphic to an prefized sum, A =
Yjes ®-Aj, and there is a function v : J — I and total maps of event structures
fj+ Aj = By for which

ZjEJ .Aj = A

['fj]je-ll /

Yier®-Bi
commutes.

Proof. Let J be the subset of events of A whose images are prefix events e in
Yicr®Bi. As f is a map of event structures any distinct pairs of events in J
are inconsistent. Moreover, every event of A is <4-above a necessarily unique
event in J. It follows that the events of J are <4-minimal with A= 3, ;e.A4;;
the event structure A; is A/{;j}, that part of the event structure strictly above
the event j. Each event j € J is sent to a unique prefix event f(j) in Y,.; ®.B;.
Thus f determines a function r: J — I and maps f; : A; — B,(;) for all j € J.
By construction the map f is reassembled, up to isomorphism, as the unique
mediating map [e.f;];c; for which

znA
o A; — Yies A = A

o‘fjl/ [lfj]jeJL /

.B’r‘(]) HB ZiEI ..Bi
e ()

commutes for all j € J. O

Lemma 8.34. Let G,H,G,, where v € V, be race-free games with winning
conditions. Then,

(i) G® H has a winning strategy iff G has a winning strategy and H has a
winning strategy.

(ii) @pev Gy has a winning strategy iff G, has a winning strategy for some
veV.

(#ii) BOyev Gy has a winning strategy iff G, has a winning strategy for allv e V.
If in addition G and H are determined,

(iv) G® H has a winning strategy iff G has a winning strategy or H has a
winning strategy.
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Proof. Throughout write G, = (A,, W,), where v e V.

(i) ‘Only if: If G ® H has a winning strategy o : (@, {@})—=G ® H, then the
compositions pg®o and py©®o provide winning strategies in G and H, respec-
tively. “If’: If G = (A,Wg) and H = (B,Wg) have winning strategies given as
maps of event structures with polarity o : S - A and 7: T — B then the map
ollr:S||T - A||B is a winning strategy in G ® H.

(ii) ‘Only if’: Suppose 0 : S = ¥, ®.A, is a winning strategy in @,y Gy .
As @& is not winning in the game, S must be nonempty. By Lemma 8.33, S
decomposes into a prefixed sum necessarily nonempty and of the form ;. ; @.5;
with maps, now necessarily total maps of event structures with polarity, o; :
Sj = Ay(j)- Because o is winning any such map will be a winning strategy in
Gu()- ‘If’: Suppose o, : S, = A, is a winning strategy in G,. Prefixing we
obtain ®.0, : .5, > ®.4,, a winning strategy in ®.G,. Composing with the
winning ‘injection’ strategy In, : .G, —= Y,y ®.G, defined below we obtain a
winning strategy in @,y G,. The injection strategy is built from the injection
map of event structures with polarity

Nyt @A, — Z ®.A, .
veV

as the composite map

Yo.A, deg. a,)t v
—_—

In, : Cg.a, (@.4,) @ .A, (0. 4) | Zpev @Ay .

Proposition 8.31 is used to show In, is a strategy. It can be seen that in, is
both receptive and innocent so a strategy in 3,y ®.4,. The map id(g.4,): is a
strategy. Hence id(g.4,): || in, is a strategy. As the composition of two strategy
maps, In, is a strategy in (@.4,)*|| X,ev ®-Ay. It is a winning strategy because,
as is easily seen from the explicit composite form of In,, the image under In,

of a +-maximal configuration in (Cg 4, is winning.

(iii) ‘Only if : Defining P, =get In,,, where In, : ®.G: —> @,y G+ is an instance
of an injection strategy defined above, we obtain by duality a winning strategy

P,:6G,—o.G,,
veV

for any v € V. Let v € V. By composition with P, a winning strategy in
O,y Gy yields a winning strategy in the component 6.G,. By Lemma 8.33 in
a strategy o : S — 6.4, the event structure S decomposes into a prefixed sum,
where the prefixing events are necessarily all —ve. As ¢ is receptive the sum
must be a unary prefixed sum of the form ©.5’. Lemma 8.33 provides a map
o' 8" - A,. From o being winning the map ¢’ will be a winning strategy in
G,. ‘If’: Suppose o, : S, - A, is a winning strategy in G,, for all v € V. Pre-
fixing we obtain winning strategies .0, : 6.5, - 6.4, in 6.G,. Forming the
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SUML Y. ey ©.00 & Dey ©.5y = ©.04 : 2y ©-A, We obtain a strategy winning in
evEV G’U'

(iv) Now suppose G and H are determined. ‘If’: The dual winning strategies
Pe  G—=G B H and py, + H—=G % H compose with a winning strategy
(2,{@})—=G, or respectively a winning strategy (@,{@})—=H, to yield a
winning strategy (&,{@})—=G % H. ‘Only if : Suppose G % H has a winning
strategy. Then G* ® H* = (G % H)* has no winning strategy. Hence by (i), G*
has no winning strategy or H* has no winning strategy. From determinacy, G
has a winning strategy or H has a winning strategy. O

Theorem 8.35. For all predicate-calculus formulae ¢ and environments p, p =y,
@ iff the game [@]p has a winning strategy.

Proof. By Proposition 8.30 the games [¢],,p obtained from formulae ¢ are race-
free and determined. The proof is by structural induction on ¢.

The base case where ¢ is R(x1,-,xx) is obvious; the game (&,{@}) has as
(unique) winning strategy the map @ — @, while (@, @) has no winning strategy.

For the case ¢ A 1), reason

PEM PAY = pEy ¢ & pEy Y
<= [¢]mp has a winning strategy & [¢].p has a winning strategy, by induction,
< [¢]mp ® [¥]rp has a winning strategy, by Lemma 8.34(i),
<= [¢ A Y]up has a winning strategy.

In the case ¢ v 9,

PEMPVY < pEy orpEy Y
<= [¢]mp has a winning strategy or [].p has a winning strategy, by induction,
< [¢]mp B [¢]mp has a winning strategy, by Lemma 8.34(iv),
<= [¢ A Y]up has a winning strategy.

In the case ¢,

PEM _‘¢ And p#M¢
<= [¢]xp has no winning strategy, by induction,

<= ([#]mp)* has a winning strategy, by determinacy.
In the case Jz. ¢,

pEy Jx.0 <> plv/z] ENy ¢ for some veV
<= [#]mp[v/x] has a winning strategy, for some v € V', by induction,

<~ @P[¢]uplv/z] has a winning strategy, by Lemma 8.34(ii),
veV

<= [Jz.¢]rp has a winning strategy.
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In the case Vx. ¢,

pEN Vr.¢p < plv/x]Ey ¢ forallveV
<= [#]mp[v/x] has a winning strategy, for all v € V', by induction,

— O[¢]uplv/z] has a winning strategy, by Lemma 8.34(iii),
veV

<= [Vz.¢]rp has a winning strategy.



Chapter 9

Borel determinacy

9.1 Introduction

We show the determinacy of concurrent games with Borel sets as winning con-
ditions, provided they are race-free and bounded-concurrent. Both restrictions
are necessary. The proof of determinacy of concurrent games proceeds via a
reduction to the determinacy of tree games, and the determinacy of these in
turn reduces to the determinacy of traditional Gale-Stewart games.

9.2 Tree games and Gale-Stewart games

We introduce tree games as a special case of concurrent games, traditional Gale-
Stewart games as a variant, and show how to reduce the determinacy of tree
games to that of Gale-Stewart games. Via Martin’s theorem for the determinacy
of Gale-Stewart games with Borel winning conditions we show that tree games
with Borel winning conditions are determined.

9.2.1 Tree games

Definition 9.1. Say FE, an event structure with polarity, is tree-like iff it is
race-free, has empty concurrency relation (so <g forms a forest) and is such
that polarities alternate along branches, i.e. if e — ¢’ then polz(e) # polg(e’).

A tree gameis (E, W), a concurrent game with winning conditions, in which
E is tree-like.

Proposition 9.2. Let E be a tree-like event structure with polarity. Then, its
configurations C(E) form a tree w.r.t. €. Its oot is the empty configuration @.
Its (mazimal) branches may be finite or infinite; finite sub-branches correspond
to finite configurations of E; infinite branches correspond to infinite configu-

rations of E. Its arcs, associated with r—c 2, are in 1-1 correspondence with
events e € B. The events e associated with initial arcs 3—c x all share the same

109
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polarity. Along a branch

€1 €2 €3 €4 €i+1
g—Cx1—Cxo—C--—Cx;—C---

the polarities of the events ey, es,. .., e;, ... alternate.

Proposition 9.2 gives the precise sense in which ‘arc,” ‘sub-branch’ and
‘branch’ are synonyms for ‘events,” ‘configurations’ and ‘maximal configura-
tions’ when an event structure is tree-like. Notice that for a non-empty tree-like
event structure with polarity, all the events that can occur initially share the
same polarity.

Definition 9.3. We say a a non-empty tree game (E,W) has polarity + or
— according as its initial events are 4+ve or —ve. It is convenient to adopt the
convention that the empty game (@, @) has polarity +, and the empty game
(2,{2}) has polarity —.

Observe that:

Proposition 9.4. Let f: S — A be a total map of event structures with polarity,
where A is tree-like. Then, S is also tree-like and the map f is innocent. The
map [ is a strategy iff it is receptive.

Proof. As f preserves the concurrency relation, being a map of event structures,
S must be tree-like. Innocence of f now follows so that only its receptivity is
required for it to be a strategy. O

9.2.2 Gale-Stewart games

For the sake of uniformity we shall present Gale-Stewart games as a slight variant
of tree games, a variant in which all maximal configurations of the tree game
are infinite, and where Player and Opponent must play to a maximal, infinite
configuration.

Definition 9.5. A Gale-Stewart game (G, V') comprises

e a tree-like event structure G for which all maximal configurations are
infinite, and

e a subset V of infinite configurations—the winning configurations.

A winning strategy in a Gale-Stewart game (G,V) is a deterministic strategy
0 : S8 — G such that oz € V for all maximal configurations x of S.

This is not how a Gale-Stewart game and, particularly, a winning strategy in
a Gale-Stewart game are traditionally defined. However, because the strategy
o is deterministic it is injective as a map on configurations, so corresponds to
the subfamily of configurations T = {ox | x € C*(S)} of C*°(G). The family T
forms a subtree of the tree of configurations of G. Its properties, detailed below,
reconcile our definition with the traditional one.
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Proposition 9.6. A winning strategy in a Gale-Stewart game (G,V') corre-
sponds to a non-empty subset T € C*°(G) such that

(i) Vo,y e C¥(G). ycaxel = yeT,

(ii) Ve,ye C(G). zeT & x—cy = yeT,
(iii) Y, y1,y2 € T. t—cyy & r—Cyp = y1 =ya, and
(iv) all c-mazximal members of T are infinite and in V.

Proof. Given o, a winning strategy in the Gale-Stewart game we define T' as
above. Then, (i) follows because o is a map of event structures and G is tree-
like; (ii) and (iii) follow from o being receptive and deterministic; (iv) is a
consequence of all winning configurations being infinite. Conversely, given T'
a subfamily of C*(G) satisfying (i)-(iv) it is a relatively routine matter to
construct a tree-like event structure S and map o : S - G which is a winning
strategy in (G, V). O

A Gale-Stewart game (G, V) has a dual game (G,V)* =4t (G*,V*), where
V* is the set of all maximal configurations in C*(G) not in V. A winning
strategy for Opponent in (G,V) is a winning strategy (for Player) in the dual
game (G, V)*.

For any event structure A there is a topology on C*(A) given by the Scott
open subsets. The c-maximal configurations in C*(A) inherit a sub-topology
from that on C*(A). The Borel subsets of a topological space are those subsets
of configurations in the sigma-algebra generated by the Scott open subsets.
Donald Martin proved in his celebrated theorem [27] that Gale-Stewart games
(G,V) are determined, i.e. there is a either a winning strategy for Player or
a winning strategy for Opponent, when V is a Borel subset of the maximal
configurations of C*(A).

9.2.3 Determinacy of tree games

We show the determinacy of tree games with Borel winning conditions through
a reduction of the determinacy of tree games to the determinacy of Gale-Stewart
games.

Let (E,W) be a tree game. We construct a Gale-Stewart game GS(E, W) =
(G,V) and a partial map proj : G — E. The events of G are built as sequences of
events in F together with two new symbols 4~ and §* decreed to have polarity —
and +, respectively; the symbols 6~ and §* represent delay moves by Opponent
and Player, respectively.

Precisely, an event of G is a non-empty finite sequence

[617"',61@]

of symbols from E u {§7,§*} where: e; has the same polarity as (E,W); po-
larities alternate along the sequence; and for all subsequences [e1, -+, e;], with
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i<k,
{617"'7ei} nke C(E)

The immediate causal dependency relation of G is given by

[61,"',€k] <a [elv "',6k7€k+1:|

and consistency by compatibility w.r.t. <g. Events [ej,-,ex] of G have the
same polarity as their last entry e;. It is easy to see that G is tree-like, and
that the only maximal configurations are infinite (because of the possibility of
delay moves).

The map proj : G - E takes an event [e1,--,ex] of G to ey if e € E,
and is undefined otherwise. The winning set V consists of all those infinite
configurations x of G for which projz e W.

We have constructed a Gale-Stewart game GS(E, W) = (G, V). The con-
struction respects the duality on games.

Lemma 9.7. Letting (E,W) be a tree game,
GS((E,W)*) = (GS(E,W))*.
Proof. Directly from the definition of the operation GS. O
Suppose o : S — G is a winning strategy for (G, V). The composite

ST g (F1)

is a partial map of event structures with polarity. Letting D ¢ .S be the subset
of events on which proj o o is defined, the map proj o o factors as

oo

S SiD

E (F2)

where: the first partial map acts like the identity on events in D and is undefined
otherwise—it sends a configuration x € C*(S) to xn D € C*(S| D); and og
is the total map that acts like 0 on D. We shall show that oy is a (possibly
nondeterministic) winning strategy for (E, W).

Lemma 9.8. The map o¢ is a winning strategy for (E,W).

Proof. Write Sy =qet S| D. By Proposition 9.4, for gg : Sy — E to be a strategy
we only require its receptivity. From the construction of G and proj,

projx—yin C(F) = 32’ € C(G). x<a’ & proja’ =y.

This together with the receptivity of o entails the receptivity of og.

To show o is winning, suppose z is a +-maximal configuration of Sy; we
require ogz € W. We will show this by exhibiting an infinite configuration
x € C*(S) such that x n D = z. Then, according to the factorisation (F2),
T~ 2z~ 00z, so we will have oyz = proj ox. The configuration = being infinite
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will ensure oz € V because ¢ is winning in the Gale-Stewart game (G,V). By
definition, ox € V implies projox € W, so ogz € W.

It remains to exhibit an infinite configuration z € C*°(.S) such that xn D = z.
When z is infinite this is readily achieved by defining = =4¢¢ [2]s € C®(S5).
Suppose z is finite. Define zg =4or [2]s € C(S), ensuring xo N D = 2. We
inductively build an infinite chain

s1 So Sn Sn+1
LO—C L] —C o Iy oo

in C(S) where all the events s,, are ‘delay’ moves not in D. Then z,n D = z for
all n € w. By the definition of a winning strategies in Gale-Stewart games, no x,,
can be c-maximal in C(.S). For each Opponent move s,, choose to delay—as we
may do by the receptivity of o. For each Player move s,, we have no choice as
only a delay move is possible—otherwise we would contradict the +-maximality
assumed of z. Taking = =40t U, 5, produces an infinite configuration x € C*°(.S)
such that x n D = z, as required. O

Corollary 9.9. Let H be a tree game. If the Gale-Stewart game GS(H) has a
winning strategy, then H has a winning strategy.

Theorem 9.10. Tree games with Borel winning conditions are determined.

Proof. Assume (E,W) is a tree game where W is a Borel set. Construct
GS(E,W) = (G,V) as above. The function proj, acting as x + proj x on config-
urations, is easily seen to be a Scott-continuous function from C*(G) - C*(E).
It restricts to a continuous function from the subspace of maximal configurations
in C*(G). Hence V, as the inverse image of W under this restricted function, is
a Borel subset. By Martin’s Borel-determinacy theorem [27], the game (G, V)
is determined, so has either a winning strategy for Player or a winning strategy
for Opponent.

Suppose first that GS(E, W) has a winning strategy (for Player). By Corol-
lary 9.9 we obtain a winning strategy for (E,W). Suppose, on the other
hand, that GS(E, W) has a winning strategy for Opponent, i.e. there is a win-
ning strategy in the dual game GS(E,W)*. By Lemma 9.7, GS((E,W)*) =
GS(E,W)* has a winning strategy. By Corollary 9.9, (E,W)* has a winning
strategy, i.e. there is a winning strategy for Opponent in (E,W). O

9.3 Race-freeness and bounded-concurrency

Not all games are determined; We have seen the necessity of race-freeness for
the determinacy of well-founded games. However, a determinacy theorem holds
for well-founded games (games where all configurations are finite) which are
(race - free)

=t & ate & pol(a) # pol(a') = xu{a,a’} eC(4). (Race - free)

However race-freeness is not sufficient to ensure determinacy when the game is
not well-founded, as is illustrated in the following example.
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Example 9.11. Let A be the event structure with polarity consisting of one
positive event @ which is concurrent with an infinite chain of alternating negative
and positive events, i.e. for each ¢ we have both @ co ®; and & co©;, i € N,

A= @ 01 —>® —»Oy —>Bo —b--
and Borel winning conditions (for Player) given by
W = {Q, {91, @1}, . {61, ®1,...,9;, @i}, ,A}

So, Player wins if (i) no event is played, or (ii) the event @ is not played and the
play is finite and finishes in some &;, or (iii) all of the events in A are played.
Otherwise, Opponent wins.

Player does not have a winning strategy because Opponent has an infinite
family of spoiler strategies, not all be dominated by a single strategy of Player.
The inclusion maps 7w, : Too > A and 7; : T; — A, i € N, are strategies for
Opponent where T =ger A and T} =qo¢ AN {€' € A]©; <e€'}, for i e N.

Any strategy for Player that plays @ is dominated by some strategy 7; for
Opponent; likewise, any strategy for Player that does not play @ and plays
only finitely many positive events @, is also dominated by some strategy 7; for
Opponent. Moreover, a strategy for Player that does not play @ and plays all
of the events ®; in A is dominated by 7.. So, Player does not have a winning
strategy in this game. Similarly, Opponent does not have a winning strategy
in A because Player has two strategies that cannot be both dominated by any
strategy for Opponent. Let og : Sg - A and 0g : Sg - A be strategies for
Player such that S@ =dof AN {@} and Sg =get A.

On the one hand, any strategy for Opponent that plays only finitely many
(possibly zero) negative events ©; is dominated by og; on the other, any strategy
for Opponent that plays all of the negative events ©; in A is dominated by og.
Thus neither player has a winning strategy in this game! O

In the above example, to win Player should only make the move & when Op-
ponent has played an infinite number of moves. We can banish such difficulties
by insisting that in a game no event is concurrent with infinitely many events
of the opposite polarity. This property is called bounded-concurrency:

Vye C®(A). Veey. {e' ey | ecoe & pol(e) # pol(e')} is finite.
(Bounded - concurrent)
Bounded concurrency is in fact a necessary structural condition for determinacy
with respect to Borel winning conditions.

Notation 9.12. For a concurrent game A with configurationsy,y', write max.(y',y)
iff y' is ®-mazimal in y, ie. Y —c & pol(e) =+ => e ¢ y; in a dual way, we
write maZ (y',y) iff y' is not ®-mazimal iny. We use max_ analogously when
pol(e) = —.

We show that if a countable, race-free A is not bounded-concurrent, then
there is Borel W so that the game (A, W) is not determined. Since A is not
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bounded-concurrent, there is y e C*°(A) and e € y such that e is concurrent with
infinitely many events of opposite polarity in y. W.l.o.g. assume that pol(e) = +,
that y \ {e} is a configuration and that y = [e]u [{a €y | pol4(a) =-}]. The
following rules determine whether ' € C*°(A4) is in W or L:

1.y 2y=1y eW;
2.y cy&kecy =y’ cl;

yecy&ety & mar,(y,y~{e}) &maz_(y',y~{e}) =y ¢ W;

= W

ycy&ety &maz,(y',y~{e}) or maz_(y',y~{e}) =y e L;

5. 92y & (yny)c y =y e W;

[=p)

Y Ry& Yoy Ty =y el;
7. otherwise assign y’ (arbitrarily) to W.

No 3’ is assigned as winning for both Player and Opponent: the implications’
antecedents are all pair-wise mutually exclusive.! The countability of A is im-
portant in showing that W is Borel.

Lemma 9.13. Let A be a countable race-free game. If A is not bounded-
concurrent, then there is Borel W ¢ C*°(A) such that the game (A, W) is not
determined.

Proof. The set W is Borel because it is defined by clauses such as 3’ ¢ y which
have extensions, in this case {y' € C*(A) | y’ c y}, which are Borel sets by virtue
of the countability of A. For instance, a clause such as e € y’ has extension

{y'eC=(A) | eey'}=Ie],

a basic open set. In general, for x € C(A), we use T to denote the basic open
set {z' € C*(A) | x c2'}. The clause y' 2 y, equivalent to Va € y.a € y’, has

extension -
{y eCc=(A) |y 29} =N [al;
aey

because A is assumed countable so is y and the intersection is an intersection
of countably many open sets. To see that {y’ € C*(A) | ¥’ c y} is Borel is a bit
more complicated. Observe that

{y eC=(A) |y ey} = N(C=(A) ~[a]) n U(C=(A)~ [a]);

ag¢y aey

the big intersection is the extension of 4’ € y and the big union that of Ja € y. a ¢
y'—because A is assumed countable the intersection and union are countable.

We first show:

IThe winning conditions W in Example 9.11 are instance of this scheme.
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(i) If o is a winning strategy for Player then y is o-reachable, i.e. 0 : S - A,
there is z € C*(S) s.t. cx = y.

(ii) If 7 is a winning strategy for Opponent then y is 7-reachable.

Write Ye =def Y N {6}

(i) This part uses rules (2), (4) and (6). Suppose o : S - A is a winning
strategy for Player. There is a S-maximal configuration of S s.t. oxg C y (via
Zorn’s lemma). By receptivity, oz is —-maximal in y. As ¢ is winning, there
is a +-maximal x € C*°(S) with z¢ €™ « and oz € W (Zorn).

If oz 2 y then necessarily ox 2* y and by a general property of strategies
we obtain y is o-reachable. For completeness we include the argument. Take
x' =qef {s€x | 0(s) ¢ (ox) N y}. Suppose 8" — s in x. Then

o(s") e (ox) Ny = o(s) e (o) Ny
by +-innocence. Hence its contrapositive, viz.
o(s) ¢ (ox) Ny = o(s') ¢ (ox) Ny,

so that s € 2/ implies s’ € 2’. Thus, being down-closed and consistent, 2" eC*=(.5),
with oz’ = y from the definition of z'.

The remaining case ox ? y is impossible. Suppose xg # x, so xg ¢ . Then
we also have (ox) Ny c* oz, using the c-maximality of zg. By (6), oz € L—a
contradiction. Suppose, on the other hand, that zy = z. If e € oz, by (2) we
obtain the contradiction cx € L. If e ¢ ox, by (4) we obtain the contradiction
ox € L; recall ox = oxg is —-maximal in y so in y. when e ¢ oz.

(ii) This part uses rules (1), (3) and (5). Suppose 7 : T — A* is a winning
strategy for Opponent. It is sufficient to show g, is 7-reachable as then y will
also be 7-reachable by receptivity. Assume to obtain a contradiction that y. is
not 7-reachable. Then there is a S-maximal xg € C*(T') s.t. Txg €y (via Zorn’s
lemma). By assumption, 7z¢ ¢ y. By receptivity, 7z¢ is +-maximal in y. and
necessarily 7xg is not —-maximal in y.. By (3), 7@g € W. As 7 is winning, there
is a —maximal z € C*(T") with g ¢~ = and 72 € L (Zorn); from the latter
xo € . We claim that by (1)&(5), 7& ¢ y., contradicting the c-maximality of
xg. To show the claim, suppose to obtain a contradiction that 7z ¢ y.. Then
Tr ¢y, aseis +ve ,so (rx)nyc” 7x. By (1), 7z 2 y. Now by (5), 7o € W, the
required contradiction.

To conclude the proof we show there is no winning strategy for either player.

If o is a winning strategy for Player then by (i) there is x € C*(S) s.t. ox = y;
in particular there is s, € x s.t. o(se) = e. Define the inclusion map 7y : A* |
(o[se]su{ae At | pol (a) =+} > At. Then 79 s a strategy for Opponent for
which there is y’ € (o, 7) with e € ' and where y’ only contains finitely many
—events. Either ¢y’ c y whence y’ € L by (2), or y’ ¢ y whereupon (y' ny) c* ¢’
so y' € L by (6). Hence as 1y is a strategy for Opponent not dominated by o
the latter cannot be a winning strategy for Player.



9.4. DETERMINACY OF CONCURRENT GAMES 117

If 7 is a winning strategy for Opponent then y is 7-reachable. Define the
inclusion map o¢: A} (yu{ae A | pol4(a) =-} = A. Then oy is a strategy for
Player for which there is y’ € (09, 7) with ¥’ 2 y. By (1) ¥’ € W, so o9 is not
dominated by 7, which cannot be a winning strategy for Opponent. O

9.4 Determinacy of concurrent games

We now construct a tree game TG(A, W) from a concurrent game (A, W). We
can think of the events of TG(A, W) as corresponding to (non-empty) rounds
of —ve or +ve events in the original concurrent game (A, W). When (A, W) is
race-free and bounded-concurrent, a winning strategy for TG(A, W) will induce
a winning strategy for (A, W). In this way we reduce determinacy of concurrent
games to determinacy of tree games.

9.4.1 The tree game of a concurrent game
From a concurrent game (A, W) we construct a tree game
TG(A, W) =(TA, TW).

The construction of TA depends on whether @€ W.
In the case where @ € W, define an alternating sequence of (A4, W) to be a
sequence
@ a1 C @y CF Xy € Lo € Tojyp C

of configurations in C* (A)—the sequence need not be maximal. Define the —ve
events of TG(W, A) to be

(D, 21,22, ..., Tap-2, Tag-1] ,

finite alternating sequences of the form

@c xycmyc o mop0 € Topq,
and the +ve events to be

[@,xl,xg, . ,l‘gk_l,l‘Qk] s
finite alternating sequences
Gyt wp O Topoy CF Xop,

where k > 1. The causal dependency relation on TA is given by the relation of
initial sub-sequence, with a finite subset of events being consistent iff the events
are all initial sub-sequences of a common alternating sequence.

It is easy to see that a configuration of TA corresponds to an alternating
sequence, the —ve events of TA matching arcs xop_o €~ Zo,_1 and the +ve events



118 CHAPTER 9. BOREL DETERMINACY

arcs Tog-1 € Tog. As such, we say a configuration y € C*°(TA) is winning, and
in TW, iff y corresponds to an alternating sequence

- +
(23X C+$ic ZTiy1 T o

for which U; z; € W.
In the case where @ ¢ W, we define an alternating sequence of (A, W) as a
sequence

+ - + - -
BT @ C @y T € @y € L1 C© Ty €

of configurations in C*(A). In this case, the —ve events of TG(W, A) are finite
alternating sequences ending in xoj, while the +ve events end in o1, for k > 1.
The remaining parts of the definition proceed analogously.

We have constructed a tree game TG(A, W) from a concurrent game (A, W).
The construction respects the duality on games.

Lemma 9.14. Let (A, W) be a concurrent game.
TG((A,W)*) = (TG(A,W))*.
Proof. From the construction TG, because alternating sequences
@ T g e
in C*(A) correspond to alternating sequences
@ oyt
in C*(A*Y). O

Proposition 9.15. Suppose (A, W) is a bounded-concurrent game. Mazximal
alternating sequences have one of two forms,

(i) finite:

@ T xpC w7y
where x; 1s finite for all 0 <i <k (where possibly xy, is infinite), or
(iii) infinite:
g . ct Ti C Tisl ct .
where each x; is finite.

Proof. Otherwise, taking the first infinite x;, within configuration z;,; there
would be an event of ;.1 \ x; concurrent with infinitely many events of z; of
opposite polarity—contradicting the bounded-concurrency of A. O
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9.4.2 Borel determinacy of concurrent games

Now assume that the concurrent game (A, W) is race-free and bounded-concurrent.
Suppose that str:T — TA is a (winning) strategy in the tree game TG (A, W).
Note that T is necessarily tree-like. We construct op : S - A, a (winning)
strategy in the original concurrent game (A,W). We construct S indirectly,
from a prime-algebraic domain Q, built as follows. For technical reasons, in the
construction of Q it is convenient to assume—as can easily be arranged—that

An(AxT)=g.
Via str a sub-branch
f= (t1, = tiy )
of T determines a tagged alternating sequence
ti-1 t; tiv1
@ T miqg ctxyc”

where str(t;) = [@,...,%i-1,2;]. (Informally, the arc ¢; is associated with a
round extending x,;_1 to x; in the original concurrent game.)
Define ¢(f) to be the partial order comprising events

U{(zi ~2421) | £ is a —ve arc of £} U
U{(zi ~2im1) x {t;} | ti is a +ve arc of £}
—s0 a copy of the events U; z; but with +ve events tagged by the +ve arc of

T at which they occur?’—with order a copy of that UU; z; inherits from A with
additional causal dependencies pairs from

riq x ((wiNwior) x {ti})

—making the +ve events occur after the —ve events which precede them in the
alternating sequence.

Define the partial order Q as follows. Its elements are partial orders ¢, not
necessarily finite, for which there is a rigid inclusion

q = q(tl7t2a"'7ti7"')a

for some sub-branch (¢1,ts, -, t;,+~+) of T. The order on Q is that of rigid
inclusion. Define the function o : Q@ - C*(A) by taking

og={acA|ais-ve& acqtu{acA|IteT. ais +ve & (a,t) € q}

for ¢ € Q. We should check that og is indeed a configuration of A. Clearly,
oq(t) = Ujer x; where
ti-1 tq ti+1
[ D c Ti_1 C+ x; c”
is the tagged alternating sequence determined by £ =gef (t1,,t;,--). Any ¢ for
which there is a rigid inclusion ¢ = ¢(f) will be sent to a sub-configuration of

Ui ;-

21t is so that the two components remain disjoint under tagging that we make the technical
assumption above.
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Proposition 9.16. Let (t1,-+,t;,--+) be a sub-branch of T, so corresponding to
a configuration {t,---,t;,--} € C*(T). Then,

strity, - ti, -} €TW <= oq(t1, - ti,) e W.
Proof. Let € =g (t1,,t;,-). We have str(t;) = [@,...,2;_1,2;] for some
@ - wigcta;c

an alternating sequence of (A, W). Directly from the definitions of TW, q(%)
and o,

str{t} e TW <= |Jz; e W

— oq(f) e W.

We shall make use of the following proposition.

Proposition 9.17. For all q,q' € Q, whenever there is an inclusion of the
events of q in the events of ¢’ there is a rigid inclusion q - q'.

Proof. To see this, suppose the events of ¢ are included in the events of ¢’. To
establish the rigid inclusion ¢ < ¢’ we require that, for all a € ¢,b € ¢/,

b—wqa <= b—gya. @)

However, in the construction of ¢(t1,t2, -, t;,-+-) the only immediate dependen-
cies introduced beyond those of A are those of the form b — (a’,t), of tagged
+ve events on —ve rounds specified earlier in the branch on which the +ve arc ¢
occurs. This property is inherited by ¢ and ¢’ in Q. Thus in checking (}) we can
restrict attention to the case where b is —ve and a is +ve and of the form (a’,t)
for some a’ € A and arc t of T. The arc t determines a sub-branch ty,---,t; = ¢
of T" and a corresponding tagged alternating sequence

tr-1 t;i
g - C X1 C Tk

So in this case,

b—+4a < bis <q-maximal in z_; & a’ is <4-maximal in xj \ Tp_1

= b—ya,
which ensures (1), and the proposition. O

Notation 9.18. Proposition 9.17, justifies us in writing < for the order of Q.
We shall also write ¢ €~ ¢’ when all the events in ¢’ above those of ¢ are —ve,
and similarly ¢ ¢* ¢’ when all the events in ¢’ above those of ¢ are +ve. O

The following lemma is crucial and depends critically on (A4, W) being race-
free and bounded-concurrent.



9.4. DETERMINACY OF CONCURRENT GAMES 121

Lemma 9.19. The order (Q, <) is a prime algebraic domain in which the primes
are precisely those (necessarily finite) partial orders with a mazimum.

Proof. Any compatible finite subset X of Q has a least upper bound: if all
the members of X include rigidly in a common ¢ then taking the union of
their images in ¢, with order inherited from ¢, provides their least upper bound.
Provided Q has least upper bounds of directed subsets it will then be consistently
complete with the additional property that every ¢ € Q is the least upper bound
of the primes below it—this will make Q a prime algebraic domain.

To establish prime algebraicity it remains to show that Q has least upper
bounds of directed sets.

Let S be a directed subset of Q. The +ve events of orders g € S are tagged
by +ve arcs of T. Because S is directed the +ve tags which appear throughout
all g € S must determine a common sub-branch of T'; viz.

Ezdef (t17t2) "'ati,"') .

Every +ve arc of the sub-branch appears in some ¢ € S and all —ve arcs are
present only by virtue of preceding a +ve arc. The sub-branch ¢ may be

(1) infinite and necessarily a full branch of T, if the elements of S together
mention infinitely many tags;

(2) finite with ¢(f) infinite, and necessarily finishing with a +ve arc;

(3) finite and non-empty with ¢(#) finite, and necessarily finishing with a +ve
arc; or

(4) empty with £ = ().

(1) Consider the case where f forms an infinite branch of 7. We shall argue that
for all g € S, there is a rigid inclusion

q=q(l).

Then, forming the partial order |US comprising the union of the events of all
q € S with order the restriction of that on q() we obtain a rigid inclusion

US = q(),

so a least upper bound of S in Q.

Let q € S. By Proposition 9.17, to establish the rigid inclusion ¢ = ¢(f) it
suffices to show the events of ¢ are included in those of ¢(#). From the nature
of the sub-branch determined by S, we must have that all the +ve events of ¢
are included in those of q(#)—all 4+ve events of ¢ are tagged by a +ve arc of .
Suppose, to obtain a contradiction, that there is some —ve event a of ¢ not in
q(t). For every +ve arc t; in { there is ¢; € S with a +ve tagged event (a;,t;).
Let

Icqn {i|t; is a +ve arc of £}.
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As S is directed, there is an upper bound in S of

{a}ufai [ iel}.

It follows that
{a}u{a; |iel}eCony,

Hence, forming the down-closure in A of {a} U {a; | t; is a +ve arc in t}, we
obtain
[{a}u{a; | t; is a +ve arc in £}] € C(A).

Moreover it is a configuration which violates the assumption of bounded-concurrency—
the —ve event a is concurrent with infinitely many of the +ve events a;. From
this contradiction we deduce that the events of ¢ are included in the events of

q(®).

(2) Consider the case where { is a finite branch (¢, -,z ), where necessarily t
is a +ve arc, and where (%) is infinite. By bounded-concurrency, all q(t1,---,t;),
for 0 <i < k, are finite with only ¢() = ¢(t1, -+, ¢;) infinite.

Let g € S. By Proposition 9.17, we can show there is a rigid inclusion

q = q(1)

by showing all the events of ¢ are in ¢(t). Again, all the +ve events of ¢ are in
q(t). Suppose, to obtain a contradiction, that b € ¢ with b ¢ q(%), so b has to
be —ve. There is a member of S with an event tagged by t;. Thus, using the
directedness of S, there has to be g; € S with ¢ € ¢g; and where ¢; has an event
tagged by t;. Because of the extra dependencies introduced in the construction
of q(f), all the —ve events of ¢(f) are included in ¢;. Note in addition that

[q7] < q(?)

because all the +ve events of ¢; are in ¢(f). We deduce

[ar]<™ a(®). (i)

Also,
[e7]c @, (i)
where the inclusion has to be strict because b € g; \ q(t). Consider the images

of (i) and (4i) in C*(A):
olgi]€" oq(t) and olgi]c oqr.

As A is race-free, we obtain the configuration = =4cr 0q(f) Uoq, € C°(A) and
the strict inclusion
oq(t) <" w,

making x a configuration which contains the —ve event b concurrent with in-
finitely many +ve events—the images of those tagged by tx. But this contradicts
the bounded-concurrency of A. Hence all the events of g are in ¢(£).
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As in case (1) we obtain a rigid inclusion

UsS = q(),

and a least upper bound of S in Q.

(3) The case where £ is a non-empty finite branch (t1,---,#) and ¢(f) is finite.
Again, t;, is necessarily a +ve arc. As S is directed, the set of events Uges 0gq
is a configuration in C*(A). Again, all the +ve events of any g € S are in ¢(%),
from which it follows that as sets,

(Uog)" coq(t).
qesS

Hence, the down-closure

[((Uea)]acoq() in C™(A). (i)

qeS

There is g1 € S with an event tagged by t;. Because of the extra dependencies
introduced in the construction of ¢(#), all the —ve events of ¢(f) are included in
q1. Consequently, all the —ve events of oq(f) are included in Uges oq. From this
and (#i1) we deduce

[(Uoa)]c" oq(f) inC™(4). (iv)

qeS

Also, straightforwardly,

[(Ueg)"]e Ueq in C™(4). (v)

qeS qeS

From (iv) and (v), because A is race-free, we obtain the configuration

Y =aet (oq(t) U J 0q) € C™(4)

qeS

for which
oq(f) s yeC®(A).

But by receptivity of the original strategy str : T — TA, there is a unique
extension of the branch = (t1,---,t) to (t1,-,tr, trs1) in T such that

Jq(tla”'atk;tk+1) =Y.

W.r.t. this extension, forming the partial order U S comprising the union of the
events of all ¢ € S with order the restriction of that on q(t1,--, tk, tk+1), We
obtain a rigid inclusion

US = q(tr, - te trsr),
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so a least upper bound of S in Q.

(4) Finally, consider the case where £ = (). Then all ¢ € S consist purely of —ve
events. As S is directed, Ugesoq € C*(A). If Uges 0q = @ we have US = ¢q().
Assume Uyges 0¢ is non-empty.

Suppose first that @ € W. We can form the alternating sequence

gc Jog.
qeS

By the receptivity of str: T — TA there is a unique 1-arc branch (¢;) of T with
Uges ¢ = 0q(t1). Then US = q(t1).

Now suppose @ ¢ W. In this case all alternating sequences must begin
@ c* xq--- and consequently all initial arcs of T' must be +ve. We are assuming
Uges 0¢ is non-empty so contains some non-empty q. There must therefore be
a rigid inclusion ¢ < ¢(%) for some non-empty sub-branch 4 = (uq,---). Via str
the sub-branch 4 determines the alternating sequence @ c* x; ¢ ---. Noting
@ ™ Uges 0q, because A is race-free there is £y UUges g € C*(A). Form the
alternating sequence

gctzcxmulog.
qeS

From the receptivity of str there is a sub-branch (u1,us) such that 21UUzes 0q =
oq(uy,ub). We obtain US < q(uq,ub). O

Definition 9.20. Define S to be the event structure with polarity, with events
the primes of Q; causal dependency the restriction of the order on Q; with a
finite subset of events consistent if they include rigidly in a common element
of Q. The polarity of event of S is the polarity in A of its top element (recall
the event is a prime in Q). Define oy : .S - A to be the function which takes a
prime with top element an untagged event a € A to a and top element a tagged
event (a,t) to a.

Lemma 9.21. The function which takes q € Q to the set of primes below q in Q
gives an order isomorphism Q = C*(S). The function o9 : S - A is a strategy
for which

T = C*(9)
C~(A)

commutes.

Proof. The isomorphism Q = C*(S) is established in [2]. The diagram is easily
seen to commute. Via the order isomorphism Q = C*°(S) we can carry out the
argument that og is a strategy in terms of @ and o. Innocence follows because
the only additional causal dependencies introduced in ¢() are of +ve events on
—ve events. To show receptivity, suppose g € Q is finite and oq c™ y in C(A).
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There is a rigid inclusion q < ¢(£) for some t = (t1,--,¢;,--+) , a sub-branch of T
Let

tio1 t; tiv1
F - C T q C+ x; c”
be the tagged sequence determined by £.
First consider when (oq)* # @. Suppose zy is the earliest configuration at
which (0¢)* € z. Then, t; has to be +ve and

¢ (e N zp-1) x {te}) 2.

The latter entails
T, Coq

because of the extra causal dependencies introduced in the definition of ¢(f). Tt
follows that
(oq) Ny €F 2y .

Moreover, as (oq)* ¢ xy, we deduce

(0q)nap € 0q< y.
By race-freeness, 2 Uy € C(A) with

xp € zp Uy in C(A).
In fact x c” zp Uy as x;, Cogc” y. Now

@ ctapc LUy

is seen to form an alternating sequence, so a sub-branch of TA. From the
receptivity of str there is a unique sub-branch ti,...,¢,t,,,; of T which has
this alternating sequence as image. Take ¢’ to be the down-closure of ¥ in
q(t1,...,tk,t},,). This gives the unique ¢’ such that ¢ € ¢’ and o¢’ = y.

Now consider when (cq)* = @. Then @ ¢~ ogc” y.

In the case where @ € W we may form the alternating sequence

gc y.

The receptivity of str ensures there is a unique 1-arc branch (u;) of T such that
oq(u1) =y.

In the case where @ ¢ W we also have @ ¢ TW. In this case all alternating
sequences must begin @ c* x1--- and consequently all initial arcs of T" must be
+ve. Also, the empty configuration (or branch) of T cannot be +-maximal
because its image under str is the empty configuration (or branch) of TW—
impossible because str is a winning strategy. Thus there must be v, an initial,
necessarily +ve arc of T. Via str the sub-branch (v;) yields the alternating
sequence @ c* x1, say. As A is race-free we obtain z7 Uy € C*(A) and the
alternating sequence

@ctr c Uy,
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From the receptivity of str there is a unique sub-branch (vy,vs) of T for which
oq(vi,v2) = 21 Uy. Take ¢’ to be the down-closure of y in g(vi,v2). This
furnishes the unique ¢’ such that ¢ € ¢’ and o¢’ = y.

We have shown the receptivity of o, as required. O

Theorem 9.22. Suppose that str : T — TA is a winning strategy in the tree
game TG(A,W). Then oo :S — A is a winning strategy in (A, W).

Proof. For ¢ to be winning we require that ogx € W for any +-maximal x €
C>(S). Via the order isomorphism Q = C*(.S) we can carry out the proof in Q
rather than C*(S). For any ¢ which is +-maximal in Q (i.e. whenever ¢ c* ¢’
in Q then ¢ = ¢') we require that og e W.

Let ¢ be +-maximal in Q. We will show that ¢ = ¢(4) for some +-maximal
branch @ of T. Certainly there is a rigid inclusion ¢ < ¢(f) for some sub-branch
= (1, t;,) of T. Let

ti—1 tf’,, tit1
g - C Ti—1 C x; C

be the tagged sequence determined by t.
Consider the case in which the set ¢* is infinite. There are two possibilities.
Suppose first that
q+ N ((.2?1 N\ l‘i_1) X {tl}) *J.

for infinitely many +ve ¢;. Because of the extra causal dependencies introduced
in the definition of ¢(f), the set of —ve events ¢(f)” is included in ¢q. Hence
q €t q(t). But ¢ is +-maximal, so ¢ = ¢(£). The second possibility is that
(0q)* € xy, for some necessarily terminal configuration in the tagged alternating
sequence, which now has to be of the form

ti1 t; tiv1

@ o xjycta;c oy

Because of the causal dependencies in g(f), the set ¢(#)~ is included in q. Hence
q <" q(t), so q = q(t) because q is +-maximal.

Now consider the case where the set ¢* is finite. Then the set (oq)™, also
finite, must be included in some zj of the tagged alternating sequence, which
we may assume is the earliest. Then t; must be +ve. If og € q(¢1,-,t%), then
the set q(t1,++,tx)” is included in ¢—again because of the causal dependencies
there; and again ¢ €t ¢(t1,--,tx) so g = q(t1,+,tx) because ¢ is +-maximal.
Otherwise, x; ¢ 2 U (0gq) and we can extend the alternating sequence to

@ ctapcxpu(og).

From the receptivity of str there is a sub-branch t¢1,...,%x,t,,; of T which
has this alternating sequence as image. Now ¢ ¢* ¢(t1,...,tk,t;,1) SO ¢ =
q(t1,. .., ty, t},,) from the +-maximality of g.

Thus any ¢ € @ which is +-maximal has the form ¢ = ¢(%) for some sub-
branch 4 of T. Any extension of % by a +-ve arc would yield a +-ve extension
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of g(i), contradicting the +-maximality of ¢. Therefore @ is +-maximal, so its
image str{i} is in TW, as str is a winning strategy in (TG(A, W), TW). But,
by Proposition 9.16,

str{i} e TW <= oq(d)eW.
Hence, o0g € W, as required. O

Corollary 9.23. Let (A, W) be a race-free, bounded-concurrent game. If the
tree game TG(A, W) has a winning strategy, then (A, W) has a winning strat-

€qy.

Theorem 9.24. Any race-free, concurrent-bounded game (A, W), in which W
is a Borel subset of C*(A), is determined.

Proof. Assuming (A, W) is race-free, concurrent-bounded and W is Borel, we
obtain a tree game TG(A,W) = (TA, TW) in which TW is also Borel. To
see that TW is Borel, recall that a configuration y of TA corresponds to an
alternating sequence

g -t Ti C Tisl ct .

so determines f(y) =qet U; 2; € C°(A). This yields a Scott-continuous function
f:C®(TA) - C=(A). The set TW is the inverse image f~'W, so Borel. As
the tree game TG(A, W) is determined—Theorem 9.10—we obtain a winning
strategy for Player or a winning strategy for Opponent in the tree game.
Suppose first that TG(A, W) has a winning strategy (for Player). By Corol-
lary 9.23 we obtain a winning strategy for (A, W). Suppose, on the other hand,
that TG(A,W) has a winning strategy for Opponent, i.e. there is a winning
strategy in the dual game (TG(A4,W))*. By Lemma 9.14, TG((4,W)*) =
TG(A,W)* has a winning strategy. By Corollary 9.23, (A, W)* has a winning
strategy, i.e. there is a winning strategy for Opponent in (A4, W). O
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Chapter 10

Games with imperfect
information

10.1 Motivation

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”) or p (“pa-
per”). The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP, the event structure with
polarity

/w\\ /9\
510 - By §2 © ~~rrm- O P2

comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. In the absence of
neutral configurations, a reasonable choice is to take the losing configurations
(for Player) to be

{s1,m2}, {p1,s2}, {r1,p2}
and all other configurations as winning for Player. In this case there is a winning
strategy for Player, viz. await the move of Opponent and then beat it with a

dominant move. Explicitly, the winning strategy o : .S - RSP is given as the

129
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obvious map from S, the following event structure with polarity:

1&g Opig ;G\SQ\
Tp2© ~ ery

But this strategy cheats. In “rock, scissors, paper” participants are intended to
make their moves independently. The problem with the game RSP as it stands
is that it is a game of perfect information in the sense that all moves are visible to
both participants. This permits the winning strategy above with its unwanted
dependencies on moves which should be unseen by Player. To adequately model
“rock, scissors, paper” requires a game of imperfect information where some
moves are masked, or inaccessible, and strategies with dependencies on unseen
moves are ruled out.

10.2 (Games with imperfect information

We extend concurrent games to games with imperfect information. To do so in
way that respects the operations of the bicategory of games we suppose a fixed
preorder of levels (A, <). The levels are to be thought of as levels of access, or
permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

An A-game (G, 1) comprises a game G = (A, W, L) with winning/losing con-
ditions together with a level function [ : A - A such that

a<sa = l(a)<l(a")

for all a,a’ € A. A A-strategy in the A-game (G,!) is a strategy o : S - A for
which
s<s 8 = lo(s) <lo(s)

for all 5,5 € S.

For example, for “rock, scissors, paper” we can take A to be the discrete
preorder consisting of levels 1 and 2 unrelated to each other under <. To make
RSP into a suitable A-game the level function [ takes +ve events in RSP to
level 1 and —ve events to level 2. The strategy above, where Player awaits
the move of Opponent then beats it with a dominant move, is now disallowed
because it is not a A-strategy—it introduces causal dependencies which do not
respect levels. If instead we took A to be the unique preorder on a single level
the A-strategies would coincide with all the strategies.
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10.2.1 The bicategory of A-games

The introduction of levels meshes smoothly with the bicategorical structure on
games.
For a A-game (G, lq), define its dual (G,lg)* to be (G*,lg) where lg. (@) =
lg(a), for a an event of G.
For A-games (G,lg) and (H,lg), define their parallel composition (G, lg)||(H,lx)
tobe (G| H,lgu) where lgu((1,a)) =lg(a), for a an event of G, and g ((2,0)) =
lg (D), for b an event of H.
A strategy between A-games from (G, l¢) to (H,ly) is astrategy in (G, lg)* || (H,lx).

Proposition 10.1.

(i) Let (G,lg) be a A-game where G satisfies (Cwins). The copy-cal strategy
on G is a A-strategy.

(ii) The composition of A-strategies is a A-strategy.

Proof. (i) The additional causal links introduced in the construction of the copy-
cat strategy are between complementary events in G* and G, at the same level
in A, and so respect <.

(ii) Let (G,lg), (H,lg) and (K,lx) be A-games. Let 0 : G—=H and 7 :
H—= K be A-strategies. We show their composition 700 is a A-strategy.

It suffices to show p — p’ in TeS implies I k7O (p) < lg kT (D').
Suppose p — p’ in TeS with top(p) = e and top(p’) = e¢’. Take x € C(T®S)
containing p’ so p too. Then,

/
€ —2yz €1 Pyz " Uz €n-1 PUz €

where e, e’ € Vy and e; ¢ Vp for 1 <i <n—1. (Vj consists of ‘visible’ events
of the stable family, those of the form (s, *) with o1(s) defined, or (*,t), with
To(t) defined.) The events e; have the form (s;,t;) where o2(s;) = 71(t;), for
1<i<n-1.

Any individual link in the chain above has one of the forms:

(S,If) U=z (S,at,), (3’ >E) U=z (slvt,)a
(*,t) gVE (Slvt,)7 (S,t) Uz (Slﬂ *)7 or (S,t) Uz (*7t,)'

By Lemma 3.21, for any link either s —g s’ or ¢t —7 t'. As o and 7 are A-
strategies, this entails

lGLHHO'(S) < lGL”HO'(s’) or lHL||K7'(t) < lHL||K7'(t,)

for any link. Consequently < is respected across the chain and lg. | x 700 (p) <
lgy kT@0(p'), as required. 5

W.r.t. a particular choice of access levels (A, <) we obtain a bicategory
WGames,. Its objects are A-games (G,1) where G satisfies (Cwins) with ar-
rows the A-strategies and 2-cells maps of spans. It restricts to a sub-bicategory
of deterministic A-strategies, which as before is equivalent to an order-enriched
category.
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10.3 Hintikka’s IF logic

We present a variant of Hintikka’s Independence-Friendly (IF') logic and propose
a semantics in terms of concurrent games with imperfect information. Assume
a preorder (A,<). The syntax for IF logic is essentially that of the predicate
calculus, but with levels in A associated with quantifiers: formulae are given by

Gy, = R(xy, - xp) | oA | oV | =p | Pz, ¢ | V2. ¢

where A € A, R ranges over basic relation symbols of a fixed arity and =, x1,x2,
over variables.

Assume M, a non-empty universe of values V), and an interpretation for
each of the relation symbols as a relation of appropriate arity on V},; so M is a
model for the predicate calculus in which the quantifier levels are stripped away.
Again, an environment p is a function from variables to values; again, p[v/x]
means the environment p updated to value v at variable xz. W.r.t. a model
M and an environment p, we denote each closed formula ¢ of IF logic by a
A-game, following very closely the definitions in Section ??7. The differences are
the assignment of levels to events and that the order on A has to be respected
by the (modified) prefixed sums which quantified formulae denote.

The prefixed game @*.(A,W,[) comprises the event structure with polar-
ity ®.A in which all the events of a € A where A < I(a) are made to causally
depend on a fresh +ve event &, itself assigned level \. Its winning conditions
are those configurations z € C*°(®.A) of the form {@} uy for some y € W. The
game @;\GV(AU, Wy, 1,) has underlying event structure with polarity the sum
ey 1.4, , maintains the same levels as its components, with a configuration
winning iff it is the image of a winning configuration in a component under the
injection to the sum. The game @) G, is defined dually, as (@) GL)*. In
this game the empty configuration is winning but Opponent gets to make the
first move.

True denotes the A-game the unit w.r.t. ® and false denotes he unit w.r.t. %.
Denotations of conjunctions and disjunctions are given by the operations of ®
and % on A-games, while negations denote dual games. W.r.t. an environment
p, universal and existential quantifiers denote the prefized sums of games:

A

[3*z. ¢1%p = @ [¢lrlv/z]

veVyr
A

[V'e. olhp= © [4]3plv/2].

veVs

As a definition, an IF formula ¢ is satisfied w.r.t. an environment p, written

A
PEVD,

iff the A-game [¢]4,p has a winning strategy.



Chapter 11

Probabilistic strategies

The chapter provides a new definition of probabilistic event structures, extend-
ing existing definitions, and characterised as event structures together with a
continuous valuation on their domain of configurations. Probabilistic event
structures possess a probabilistic measure on their domain of configurations.
This prepares the ground for a very general definition of a probabilistic strate-
gies, which are shown to compose, with probabilistic copy-cat strategies as iden-
tities. The result of the play-off of a probabilistic strategy and counter-strategy
in a game is a probabilistic event structure so that a measurable pay-off function
from the configurations of a game is a random variable, for which the expecta-
tion (the expected pay-off) is obtained as the standard Legesgue integral.

11.1 Probabilistic event structures

A probabilistic event structure comprises an event structure (E, <, Con) together
with a continuous valuation on its open sets of configurations, i.e. a function w
from the open subsets of configurations C*(E) to [0, 1] which is:

(normalized) w(C>(E)) =1 (strict) w(@) = 0;

(monotone) UcV = w(U) <w(V);

(modular) w(UuV)+w(UnV)=w(U)+w(V);

(continuous) w(User U;) = sup,;w(U;) for directed unions Ujer U;.

Continuous valuations play a central role in probabilistic powerdomains [28].
Continuous valuations are determined by their restrictions to basic open sets
T =get {y € C*°(F) | z cy}, for z a finite configuration. The intuition: w(U) is
the probability of the resulting configuration being in the open set U. Indeed,
continuous valuations extend to unique probabilistic measures on the Borel sets.

This description of a probabilistic event structure extends the definitions in
[23]. It turns out to be equivalent to a more workable definition, which relates
more directly to the configurations of E, that we develop now.

133
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11.1.1 Preliminaries

Notation 11.1. Let F be a stable family. Extend F to a lattice F' by adjoining
an extra top element T. Write its order as x €y and its join and meet operations
as TV y and x Ay respectively.

Definition 11.2. Let F be a stable family. Assume a function v : F - R.
Extend v to v" : FT — R by taking v"(T) = 0.

Wit v: F = R, for n € w, define the drop functions dg")[y;wl,---,xn] eR
for y,x1,,x, € F' with y S x1,-+, 2, in F' as follows:

dfjo)[y;] =def v (Y)
dq(;n) [yv L1, xn] =def df,nfl) [yv O PR mn—l] - ds;nil) [xn, T1VIp, 5 Tp-1V xn] .
Throughout this section assume F is a stable family and v : F - R.

Proposition 11.3. Let new. Fory,x1, @, € F' with y € x1, -, Ty,

dPlyser, - aa]=o(y) - 3 DIV ).

@#Ic{l,n} iel

Fory,x1,--,xn € F with y Cx1,-, Ty,

Ay 1, 0] = v(y) - ;(—D'””MU ),

i€l
where the index I ranges over sets satisfying @ + I € {1,--,n} s.t. {x; | ie I}t

Proof. We prove the first statement by induction on n. For the basis, when
n=0, df,n) [y; ] =v(y), as required. For the induction step, with n > 0, we reason

dq()”) [yv T,y xn] =def d'f;n_l) [yv X1,y xn—l] - df;n_m[xna L1V Iy, Tp-1V mn]

SO VRN G i (VA

@#Ic{1,n-1} iel
- v(@n) + > G L AVERE
@+Jc{l,,n-1} geJ

making use of the induction hypothesis. Consider subsets K for which @ # K ¢
{1,-,n}. Either n ¢ K , in which case @ + K ¢ {1,,n—-1}, or n € K, in
which case K = {n} or J =gt K \ {n} satisfies @ + J ¢ {1,--,n—1}. From this
observation, the sum above amounts to

o)=Y CDEF(V @),

@+Kc{l,,n} keK

as required to maintain the induction hypothesis.

The second expression of the proposition is got by discarding all terms
v(Vier ;) for which V;ey x; = T which leaves the sum unaffected as they con-
tribute 0. O
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Corollary 11.4. Let n € w and y,x1,,Tn € F' with y € 21, Tn. For p an
n-permutation,

d’f)n) [y;xp(l)f"axp(n)] = d1()n) [y;xla 7'1:11] .

Proof. As by Proposition 11.3, the value of d,(Jn) [y; 21, -, 2] is insensitive to
permutations of its arguments. O

Proposition 11.5. Assume n > 1 and y,x1,,Zn € F' with y E X1, Tp. If
y =x; for some i with 1 <i<n then am [y; 21, 2,] = 0.

Proof. By Corollary 11.4, it suffices to show dl(,")[y; x1, %] =0 when y = z,.
In this case,

Ay 21, 20] =d D [ys 21, 21 ] = A [0 21V Ty e Ty V]
= dq()nil) [y7 T,y xn—l] - dq()nil)[ya T,y xn—l]
=0.

O

Corollary 11.6. Assume n > 1 and y,z1, -, 2, € F' with y € 1, -, 2,. If
x; Ex; for distinct 1,7 with 1 <1,5 <n then

dz(;n) [Y; 21, 2n] = dﬁ”‘”[y;an, L1, L1, T ]
Proof. By Corollary 11.4, it suffices to show
d™ [y 21, Tpo1, an] = AV [y 21, 201 ]
when z,,_1 € x,,. Then,
Ay 2y, 0] =dO D[y 21, 2p1 ] = A [T 21V g,y By V 2]

= dgn_l) [y§ L1,y xnfl] - dg;n_l)[xn; T1VTp, 5 Tn-2, fn]

= d’f)n_l) [y7 L1,y xn—l] -0 5
by Proposition 11.5. O

Proposition 11.7. Assume n € w and y,x1,, T, € F' with y € x1,,Tp.
Then7 dl()n) [y;xla >xn] =0 ny =T and dl()n) [y;xla 7xn] = dg)n_l) [y;x17"'axi—17xi+1>”‘;xn]
ifx;=T with 1 <i<n.

Proof. When n =0, df,o)[T;] =v"(T) =0. When n > 1, df,n)[T;xl,---,xn] =0 by
Proposition 11.5 as e.g. x,, = T. For the remaining statement, w.l.og. we may
assume ¢ = n and that z, = T, yielding

d'f)n) [y7 L1,y T] = dz()n_l) [yJ L1,y wnfl]_dgln_l)[-r; T1VT, -, ‘rnfl\/T] = dgﬂ_l)[gh X1, "'7.%'”,1] .

O
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Lemma 11.8. Let n > 1. Let y,x1, @y, x), € F' with y C xq,-, T,. Assume
xn Eal,. Then,

d'f)n) [ya L1,y :E;z] = dq(jn)[ya X1, ,In] + dq(jn)[xna L1V Ty, "y Tp-1V Tn, IE;l] .
Proof. By definition,

the r.h.s. = dl()"_l)[y;ml, o XTpe1] — dff”_l)[xn;xl V Tyttt T V Ty |

n—1 . n—1 I, / /
+ df} )[xnvxlvmnf"ywn—lVxn]_dg, )[fl'n,xl VT, Tn-1 V{,Cn]

n—-1 . n—1 /. / /
A D[y wy, - wpq | - d O [2l sz vl g vl ]

d’f)n) [y7 L1,y Tp-1, xr,n,]
the Lh.s..

11.1.2 The definition

Definition 11.9. Let F be a stable family. A configuration-valuation is function
v:F —[0,1] such that v(@) = 1 and which satisfies the “drop condition:”

dz()n) [y;'rlv '"756”] 20

forall n>1 and y,x1, -, x, € F with y S x1,-, x,.

A probabilistic stable family comprises a stable family F together with a
configuration-valuation v : F — [0, 1].

A probabilistic event structure comprises an event structure F together with
a configuration-valuation v : C(E) - [0,1].

Proposition 11.10. Let v: F — [0,1]. Then, v is a configuration-valuation
iff v1(2) =1 and dgn)[y;xl,---,xn] >0 for allm ew and y,x1, -, x, € F' with
YC X1, Tpn. If v is a configuration-valuation, then

yex = v'(y) 20'(2),
for all z,ye FT.
Proof. By Proposition 11.7 and as dgl)[y; x]=v"(y) - v (x). O

In showing we have a probabilistic event structure or stable family it suffices
to verify the “drop condition” only for covering intervals.

Lemma 11.11. Let F be a stable family and v: F — [0,1].

(i) Let y € x1,-+, @, in F. Then, df,n) [y; 1, @, ] is expressible as a sum of
terms
d$¥) [u;wy, -, wy,]
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where y € u—cw; in F and w; € 21 U Uxy, for all i with 1 <i <k. [The set
x1 U Uz, need not be in F.|

(ii) A fortiori, v is a configuration-valuation iff v(@) =1 and
for allm >1 and y—<xq,---,x, in F.

Proof. Define the weight of a term df,n)[y;xl,---,xn], where y € x1,--, x,, in F,
to be the product |z1 \ y| x -+ x |z, Nyl
Assume y € xy,-, 2, in F. By Proposition 11.5, if y equals z], or some
i, then dq(,")[y;xl,---m;] = 0, so may be deleted as a contribution to a sum.
Otherwise, if y ¢ x,, ¢ 2},, by Lemma 11.8 we can rewrite a™ ly;x1,-, )] to
the sum

A9 [ys wr, e ] + A5 [0 21V @y oy 1 Vi, 20,

where we further observe
o0 Nyl < |2, Nyl |7, N 2| < |27, Nyl

and
(i Van) N x| <2 Nyl

whenever z; vz, # T. Using Proposition 11.7 we may tidy away any mentions of
T. This reduces dqﬁ") [y; 21,2, ] to the sum of at most two terms, each of lesser
weight. For notational simplicity we have concentrated on the nth argument
in dq(j")[y;:vl,---,x;], but by Corollary 11.4 an analogous reduction is possible
w.r.t. any argument.

Repeated use of the reduction, rewrites dl(,") [y;x1,,Tn] to a sum of terms
of the form

A [u; wy, -, wy]

where k < n and u—cwy, -, wg € x1 U+ Ux,. This justifies the claims of the
lemma. O

11.1.3 The characterisation

Our goal is to prove that probabilistic event structures correspond to event
structures with a continuous valuation. It is clear that a continuous valuation w
on the Scott-open subsets of an event structure E gives rise to a configuration-
valuation v on E: take v(x) =qef w(T), for x € C(E). We will show that
this construction has an inverse, that a configuration-valuation determines a
continuous valuation.

For this we need a combinatorial lemma;*

1The proof of the combinatorial lemma below is due to the author. It appears with acknowl-
edgement as Lemma 6.App.1 in [29], the PhD thesis of my former student Daniele Varacca,
whom I thank, both for the collaboration and the latex.
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Lemma 11.12. For all finite sets I, J,
3 (-1)IET = (=)L

F+xrKcIxJ
(K=l s (K)=J

Proof. Without loss of generality we can take I ={1,...,n} and J={1,...,m}.
Also observe that a subset K ¢ I x J such that m (K) = I, m2(K) = J is in fact
a surjective and total relation between the two sets.

n

7\

m

Let
tmm =def Z (_1)|K|7

P+rKcIxJ
w1 (K)=1,m2(K)=J

t0 m =aet {@# K I xJ||K|odd, m(K)=1,m(K)=J}|;
tpm=H{@# KcIxJ||K|even, m(K)=1,m2(K)=J}.

Clearly tnm = t5 ,,, =19 .- We want to prove that t, ,m = (=1)"*"*!. We do
this by induction on n. It is easy to check that this is true for n = 1. In this
case, if m is even then ¢§,, =1 and t{, =0, so that t§,, -7, = (-1)"*"*
Similarly if m is odd.

Now assume that for every p, t,, = (-1)™*?*! and compute tp11,,. To
evaluate ¢,,+1,, we count all surjective and total relations K between I and J
together with their“sign.” Consider the pairs in K of the form (n + 1,h) for
h € J. The result of removing them is a a total surjective relation between
{1,...,n} and a subset Jg of {1,...,m}.

n

Eard

m S

Consider first the case where Jg = {1,...,m}. Consider the contribution of
such K’s to t;+1,m. There are (T) ways of choosing s pairs of the form (n+1,h).
For every such choice there are t,, ,,, (signed) relations. Adding the pairs (n+1,h)
possibly modifies the sign of such relations. All in all the contribution amounts
to

5 (e

1<s<m
Suppose now that Jx is a proper subset of {1,...,m} leaving out r elements.

n

P
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Since K is surjective, all such elements h must be in a pair of the form
(n+1,h). Moreover there can be s pairs of the form (n + 1,h’) with h' € Jg.

What is the contribution of such K’s to t, 7 There are (T ) ways of choosing
the elements that are left out. For every such choice and for every s such that
0 < s < m—r there are (m:) ways of choosing the h' € Jg. And for every
such choice there are t,, ,,—r (signed) relations. Adding the pairs (n +1,h) and
(n+1,h") possibly modifies the sign of such relations. All in all, for every r such

that 1 <r <m -1, the contribution amounts to

()5 ()t

"/ 1<s<m—-r

The (signed) sum of all these contribution will give us t,+1,m. Now we use
the induction hypothesis and we write (=1)"*?*! for ¢, ,,.
Thus,

m
tn+l,m = ( )(_1)Stn,m
1<s<

+ mZ " os (") e

T/ 0<s<m-r

_ )(_1)s+n+m+1

1<s< s

" Z_l(m) » (ms_r)(_l)s-f—n+m+1

1<r<m T/ 0<s<m-r

- o p (M)

1<s<m

© 20,200 )

By the binomial formula, for 1 <r <m -1 we have

0o=(1-1)""= % (ms_ T)(—l)s.

0<s<m~—r

3

So we are left with

= (2 (2)err)

(3 (3w

— (_1)n+m+1 (0 _ 1)
— (_1)n+1+m+1

b

as required. O
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Theorem 11.13. A configuration-valuation v on an event structure E extends
to a unique continuous valuation w, on the open sets of C*°(E), so that w,(T) =
v(x), for all x € C(E).

Conversely, a continuous valuation w on the open sets of C*(E) restricts to
a configuration-valuation v, on E, assigning vy (x) = w(T), for all x € C(E).
Proof. The proof is inspired by the proofs in the appendix of [23] and the the-
sis [29].

First, a continuous valuation w on the open sets of C*(FE) restricts to a
configuration-valuation v defined as v(x) =g w(T) for z € C(E). Note that any
extension of a configuration-valuation to a continuous valuation is bound to be
unique by continuity.

To show the converse we first define a function w from the basic open sets
Bs =get {T1 U UT, | x1,, 2, € C(E)} to [0,1] and show that it is normalised,
strict, monotone and modular. Define

w(A U UT) =ger 1-d™[@;21, 0]

= > DIV ay)

g+Ic{l,-,n} iel

—this can be shown to be well-defined using Corollaries 11.4 and 11.6.
Clearly, w is normalised in the sense that w(C*(E)) = w(3) = 1 and strict
in that w(@) =1-v(@) =0.
To see that it is monotone, first observe that

w(FU-UT,) <w(F U UTpit)
as

w(F U UT7) —w(fi U Ty) =dV (@21, 2] = dS D[ @21, 21 ]

=d™ [Epe1; 21V Tst, o Tn V Tps1] 2 0.
By a simple induction (on m),
w(T U UT,) Sw(FiU-—UT, UG U UTm) -

Suppose that 3 U---UT, € 1 U UF,,. Then iU U, = 71U UT,UFL U U,
By the above,

w(ZI U UTy) Sw(FLU-UTp UG U UTm)

=w(fi V- UTm),

as required to show w is monotone.
To show modularity we require

w(FL Y- UTy) +w(fl V- UTm)

=w(FL U UTp UG U Ulm) +w((FTU-UT) N (1 U UTm)) -
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Note

(FLu-uT) 0 (JLY-UTm) = (L0 7) V- U (TN ;) U (T N Tm)

SX1VYLU- UL VY- UZp VYm.
From the definition of w we require

w(l’:\lu...uﬂuzﬁu...uy"m)

DR G VAR (—1)"1‘*1v(\(]yj)

@+Ic{l,,n} iel @#Jc{1,,m}
- > D\ ivy). (1)
@+Rc{1,n}x{1l,,m} (4,j)eR

Consider the definition of w(#i U--UT, UFi U---UT,,) as a sum. Its components
are associated with indices which either lie entirely within {1,---;n}, entirely
within {1,---,m}, or overlap both. Hence

w(f\lu...uﬁug\lu...uy’\m)

- Z (_1)‘I\+1U(\/xi)+ Z (_1)‘J|+1U(;\(]yj)

@+Ic{l,,n} iel @*Jc{1,-,m}
+ > G L AVESAVET R (2)
@+lc{l,,n},@+Jc{l,,m} i€l jeJ

Comparing (1) and (2), we require

- 2. DV zivyy)

@#Re{1, - n}x{l,m} (4,5)eR
= > (G L AVESRAVET R (3)
@#Ic{l,-n},@+Jc{l,- m} i€l jeJ

Observe that
Vo wivyi=VaivVuy;
(i,j)eR iel jeJ

when I =Ry =qer {i €l |3jeJ. (i,j) e Ryand J = Ro =qes {j € J | Ji e I. (i,5) € R}
for a relation R € {1,---,n} x{1,---,;m}. With this observation we see that equal-
ity (3) follows from the combinatorial lemma, Lemma 11.12 above. This shows
modularity.

Finally, we can extend w to all open sets by taking an open set U to
SUDpeps &by W(D).  The verification that w is indeed a continuous valuation
extending v is now straightforward. O

The above theorem also holds (with the same proof) for Scott domains. Now,
by [30], Corollary 4.3:

Theorem 11.14. For a configuration-valuation v on E there is a unique prob-
ability measure i, on the Borel subsets of C*(F) extending w,.
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Example 11.15. Consider the event structure comprising two concurrent events
e1, es with configuration-valuation v for which v(@) = 1,v({e1}) = 1/3,v({e2}) =
1/2 and v({e1,e2}) = 1/12. This means in particular that there is a probability
of 1/3 of a result within the Scott open set consisting of both the configuration
{e1} and the configuration {e;, es}. In other words, there is a probability of 1/3
of observing e; (possibly with or possibly without es). The induced probability
measure p assigns a probability to any Borel set, in this simple case any sub-
set of configurations, and is determined by its value on single configurations:
p(@) =1-4/12-6/12 + 1/12 = 3/12, p({e1}) = 4/12 - 1/12 = 3/12, p({e2}) =
6/12-1/12 =5/12 and p({e1,e2}) = 1/12. Thus there is a probability of 3/12 of
observing neither e; nor ey, and a probability of 5/12 of observing just the event
e2 (and not eq). There is a drop dﬁo)[z; {e1},{e2}]=1-4/12-6/12+1/12 = 3/12
corresponding to the probability of remaining at the empty configuration and
not observing any event. Sometimes it’s said that probability “leaks” at the
empty configuration, but it’s more accurate to think of this leak in probability
as associated with a non-zero chance that the initial observation of no events
will not improve.

Example 11.16. Consider the event structure with events N* with causal de-
pendency n < n + 1, with all finite subsets consistent. It is not hard to check
that all subsets of C*(N*) are Borel sets. Consider the ensuing probability
distributions w.r.t. the following configuration-valuations:

(i) vo(z) =1 for all z € C(N*). The resulting probability distribution assigns
probability 1 to the singleton set {N*}, comprising the single infinite configura-
tion N*, and 0 to @ and all other singleton sets of configurations.

(i) v1(2) = v1({1}) = 1 and vy(z) = 0 for all other x € C(N*). The result-
ing probability distribution assigns probability 0 to @ and probability 1 to the
singleton set {1}, and 0 to all other singleton sets of configurations.

(iii) va(@) =1 and va({1,--,n}) = (1/2)™ for all n € N*. The resulting proba-
bility distribution assigns probability 1/2 to @ and (1/2)™*! to each singleton
{{1,--,n}} and 0 to the singleton set {N*}, comprising the single infinite con-
figuration N*.

When z a finite configuration has v(z) > 0 and u,({z}) = 0 we can under-
stand x as being a transient configuration on the way to a final with probability
v(z). In general, there is a simple expression for the probability of terminating
at a finite configuration.

Proposition 11.17. Let E,v be a probabilistic event structure. For any finite
configuration y € C(E), the singleton set {y} is a Borel subset with probability
measure

po({y}) = mf{d{V[y; 21,00 [ new & y gy, -z, € C(E)}.

Proof. Let y €C(E). Then {y} =\ U, is clearly Borel as Uy =gef {x € C*(E) | y ¢ x}
is open. Let w be the continuous valuation extending v. Then

w(Uy) =sup{w(Tr V- UTy) |y E z1,- 20 € C(E)}
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as Uy is the directed union U{Z U--UZ, | y € z1,-, &, € C(E)}. Hence

po({y}) = v(y) —w(Uy) =v(y) —sup{w(@1 V- UZ,) | y § 21,20 € C(E)}
sinf{uv(y) - Y DIV @) [y gan, -z, € C(E))

@+Ic{l,,n} iel
=inf{d{[y; 21, 0] | new & y § 1,20 € C(E)}.

O

Example 11.18. It might be thought that probabilistic event structures could
only capture discrete distributions. However consider the event structure rep-
resenting streams of 0’s and 1’s. We saw this earlier in Example 2.1. Its finite
configurations comprise the empty set and downwards-closures [s] of single event
occurrences s given by a finite sequence of 0’s and 1’s. Assign value 1 to the
empty configuration and 1/2" to a sequence s = (s1,82,*,8,). Then all finite
configurations [s] are transient it the sense that the probability of ending up
at precisely the finite stream [s] is zero; all the probabilistic measure is con-
centrated on the maximal configurations, the infinite streams. On the maximal
configurations the probabilistic measure gives a continuous distribution with
zero probability of the result being any particular infinite stream.

Remark. There is perhaps some redundancy in the definition of purely proba-
bilistic event structures, in that there are two different ways to say, for example,
that events e; and ey do not occur together at a finite configuration y where
(5 €9 . . .
y—cx1 and y—cxo: either through {e;,es} ¢ Con; or via the configuration-
valuation v through v(xz; Uxz2) = 0. However, when we mix probability with
nondeterminism, as we do in the next section, we shall make use of both order-
consistency and the valuation.

11.2 Probability with an Opponent

Assume now that the events of the stable family or event structure carry a
polarity, + or —. Imagine the event structure or stable family represents a
strategy for Player. The Player cannot foresee what probabilities Opponent will
ascribe to moves under Opponent’s control. Nor, without information about the
stochastic rates of Player and Opponent can we hope to ascribe probabilities
to play outcomes in the presence of races. For this reason we shall restrict
probabilistic event structures with polarity to those which are race-free.

It will be convenient, more generally, to define a probabilistic stable family in
which some events are distinguished as Opponent events (where the other events
may be Player events or “neutral” events due to synchronizations between Player
and Opponent). Events which are not Opponent events we shall call p-events.
For configurations x,y we shall write = ¢ y if x € y and y \ x contains no
Opponent events; we write z—cPy when z—cy and = c? y; we continue to write
x €™y if x Cy and y \ z comprises solely Opponent events.
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Definition 11.19. We extend the notion of configuration-valuation to the sit-
uation where events carry polarities. Let F be a stable family F together with
a specified subset of its events which are Opponent events. A configuration-
valuation is a function v : F — [0, 1] for which v(@) =1,

xSy = v(z)=v(y) (1)
for all x,y € F, and satisfies the “drop condition”
df}n) [¥; 1,5 20] 20 (2)

for all n € w and y,z1,--,x, € F with y P z1,--+, 2.

The notion of probabilistic stable family thus extends to a stable family F to-
gether with a specified subset of Opponent events and a configuration-valuation
v:F - [0,1]. The notion specialises to event structures with a distinguished
subset of Opponent events.

In particular, a probabilistic event structure with polarity comprises F an
event structure with polarity together with a configuration-valuation v : C(E) —
[0,1].

Remark There is an equivalent way of presenting a configuration-valuation
for an event structure with polarity S as a family of conditional probabilities.
Define a familiy of conditional probabilities over S to comprise Prob(z | y),
indexed by y €* « in C(.9), such that

(i) Prob(y | y) = 1 and = ~ Prob(z | y) satisfies the drop condition for x
s.t. yct x in C(S);

(ii) Prob(w |y) = Prob(w | x)Prob(z | y) if y €* « <" w in C(S);
(iii) Prob(x|y) =Prob(z'|y') ifyctz,y< ¢y and z Uy =2’

Given a configuration-valuation v we define Prob(z | y) = v(z)/v(y). Con-
versely, given a family of conditional probabilities, as described above, first
extend it by taking Prob(z | y) =1 for y €~ . We then obtain a configuration-
valuation by defining

v(x) =qef Prob(zy | xg)Prob(xs | 1)~ Prob(z, | ,-1)
w.r.t. a covering chain
O =2x9—Cxr1—CT—C—Crp_1CTy, =2;

by (ii) and (iii) the choice of covering chain does not affect the value assigned to
x. The two operations provide mutual inverses between configuration-valuations
and families of conditional probabilities as described above. There is an anal-
ogous result for configuration-valuations for a stable family F together with a
specified subset of Opponent events.
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As indicated above, the extra generality in the definition of a probabilistic
stable family with polarity is to cater for a situation later in which we shall
ascribe probabilities not only to results of Player moves but also to events aris-
ing as synchronizations between Player and Opponent moves. As earlier, by
Lemma 11.11(i), it suffices to verify the “drop condition” for p-covering inter-
vals.

Definition 11.20. Let A be a race-free event structure with polarity. A proba-
bilistic strategy in A comprises a probabilistic event structure S,v and a strategy
0:S5— A. [By Lemma 5.5, S will also be race-free.]

Let A and B be a race-free event structures with polarity. A probabilistic

strategy from A to B comprises a probabilistic event structure S, v and a strategy
o:8 - AY||B.

We extend the usual composition of strategies to probabilistic strategies.
Assume probabilistic strategies o : S - A*||B, with configuration-valuation
vs : C(S) - [0,1], and 7: T - B*||C with configuration-valuation vy : C(T) —
[0,1]. We first tentatively define their composition on stable families, taking
v:C(T)®C(S)—[0,1] to be

v(x) =vg(mz) x vr(mex)
for z € C(T) ® C(95).

Proposition 11.21. Let v: C(T) ® C(S) — [0,1] be defined as above. Then,
v(@)=0. Ifrc yin C(T)®C(S) then v(x) = v(y).

Proof. Clearly,
V(@) =vs(m@) xvp(m@) =1x1=1.

Assuming z—c"y in C(T) ®C(S), then either a:(i*c)y, with s a —ve event of S, or

(x,t) . (5,%) .
x—=Cy, with t a —ve event of T. Suppose o y, with s —ve. Then 7T13;‘—SC mY,

where as s is —ve, vg(mz) = vg(my). In addition, mex = may so certainly
vr(maz) = vp(mey). Combined these two facts yield v(x) = v(y). Similarly,

(1) . . . . . . .
x—<Cy, with ¢t —ve, implies v(x) = v(y). As x €~ y is obtained via the reflexive

transitive closure of -~ it entails v(z) = v(y), as required. O

But of course we need to check that v is indeed a configuration-valuation.
For this it remains to show that v satisfies the “drop condition.” For this we
need only consider covering intervals, by Lemma 11.11(i).

Lemma 11.22. Let y,x1,, 2, € C(T) ® C(S) with y—Pxq, -, z,. Assume
that miy—c*mx; when 1 <i<m and myy—<c*mx; when m+1<i<n. Then in

C(T) ®C(S),v,

dgn) [y; 21, 2n] = dffsn) [T1y; T2y, WL ] X di’;‘m)[m;mmh---,wn] .
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Proof. Under the assumptions of the lemma, by proposition 11.3,

A [myy; man, -, ] = vs(my) - ;(—1)‘Il‘+1vs( U mzi),

iEIl

where I; ranges over sets satisfying @ # I; ¢ {1,--,m} s.t. {muax; |iel1}1.
Similarly,

dq(,zfm) [T2y; ToZma1, -, T2y ] = vr(M2y) - Z(_1)|12|+1UT( J mazi),

Iz 1€lo

where I ranges over sets satisfying @ # Iy € {m + 1,---,n} s.t. {mox; | i € IL}1.
Note, by strong receptivity of 7, that when @ # I; € {1,---,m},

{max; | i1}t in C(S)iff {x; |ie1}1 in C(T)®C(S5)
and, similarly by strong receptivity of o, when @+ Io ¢ {m+1,---,n},

{maw; | i€z}t in C(T) iff {x; |ie L}t in C(T)®C(S5).
Hence

Umxi:mUxi and U’/TQiBi:’ITQUiL'i.

i€l iely i€lo i€lo

Making these rewrites and taking the product

m . n-m .
dq(js )[le,ﬂ'ﬂh"‘ﬂflxm] x df,T )[W2y1772zm+17”'a7721'n]7

we obtain
vs(miy) x vr(may) = Y (-1 vg(myy) x vp(me | ;)
I i€l
=S (=D v (e U @) x vr(may)
I i€l
+ 3 ()R G (| @) x vr (e U @) -
I,I iely iels

But at each index I,
vs(my) =vs(m U 2:)

1€ly

as my S 71 User, «4. Similarly, at each index Iy,

vr(may) = v (T2 U 7).

1elq

Hence the product becomes

vs(miy) x vr(may) = (-1 vg(my | 2:) x vr(me J @)

Iz ielsy iely
~ S (D) v U #4) x vp(me U #4)
I i€l i€l

+ Z (_1)\11\+\12| vg(m U ;) x vp (72 U ;) .

Iy,1 iely iels
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To simplify this further, we observe that
{zilieh}t &{z;|ielb}t < {x;|iechula}t .

The “«<” direction is clear. We show “=." Assume {z; | i € I}t and {z; | i € I, }1.
We obtain {myx; | i € I1 }1 and {m x; | i € Is}1 as the projection map 7 preserves
consistency. Hence U;er, m12; and Ujes, mi; are configurations of S. Further-
more, by assumption,

myc< |Jmae, and myc | ma.

iely i€l

As S, a strategy over the race-free game A*| B, is automatically race-free—
Lemma 5.5—we obtain

U mazieC(S)

’iEIl UIZ
by Proposition 5.4. Similarly, because T is race-free, we obtain
U ToX; € C(T) .

ieliuly

Together these entail
UJ meC(T)eC(S),

iEIlulg
i.e. {z; | i € I UIy}1, as required. Notice too that
71'1U.7Ji§_71'1 U z; and Wguxig_ﬂ'g U Z;,
1€ly el uls 1€ls el uls
which ensure
vs(m Jx)=vs(m U z) and vp(me J i) =vr(me U @),
i€l 1€l Uly i€ly 1elLUly

so that

o( U @) =vs(m U i) xvp(me U ) -

el uls iely i€ly

We can now further simplify the product to

v(y) —IZ(—l)'IQ'+1 v(U i)

i€ly
=D (U @)
I iely
£ S EDIFE Y ay).
11,12 iGIlUfz

Noting that any subset I for which @ # I ¢ {1,---,n} either lies entirely within
{1,---,m}, entirely within {m+1,---,n}, or properly intersects both, we have
finally reduced the product to

o(y) = LD ()
I I

with indices those I which satisfy @ # I ¢ {1,---,n} s.t. {z; | i€ I}1, i.e. the
product reduces to d,(Jn) [y;x1-+, @, ] as required. O
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Corollary 11.23. The assignment (vr ® vg)(z) =qof vs(mx) x vr(mezx) to
x €C(T)®C(S) yields a configuration-valuation on the stable family C(T)&C(S).

Proof. From Proposition11.21 we have requirement (1); by Lemma 11.11(i) we
need only verify requirement (2), the ‘drop condition,” for p-covering intervals,
which we can always permute into the form covered by Lemma 11.22—any p-
event of C(T) ® C(S) has a +ve component on one and only one side. O

Example 11.24. The assumption that games are race-free is needed for Corol-
lary 11.23. Consider the composition of strategies o : @3—=B and 7 : B—>@&
where B is the game comprising the two moves & and © in conflict with each
other—a game with a race. Suppose o assigns probability 1 to playing & and 7
assigns probability 1 to playing ©, in the dual game. Then the “drop condition”
required for the corollary fails.

We can now complete the definition of the composition of probabilistic strate-
gies:

Lemma 11.25. Let A, B and C be race-free event structure with polarity. Let
c: 8 —» AY|| B, with configuration-valuation vs :C(S) - [0,1], and 7: T — B*||C
with configuration-valuation vy :C(T) — [0,1] be probabilistic strategies. Assign-
ing (vrOVUg)(x) =get Vs(Il12) x v (o) to x € C(T'OS) yields a configuration-
valuation on T®S which with o0 : TeS - A*||C forms a probabilistic strategy
from A to C.

Proof. We need to show that the assignment w(z) =qer vs(Il1x) x vp(Ilax)
to z € C(T®S) is a configuration-valuation on T®S. We use that v(z) =gef
vg(m2)xvr(mez), for z eC(T)&C(S), is a configuration-valuation onC(T)&C(S)

Recalling, for z € C(T®S), that Uz € C(T) ® C(S) with II;x = m Uz and
Ilsx = mo Uz, we obtain

w() =gt vs(Il1z) x v7(Ilaz) = vs(m | Jz) x vp(me | Jz) =v(Jz) .

Consequently,
w(@)=v(Jo)=v(2)=1.

The function w inherits requirement (1) to be a configuration-valuation from

v because
P . . o top(p) . .

x—<cy with p —ve in TS implies Uz —c Uy with top(p) —ve in C(T) ®
C(S).
To see this observe that top(p) either has the form (s, ) or (*,t). Suppose
top(p) = (*,t). Suppose e =y, (*,t). Then, by Lemma 3.21,

either (i) e = (¢',t") and t' —7 t or (ii) e = (*,¢') and ¢ —»p t.
But (i) would violate the —-innocence of 7. Hence (ii) and being ‘visible’ the
prime [e], € x ensuring e € Ux. As all —j,-predecessors of (*,t) are in Uz

*,t
we obtain Ux(—c) Uy. The proof in the case where top(p) = (s, *) is similar.
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Similarly, w inherits requirement (2) from v, as w.r.t. w,

A [y; 21, 0] = w(y) - ;<—1)‘”“w(uxi>

i€l
=v(Uy) - ;(—U'”“v(UUIxi)
=v(Uy) - ;(—U'””v(UI(U i)
>0,

whenever y ¢t x1,-, 2z, in C(T®S). (Above, the index I ranges over sets
satisfying @ # I € {1,---,n} s.t. {z; | i € [}1.) O

A copy-cat strategy is easily turned into a probabilistic strategy, as is any
deterministic strategy:

Lemma 11.26. Let S be a deterministic event structure with polarity. Defining
vg : C(S) = [0,1] to satisfy vg(x) =1 for all x € C(S), we obtain a probabilistic
event structure with polarity.

Proof. Clearly
vy = vs(w) =vs(y) =1

for all z,y € C(S). As S is deterministic,
y<rax & ycta' = xua’ eC(S),

for all y,z,2" € C(S). For the remaining requirement, a simple induction shows
that for all n > 1,
df;n) [y§3317“'7l'7b] =0

whenever y € 1,++, x,,. The basis, when n =1, is clear as
dV[y; 2] =vs(y) ~vs(x) =1-1=0
when y ¢* x. For the induction step, assuming y € z1, -, 2, with n > 1,
A [y w1, 2] = 8D [y, w1 =d$ D [ 21020, -, 21U, ] = 0-0= 0,
from the induction hypothesis. O

Definition 11.27. We say a probabilistic event structure with polarity is de-
terministic when its configuration valuation assigns 1 to every finite configu-
ration (provided it is race-free it will necessarily also be deterministic as an
event structure with polarity—see the proposition immediately below). We say
a probabilistic strategy o : S - A with configuration-valuation v on C(S) is
deterministic when the probabilistic event structure .S, v is deterministic.

Proposition 11.28. If a race-free probabilistic event structure with polarity is
deterministic, as defined above, then the event structure with polarity itself is
deterministic.
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Proof. Assume S, v, a race-free probabilistic event structure with polarity, is

deterministic, as defined above. Suppose y—+c x1 and y—+c 9. We must have
x1 1 a2 as otherwise the drop condition would be violated. This with race-
freeness implies that the event structure with polarity S itself is deterministic
by Lemma 5.1. O

Recall that race-freeness of a game A ensures that (U4 is deterministic.
Hence as a direct corollary of Lemma 11.26:

Corollary 11.29. Let A be a race-free game. The copy-cat strategy from A to A
comprising ya : Ca - AL|| A with configuration-valuation vae, :C(CC4) - [0,1]
satisfying vac , (x) = 1, for all x € C(QC4), forms a probabilistic strategy.

Example 11.30. Let A be the empty game @, B be the game consisting of
two concurrent +ve events b; and by, and C' the game with a single +ve event
c. We illustrate the composition of two probabilistic strategies o : @3—= B and
T:B—=C.

s e e T °© o—>e
A R
B by by BY||C by b c

The strategy o plays b; with probability 2/3 and by with probability 1/3 (and
plays both with probability 0). The strategy T does nothing if just by is played
and plays the single +ve event ¢ of C' with probabilty 1/2 if by is played. Their
composition yields the strategy 7@c : @—=C which plays ¢ with probability
1/6, so has a 5/6 chance of doing nothing,.

The example illustrates how through probability we can track the presence of
terminal configurations within a set of results despite their not being c-maximal.
The empty configuration is such a terminal configuration; it could be the final
result of the composition as could the configuration {c}. Such terminal but in-
complete results can appear in a composition of strategies through the strategies
being partial, in that one or both strategies do not respond in all cases—the
example above. Such partial strategies can appear as the composition of two
strategies through the occurrence of deadlocks because the two strategies impose
incompatible causal dependencies on moves in game at which they interact. O

Remark on schedulers Often in compositional treatments of probabilistic
processes one sees a use of “schedulers” to “resolve the nondeterminism” due
to openness to the environment. Here the use of schedulers is replaced by that
of counterstrategy to resolve the nondeterminism. The counterstrategy may
be deterministic (so straightforwardly a deterministic probabilistic strategy), in
which case it resolves the nondeterminism by selecting at most one play for
Opponent.
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11.3 2-cells, a bicategory

We have thus extended composition of strategies to composition of probabilistic
strategies. This doesn’t yet yield a bicategory of probabilistic strategies. The
extra structure of configuration-valuations in strategies has to be respected in
our choice of 2-cell. The investigation of a suitable notion of 2-cell is the subject
of the next section.

We first look for an analogue of the well-known result allowing a probability
distribution to be pushed forward across an continuous (or measurable) function.
This is not immediate as the configuration-valuations associated with strategies
take account of Opponent moves so do not correspond to traditional probability
distributions.

Proposition 11.31. Let 0 : S - A be a strategy in A and o' : S - A a total
map of event structures with polarity. Let f : S — S" be a total map of event
structures with polarity s.t. o'f = o. Then, [ is receptive and innocent. A
fortiori if f is 2-cell from strategy o to strategy o’ in the bicategory of games
and strategies, then f is receptive and innocent.

Proof. The map f inherits receptivity and innocence from o, in the case of
innocence using the fact the ¢’ locally reflects causally dependency. O

Example 11.32. It seems impossible to push forward configuration valuations
across arbitrary 2-cells. For example, consider the game A comprising two
conflicting Opponent move and one Player move:

53]

©1 ~~6O9.

Let one probabilistic strategy comprise

1 ~— 2

with obvious map o, where the left Player move occurs with probability p; and
the Player move on the right with probability ps according to a configuratiopn-
valuation v, i.e. v({61,®1}) = p1 and v({©2,®2}) = p2. Take another strategy
to be the identity map A to A. It seems compelling to make the push forward
of v across o assign p; to the configuration {©1,®} and py to the configuration
{62,®}. What value should the push forward of v assign to the configuration
{®}? Because configuration-valuations are invariant under Opponent moves, it
has to be simultaneously p; and py —impossible if p; # ps.

We shall now show the following theorem showing how to push forward
configuration valuations across maps which are both rigid and receptive; in par-
ticular it will allow us to push forward a configuration valuation across a rigid
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map between strategies.

Theorem11.35. Let f: S — S’ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

U,(y) =def Z v(x)

z:fr=y

for y € C(S"), defines a configuration-valuation, written fv, on S’. (An empty
sum gives 0 as usual.)

The proof of the theorem proceeds in the following steps, needed to cope
with the fact sums can be infinite while also involving negative terms.

Lemma 11.33. Let f : S — S’ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

V'(y) =aer ), v()
z:fr=y

we have v'(y) € [0,1], for y € C(S"). Moreover, v'(@) =1 and y €~ 3y’ in C(S")
implies v'(y) =v'(y").
Proof. We check that for y € C(S’) the assignment v’(y) is in [0,1]. Choose a
covering chain

t to tn,

F—cy1—C —Cyn =y

up to y. As f is rigid for each x € C(S) s.t. fo =y there is a corresponding
covering chain

S1 52 Sn

J—Cx1—C - —CTp =2

with f(s;) = ¢; for 0 < ¢ < n. Consider the tree with sub-branches all initial
sub-chains of covering chains up to each x s.t. fx = y; the tree has the empty
covering chain as its root and configurations z, where fz = y, as its maximal
nodes. Because f is receptive the tree only branches at its +ve coverings,
associated with different, possibly infinitely many, s; which map to a +ve event
t;. The corresponding configurations x; are pairwise incompatible. Although
such configurations x; may form an infinite set, by the drop condition for v,
the values of any finite subset will have sum less than or equal to v(z;-1), a
property which must therefore also hold for the sum of values of all the x;. The
value remains constant across any —ve event. Hence, working up the tree from
the root we obtain that ¥ ,.¢,_, v(z) < 1.

Clearly, v'(@) = v(@) = 1. Suppose y €~ ¢y’ in C(S’). From the properties
of f, x s.t. fx =y determines a unique z’ s.t. x ¢~ 2’ and fz’ =y, and wvice
versa; in this correspondence v(x) = v(x'), as v is a configuration-valuation.
Consequently, the sums yielding v'(y) and v'(y’) have the same component
values and are the same. O

For v’ to be a configuration valuation it remains to verify that v’ satisfies
the 4+ve drop condition. We first show this for a special case:
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Lemma 11.34. Let f : S - S’ be a receptive and rigid map between event
structures with polarity. Assume that S has only finitely many +wve events.
Then, v' as defined above in Lemma 11.33 is a configuration valuation.

Proof. Suppose y—+c Y1, Yn. We claim that
ATyl = Y 23 X (2)]
z:fr=y
so is non-negative, where
X () =qof {2 | x—<2" & fr' € {y1, yn}}-
The notation dl(,") [x; X (z)] is justifiable as the drop function is invariant under
permutation and repetition of arguments. Recall
Ay wa] = ') = Y DI (V).
@+Ic{1,n} del
The claim follows because by the rigidity of f any non-zero contribution
(_1)|I|+1HI(U yl)
iel
is the sum of contributions
COM(GEDT
iel
a summand of dq(]”)[gc;X(x)], over x s.t. there are x; € X(z) with fa; = y; for
all iel. O

We can now complete the proof of the theorem.

Theorem 11.35. Let f: S - S’ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

V'(y) =aet ., v()

x:fr=y
for ye C(S"), defines a configuration-valuation, written fv, on S'.

Proof. We use a slight variation on the 4 approximation order between event
structures from [5, 3]. We write Sy < S7 to mean there is a receptive rigid in-
clusion map between event structures with polarity from Sy to S7. Together all
So 4.5 where Sy has finitely many —+-events form a directed subset of approx-
imations to S; their <-least upper bound is S got as their union. Such S, are
associated with receptive rigid maps fq : Sg — S’ got as restrictions of f,

f

S ——=49'

| A

So
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and configuration-valuations vg, got as restrictions v.
Let y—+c Y1, Yn in C(S"). We claim that

do[y;y1,-,yn] = Sl(iJrSnSdSO (Y591, Y] (1)

i.e., that dy[y; 91, Yn] is the limit of d*°[y;y1, -, yn], the drop functions got
by pushing forward vg, along fy to a configuration-valuation for S’—justified
by Lemma 11.34.

Let € > 0. For each I ¢ {1,--,n} there is large enough S; < S s.t. for all
d-larger Sp,

0<o(Vyi) —vso (Vi) <ef2".
i€l i€l

(When I = @ take Viery; = y.) Taking Sy to be <-larger than all S; where
Ic{l,---,n}, we get for all Sy with S; 4.S5 that

o[y y1, Y] = A2 (Y591, yn ] < 27€/2" = €.

As e was arbitrary we deduce (1), ensuring d,[y;y1, -, yn] > 0, as required. O

Consequently, we can push forward a configuration-valuation across a rigid
2-cell between strategies—recall that 2-cells are automatically receptive. Given
this it is sensible to adopt the following definition of 2-cell between probabilistic
strategies. A 2-cell from a probabilistic strategy v, : S - A'||B to a proba-
bilistic strategy v’,o’ : S’ - A*||B is a rigid map f : S — S’ for which both
o =o' f and the push-forward fv <v’, i.e. for any finite configuration of S’ the
value (fv)(z) <v'(fz).

Such 2-cells include receptive rigid embeddings f which preserve the value
assigned by configuration-valuations, so (fv)(z) = v'(f2) when x € C(S); notice
that the push-forward fv will assign value 0 to any configuration not in the
image of f, so not impose any additional constraint on the values v’ takes outside
the image of f. Rigid embeddings, first introduced by Kahn and Plotkin [31]
provide a method for defining strategies recursively. One way to characterize
those maps f : S — S’ of event structures which are rigid embeddings is as
injective functions on events for which the inverse relation f°P is a (partial)
map of event structures f°P: S’ — S.

In turn, 2-cells based on rigid embeddings include as special case that in
which the function f is an inclusion. Receptive rigid embeddings which are in-
clusions give a (slight variant on a) well-known approximation order < on event
structures. The order < forms a ‘large cpo’ and is useful when defining event
structures recursively [5, 3]. With some care in choosing the precise construc-
tion of composition it provides an enrichment of probabilistic strategies and an
elementary technique for defining probabilistic strategies recursively. Spelt out,
when v,0 : S - AY||B and v',¢’ : 8" - A*|| B are probabilistic strategies, we
write

(v,0) 2 (v',0")
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iff S <5, the associate inclusion map i :.S — S" makes o = ¢’i and v(z) =v'(z)
for all x € C(S). There can be many different, though isomorphic, g-minimal
probabilistic strategies, differing only in their choices of initial —-events; to be
receptive they must start with copies of initial —-events of the game. Any chain

(1}070-0) d (Ulao-l) d--d (’Un,O'n) g

has a least upper bound got by taking the union of the event structures.

To show that 2-cells compose functorially we use the following lemma. For
probabilistic strategies vg,o : S - A*||B and vy, 7: T — B*|C we write vrQug,
respectively, vr ® vg for the configuration-valuations on TS and 7' ® S in
the composition (vr,7)®(vs, o) and the composition without hiding (v, 7) @
(Us, U).

Lemma 11.36. Let f:0 — ¢’ be a rigid 2-cell between strategies o : S — A*||B
and o' : S" - A||B. Let g: 7 — 7' be a rigid 2-cell between strategies T: T —
B C and 7' : T" — B*||C. Let vs be a configuration-valuation for S and vy a
configuration-valuation for T. Then,

(90 f)(vrovs) = (gur)e(fvs)

and
(9@ f)(vr ®vs) = (gvr) & (fus).

Proof. Omitted—see [1] O

Corollary 11.37. Composition of probabilistic strategies is functorial w.r.t. 2-
cells, and functorial w.r.t. those 2-cells which are rigid embeddings.

Combining:

Theorem 11.38. Race-free games with probabilistic strategies with composi-
tion and copy-cat defined as in Lemma 11.25 and Corollary 11.29 inherit the
structure of a a bicategory from that of games with strategies. 2-cells between
probabilistic strategies are now restricted to rigid maps satisfying the conditions
explained above. The bicategory restricts to one in which the cells are rigid
embeddings.

The order-enriched category Games of rigid-image strategies supports prob-
ability to give us an order-enriched category of probabilistic rigid-image strate-
gies. A probabilistic rigid-image strategy over a game A comprises a rigid-image
strategy o : S - A together with a configuration-evaluation v for S. Given prob-
abilistic rigid image strategies vg,o : S - AY||B and vy,7 : T — B*||C their
composition comprises (700 ) : (T®S)y — A*||C, the rigid image of 70, with
configuration-valuation the push-forward along the map TeS - (T®S)o to the
rigid image of the configuration valuation x — vg(Ilgz) x v (Ipz). Is anything
lost in moving to probabilistic rigid-image strategies? No, in the sense that a
probabilistic strategy and its probabilistic rigid-image will always induce the
same probability distribution on the game whenever they are composed with a
probabilistic counterstrategy [1]:
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Proposition 11.39. Let f : (o,v) = (0',v") be a 2-cell between probabilistic
strategies v,0 : S - A and v',0' : S" - A for which the push-forward fv = v'.
Let vp,7: T — A* be a probabilistic counterstrateqy. Then

TesTes

commutes and the push-forward (7@ f)(vr ®v) = vr @ v'. Moreover, T ® S with
vr ®@v and T ® S" with vy ® v' are probabilistic event structures determining
continuous valuations w and w' respectively. The push-forwards of w and w’
across the maps T ® o and T ® o’ respectively to continuous valuations on the
open sets of C*°(A) are the same.

11.4 Probabilistic processes

As an indication of the expressivity of probabilistic strategies we sketch how they
straightforwardly include a simple language of probabilistic processes, reminis-
cent of a higher-order CCS. For this section only, write o : A to mean o is a
probabilistic strategy in game A. Probabilistic strategies are closed under the
following operations.?

Composition coT : A||C, if o : A|B and 7 : B*||C. Hiding is automatic in a
synchronized composition directly based on the composition of strategies.

Simple parallel composition ol||T : A||B, if 0 : A and 7 : B. Note that simple
parallel composition can be regarded as a special case of synchronized composi-
tion: via the identification of |7 with 7@, taking o : At —>@ and 7: @— B,
the operation ol||7 yields a probabilistic strategy. Supposing o : S - A and
7:T - B and S and T have configuration valuations vg and vr, respectively,
then the configuration valuation v for S||T satisfies v(x) = vg(x1) x vy (x2), for
xeC(S||T).

Conjunction if o1 : A and o2 : A we can conjoin the strategies by forming their
pullback:

Sl/\SQ
Sl 20'1/\0'2 SQ

A

2For a richer language of probabilistic strategies see [32].



11.4. PROBABILISTIC PROCESSES 157

If o1 and o4 are associated with configuration-valuations v; and vy respectively
then we tentatively take the configuration-valuation of the pullback to be v(z) =
v1(IT12) x vo(Max) for x € C(S1 A S2).

To check that v is indeed a configuration-valuation we embed configurations
of S1 A S in those of S1||S2 as described in the next lemma, so inheriting the
conditions required of v from those of the configuration-valuation of oy ||os.

Lemma 11.40. Define
¥ :C(S1 A S2) = C(S51]S2)
by Y(z) = x| lsx for x € C(S1 A Ss). Then,
(i) 1 is injective,
(i) 1 preserves unions, and

(iii) 1 reflects compatibility, and in particular +-compatibility: if x €* y and
xC" 2z in C(S1AS2) and Y(y) ui(z) € C(S1]|S2), then yuz e C(S1 A Sa).

Proof. Consider the pullbackC(S1)AC(S2), 71, w2 in stable families of o1 and o,
regarded as maps between families of configurations. Configurations C(S1 A S5)
are order isomorphic, under inclusion, to configurations C(S1) A C(S2). See
the end of Section 3.3.4 for the detailed construction of pullbacks of stable
families. It is thus sufficient to show that ¢ : C(S1) A C(S2) — C(S1]|S2), where
@(x) = maz||mex for x € C(S1) A C(S2), satisfies conditions (i), (ii) and (iii) in
place of ¢. (i) Injectivity follows because configurations in the pullback of stable
families are determined by their projections; the nature of events of the pullback
fixes their synchronisations. (ii) is obvious. (iii) To show ¢ reflects compatibility,
assume x Cy and x € z in C(S1) AC(S2) and ¢(y) Up(z) € C(S1]]S2). Inspecting
the construction of the pullback C(S1) AC(S2) it is now easy to check that yuz
satisfies the conditions needed to be in C(S1) A C(S2), as required. O

Corollary 11.41. Taking v(x) = v1(Il;2) x ve(Ilax) for x € C(S1 A S2) defines
a configuration-valuation of S1 A Ss.

Proof. The assignment z — v1(x1) x va(x2), for x € C(S1]|S2) determines a
configuration-valuation of S1||S3. The one non-obvious condition required of
v to be a configuration-valuation is the -+-drop condition. This follows di-
rectly from the +-drop condition holding in C(S1]|S2) because 9 reflects +-
compatibility. O

Input prefizing Y ;c; ©.0:+ 2 ie1 ©. Ay, if 050 Ay, for i € I, where I is countable.
Output prefizing Y ,c; Di® .05+ Yooy ®. Ay, if 05+ Ay, for i € I, where I is countable,

and p; € [0,1] for i € I with ¥,y p; < 1. If ¥, p; <1, there is non-zero proba-
bility of terminating without any action. By design (X;e; @.4:)* = Y1 0. 47



158 CHAPTER 11. PROBABILISTIC STRATEGIES

General probabilistic sum More generally we can define @, p;o; : A, for o; : A
and I countable with sub-probability distribution p;,¢ € I. The operation makes
the +-events of different components conflict and re-weights the configuration-
valuation on the components according to the sub-probability distribution. In
order for the sum to remain receptive, the initial —ve events of the components
over a common event in the game A must be identified.

Relabelling, the composition fyo: B, if 0: A and f: A — B, possibly partial on
+ve events but always defined on —ve events, is receptive and innocent in the
sense of Definition 4.6. Then the composition of maps fo : S - B is receptive
and innocent. Its defined part, taken to be f.o : B, is given by the factorization

S——=S|D

N2

A,

where D is the subset of S at which fo is defined, is a strategy over B. If the
configuration-valuation on S is v then that on S | D is given by z » v([z]),
for x € C(S | D), where [x] is the down-closure of z in S. The map f.o : B
is a strategy because, directly from the definition of innocence of partial maps,
the projection S — S | D reflects immediate causal dependencies from +ve
events and to —ve events. The function x — v([z]), for z € C(S | D), is a
configuration valuation: First, clearly v[@]) = v(@) = 0. Second, if z €~ y in
C(S | D), then [z] ¢ [y] in C(S) directly from the —-innocence of f, ensuring
v([z]) = v([y]). Third, the drop condition is inherited from v. Assuming

+

y—=C 1, @y in C(S | D) we obtain [y] €* [x1],-, [2n] in C(S) because f is
only undefined on +ve events. Hence, by the drop condition for v,

v(ly]) - ;(_1)III+1U(U[$i]) 20,

iel
where T ranges over subsets @ # I € {1,---,n} s.t. {[z;] | i € I}1s. But,
{la:] [ielPts = {zi|iel}tsv,

and down-closure commutes with unions. So

v(lw]) - ;(—U”'”v(U[ﬂ:i]) =v(ly]) - ;(—D‘””v([U i),

el el

where in the latter expression I ranges over subsets @ # I € {1,--,n} s.t. {z; | i e I} g,v.
In particular, the composition fo : B, if 0 : A and f: A - B is itself a
strategy, i.e. total, receptive and innocent.

Pullback f*o: A, if 0: B and f: A — B is a map of event structures, possibly
partial, which reflects 4+-consistency in the sense that

y—+cxl,---,xn &A{fr;|1<i<nit= {z; | 1<i<n}t.
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The strategy f*o is got by the pullback

s g
_
S

Then, the map f’ also reflects +-consistency. This fact ensures we define a
configuration-valuation vg: on S’ by taking ve/ (z) = vs(f'z), for x € C(S"). If
c: S — B is a strategy then so is f*o : S’ - A. Pullback along f: A - B
may introduce events and causal links, present in A but not in B. The pullback
operation subsumes the operations of prefixing ©.0 and @.0 and we can recover
the previous prefix sums if we also have have sum types—see below.

Sum types If A;, i€ I, is a countable family of games, we can form their sum, the
game Y ;.; A; as the sum of event structures. If o : A;, for j € I, we can create
the probabilistic strategy jo : ¥;,c; A; in which we extend o with those initial
—ve events needed to maintain receptivity. A probabilistic strategy of sum type
0 Yier Ai projects to a probabilistic strategy (o), : A; where j € I.

Abstraction Ax : A.c : A — B. Because probabilistic strategies form a monoidal-
closed bicategory, with tensor A||B and function space A — B =40t A*|| B, they
support an (linear) A-calculus, which in this context permits process-passing as
in [33].

Recursive types and probabilistic processes can be dealt with along standard
lines [5].

The types as they stand are somewhat inflexible. For example, that maps of
event structures are locally injective would mean that simple labelling of events
as in say CCS could not be directly captured through typing. However, this
can be remedied by introducing monads, but doing this in sufficient generality
would involve the introduction of symmetry.

In the pullback operations we have relied on certain maps being stable un-
der pullback. The following two propositions make good our debt, and use
techniques from open maps [34].

Proposition 11.42. Ifo:S — B is a strategy then so is f*o: 5 — A.

Proof. Define an étale map (w.r.t. to a path category P) to be like an open map,
but where the lifting is unique. It is straightforward to show that the pullback
of an étale map is étale. In fact, strategies can be regarded as étale maps, from
which the proposition follows. Within the category of event structures with
polarity and partial maps, take the path subcategory P to comprise all finite
elementary event structures with polarity and take a typical map f:p - ¢ in P
to be a map such that:
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(i) if e =, €’ with e —ve and e’ +ve and both f(e) and f(e’) defined, then
f(e) =q f(€); and

(ii) all events in ¢ not in the image fp are —ve.

It can be checked that w.r.t. this choice of P the étale maps are precisely those
maps which are strategies. O

Proposition 11.43. If f: A > B reflects +-consistency, then so does f':S" —
S.

Proof. As +-consistency-reflecting maps are special kinds of open maps, known
to be stable under pullback. An appropriate path category comprises: all fi-
nite event structures with polarity for which there is a subset M of <-maximal
+-events s.t. a subset X is consistent iff X n M contains at most one event of
M—all finite elementary event structures with polarity are included as M, the
chosen subset of <-maximal +-events, may be empty; maps in the path category
are rigid maps of event structures with polarity whose underlying functions are
bijective on events. O

11.4.1 Payoff

Given a probabilistic strategy vg,o : S — A and counter-strategy vy, 7: 7T — A*

we obtain
P
7N
\ !
A

with valuation v(z) = vg(mz) x vp(max), for x € C(P), on the pullback P—a
probabilistic event structure, with probability measure fi, . Define f =40 0m1 =
T7o. Adding payoff as a Borel measurable function X : C*(A) — R the expected
payoff is obtained as the Lebesgue integral

xe

= LeC“’(A) X(y) dﬂa,'rf_l(y) )

Bor(X) =aer [y XU@)) dito ()

where we can choose either to integrate over C*°(P) with measure i, -, Or over
C>(A) with measure j,,f7*.
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11.4.2 A simple value-theorem

Let A be a game with payoff X. Its dual is the game A* with payoff -X. If A, X
and B,Y are two games with payoff, their parallel composition (A, X) % (B,Y")
is the game with payoff (A||B, X +Y).

Let A be a game with payoff X. Define

val(A,X) =gt supinf E, - (X)

val(A*, =X) =gef supinf E; ,(-X) = —inf sup E, - (X) .

The game A, X is said to have a value if
val(A,X) = —val(A*, -X) = E,, -, (X),

its value then being val(A, X).
The following proposition says that a Nash equiibrium—expressed in prop-
erties (1) and (2)—determines a value for a game with payoff.

Theorem 11.44. Let A be a game with payoff X. Suppose there are strategy
oo and counterstrateqy Ty S.t.

(1)V7, a counterstrategy. Eq, +(X) > Eyy -, (X) and
(2)Vo, a strategy. Eq ,(X) < Eyy 7 (X).

Then, the game A, X has a value and Ey, +,(X) is the value of the game.
Proof. Letting o stand for strategies and 7 for counterstrategies, we have
val(A) =qef supinf E, - (X)
o T

val(A*) =gef supinf E; ,(-X) = —infsup E, ,(X).

We require
val(A) = —val(A") = E,y 1, (X) .

For all strategies o,

inf By (X) < By (X) € Eggory (X)

by (2). Therefore
supinf B, (X)) < By - (X).

Also
supinf B, - (X) > inf By, +(X) 2 Eyy 7, (X)

by (1). Hence
supinf B, (X)) = Eyy - (X) . (3)
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Dually,
Sup EJ,T(X) 2 cho,T(X) 2 Eqy 7 (X)

by (1). Therefore
infsup Ey - (X) 2 Egy 7, (X).

Also,
infsup Ey (X)) <sup E, 1, (X) € Egy 7y (X)

by (2). Hence
infsup Ey - (X) = By 7o (X). (4)

From (3) and (4) it follows that
val(A) = —val(A*') = E,, -, (X),

the value of the game, as required. O



Chapter 12

Quantum strategies

We first explore a definition of quantum event structure in which events are
associated with projection or unitary operators. It is shown how this structure
induces configuration-valuations, and hence probability measures, on compatible
parts of the domain of configurations of the event structure. We conclude with
a brief exploration of quantum games and strategies. A quantum game is taken
to be a quantum event structure in which events carry polarities and a strategy
in a quantum game as a probabilistic strategy in its event structure.

12.1 Quantum event structures

Event structures are a model of distributed computation in which the causal
dependence and independence of events is made explicit. By associating events
with the most basic operators on a Hilbert space, viz. projection and unitary
operators, so that independent (i.e. concurrent) events are associated with in-
dependent (i.e. commuting) operators, we obtain quantum event structures.

An event associated with a projection is thought of as an elementary pos-
itive test; its occurrence leaves the system in the eigenspace associated with
eigenvalue 1 (rather than 0) of the projection. An event associated with a uni-
tary operator is an event of preparation; the preparation might be a change of
the direction in which to make a measurement, or the undisturbed evolution of
the system over a time interval. A configuration is thought of as specifying a
distributed quantum experiment. As we shall see, w.r.t. an initial state given
as a density operator, each configuration w of a quantum event structure de-
termines a probabilistic event structure, giving a probability distribution on its
sub-configurations—the possible results of the experiment w.

Throughout let H be a separable Hilbert space over the complex numbers.
For operators A, B on H we write [A, B] =qef AB — BA.

163
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12.1.1 Events as operators

Formally, we obtain a quantum event structure from an event structure by
interpreting its events as unitary or projection operators which must commute
when events are concurrent.

Definition 12.1. A quantum event structure (over H) comprises an event struc-
ture (E, <, Con) together with an assignment Q). of projection or unitary oper-
ators on H to events e € F such that for all ey, es € F,

e1coey = [Qe,,Qe,]=0.

Given a finite configuration, x € C(F), define the operator A, to be the
composition Qe, Qe,,_,**Qe,Qe, for some covering chain

€1 €2 €n
G—CT1—CTy—CTp =T

inC(E). This is well-defined as for any two covering chains up to z the sequences
of events are Mazurkiewicz trace equivalent, i.e. obtainable, one from the other,
by successively interchanging concurrent events. In particular Ay is the identity
operator on H. An initial state is given by a density operator p on H.

Interpretation

Consider first the simpler situation where in a quantum event structure E, @) the
event structure E is elementary (i.e. all finite subsets are consistent). We regard
FE, Q as specifying a, possibly distributed, quantum experiment. The experiment
says which unitary operators (events of preparation) and projection operators
(elementary positive tests) to apply and in which order. The order being partial
permits commuting operators to be applied concurrently, independently of each
other, perhaps in a distributed fashion.

For a quantum event structure, F, @, in general, an individual configuration
w € C*°(FE) inherits the order of the ambient event structure E to become an
elementary event structure, and can itself be regarded as a quantum experi-
ment. The quantum event structure E,(Q represents a collection of quantum
experiments which may extend or overlap each other: when w ¢ w’ in C*(FE)
the experiment w’ extends the experiment w, or equivalently w is a restriction
of the experiment w’. In this sense a quantum event structure in general rep-
resents a nondeterministic quantum experiment. The extra generality will be
crucial later in interpreting probabilistic quantum experiments.

12.1.2 From quantum to probabilistic

Consider a quantum event structure with initial state. A configuration w stands
for an experiment and specifies which tests and preparations to try and in which
order. In general, not all the tests in w need succeed, yielding as final result
a possibly proper sub-configuration = of w. Theorem 12.2 below explains how
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there is an inherent probability distribution g, over such final results. So an
experiment provides a context for measurement w.r.t. which there is an intrinsic
probability distribution over the possible outcomes. In particular, when the
event structure is elementary it itself becomes a probabilistic event structure.
(Below, by an unnormalised density operator we mean a positive, self-adjoint
operator with trace less than or equal to one.)

Theorem 12.2. Let E,Q be a quantum event structure with initial state p.
Each configuration x € C(E) is associated with an unnormalised density operator
Pz =det AzpAlL and a value in [0,1] given by v(x) =qer Tr(pe) = Tr(Al Ayp). For
any w € C*(E), the function v restricts to a configuration-valuation v, on the
elementary event structure w (viz. the event structure with events w, and causal
dependency and (trivial) consistency inherited from E); hence v, extends to a
probability measure g, on Fyy =qef {x € C*°(E) | z Cw}.

Proof. We show v restricts to a configuration-valuation on F,,. As Ay = idy,
v(@) = Tr(p) = 1. By Lemma 11.11, we need only to show am [y; 21, 2,] 20
when yﬂcxl,m,yﬂcxn in Fy.

First, observe that if for some event e; the operator ()., is unitary, then

df)") [y; 21, 2,] = 0. W.lo.g. suppose e, is assigned the unitary operator U.
Then, A, =UAy so

v(wy) = Tr(AL Ay, p) = Tr(ATUTU A, p) = Tr(Af Ayp) = v(y).

Let @ # I € {1,-~-,n}. Then, either Uses @; = Ujer i U Ty, or User T—c User ; U
Zn. In the either case—in the latter case by an argument similar to that above,

v(UJzi) =v(Jziva,).

i€l i€l
Consequently,

A\ [y; 1, w ] =d D [y 20, 21 ] = A [ 1 Uy, oy 2y Uiy ]
=0(y) - Y (-DF () - v(an) + Y (D) (U va,)
I el I i€l
=0

—above index I is understood to range over sets for which @ # I ¢ {1,---,n}.

It remains to consider the case where all events e; are assigned projection
operators P.,. As x1,---,2, € w we must have that all the projection operators
P, -, P, commute.

As [P, P.;] =0, for 1 <4,j <n, we can assume an orthonormal basis which
extends the sub-basis of eigenvectors of all the projection operators P,,, for 1 <
t<n. Let y € x € Uicicp ;- Define P, to be the projection operator got as the
composition of all the projection operators P, for e € x \ y—this is a projection
operator, well-defined irrespective of the order of composition as the relevant
projection operators commute. Define B, to be the set of those basis vectors
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fixed by the projection operator P,. In particular, P, is the identity operator
and B, the set of all basis vectors. When z,2’ € C(F) with y € & € U1<jcn i
and y € 2’ € Ui<icn i,
By = By N By .
Also,
Polip) = 3o (ile)li),

i€By
SO

(WIPJe) = 3 (i) ol = 3 (il

i€By i€B,

for all |o) € H.
Assume p = 3 pr|tr ){¥k|, where the 1) are normalised and all the py are
positive with sum Y, px = 1. For x with y € x € U <;<n i,

v(x) :TI"(ALAxP)
=Tr(Af PIP, A, p)
=Te(Al P, Ay Y prlibr ) (vhn])
k

k

= Pl Ay k| Pl Aytr)
k

= Y Ypel(ilAy)F = Y i,
i€B, k i€B,

where we define r; =qer Yj pk|(z'|Aywk)|2, necessarily a non-negative real for
1€ B,.
We now establish that

dl()n)[yvxla7xn] = Z Ti,
1€By\Bg, UUB,,

for all n € w, by mathematical induction—it then follows directly that its value
is non-negative.
The base case of the induction, when n = 0, follows as

dOy;]1=vly) = X i,

i€,

a special case of the result we have just established.
For the induction step, assume n > 0. Observe that

By\ By, U UBy,  =(By\ By, U UBg, )U(By, N Byyug, U U B, 1z, )
where as signified the outer union is disjoint. Hence,

T = Z T+ Z Ti,
1€By\Bg, UUBy, | 1€By\Bg, UUB,,, 1€Bg, N\Bz Uz, U UBg, Uz,
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By definition,
dz(;n) [y7 T,y xn] =def d1()n—1) [Zh L1,y xn—l] - dq(}n_l) [xn; T1UZp, "y Tp-1U :En]

—making use of the fact that we are only forming unions of compatible config-
urations. From the induction hypothesis,

n-1 . — E
d’f} )[y7x1a"'7xn—1:| - Ti
1€By\By, U--UB

Tn-1

n—1 . _
and df) )[xn,xl Uy, Lol Uy ] = Z 7.
iEBT/n\BT’IUT’nU“'Uan—IUT’n

Hence

n . _
dl() )[y7x17"'7xn] - Z T,
ieBy\Bmlu---uan

ensuring d,(}") [y;z1, -, 2n] = 0, as required.
By Theorem 11.14, the configuration-valuation v,, extends to a unique prob-
ability measure on F,,. O

Corollary 12.3. Let E,Q be a quantum event structure in which E is elemen-
tary. Assume an initial state p. Then, x  Tr(AlA.p), for x € C(E), is a
configuration-valuation on E. It extends to a probability measure on the Borel
sets of C*(E).

Theorem 12.2 is reminiscent of the consistent-histories approach to quan-
tum theory [35] once we understand configurations as partial-order histories.
The traditional decoherence/consistency conditions on histories, saying when a
family of histories supports a probability distribution, have been replaced by
c-compatibility.

Example 12.4. Let E comprise the quantum event structure with two concur-
rent events ey and e; associated with projectors Py and P;, where necessarily
[Py, P1]=0. Assume an initial state [10){(1|, corresponding to the pure state [¢)).
The configuration {eg, e} is associated with the following probability distribu-
tion. The probability that eq succeeds is ||Py|1)||?, that e; succeeds ||Pi|e)]|?,
and that both succeed is || Py Py|v)||*.

In the case where Py and P; commute because PyP; = P, Py = 0, the events eg
and e; are mutually exclusive in the sense that there is probability zero of both
events ep and e; succeeding, probability ||Py|)||? of eo succeeding, ||Py|)|* of
e1 succeeding, and probability 1 — |[Po|)||> - || Pi[)||* of getting stuck at the
empty configuration where neither event succeeds.

A special case of this is the measurement of a qubit in state 1, the measure-
ment of 0 where Py ={0)(0|, and the measurement of 1 where P; =|1)(1|, though
here ||Py|)|| + || Pi|¥)]|? = 1, as a measurement of the qubit will determine a
result of either 0 or 1. m|
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Example 12.5. Let E comprise the event structure with three events eq, es, €3
with trivial causal dependency and consistency relation generated by taking
{e1,e2} € Con and {es,e3} € Con—so {e1,e3} ¢ Con. To be a quantum event
structure we must have [Qe,, Qe ] = 0, [Qey, Qes ] = 0. The maximal configura-
tions are {e1, es} and {ez,e3}. Assume an initial state |10){(2)|. The first maximal
configuration is associated with a probability distribution where e; occurs with
probability ||Qe,[¥)||* and es occurs with probability ||Qe,|¥)||*. The second
maximal configuration is associated with a probability distribution where eq
occurs with probability ||Qe,|¥)||* and e3 occurs with probability ||Q.,[¥)|[*. O

12.1.3 Measurement

To support measurements yielding values we associate values with configurations
of a quantum event structure F,Q, in the form of a measurable function, V :
C=(FE) —» R. If the experiment results in z € C*°(FE) we obtain V(z) as the
measurement value resulting from the experiment. By Theorem 12.2, assuming
an initial state given by a density operator p, we obtain a probability measure
Gw on the sub-configurations of w € C*°(E). This is interpreted as giving a
probability distribution on the final results of an experiment w. Accordingly,
w.r.t. an experiment w € C*(FE), the expected value is

Ew(v) =def Le]—'w V(I) dq1lJ(x) .

Traditionally quantum measurement is associated with an Hermitian oper-
ator A on H where the possible values of a measurement are eigenvalues of A.
How is this realized by a quantum event structure? Suppose the Hermitian
operator has spectral decomposition

A=Y NP,

iel

where orthogonal projection operators P; are associated with eigenvalue A;. The
projection operators satisfy Y.y P; =idy and P P; =0 if i # j.

Form the quantum event structure with concurrent events e;, for ¢ € I, and
Q(e;) = P;. Because the projection operators are orthogonal, [P;, P;] = 0 when
i # 7, so we do indeed obtain a quantum event structure. Let V({e;}) = \;,
and take arbitrary values on all other configurations. The event structure has
a single, maximum configuration w =q¢¢ {€; | 7€ I}. It is the experiment w
which will correspond to traditional measurement via A. Assume an initial
state |¢))(1)|. It can be checked that the probability ascribed to each of the
singleton configurations {e;} is ()| P;|[v)), and is zero elsewhere. Consequently,

E.(V) = X Ay|Pilv) = (Y] Aly)

iel

—the well-known expression for the expected value of the measurement A on
pure state [¢).
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Example 12.6. The spin state of a spin-1/2 particle is an element of two-
dimensional Hilbert space, Ho. Traditionally the Hermitian operator for mea-
suring spin in a particular fixed direction is

N = [

It has eigenvectors |t) (spin up) with eigenvalue +1 and ||} (spin down) with
eigenvalue —1. Accordingly, its quantum event structure comprises the two
concurrent events u associated with projector [1)(1] and d with projector | )(l|.
TIts configurations are: @, {u}, {d} and {u,d}. The value associated with the
configuration {u} is +1, and that with {d} is —1. Given an initial pure state
alt) + b|}), the probability of the experiment {u,d} yielding value +1 is |a|?
and that of yielding -1 is [b|2. The probability that the experiment ends in
configurations @ or {u,d} is zero. Its expected value is |a|? — |b|>. This would
be the average value resulting from measuring the spin of a large number of
particles initially in the pure state. O

An event logic

One way to assign values to configurations is via logic of which the assertions
will be true (taken as 1) or false (0) at a configuration. Given a countable event
structure E, we can build terms for events and assertions in a straightforward
way. Event terms are given by € == e € F | v € Var, where Var is a set of variables
over events, and assertions by

Li=e|T|F|LiALy|LyvLy|-L|Vv.L|3v.L.

W.r.t. an environment ¢ : Var — E, an assertion L denotes [L](, a Borel subset
of C*(FE), for example:

[el¢={zeC™(E) |eca}  [vl¢={zeC™(E)|((v) e}
[Vu.L]¢ ={x e C™(F) | Veex. x € [L]¢[e/v]}
[Fv.L]¢ ={x e C™(F) | Jeex. x € [L]([e/v]}

with T, F, A, v and - interpreted standardly by the set of all configurations,
the emptyset, intersection, union and complement. In this logic, for example,
=(al A bl) A=(at A bt) could express the anti-correlation of the spin of particles
a and b.

W.r.t. a quantum event structure with initial state, for an experiment the
configuration w, the probability of the result of the quantum experiment satis-
fying L, a closed assertion of the logic with denotation U, is

quw (U n -7:11; )

which coincides with the expected value of the characteristic function for U.
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12.1.4 Probabilistic quantum experiments

It can be useful, or even necessary, to allow the choice of which quantum mea-
surements to perform to be made probabilistically. For example, experiments
to invalidate the Bell inequalities, to demonstrate the non-locality of quantum
physics, may make use of probabilistic quantum experiments.

Formally, a probability distribution over quantum experiments can be real-
ized by a total map of event structures f: P - E where P,v is a probabilistic
event structure and F, () is a quantum event structure; the configurations of F
correspond to quantum experiments assigned probabilities through P. Through
the map f we can integrate the probabilistic and quantum features. Via the
map f, the event structure E inherits a configuration valuation, making it itself
a probabilistic event structure; we can see this indirectly by noting that if w,
is a continuous valuation on the open sets of P then w, f~! is a continuous val-
uation on the open sets of E. On the other hand, via f the event structure P
becomes a quantum event structure; an event p € P is interpreted as operation
Q(f(p)). Of course, f can be the identity map, as is so in Example 12.7 below.

Suppose E,Q is a quantum event structure with initial state p and a mea-
surable value function V' : C*°(FE) — R. Recall, from Section 12.1.3, that the
expected value of a quantum experiment w € C*(E) is

Bo(V)=ar [ V(@) dau (o),
zeFy
where g, is the probability measure induced on F,, by @ and p. The expected
value of a probabilistic quantum experiment f: P - FE, where P,v is a proba-
bilistic event structure is

[ comgy B (V) dief ™ ().

where g is the probability measure induced on C*(P) by the configuration-
valuation v. Specialising the value function to the characteristic function of
a Borel subset U ¢ C*(FE), perhaps given by an assertion of the event logic
of Section 12.1.3, the probability of the result of the probabilistic experiment
satisfying U is

fweCw(E) qw(U 0 Fy) dpf ™ (w).

The following example illustrates how a very simple form of probabilistic
quantum experiment (in which the event structure has a discrete partial or-
der of causal dependency) provides a basis for the analysis of Bell and EPR
experiments.

Example 12.7. Imagine an observer who randomly chooses between measuring
spin in a first fixed direction a; or in a second fixed direction as. Assume that
the probability of measuring in the a;-direction is p; and in the as-direction is
p2, where p;+ps = 1. The two directions a; and ag correspond to choices of bases
[tai), fa1) and [taz), [Las) in Ha. We describe this scenario as a probabilistic
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quantum experiment. The quantum event structure has four events, taq, a1,
a3, | as, in which taq, | a; are concurrent, as are 1 as, | as; all other pairs of events
are in conflict. The event 1a; is associated with measuring spin up in direction
a; and the event | a; with measuring spin down in direction a;. Similarly,
events tas and | as correspond to measuring spin up and down, respectively, in
direction as. Correspondingly, we associate events with the following projection
operators:

Q(tar) =[tai)(tai],  QUa1)=a){la],
Q(uz) =[taz)(taz],  Q(d2) =[laz){lazl.

The configurations of the event structure take the form

VNN
NAN A

where we have taken the liberty of inscribing the events just on the covering
intervals. Measurement in the aj-direction corresponds to the configuration
{ta1,la; }—the configuration to the far left in the diagram—and in the as-
direction to the configuration {fag,|as}—that to the far right. To describe
that the probability of the measurement in the a;-direction is p; and that in
the ag-direction is po, we assign a configuration valuation v for which

v({tar,lar}) =v({tar}) =v({la1}) =p1,
v({taz,laz}) =v({taz}) =v({laz}) =p2 and v(2)=1.

Such a probabilistic quantum experiment is not very interesting on its own.
But imagine that there are two similar observers A and B measuring the spins
in directions aj, az and by, ba, respectively, of two particles created so that
together they have zero angular momentum, ensuring they have a total spin
of zero in any direction. Then quantum mechanics predicts some remarkable
correlations between the observations of A and B, even at distances where their
individual choices of what directions to perform their measurements could not
possibly be communicated from one observer to another. For example, were both
observers to choose the same direction to measure spin, then if one measured
spin up then other would have to measure spin down even though the observers
were light years apart.

We can describe such scenarios by a probabilistic quantum experiment which
is essentially a simple parallel composition of two versions of the (single-observer)
experiment above. In more detail, make two copies of the single-observer event
structure: that for A, the event structure F4, has events 1 a1,| a1,1 as,| as,
while that for B, the event structure Epg, has events 1 by,| by,1 bo, | ba. As-
sume they possess configuration valuations v4 and vp, respectively, determined
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by the probabilistic choices of directions made by A and B. Write Q4 and
Q@ p for the respective assignments of projection operators to events of £4 and
FEp. The probabilistic event structure for the two observers together is got as
E4||Ep, their simple parallel composition got by juxtaposition, with configura-
tion valuation v(x) = va(za) xvg(xp), for © € C(EA|EgR), where z4 and xp
are projections of x to configurations of A and B. In this compound system an
event such as e.g. Taj is interpreted as the projection operator Q4 (ta;) ® idy,
on the Hilbert space Ho ® Ho, where the combined state of the two particles
belongs. We can capture the correlation or anti-correlation of the observers’
measurements of spin through a value function on configurations, given by

V({tai,10;}) =V ({la;db;}) =1, V({ta;,lb;}) =V ({{a;1b;})=-1, and
V(z) = 0 otherwise,

and study their expectations under various initial states and choices of measure-
ment. In this way probabilistic quantum experiments, as formalised through
probabilistic and quantum event structures, provide a basis for the analysis of
Bell or EPR experiments. O

The ideas of probabilistic and quantum event structures carry over to prob-
abilistic and quantum games and their strategies; the result of the play of quan-
tum strategy against a counterstrategy is a probabilistic event structure. This
is yielding operations and languages which should be helpful in a structured
development and analysis of experiments on quantum systems.

12.2 A simple form of quantum strategy

We present a simple form of quantum game and strategy.

Define a quantum game to comprise A, pol,H 4,Q, p where A, pol is a race-
free event structure with polarity and A, @ is a quantum event structure, with
Hilbert space H 4; its initial state is a quantum game with p a density operator.

A strategy in a quantum game A, pol, ), p comprises a probabilistic strategy
in A, so a strategy o :S - A together with configuration-valuation v on C(.S).

Given a strategy vg,o : S - A and counter-strategy vp,7: T - A’ in a
quantum game A, Q) we obtain a probabilistic event structure P via pull-back,

Viz.
P
N
S T
A

with a configuration-valuation v(x) =qef vsIli(2) x vrIla(2) on finite configura-
tions x € C(P). This induces a probabilistic measure p on the event structure
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P. Write f =qef olly = 7II;. We can interpret f : P — A as the probabilistic
quantum experiment which results from the interaction of the strategy o and
the counter-strategy 7. We can investigate the probability the interaction of o
with 7 produces a result in a Borel subset U of C*(A) —that the probabilistic
experiment induced by the interaction succeeds in U. Recall from Section 12.1.4
that the probability of the result of the probabilistic experiment satisfying U is

fwecw(A) qw(UnFy) d/f«f_l(w).

We examine some special cases.

Consider the case where o and 7 are deterministic, with configuration val-
uations assigning one to each finite configuration. Then, P will also be deter-
ministic in the sense that all its finite subsets will be consistent. It will thus
have a single maximal configuration 2o € C*°(P). The configuration-valuation
v will assign one to each finite configuration of P. In this case the probability
measure on Borel subsets V' of C*°(P) is simple to describe:

1 ifxoeV,

0 otherwise.

p(V) = {

This leads to
/we(jw(A) (U N Fu) d“fil(w) = Qfao (U N Fpay) -

Consider now the case where Opponent initially offers n € {1,---, N} mutually-
inconsistent alternatives to Player and resumes with a deterministic strategy.
Suppose too that initially Player chooses amongst the alternatives probabilis-
tically, choosing option n with probability p,, and then resumes deterministi-
cally. This will result in an event structure P taking the form of a prefixed sum
Y 1<n<N €n-Py in which all the events of P,, causally depend on event e,,. In this
situation,

[ aUaF) duf @)= pueape, (U Fp,),
weC=(E) 1<n<N

where z,, is the maximal configuration in the component e,,.P, for 1 <n < N.

Quantum games inherit the structure of a bicategory from probabilistic
games. A strategy from a quantum game A to a quantum game B is a strategy
in the quantum game A*||B. For this to make sense we have to extend the
definitions of simple parallel composition and dual to quantum games. Assume
A and B are quantum games. In defining their simple parallel composition A|| B
and dual A* we take:

Happ=Ha®Hp, Qap(l,a)=Qa®idy,, Qayp(2,b)=idy, ®Qs,
and pa|B =pa®pB;

HAL=HA, PAL = PA and QAJ.:QA.
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Although we do obtain a bicategory of quantum games in this way, it is
not the final story. It presently lacks an operation to introduce entanglement
across parallel components. There are limitations in all the quantum structure
of a strategy being inherited from that of the game; in a more liberal notion of
quantum strategy one would expect quantum structure to be possessed directly
by the strategy. There is also the issue of adjoining value functions (cf. Sec-
tion 12.1.3) to quantum games in a way that respects their bicategorical struc-
ture. Providing a structured account and analysis of quantum experiments, as
in the simple experiment discussed in Example 12.7, should provide guidelines.
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Appendix A

Exercises

On event structures and stable families

Recommended exercises: 1, 3, 4, 5 (Harder), 6, 7, 10.

Exercise A.1. Let (A,<4,Congy),(B,<p,Cong) be event structures. Let f :
A —~ B. Show f is a map of event structures, f : (A,<4,Conyg) - (B,<p
,Conpg), iff

(i) Vae A,be B.b<p f(a) = 3a' € A. a'<aa & f(a')=b, and
(1) VX e Cony. fX e Cong & Vai,az € X. f(a1) = f(az) = a1 =as.

O

Exercise A.2. Show a map f: A —~ B of £ is mono if the function C(A) —
C(B) taking configuration x to its direct image fx is injective. [Recall a map
f A - B is mono iff for all maps g,h: C — A if fg = fh then g = h.] Show
the converse does not hold, that it is possible for a map to be mono but not
injective on configurations. Taking B to be the event structure comprising two
concurrent events, can you find an event structure A and an example of a total
map f: A - B of event structures which is both mono and where [ is not
injective as a function on events? O

Exercise A.3. Verify that the finite configurations of an event structure form
a stable family. O

Exercise A.4. Say an event structure A is tree-like when its concurrency rela-
tion is empty (so two events are either causally related or inconsistent). Suppose
B is tree-like and f: A - B is a total map of event structures. Show A must
also be tree-like, and moreover that the map f is rigid, i.e. preserves causal
dependency.
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Exercise A.5. Let F be a nonempty family of finite sets satisfying the Com-
pleteness axiom in the definition of stable families. Show F is coincidence-free

if

Ve,ye F. x ¢y = 3x1,€;. a:—elcxl cy.

[Hint: For ‘only if’ use induction on the size of y ~ x.] |

Exercise A.6. Prove Proposition 3.10: Let f : F - G be a map of stable
families. Let e, e’ € z, a configuration of F. Show if f(e) <px f(€") (with both
f(e) and f(e') defined) then e <, €’.

Exercise A.7. Prove the two propositions 3.6 and 3.7. O

Exercise A.8. (From Section 3.2) For an event structure E, show C*(FE) =
C(E)™. i

Exercise A.9. (From Section 3.2) Let F be a stable family. Show F™ satisfies:

Completeness: VZ S F*. Zt = UZ e F™;

Stability: VZCF®. Z4 @ & Z1 = NZ e F>;

Coincidence-freeness: For all x € F*, e,e’ e x with e # €/,
JyeFP. ycax & (eey < € ¢y);

Finiteness: For all v € F*,

VeexdyeF.ecy & ycx & y is finite .

Show that F consists of precisely the finite sets in F°°. O

Exercise A.10. Let A be the event structure consisting of two distinct events
a1 < ay and B the event structure with a single event b. Following the method
of Section 3.3.1 describe the product of event structures A x B. O



On strategies

Recommended exercises: 11, 12, 13, 14, 15, 17.

Exercise A.11. Consider the empty map of event structures with polarity @ —
A. Is it a strateqy? Is it a deterministic strategy? Consider now the identity
map idyg : A = A on an event structure with polarity A. Is it a strategy? Is it a
deterministic strategy? m|

Exercise A.12. For each instance of total map o of event structures with po-
larity below say whether o is a strategy and whether it is deterministic. In each
case give a short justification for your answer. (Immediate causal dependency
within the event structures is represented by an arrow — and inconsistency, or
conflict, by a wiggly line .)

(7) S e —>@
L,
A o ®
(74) S & —>©O
.
A ® ©
(4i1) S & —>®
.
A ® ®
(iv) S © —©
.
A © ©
(v) S e
.
A e —>0
(vi) S ®
.
A & —>®
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(vid) S ®
-
A & —0O
(vidi) S eg N
A ®
(ix) S Q O
L
A o

(z) A

DG—— D < | O ——HD
N

Exercise A.13. Letidy : A - A be the identity map of event structures, sending
an event to itself. Show the identity map forms a strategy in the game A. Is it
deterministic in general? O

Exercise A.14. Show any strateqy o : A—= B has a dual strategy o* : B* —= A*.
In more detail, supposing o : S — A*||B is a strategy show ot : S — (B*+)*| A*
18 a strategy where

I (DR EORCD
(2,a) ifo(s)=(1,a).

Exercise A.15. Let B be the event structure consisting of the two concurrent
events by, assumed —ve, and bs, assumed +ve in B . Let C consist of a single
+ve event c. Let the strategy o : 3—=B comprise the event structure s; — s



with s1 —ve and s +ve, o(s1) = by and o(s2) = ba. In B* the polarities are
reversed so there is a strateqy T : B—=C' comprising the map 7 : T — B*|C
from the event structure T, with three events t1 and ts both +ve and ty —ve so
to —> t1 and ty —> t3, which acts so 7(t1) = by, 7(t2) = by and 7(t3) = c¢. Describe
the composition TOOC. m|

Exercise A.16. Say an event structure is set-like if its causal dependency re-
lation is the identity relation and all pairs of distinct events are inconsistent.
Let A and B be games with underlying event structures which are set-like event
structures. In this case, can you see a simpler way to describe determinis-
tic strategies A—=B¢% What does composition of deterministic strategies be-
tween set-like games corresponds to? What do strategies in general between set-
like games correspond to? What does composition of strategies between set-like
games corresponds to? [No proofs are required.] O

Exercise A.17. By considering the game A comprising two concurrent events,
one +ve and one —ve, show there is a nondeterministic pre-strateqy o : S - A
such that s — s" in S without o(s) — o(s"). Could you find such a counterez-
ample were o deterministic? FExplain. |

Exercise A.18. Let G =40t (A, W) be a game with winning conditions. Say a
pre-strategy o : S — A is winning iff ox € W for all +-maximal configurations
x € C®(S). Show that if G has a winning receptive pre-strategy, then the dual
game G* has no winning strategy (use Corollary 8.3.) Show that G may have a
winning pre-strategqy (necessarily not receptive) while G* has a winning strategy.

[m]



