
Event Structures, Stable Families

and Concurrent Games

Notes for “Distributed Games and Strategies”

ACS2017

Glynn Winskel
gw104@cl.cam.ac.uk

©2011-2017 Glynn Winskel

February 2017



2

Preface

These notes introduce a theory of two-party games still under development.
A lot can be said for a general theory to unify all manner of games found in
the literature. But this has not been the main motivation. That has been the
development of a generalized domain theory, to lift the methodology of domain
theory and denotational semantics to address the highly interactive nature of
computation we find today.

There are several arguments why the next generation of domain theory
should be an intensional theory, one which pays careful attention to the ways
in which output is computed from input. One is that if the theory is to be
able to reason about operational concerns it had better address them, albeit
abstractly. Another is that sometimes the demands of compositionality force
denotations to be more intensional than one would at first expect; this occurs
for example with nondeterministic dataflow—see the Introduction. These notes
take seriously the idea that intensional aspects be described by strategies, and,
to fit computational needs adequately, try to understand the concept of strategy
very broadly.

This idea comes from game semantics where the domains and continuous
functions of traditional domain theory and denotational semantics are replaced
by games and strategies. Strategies supercede functions because they give a
much better account of interaction extended in time. (Functions, if you like,
have too clean a separation of interaction into input and output.) In traditional
denotational semantics a program phrase or process term denotes a continuous
function, whereas in game semantics a program phrase or process term denotes
a strategy.

However, traditional game semantics is not always general enough, for in-
stance in accounting for nondeterministic or concurrent computation. Rather
than extending traditional game semantics with various bells and whistles, these
notes attempt to carve out a general theory of games within a general model
of nondeterministic, concurrent computation. The model chosen is the partial-
order model of event structures, and for technical reasons, its enlargement to
stable families. Event structures have the advantage of occupying a central po-
sition within models for concurrency, and the development here should suggest
analogous developments for other ‘partial-order’ models such as Mazurkiewicz
trace languages, Petri nets and asynchronous transition systems, and even ‘in-
terleaving’ models based on transition systems or sequences.

In their present state, these notes are incomplete in several ways. First, they
don’t account for games with back-tracking, games where play can revisit previ-
ous positions. While a little odd from the point of view of everyday games, this
feature is very important in game semantics, for instance in order to re-evaluate
the argument to a function.1 Second, the notes don’t have enough examples.
Third, the notes say too little on the uses of games and strategies in semantics,

1The theory has been extended to allow back-tracking and copying via event structures
with symmetry, which support a rich variety of pseudo (co)monads to achieve this.



3

types, logic and verification. Fourth, they don’t address the issue of parallel
causes thoroughly. I hope to some extent to make up for these inadequacies
in the lectures and some are addressed in the broader “ECSYM Notes” [1].
What I claim the notes do do, is begin to unify a variety of approaches and pro-
vide canonical general constructions and results, which leave the student better
placed to structure and analyse critically the often arcane world of games and
strategies in the literature.



4



Contents

1 Introduction 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 What is a process? . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 From models for concurrency . . . . . . . . . . . . . . . . . 10
1.1.3 From semantics . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 From logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Event structures 15
2.1 Event structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Maps of event structures . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Partial-total factorisation . . . . . . . . . . . . . . . . . . . 18
2.3 Rigid maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Rigid image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Rigid embeddings and inclusions . . . . . . . . . . . . . . . 21
2.3.3 Rigid families . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Products of event structures . . . . . . . . . . . . . . . . . . . . . . 22

3 Stable families 23
3.1 Stable families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Stable families and event structures . . . . . . . . . . . . . 25
3.2 Infinite configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Process constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Synchronized compositions . . . . . . . . . . . . . . . . . . . 30
3.3.4 Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.5 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.6 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Games and strategies 33
4.1 Event structures with polarities . . . . . . . . . . . . . . . . . . . . 33
4.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Simple parallel composition . . . . . . . . . . . . . . . . . . 33

5



6 CONTENTS

4.3 Pre-strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Concurrent copy-cat . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Composing pre-strategies . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Composition via pullback . . . . . . . . . . . . . . . . . . . 38
4.3.4 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 Necessity of receptivity and innocence . . . . . . . . . . . . 40
4.4.2 Sufficiency of receptivity and innocence . . . . . . . . . . . 43

4.5 Concurrent strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.1 Alternative characterizations . . . . . . . . . . . . . . . . . 49

4.6 Rigid-image strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Deterministic strategies 59
5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 The bicategory of deterministic strategies . . . . . . . . . . . . . . 60
5.3 A category of deterministic strategies . . . . . . . . . . . . . . . . . 64

6 Games people play 67
6.1 Categories for games . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Related work—early results . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 Stable spans, profunctors and stable functions . . . . . . . 68
6.2.2 Ingenuous strategies . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.3 Closure operators . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.4 Simple games . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Strategies as profunctors 71
7.1 The Scott order in games . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Strategies as presheaves . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3 Strategies as profunctors . . . . . . . . . . . . . . . . . . . . . . . . 73
7.4 Composition of strategies and profunctors . . . . . . . . . . . . . . 74
7.5 Games as factorization systems . . . . . . . . . . . . . . . . . . . . 78

8 Winning ways 81
8.1 Winning strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2.1 Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2.2 Parallel composition . . . . . . . . . . . . . . . . . . . . . . 85
8.2.3 Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2.4 Function space . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.3 The bicategory of winning strategies . . . . . . . . . . . . . . . . . 86
8.4 Total strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 On determined games . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.6 Determinacy for well-founded games . . . . . . . . . . . . . . . . . 93

8.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.6.2 Determinacy proof . . . . . . . . . . . . . . . . . . . . . . . 96



CONTENTS 7

8.7 Satisfaction in the predicate calculus . . . . . . . . . . . . . . . . . 102

9 Borel determinacy 109
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Tree games and Gale-Stewart games . . . . . . . . . . . . . . . . . 109

9.2.1 Tree games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2.2 Gale-Stewart games . . . . . . . . . . . . . . . . . . . . . . . 110
9.2.3 Determinacy of tree games . . . . . . . . . . . . . . . . . . . 111

9.3 Race-freeness and bounded-concurrency . . . . . . . . . . . . . . . 113
9.4 Determinacy of concurrent games . . . . . . . . . . . . . . . . . . . 117

9.4.1 The tree game of a concurrent game . . . . . . . . . . . . . 117
9.4.2 Borel determinacy of concurrent games . . . . . . . . . . . 119

10 Games with imperfect information 129
10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.2 Games with imperfect information . . . . . . . . . . . . . . . . . . 130

10.2.1 The bicategory of Λ-games . . . . . . . . . . . . . . . . . . . 131
10.3 Hintikka’s IF logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

11 Probabilistic strategies 133
11.1 Probabilistic event structures . . . . . . . . . . . . . . . . . . . . . 133

11.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11.1.2 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.1.3 The characterisation . . . . . . . . . . . . . . . . . . . . . . 137

11.2 Probability with an Opponent . . . . . . . . . . . . . . . . . . . . . 143
11.3 2-cells, a bicategory . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.4 Probabilistic processes . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11.4.1 Payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.4.2 A simple value-theorem . . . . . . . . . . . . . . . . . . . . 161

12 Quantum strategies 163
12.1 Quantum event structures . . . . . . . . . . . . . . . . . . . . . . . 163

12.1.1 Events as operators . . . . . . . . . . . . . . . . . . . . . . . 164
12.1.2 From quantum to probabilistic . . . . . . . . . . . . . . . . 164
12.1.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.1.4 Probabilistic quantum experiments . . . . . . . . . . . . . 170

12.2 A simple form of quantum strategy . . . . . . . . . . . . . . . . . . 172

A Exercises 1



8 CONTENTS



Chapter 1

Introduction

Games and strategies are everywhere, in logic, philosophy, computer science,
economics, in leisure and in life.

Slogan: Processes are nondeterministic concurrent strategies.

1.1 Motivation

We summarise some reasons for developing a theory of nondeterministic con-
current games and strategies.

1.1.1 What is a process?

In the earliest days of computer science it became accepted that a computation
was essentially an (effective) partial function f ∶ N → N between the natural
numbers. This view underpins the Church-Turing thesis on the universality of
computability.

As computer science matured it demanded increasingly sophisticated mathe-
matical representations of processes. The pioneering work of Strachey and Scott
in the denotational semantics of programs assumed a view of a process still as a
function f ∶D →D′, but now acting in a continuous fashion between datatypes
represented as special topological spaces, ‘domains’ D and D′; reflecting the
fact that computers can act on complicated, conceptually-infinite objects, but
only by virtue of their finite approximations.

In the 1960’s, around the time that Strachey started the programme of de-
notational semantics, Petri advocated his radical view of a process, expressed
in terms of its events and their effect on local states—a model which addressed
directly the potentially distributed nature of computation, but which, in com-
mon with many other current models, ignored the distinction between data and
process implicit in regarding a process as a function. Here it seems that an
adequate notion of process requires a marriage of Petri’s view of a process and

9



10 CHAPTER 1. INTRODUCTION

the vision of Scott and Strachey. An early hint in this direction came in answer
to the following question.

What is the information order in domains? There are essentially two answers
in the literature, the ‘topological,’ the most well-known from Scott’s work, and
the ‘temporal,’ arising from the work of Berry:

● Topological: the basic units of information are propositions describing fi-
nite properties; more information corresponds to more propositions being true.
Functions are ordered pointwise.

● Temporal: the basic units of information are events; more information corre-
sponds to more events having occurred over time. Functions are restricted to
‘stable’ functions and ordered by the intensional ‘stable order,’ in which com-
mon output has to be produced for the same minimal input. Berry’s specialized
domains ‘dI-domains’ are represented by event structures.

In truth, Berry developed ‘stable domain theory’ by a careful study of how to
obtain a suitable category of domains with stable rather than all continuous
functions. He arrived at the axioms for his ‘dI-domains’ because he wanted
function spaces (so a cartesian-closed category). The realization that dI-domains
were precisely those domains which could be represented by event structures,
came a little later.

1.1.2 From models for concurrency

Causal models are alternatively described as: causal-dependence models; in-
dependence models; non-interleaving models; true-concurrency models; and
partial-order models. They include Petri nets, event structures, Mazurkiewicz
trace languages, transition systems with independence, multiset rewriting, and
many more. The models share the central feature that they represent processes
in terms of the events they can perform, and that they make explicit the causal
dependency and conflicts between events.

Causal models have arisen, and have sometimes been rediscovered as the
natural model, in many diverse and often unexpected areas of application:
Security protocols: for example, forms of event structure, strand spaces, sup-
port reasoning about secrecy and authentication through causal relations and
the freshness of names;
Systems biology: ideas from Petri nets and event structures are used in taming
the state-explosion in the stochastic simulation of biochemical processes and in
the analysis of biochemical pathways;
Hardware: in the design and analysis of asynchronous circuits;
Types and proof: event structures appear as representations of propositions as
types, and of proofs;
Nondeterministic dataflow: where numerous researchers have used or rediscov-
ered causal models in providing a compositional semantics to nondeterministic
dataflow;
Network diagnostics: in the patching together local of fault diagnoses of com-



1.1. MOTIVATION 11

munication networks;
Logic of programs: in concurrent separation logic where artificialities in Brookes’
pioneering soundness proof are obviated through a Petri-net model;
Partial order model checking: following the seminal work of McMillan the un-
folding of Petri nets (described below) is exploited in recent automated analysis
of systems;
Distributed computation: event structures appear both classically,e.g. in early
work of Lamport, and recently in the Bayesian analysis of trust and modelling
multicore memory.

To illustrate the close relationship between Petri nets and the ‘partial-order
models’ of occurrence nets and event structures, we sketch how a (1-safe) Petri
net can be unfolded first to a net of occurrences and from there to an event
structure [2]. The unfolding construction is analogous to the well-known method
of unfolding a transition system to a tree, and is central to several analysis tools
in the applications above. In the figure, the net on top has loops. The net below
it is its occurrence-net unfolding. It consists of all the occurrences of conditions
and events of the original net, and is infinite because of the original repetitive
behaviour. The occurrences keep track of what enabled them. The simplest
form of event structure, the one we shall consider here, arises by abstracting
away the conditions in the occurrence net and capturing their role in relations
of causal dependency and conflict on event occurrences.

The relations between the different forms of causal models are well under-
stood [3]. Despite this and their often very successful, specialized applications,
causal models lack a comprehensive theory which would support their systematic
use in giving semantics to a broad range of programming and process languages,
in particular we lack an expressive form of ‘domain theory’ for causal models
with rich higher-order type constructions needed by mathematical semantics.

1.1.3 From semantics

Denotational semantics and domain theory of Scott and Strachey set the stan-
dard for semantics of computation. The theory provided a global mathematical
setting for sequential computation, and thereby placed programming languages
in connection with each other; connected with the mathematical worlds of alge-
bra, topology and logic; and inspired programming languages, type disciplines
and methods of reasoning. Despite the many striking successes it has become
very clear that many aspects of computation do not fit within the traditional
framework of denotational semantics and domain theory. In particular, classical
domain theory has not scaled up to the more intricate models used in interac-
tive/distributed computation. Nor has it been as operationally informative as
one could hope.

While, as Kahn was early to show, deterministic dataflow is a shining appli-
cation of simple domain theory, nondeterministic dataflow is beyond its scope.
The compositional semantics of nondeterministic dataflow needs a form of gen-
eralized relation which specifies the ways input-output pairs are realized.A com-
pelling example comes from the early work of Brock and Ackerman who were



12 CHAPTER 1. INTRODUCTION

�' $�

6� 
� �6g g
g g
c cZZ} ���

��� ZZ}

6

6

�
��
�*

Q
QQk

g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi

g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi

PP
PP

PPi

�
��

�
��
���

���
��:

XXXy ��� �����
�1

PPPi ��� ������1

A Petri net and its occurrence-net unfolding



1.1. MOTIVATION 13

the first to emphasize the difficulties in giving a compositional semantics to non-
deterministic dataflow, though our example is based on simplifications in the
later work of Rabinovich and Trakhtenbrot, and Russell.

Nondeterministic dataflow—Brock-Ackerman anomaly

�
�-�


-
-

FAiC[Ai] =

There are two simple nondeterministic processes A1 and A2, which have the
same input-output relation, and yet behave differently in the common feedback
context C[−], illustrated above. The context consists of a fork process F (a
process that copies every input to two outputs), through which the output of
the automata Ai is fed back to the input channel, as shown in the figure. Process
A1 has a choice between two behaviours: either it outputs a token and stops, or
it outputs a token, waits for a token on input and then outputs another token.
Process A2 has a similar nondeterministic behaviour: Either it outputs a token
and stops, or it waits for an input token, then outputs two tokens. For both
automata, the input-output relation relates empty input to the eventual output
of one token, and non-empty input to one or two output tokens. But C[A1]
can output two tokens, whereas C[A2] can only output a single token. Notice
that A1 has two ways to realize the output of a single token from empty input,
while A2 only has one. It is this extra way, not caught in a simple input-output
relation, that gives A1 the richer behaviour in the feedback context.

Over the years there have been many solutions to giving a compositional
semantics to nondeterministic dataflow. But they all hinge on some form of
generalized relation, to distinguish the different ways in which output is pro-
duced from input. A compositional semantics can be given using stable spans
of event structures, an extension of Berry’s stable functions to include nonde-
terminism [4]—see Section 6.2.1.

How are we to extend the methodology of denotational semantics to the
much broader forms of computational processes we need to design, understand
and analyze today? How are we to maintain clean algebraic structure and
abstraction alongside the operational nature of computation?

Game semantics advanced the idea of replacing the traditional continuous
functions of domain theory and denotational semantics by strategies. The rea-
son for doing this was to obtain a representation of interaction in computation
that was more faithful to operational reality. It is not always convenient or
mathematically tractable to assume that the environment interacts with a com-
putation in the form of an input argument. It is built into the view of a process
as a strategy that the environment can direct the course of evolution of a pro-
cess throughout its duration. Game semantics has had many dramatic successes.
But it has developed from simple well-understood games, based on alternating
sequences of player and opponent moves, to sometimes arcane extensions and



14 CHAPTER 1. INTRODUCTION

generalizations designed to fit the demands of a succession of additional pro-
gramming or process features. It is perhaps time to stand back and see how
games fit within a very general model of computation, to understand better
what current features of games in computer science are simply artefacts of the
particular history of their development.

1.1.4 From logic

An informal understanding of games and strategies goes back at least as far as
the ancient Greeks where truth was sought through debate using the dialectic
method; a contention being true if there was an argument for it that could
survive all counter-arguments. Formalizing this idea, logicians such as Lorenzen
and Blass investigated the meaning of a logical assertion through strategies
in a game built up from the assertion. These ideas were reinforced in game
semantics which can provide semantics to proofs as well as programs. The
study of the mathematics and computational nature of proof continues. There
are several strands of motivation for games in logic. Along with automata games
constitute one of the tools of logic and algorithmics; often a logical or algorithmic
question can be reduced to the question of whether a particular game has a
winning/optimal strategy or counterstrategy. Games are used in verification
and, for example, the central equivalence of bisimulation on processes has a
reading in terms of strategies.



Chapter 2

Event structures

Event structures are a fundamental model of concurrent computation and, along
with their extension to stable families, provide a mathematical foundation for
the course.

2.1 Event structures

Event structures are a model of computational processes. They represent a
process, or system, as a set of event occurrences with relations to express how
events causally depend on others, or exclude other events from occurring. In
one of their simpler forms they consist of a set of events on which there is
a consistency relation expressing when events can occur together in a history
and a partial order of causal dependency—writing e′ ≤ e if the occurrence of e
depends on the previous occurrence of e′.

An event structure comprises (E,≤,Con), consisting of a set E, of events
which are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The events are to be thought of as event occurrences without significant dura-
tion; in any history an event is to appear at most once. We say that events e,
e′ are concurrent, and write e co e′ if {e, e′} ∈ Con & e /≤ e′ & e′ /≤ e. Concurrent
events can occur together, independently of each other. The relation of imme-
diate dependency e _ e′ means e and e′ are distinct with e ≤ e′ and no event in
between. Clearly ≤ is the reflexive transitive closure of _.

An event structure represents a process. A configuration is the set of all
events which may have occurred by some stage, or history, in the evolution of

15



16 CHAPTER 2. EVENT STRUCTURES

the process. According to our understanding of the consistency relation and
causal dependency relations a configuration should be consistent and such that
if an event appears in a configuration then so do all the events on which it
causally depends.

The configurations of an event structure E consist of those subsets x ⊆ E
which are

Consistent: ∀X ⊆ x. X is finite⇒X ∈ Con, and

Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

We shall largely work with finite configurations, written C(E). Write C∞(E)
for the set of finite and infinite configurations of the event structure E.

The configurations of an event structure are ordered by inclusion, where
x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.
Note that an individual configuration inherits an order of causal dependency on
its events from the event structure so that the history of a process is captured
through a partial order of events. The finite configurations correspond to those
events which have occurred by some finite stage in the evolution of the process,
and so describe the possible (finite) states of the process.

For X ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of X.
The axioms on the consistency relation ensure that the down-closure of any finite
set in the consistency relation s a finite configuration, and that any event appears
in a configuration: given X ∈ Con its down-closure {e′ ∈ E ∣ ∃e ∈X. e′ ≤ e} is a
finite configuration; in particular, for an event e, the set [e] =def {e′ ∈ E ∣ e′ ≤ e}
is a configuration describing the whole causal history of the event e. We shall
sometimes write [e) =def {e′ ∈ E ∣ e′ < e}.

When the consistency relation is determined by the pairwise consistency of
events we can replace it by a binary relation or, as is more usual, by a comple-
mentary binary conflict relation on events (written as # or ⌣).

Remark on the use of “cause.” In an event structure (E,≤,Con) the rela-
tion e′ ≤ e means that the occurrence of e depends on the previous occurrence
of the event e′; if the event e has occurred then the event e′ must have occurred
previously. In informal speech cause is also used in the forward-lookciaing sense
of one thing arising because of another. Often when used in this way the history
of events is understood beforehand. According to the history around my life,
the meeting of my parents caused my birth. But the history might have been
very different: in an alternative world the meeting of my parents might not
have led to my birth. More formally, w.r.t. a configuration x in which an event
e occurs while it seems sensible to talk about the events [e) causing e, it is so
only by virtue of the understood configuration x.

We also encounter events which in a history may have been caused in more
than one way. There are generalisations of the current event structures which
do this—see the chapter in [1] on “disjunctive causes.” But for now we will work



2.1. EVENT STRUCTURES 17

with the simple definition above in which an event, or really an event occur-
rence, e is causally dependent on a unique set of events [e). Much of the math-
ematics we develop around these simpler forms of event structures (sometimes
called prime event structures in the literature) will be reusable when we come
to consider events with several causes. Roughly the simpler event structures
will suffice in considering nondeterministic strategies. Where their limitations
will first show up is in our treatment of probabilistic strategies.

Example 2.1. The diagram below illustrates an event structure representing
streams of 0s and 1s:

000 001 010 011 110 111

00

�\\f _LLR_LLR

01

_LLR : 88B

⋮ 11

: 88B_LLR

0

�\\f _LLR

1

: 88B

Above we have indicated conflict (or inconsistency) between events by . The
event structure representing pairs of 0/1-streams and a/b-streams is represented
by the juxtaposition of two event structures:

000 001 010 011 110 111

00

�\\f _LLR_LLR

01

_LLR : 88B

⋮ 11

: 88B_LLR

0

�\\f _LLR

1

: 88B

aaa aab aba abb bba bbb

aa

�\\g _LLR_LLR

ab

_LLR : 88B

⋮ bb

: 88B_LLR

a

�\\g _LLR

b

: 88B

Exercise 2.2. Draw the event structure of the occurrence net unfolding in the
introduction. ◻



18 CHAPTER 2. EVENT STRUCTURES

2.2 Maps of event structures

Let E and E′ be event structures. A (partial) map of event structures f ∶ E → E′

is a partial function on events f ∶ E ⇀ E′ such that for all x ∈ C(E) its direct
image fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. The map f respects
the instantaneous nature of events: two distinct event occurrences which are
consistent with each other cannot both coincide with the occurrence of a com-
mon event in the image. Partial maps of event structures compose as partial
functions, with identity maps given by identity functions.

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from x
is injective; the restriction of f to a function from x to fx is thus bijective. Say
a total map of event structures is rigid when it preserves causal dependency.

Maps preserve the concurrency relation, when defined.

Definition 2.3. Write E for the category of event structures with (partial)
maps. Write Et and Er for the categories of event structures with total, respec-
tively rigid, maps.

Exercise 2.4. Show a map f ∶ A⇀ B of E is mono if the function C(A) → C(B)
taking configuration x to its direct image fx is injective. [Recall a map f ∶ A→ B
is mono iff for all maps g, h ∶ C → A if fg = fh then g = h.] Show the converse
does not hold, that it is possible for a map to be mono but not injective on
configurations. ◻

Proposition 2.5. Let E and E′ be event structures. Suppose

θx ∶ x ≅ θxx, indexed by x ∈ C(E),

is a family of bijections such that whenever θy ∶ y ≅ θyy is in the family then its
restriction θz ∶ z ≅ θzz is also in the family, whenever z ∈ C(E) and z ⊆ y. Then,
θ =def ⋃x∈C(E) θx is the unique total map of event structures from E to E′ such
that θ x = θxx for all x ∈ C(E).

Proof. The conditions ensure that θ =def ⋃x∈C(A) θx is a function θ ∶ A→ B such
that the image of any finite configuration x of A under θ is a configuration of
B and local injectivity holds. ◻

2.2.1 Partial-total factorisation

Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’ events.
Define the projection of E on V , to be E↓V =def (V,≤V ,ConV ), where v ≤V
v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V .



2.3. RIGID MAPS 19

Consider a partial map of event structures f ∶ E → E′. Let

V =def {e ∈ E ∣ f(e) is defined} .

Then f clearly factors into the composition

E
f0 // E↓V

f1 // E′

of f0, a partial map of event structures taking e ∈ E to itself if e ∈ V and
undefined otherwise, and f1, a total map of event structures acting like f on V .
We call f1 the defined part of the partial map f . We say a map f ∶ E → E′ is a
projection if its defined part is an isomorphism.

The factorisation is characterised to within isomorphism by the following
universal characterisation: for any factorisation

E
g0 // E1

g1 // E′

where g0 is partial and g1 is total there is a (necessarily total) unique map
h ∶ E↓V → E1 such that

E
f0 //

g0 !!

E↓V

h

��

f1 // E′

E1

g1

==

commutes.

2.3 Rigid maps

Recall a map f is rigid iff it is total and f preserves causal dependency, i.e., if
e′ ≤ e in E then f(e′) ≤ f(e) in E′.

Proposition 2.6. A total map f ∶ E → E′ of event structures is rigid iff for all
x ∈ C(E) and y ∈ C(E′)

y ⊆ f(x) Ô⇒ ∃z ∈ C(E). z ⊆ x and fz = y .

The configuration z is necessarily unique by the local injectivity of f . (The
class of maps would be unaffected if we allow all configurations in the definition
above.)

Proof. “Only if”: Total maps reflect causal dependency. So, if f preserves
causal dependency, then for any configuration x of E, the bijection f ∶ x → fx
preserves and reflects causal dependency. Hence for any subconfiguration y
of fx, the bijection restricts to a bijection f ∶ z → y with z a down-closed
subset of x. But then z must be a configuration of E. “If”: Let e ∈ E. Then
[f(e)] ⊆ f[e]. Hence there is a subconfiguration z of [e] such that fz = [f(e)].
By local injectivity, e ∈ z, so z = [e]. Hence f[e] = [f(e)]. It follows that if
e′ ≤ e then f(e′) ≤ f(e).



20 CHAPTER 2. EVENT STRUCTURES

A rigid map of event structures preserves the causal dependency relation
“rigidly,” so that the causal dependency relation on the image fx is a copy of
that on a configuration x of E—in this sense f is a local isomorphism. This is not
so for general maps where x may be augmented with extra causal dependency
over that on fx.

Proposition 2.7. The inclusion functor Er ↪ Et has a right adjoint. The
category Et is isomorphic to the Kleisli category of the monad for the adjunction.

Proof. The right adjoint’s action on objects is given as follows. Let B be an
event structure. For x ∈ C(B), an augmentation of x is a partial order (x,α)
where ∀b, b′ ∈ x. b ≤B b′ Ô⇒ bα b′. We can regard such augmentations as
elementary event structures in which all subsets of events are consistent. Order
all augmentations by taking (x,α) ⊑ (x′, α′) iff x ⊆ x′ and the inclusion i ∶ x ↪
x′ is a rigid map i ∶ (x,α) → (x′, α′). Augmentations under ⊑ form a prime
algebraic domain; the complete primes are precisely the augmentations with a
top element. Define aug(B) to be its associated event structure.

There is an obvious total map of event structures εB ∶ aug(B) → B taking
a complete prime to the event which is its top element. It can be checked that
post-composition by εB yields a bijection

εB ○ ∶ Er(A,aug(B)) ≅ E(A,B) .

Hence aug extends to a right adjoint to the inclusion Er ↪ Et.

Write aug also for the monad induced by the adjunction and Kl(aug) for
its Kleisli category. Under the bijection of the adjunction

Kl(aug)(A,B) =def Er(A,aug(B)) ≅ E(A,B) .

The categoriesKl(aug) and E share the same objects, and so are isomorphic.

2.3.1 Rigid image

Rigid maps f ∶ A → B have a useful image given by restricting the causal
dependency of B to the set of events in the image of A under f and taking a
finite set of events to be consistent if they are the image of a consistent set in
A. More generally, a total map f ∶ A→ B has a rigid image given by the image
of its corresponding Kleisli map, the rigid map f ∶ A → aug(B). A total map
f ∶ A→ B has a rigid image comprising

A

f   

f0 // // B0

f1

��
B ,



2.3. RIGID MAPS 21

where f0 is rigid epi and f1 is a total map, with the universal property sum-
marised in the diagram below:

A

f0

$$ $$

f   

f ′0 // // B′

f ′1
��

h // B0

f1~~
B

for a unique rigid h; the map h is necessarily also epi. If we don’t specify further
we shall take the rigid image of a total map f ∶ A → B to be a substructure of
aug(B). By a substructure of B we mean an event structure B0 with events
included in those of B so that the inclusion is a map.

2.3.2 Rigid embeddings and inclusions

Special forms of rigid maps appeared as rigid embeddings in Kahn and Plotkin’s
work on concrete domains. Their extension to event structures can be used in
defining event structures recursively.

A total map f ∶ E → E′ is a rigid embedding iff it is rigid and an injective
function on events for which the inverse relation fop is a (partial) map of event
structures fop ∶ E′ → E. (There are several alternative equivalent definitions.)

Rigid embeddings include as a special case those in which the function f
is an inclusion. These give the well-known approximation order ⊴ on event
structures:

(E′,≤′,Con′) ⊴ (E,≤,Con) ⇐⇒ E′ ⊆ E &

∀e′ ∈ E′. [e′]′ = [e′] &

∀X ′ ⊆ E′. X ′ ∈ Con′ ⇐⇒ X ∈ Con .

The order ⊴ forms a ‘large cpo,’ with bottom the empty event structure, and
is useful when defining event structures recursively [5, 6, 3]. With some care in
defining the precise constructions on event structures they can be ensured to be
continuous w.r.t. ⊴; for this it suffices to check that they are ⊴-monotonic and
continuous on event sets. Further details can be found in [5, 6].

2.3.3 Rigid families

It is occasionally useful to build an event structure out of a non-empty family
Q of finite partial orders.

For Q to be a rigid family we require that its is closed under rigid inclusions,
or equivalently, that any down-closed subset of any element q, with order the
restriction of that of q, is itself an element of Q. (In this case rigid inclusions
coincide withn rigid embeddings.)

From a rigid family Q we construct an event structure as follows. Its events
are those partial orders in Q with a top element. Its causal dependency is given



22 CHAPTER 2. EVENT STRUCTURES

by rigid inclusion. We say a finite subset of partial orders with top is consistent
iff all its members are rigidly included in a common member of Q.

2.4 Products of event structures

The category of event structures has products, which essentially allow arbitrary
synchronizations between their components. For example, here is an illustration
of the product of two event structures a _ b and c, the later comprising just a
single event named c:

b (b,∗) (b,∗) (b, c)

× =

a

_LLR

c (a,∗)

_LLR 6 66@

(a, c)

_LLR

(∗, c)

The original event b has split into three events, one a synchronization with c,
another b occurring unsynchronized after an unsynchronized a, and the third b
occurring unsynchronized after a synchronizes with c. The splittings correspond
to the different histories of the event.

It can be awkward to describe operations such as products, pullbacks and
synchronized parallel compositions directly on the simple event structures here,
essentially because an event determines its whole causal history. One closely
related and more versatile, though perhaps less intuitive and familiar, model is
that of stable families. Stable families will play an important technical role in
establishing and reasoning about constructions on event structures.



Chapter 3

Stable families

Stable families, their basic properties and relations to event structures are de-
veloped.1

3.1 Stable families

The notion of stable family extends that of finite configurations of an event
structure to allow an event can occur in several incompatible ways.

Notation 3.1. Let F be a family of subsets. Let X ⊆ F . We write X ↑ for
∃y ∈ F . ∀x ∈ X.x ⊆ y and say X is compatible. When x, y ∈ F we write x ↑ y
for {x, y} ↑.

A stable family comprises F , a nonempty family of finite subsets, satisfying:

Completeness: ∀Z ⊆ F . Z ↑ Ô⇒ ⋃Z ∈ F ;

Stability: ∀Z ⊆ F . Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) .

Proposition 3.2. The family of finite configurations of an event structure
forms a stable family.

On the other hand stable families are more general than finite configurations
of an event structure, as the following example shows.

1A useful reference for stable families is the report “Event structure semantics for CCS and
related languages,” a full version of the article [5], available from www.cl.cam.ac.uk/∼gw104,
though its terminology can differ from that here.

23



24 CHAPTER 3. STABLE FAMILIES

Example 3.3. Let F be the stable family, with events E = {0,1,2},

{0,2} {0,1} {1,2}

{0}

⊂ ⊂

{1}

⊂⊂

∅

⊂⊂

or equivalently

{0,2} {0,1} {1,2}

{0}

?� - 


{1}

?�Q1

∅

, �R2

where −Ð⊂ is the covering relation representing an occurrence of one event.
The events 0 and 1 are concurrent, neither depends on the occurrence or non-
occurrence of the other to occur. The event 2 can occur in two incompatible
ways, either through event 0 having occurred or event 1 having occurred. This
possibility can make stable families more flexible to work with than event struc-
tures.

A (partial) map of stable families f ∶ F → G is a partial function f from the
events of F to the events of G such that for all x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2) .

Maps of stable families compose as partial functions, with identity maps given
by identity functions. We call a map f ∶ F → G of stable families total when it
is total as a function; the f restricts to a bijection x ≅ fx for all x ∈ F .

Definition 3.4. Let F be a stable family. We use x−⊂y to mean y covers x in

F , i.e. x ⊂ y in F with nothing in between, and x
e

−Ð⊂ y to mean x ∪ {e} = y

for x, y ∈ F and event e ∉ x. We sometimes use x
e

−Ð⊂ , expressing that event e is

enabled at configuration x, when x
e

−Ð⊂ y for some y.

Exercise 3.5. Let F be a nonempty family of sets satisfying the Completeness
axiom in the definition of stable families. Show F is coincidence-free iff

∀x, y ∈ F . x ⊊ y Ô⇒ ∃x1, e1. x
e1
−Ð⊂x1 ⊆ y .

[Hint: For ‘only if’ use induction on the size of y ∖ x.] ◻



3.1. STABLE FAMILIES 25

3.1.1 Stable families and event structures

Finite configurations of an event structure form a stable family. Conversely, a
stable family determines an event structure:

Proposition 3.6. Let x be a configuration of a stable family F . For e, e′ ∈ x
define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y Ô⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x = ⋂{y ∈ F ∣ y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x ∣ e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Proposition 3.7. Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an
event structure where:

P = {[e]x ∣ e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

Exercise 3.8. Prove the two propositions 3.6 and 3.7. ◻

The operation Pr is right adjoint to the “inclusion” functor, taking an event
structure E to the stable family C(E). The unit of the adjunction E → Pr(C(E))
takes an event e to the prime configuration [e] =def {e′ ∈ E ∣ e′ ≤ e}. The counit
top ∶ C(Pr(F)) → F takes prime configuration [e]x to e.

Definition 3.9. Let F be a stable family. W.r.t. x ∈ F , write [e)x =def

{e′ ∈ E ∣ e′ ≤x e & e′ /= e}. The relation of immediate dependence of event struc-
tures generalizes: with respect to x ∈ F , the relation e _x e

′ means e ≤x e
′

with e /= e′ and no event in between. For e, e′ ∈ x ∈ F we write e cox e
′ when

neither e ≤x e
′ nor e′ ≤x e. Note the relations ≤x, _x and cox, ‘local’ to a

configuration x, coincide with the ‘global’ versions ≤, _ and co when the stable
family comprises the finite configurations of an event structure.

We shall use the following property of maps repeatedly, both for stable fam-
ilies and the special case of event structures. It says that their maps locally
reflect causal dependency.

Proposition 3.10. Let f ∶ F → G be a map of stable families. Let e, e′ ∈ x,
a configuration of F . If f(e) and f(e′) are defined and f(e) ≤fx f(e

′) then
e ≤x e

′.



26 CHAPTER 3. STABLE FAMILIES

Proof. Let e, e′ ∈ x ∈ F . Suppose f(e) and f(e′) are defined and f(e) ≤fx f(e
′).

Suppose y is a subconfiguration of x, i.e. y ∈ F and y ⊆ x, which contains e′.
Then clearly fy is a subconfiguration of fx which contains f(e′). We have
f(e) ∈ fy as f(e) ≤fx f(e

′). Hence there is e” ∈ y such that f(e”) = f(e). But
now e, e” ∈ x with f(e) = f(e”), so e = e”. We deduce e ∈ y. The argument was
for an arbitrary y, so e ≤x e

′ as required.

The next two propositions relate immediate causal dependency between
events to the covering relation between configurations.

Proposition 3.11. Let F be a stable family. Let e, e′ ∈ x ∈ F .

∃y, y1 ∈F . y, y1 ⊆ x & y
e

−Ð⊂ y1
e′

−Ð⊂ ⇐⇒ e _x e
′ or e cox e

′ , (i)

and e _x e
′ ⇐⇒ ∃y, y1 ∈ F . y, y1 ⊆ x & y

e
−Ð⊂ y1

e′

−Ð⊂ & ¬ e cox e
′ (ii)

⇐⇒ ∃y, y1 ∈ F . y, y1 ⊆ x & y
e

−Ð⊂ y1
e′

−Ð⊂ & ¬ y
e′

−Ð⊂ . (iii)

The proposition simplifies in the special case of event structures:

Proposition 3.12. Let E be an event structure. Let e, e′ ∈ E.

∃y, y1 ∈ C
∞(E). y

e
−Ð⊂ y1

e′

−Ð⊂ ⇐⇒ e _ e′ or e co e′ ,

and e _ e′ ⇐⇒ ∃y, y1 ∈ C
∞(E). y

e
−Ð⊂ y1

e′

−Ð⊂ & ¬ e co e′ ,

⇐⇒ ∃y, y1 ∈ C
∞(E). y

e
−Ð⊂ y1

e′

−Ð⊂ & ¬ y
e′

−Ð⊂ .

3.2 Infinite configurations

We can extend a stable family to include infinite configurations, by constructing
its “ideal completion.”

Definition 3.13. Let F be a stable family. Define F∞ to comprise all ⋃ I
where I ⊆ F is an ideal (i.e., I is a nonempty subset of F closed downwards
w.r.t. ⊆ in F and such that if x, y ∈ I then x ∪ y ∈ I).

Exercise 3.14. For an event structure E, show C∞(E) = C(E)∞. ◻

Exercise 3.15. Let F be a stable family. Show F∞ satisfies:

Completeness: ∀Z ⊆ F∞.(∀X ⊆fin Z. X ↑) Ô⇒ ⋃Z ∈ F∞ ;
Stability: ∀Z ⊆ F∞. Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F∞;
Coincidence-freeness: For all x ∈ F∞, e, e′ ∈ x with e /= e′,

∃y ∈ F∞. y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Finiteness: For all x ∈ F∞,

∀e ∈ x∃y ∈ F . e ∈ y & y ⊆ x & y is finite .



3.3. PROCESS CONSTRUCTIONS 27

Show that F consists of precisely the finite sets in F∞. ◻

Remark Above the conditions of Finiteness and Coincidence-freeness together
can be replaced by the equivalent condition
Secured: if e ∈ x ∈ F then there exists a securing chain e1,⋯, en = e in x
s.t. {e1,⋯, ei} ∈ F for all i ≤ n.

3.3 Process constructions

3.3.1 Products

Let A and B be stable families with events A and B, respectively. Their
product, the stable family A × B, has events comprising pairs in A ×∗ B =def

{(a,∗) ∣ a ∈ A} ∪ {(a, b) ∣ a ∈ A & b ∈ B} ∪ {(∗, b) ∣ b ∈ B}, the product of sets
with partial functions, with (partial) projections π1 and π2—treating ∗ as
‘undefined’—with configurations

x ∈ A × B iff

x is a finite subset of A ×∗ B such that π1x ∈ A & π2x ∈ B,

∀e, e′ ∈ x. π1(e) = π1(e
′) or π2(e) = π2(e

′) ⇒ e = e′ ,&

∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B &

(e ∈ y ⇐⇒ e′ ∉ y) .

Theorem 3.16. For stable families A and B the construction A×B with projec-
tions π1 and π2 described above is the product in the category of stable families.

Proof. Essentially in the report for [5].

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B by first regarding them as stable families C(A) and C(B),
forming their product C(A)×C(B), π1, π2, and then constructing the event struc-
ture

A ×B =def Pr(C(A) × C(B))

and its projections as Π1 =def π1top and Π2 =def π2top.

Exercise 3.17. Let A be the event structure consisting of two distinct events
a1 ≤ a2 and B the event structure with a single event b. Following the method
above describe the product of event structures A ×B. ◻

Proposition 3.18. Let x ∈ A × B, a product of stable families with projections
π1 and π2. Then, for all y ⊆ x,

y ∈ A × B ⇐⇒ π1y ∈ A & π2y ∈ B .

Proof. Straightforwardly from the definition of A×B.



28 CHAPTER 3. STABLE FAMILIES

Later we shall use the following properties of _ in a product of stable families
or event structures.

Lemma 3.19. Let x ∈ A×B, a product of stable families with projections π1, π2.
Let e, e′ ∈ x. If e _x e

′, then
either

(i) π1(e) and π1(e
′) are both defined with π1(e) _π1x π1(e

′) in A and
if π2(e), π2(e

′) are defined then π2(e) _π2x π2(e
′) or π2(e) coπ2x π2(e

′) in B,
or

(ii) π2(e) and π2(e
′) are both defined with π2(e) _π2x π2(e

′) in B and
if π1(e), π1(e

′) are defined then π1(e) _π1x π1(e
′) or π1(e) coπ1x π1(e

′) in A.

Proof. By Proposition 3.11(iii), e _x e
′ iff (I) y

e
−Ð⊂ y1

e′

−Ð⊂ and (II) ¬ y
e′

−Ð⊂ , for
subconfigurations y, y1 of x. From (I),

(a) if π1(e), π1(e
′) are defined then π1y

π1(e)
−Ð⊂ π1y1

π1(e′)
−Ð⊂

and

(b) if π2(e), π2(e
′) are defined then π2y

π2(e)
−Ð⊂ π2y2

π2(e′)
−Ð⊂ .

Suppose both (π1(e
′) defined ⇒ π1y

π1e
′

−Ð⊂) and (π2(e
′) defined ⇒ π2y

π2e
′

−Ð⊂).
Then y ∪ {e′} ⊆ x with π1(y ∪ {e′}) ∈ A and π2(y ∪ {e′}) ∈ B. So, by Proposi-

tion 3.18, y∪{e′} ∈ A×B—contradicting (II). Hence, either ¬π1y
π1e

′

−Ð⊂ , with π1e
′

defined, or ¬π2y
π2e

′

−Ð⊂ , with π2e
′ defined.

Assume the case ¬π1y
π1e

′

−Ð⊂ , with π1e
′ defined. Supposing π1(e) is unde-

fined, from (I) we obtain the contradictory π1y = π1y1
π1e

′

−Ð⊂ . Hence, in this

case, both π1e and π1e
′ are defined with π1y

π1(e)
−Ð⊂ π1y1

π1(e′)
−Ð⊂ and ¬π1y

π1e
′

−Ð⊂ . So
π1(e) _π1x π1(e

′) in A, by Proposition 3.11(iii). Meanwhile from (b), this time
by Proposition 3.11(i), if π2(e), π2(e

′) are defined then π2(e) _π2x π2(e
′) or

π2(e) coπ2x π2(e
′) in B. Hence (i), above.

Similarly, the case ¬π2y
π2e

′

−Ð⊂ , with π2e
′ defined, yields (ii).

Corollary 3.20. Let A×B, Π1, Π2 be a product of event structures. If p _ p′

in A ×B, then
either

(i) Π1(p) and Π1(p
′) are both defined with Π1(p) _ Π1(p

′) in A and
if Π2(p), Π2(p

′) are defined then Π2(p) _ Π2(p
′) or Π2(p) co Π2(p

′) in B,
or

(ii) Π2(p) and Π2(p
′) are both defined with Π2(p) _ Π2(p

′) in B and
if Π1(p), Π1(p

′) are defined then Π1(p) _ Π1(p
′) or Π1(p) co Π1(p

′) in A.

Proof. Directly by Lemma 3.19, because p _ p′ in A × B implies top(p) _p′

top(p′) in C(A) × C(B).

The converse to Lemma 3.19, above, is false. A more explicit, case-by-case,
form of the above Lemma 3.19 is helpful:



3.3. PROCESS CONSTRUCTIONS 29

Lemma 3.21. Suppose e _x e
′ in a product of stable families A×B, π1, π2.

(i) If e = (a,∗) then e′ = (a′, b) or e′ = (a′,∗) with a _π1x a
′ in A.

(ii) If e′ = (a′,∗) then e = (a, b) or e = (a,∗) with a _π1x a
′ in A.

(iii) If e = (a, b) and e′ = (a′, b′) then a _π1x a′ in A or b _π2x b′ in B.
Furthermore both (a _π1x a

′ or a coπ1x a
′) and (b _π2x b

′ or b coπ2x b
′).

The obvious analogues of (i) and (ii) hold for e = (∗, b) and e′ = (∗, b′).

Proof. A restatement of Lemma 3.19, writing a = π1(e), b = π2(e), a
′ = π1(e

′)
and b = π2(e

′) when these results of projections are defined.

Exercise 3.22. Let z ∈ A × B, the product of stable families. For any chain

(a,∗) _z e1 _z ⋯ _z em = (∗, b)

show there is ei = (ai, bi) for some events ai of A and bi of B.

Corollary 3.23. Let f ∶ A → A′ and g ∶ B → B′ be rigid maps of event struc-
tures. Then the map ⟨f, g⟩ ∶ A ×B → A′ ×B′ is rigid.

Proof. Write Π1,Π2 and Π′
1,Π

′
2 for the projections of A×B and A′ ×B′ respec-

tively. It is easy to check that the totality of f and g above implies ⟨f, g⟩ is total.
To show that their rigidity implies ⟨f, g⟩ is rigid we use Corollary 3.20 above. As-
suming p _ p′ in A×B the corollary implies Π1(p) _ Π1(p

′) or Π2(p) _ Π2(p
′).

From the rigidity of f and g, we obtain fΠ1(p) _ fΠ1(p
′) or gΠ2(p) _ gΠ2(p

′).
But Π′

1⟨f, g⟩(p
′) = fΠ1(p

′) and Π′
2⟨f, g⟩(p

′) = fΠ2(p
′) whence as ⟨f, g⟩ is a map

so reflects causal dependency locally we deduce ⟨f, g⟩(p) ≤ ⟨f, g⟩(p′) (or in fact
⟨f, g⟩(p) _ ⟨f, g⟩(p′)), showing ⟨f, g⟩ is rigid.

3.3.2 Restriction

The restriction of F to a subset of events R is the stable family F ↾ R =def

{x ∈ F ∣ x ⊆ R} . Defining E ↾ R, the restriction of an event structure E to a
subset of events R, to have events E′ = {e ∈ E ∣ [e] ⊆ R} with causal dependency
and consistency induced by E, we obtain C(E ↾R) = C(E) ↾R .

Proposition 3.24. Let F be a stable family and R a subset of its events. Then,
Pr(F ↾R) = Pr(F)↾top−1R .

We remark that we can regard restriction as arising as an equaliser. E.g. for
an event structure E write ∣E∣ for the event structure comprising the events
of E but with discrete causal dependency and all subsets consistent. W.r.t. a
subset R of events, the inclusion map E ↾R ↪ E is the equaliser of the two maps
I ∶ E → ∣E∣, acting as identity on events, and U ∶ E → ∣E∣, acting as identity on
events in R and undefined elsewhere.



30 CHAPTER 3. STABLE FAMILIES

3.3.3 Synchronized compositions

Synchronized parallel compositions are obtained as restrictions of products to
those events which are allowed to synchronize or occur asynchronously. For
example, the synchronized composition of Milner’s CCS on stable families A and
B (with labelled events) is defined as A×B ↾R where R comprises events which
are pairs (a,∗), (∗, b) and (a, b), where in the latter case the events a of A and b
of B carry complementary labels. Similarly, synchronized compositions of event
structures A and B are obtained as restrictions A×B ↾R. By Proposition 3.24,
we can equivalently form a synchronized composition of event structures by
forming the synchronized composition of their stable families of configurations,
and then obtaining the resulting event structure—this has the advantage of
eliminating superfluous events earlier.

Products of stable families within the subcategory of total maps can be
obtained by restricting the product (w.r.t. partial maps). Construct

A×t B = A × B ↾A ×B

where we restrict to the cartesian product of the sets of events of A and B,
called A and B respectively; projection maps are obtained from the projection
functions from the cartesian product. Products of stable families within the
subcategory of total maps have a particularly simple characterisation:

Proposition 3.25. Finite configurations of a product A×t B of stable families
with total maps are secured bijections θ ∶ x ≅ y between configurations x ∈ A and
y ∈ B, such that the transitive relation generated on θ by taking (a, b) ≤ (a′, b′)
if a ≤x a

′ or b ≤y b
′ is a partial order.

Proof. Let z ∈ A ×t B. By Proposition3.10 the projections π1 and π2 locally
reflect causal dependency. Hence the partial order ≤z satisfies: (a, b) ≤z (a′, b′)
if a ≤x a or b ≤y b

′, for all (a, b), (a′, b′) ∈ z. Thus the transitive relation on z
generated by taking (a, b) ≤ (a′, b′) if a ≤x a

′ or b ≤y b
′ is certainly a partial order;

failure of antisymmetry for the relation generated would imply its failure for ≤z,
a contradiction. To see that ≤z is precisely the transitive relation generated in
this way, let θ be the elementary event structure comprising events the set z
with causal dependency the least transitive relation ≤ for which (a, b) ≤ (a′, b′)
if a ≤x a

′ or b ≤y b
′. Let Θ be its stable family of configurations with r1 ∶ Θ→ A

and r2 ∶ Θ→ B the obvious projection maps. By the universal properties of the
product A ×t B, π1, π2 there is a unique map h ∶ Θ → A ×t B s.t. r1 = π1h and
r2 = π2h. As a function on the underlying sets of events h ∶ θ → z acts as the
identity on events and reflects causal dependency. Hence ≤z⊆≤p. It follows that
≤z and ≤p coincide, so that ≤z is a secured bijection.

Conversely, suppose θ is a secured bijection between x ∈ A and y ∈ B with
generated partial order ≤. Regard θ,≤ as an elementary event structure with
stable family of configurations Θ. From the way ≤ is generated, there are pro-
jection maps r1 ∶ Θ→ A and r2 ∶ Θ→ B. Hence by universality, there is a unique
map h ∶ Θ → A ×t B s.t. r1 = π1h and r2 = π2h. But then h must act as the
identity function, ensuring θ ∈ A ×t B.



3.3. PROCESS CONSTRUCTIONS 31

3.3.4 Pullbacks

The construction of pullbacks can be viewed as a special case of synchronized
composition. Once we have products of event structures pullbacks are obtained
by restricting products to the appropriate equalizing set. Pullbacks of event
structures can also be constructed via pullbacks of stable families, in a similar
manner to the way we have constructed products of event structures. We obtain
pullbacks of stable families as restrictions of products. Suppose f1 ∶ F1 → G and
f2 ∶ F2 → G are maps of stable families. Let E1, E2 and C be the sets of events
of F1, F2 and G, respectively. The set P =def {(e1, e2) ∣ f(e1) = f(e2)} with
projections π1, π2 to the left and right, forms the pullback, in the category of
sets, of the functions f1 ∶ E1 → C, f2 ∶ E2 → C. We obtain the pullback in
stable families of f1, f2 as the stable family P, consisting of those subsets of P
which are also configurations of the product F1 × F2—its associated maps are
the projections π1, π2 from the events of P. When f1 and f2 are total maps we
obtain the pullback in the subcategory of stable families with total maps.

As a corollary of Proposition 3.25 we obtain a simple characterization of
pullbacks of total maps within stable families:

Lemma 3.26. Let P, π1, π2 form a pullback of total maps f ∶ A → C and g ∶
B → C in the category of stable families. Configurations of P are precisely
those composite bijections θ ∶ x ≅ fx = gy ≅ y between configurations x ∈ A and
y ∈ B s.t. fx = gy for which the transitive relation generated on θ by taking
(a, b) ≤ (a′, b′) if a ≤x a

′ or b ≤y b
′ is a partial order.

For future reference we give the detailed construction of pullbacks of to-
tal maps in stable families. Let f ∶ A → C and g ∶ B → C be total maps
of stable families. Assume A and B have underlying sets A and B. Define
D =def {(a, b) ∈ A ×B ∣ f(a) = g(b)} with projections π1 and π2 to the left and
right components. Define a family of configurations of the pullback to consist of

x ∈ D iff

x is a finite subset of D such that π1x ∈ A & π2x ∈ B,

∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B &

(e ∈ y ⇐⇒ e′ ∉ y) .

The extra local injectivity property we needed in the definition of product is
not necessary here; it follows from the definition of D and that σ1 and σ2 are
locally injective.

We obtain the pullback of event structures by first forming the pullback in
stable families of their families of configurations and then applying Pr.

As a corollary of Lemma 3.26 we obtain a useful way to understand config-
urations of the pullback of total maps on event structures.

Proposition 3.27. When f ∶ A → C and g ∶ B → C are total, maps of event



32 CHAPTER 3. STABLE FAMILIES

structures, in their pullback P,Π1,Π2

P
Π1

~~

Π2

  
A

f   

B

g~~
C .

the finite configurations of P correspond to composite bijections

θ ∶ x ≅ fx = gy ≅ y

between finite configurations x of A and y of B such that fx = gy, for which the
transitive relation generated on θ by (a, b) ≤ (a′, b′) if a ≤A a

′ or b ≤B b′ forms
a partial order.

As a consequence the pullback of rigid maps, respectively rigid epi maps,
across total maps are rigid, respectively rigid epi.

Proposition 3.28. Let P,Π1,Π2 be a pullback of total maps f ∶ A → C and
g ∶ B → C in the category of event structures. If f is rigid so is Π2. If f is rigid
and epi so is Π2.

Proof. Use Proposition 3.27 to construct the appropriate configurations of the
pullback of event structures; the rigidity of f ensures their existence.

3.3.5 Projection

As we have seen, event structures support a simple form of hiding associated
with the partial-total factorisation of a partial map. Let (E,≤,Con) be an event
structure. Let V ⊆ E be a subset of ‘visible’ events. Define the projection of E
on V , to be E↓V =def (V,≤V ,ConV ), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and
X ∈ ConV iff X ∈ Con & X ⊆ V .

Proposition 3.29. Let f ∶ E → E′ be a total map of event structures. Let
V ⊆ E and V ′ ⊆ E′ be such that

∀e ∈ E. e ∈ V ⇐⇒ f(e) ∈ V ′ .

Then f restricts to a total map f ↾ V ∶ E ↓ V → E′ ↓ V ′. Moreover, if f is rigid
then so is f ↾ V .

3.3.6 Recursion

Both stable families and event structures support recursive definitions via the
‘large cpo’ based on the substructure relation ⊴ [5, 6]. For two stable families
F and G with events F and G respectively,

F ⊴ G iff F ⊆ G & ∀x ⊆fin F. x ∈ F ⇐⇒ x ∈ G .



Chapter 4

Games and strategies

Very general nondeterministic concurrent games and strategies are presented.
The intention is to formalize distributed games in which both Player (or a
team of players) and Opponent (or a team of opponents) can interact in highly
distributed fashion, without, for instance, enforcing that their moves alter-
nate. Strategies, those nondeterministic plays which compose well with copy-cat
strategies, are characterized.1

4.1 Event structures with polarities

We shall represent both a game and a strategy in a game as an event structure
with polarity, comprising an event structure together with a polarity function
pol ∶ E → {+,−} ascribing a polarity + or − to its events E. The events corre-
spond to (occurrences of) moves. The two polarities +/− express the dichotomy:
Player/Opponent; Process/Environment; Prover/Disprover; or Ally/Enemy. Maps
of event structures with polarity are maps of event structures which preserve po-
larity.

4.2 Operations

4.2.1 Dual

The dual, E⊥, of an event structure with polarity E comprises a copy of the
event structure E but with a reversal of polarities. It obviously extends to a
functor. Write e ∈ E⊥ for the event complementary to e ∈ E and vice versa.

4.2.2 Simple parallel composition

This operation simply juxtaposes two event structures with polarity. Let (A,≤A
,ConA,polA) and (B,≤B ,ConB ,polB) be event structures with polarity. The

1This key chapter is the result of joint work with Silvain Rideau [7].

33



34 CHAPTER 4. GAMES AND STRATEGIES

events of A∥B are ({1}×A)∪({2}×B), their polarities unchanged, with: the only
relations of causal dependency given by (1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤
(2, b′) iff b ≤B b′; a subset of events C is consistent in A∥B iff {a ∣ (1, a) ∈ C} ∈
ConA and {b ∣ (2, b) ∈ C} ∈ ConB . The operation extends to a functor—put the
two maps in parallel. The empty event structure with polarity ∅ is the unit
w.r.t. ∥.

4.3 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events
stand for the possible occurrences of moves of Player and Opponent and its
causal dependency and consistency relations the constraints imposed by the
game. A pre-strategy in A is a total map σ ∶ S → A from an event structure with
polarity S. A pre-strategy represents a nondeterministic play of the game—all
its moves are moves allowed by the game and obey the constraints of the game;
the concept will later be refined to that of strategy (and winning strategy in
Section 8.1).

A map from a pre-strategy σ ∶ S → A to a pre-strategy σ′ ∶ S′ → A is a map
f ∶ S → S′ such that

S

σ
��

f // S′

σ′

��
A

commutes. Accordingly, we regard two pre-strategies σ ∶ S → A and σ′ ∶ S′ → A
as essentially the same when they are isomorphic, and write σ ≅ σ′, i.e. when
there is an isomorphism of event structures θ ∶ S ≅ S′ such that

S

σ
��

≅θ S′

σ′

��
A

commutes.
Let A and B be event structures with polarity. Following Joyal [8], a pre-

strategy from A to B is a pre-strategy in A⊥∥B, so a total map σ ∶ S → A⊥∥B.
It thus determines a span

S

σ1

~~

σ2

  
A⊥ B ,

of event structures with polarity where σ1, σ2 are partial maps. In fact, a pre-
strategy from A to B corresponds to such spans where for all s ∈ S either, but



4.3. PRE-STRATEGIES 35

not both, σ1(s) or σ2(s) is defined. Two pre-strategies σ and τ from A to B
are isomorphic, σ ≅ τ , when their spans are isomorphic, i.e.

S

σ1

��

≅

��
σ2

��

T

τ1~~ τ2 ��
A⊥ B

commutes. We write σ ∶ A + //B to express that σ is a pre-strategy from A to B.
Note a pre-strategy in a game A coincides with a pre-strategy from the empty
game σ ∶ ∅ + //A.

4.3.1 Concurrent copy-cat

Identities on games are given by copy-cat strategies—strategies for Player based
on copying the latest moves made by Opponent.

Let A be an event structure with polarity. The copy-cat strategy from A to
A is an instance of a pre-strategy, so a total map γA ∶ CCA → A⊥∥A. It describes
a concurrent, or distributed, strategy based on the idea that Player moves, of
+ve polarity, always copy previous corresponding moves of Opponent, of −ve
polarity.

For c ∈ A⊥∥A we use c to mean the corresponding copy of c, of opposite
polarity, in the alternative component, i.e.

(1, a) = (2, a) and (2, a) = (1, a) .

Proposition 4.1. Let A be an event structure with polarity. There is an event
structure with polarity CCA having the same events and polarity as A⊥∥A but
with causal dependency ≤CCA given as the transitive closure of the relation

≤A⊥∥A ∪ {(c, c) ∣ c ∈ A⊥∥A & polA⊥∥A(c) = +} .

and finite subsets of CCA consistent if their down-closure w.r.t. ≤CCA are con-
sistent in A⊥∥A. Moreover,
(i) c _ c′ in CCA iff

c _ c′ in A⊥∥A or polA⊥∥A(c
′) = + & c = c′ ;

(ii) x ∈ C(CCA) iff

x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + Ô⇒ c ∈ x .

Proof. It can first be checked that defining

c ≤CCA c
′ iff (i) c ≤A⊥∥A c

′ or

(ii) ∃c0 ∈ A
⊥∥A. polA⊥∥A(c0) = + &

c ≤A⊥∥A c0 & c0 ≤A⊥∥A c
′ ,



36 CHAPTER 4. GAMES AND STRATEGIES

yields a partial order. Note that

c ≤A⊥∥A d iff c ≤A⊥∥A d ,

used in verifying transitivity and antisymmetry. The relation ≤CCA is clearly
the transitive closure of ≤A⊥∥A together with all extra causal dependencies (c, c)
where polA⊥∥A(c) = +. The remaining properties required for CCA to be an event
structure follow routinely.

(i) From the above characterization of ≤CCA .

(ii) From CCA and A⊥∥A sharing the same consistency relation and the extra
causal dependency adjoined to CCA. ◻

Based on Proposition 4.1, define the copy-cat pre-strategy from A to A to be
the pre-strategy γA ∶ CCA → A⊥∥A where CCA comprises the event structure with
polarity A⊥∥A together with extra causal dependencies c ≤CCA c for all events
c with polA⊥∥A(c) = +, and γA is the identity on the set of events common to
both CCA and A⊥∥A.

4.3.2 Composing pre-strategies

Consider two pre-strategies σ ∶ A + //B and τ ∶ B + //C as spans:

S
σ1

~~

σ2

��
A⊥ B

T
τ1

~~

τ2

  
B⊥ C .

We show how to define their composition τ⊙σ ∶ A + //C. If we ignore polarities
the partial maps of event structures σ2 and τ1 have a common codomain, the
underlying event structure of B and B⊥. The composition τ⊙σ will be con-
structed as a synchronized composition of S and T , in which output events of S
synchronize with input events of T , followed by an operation of hiding ‘internal’
synchronization events. Only those events s from S and t from T for which
σ2(s) = τ1(t) synchronize; note that then s and t must have opposite polarities
as this is so for their images σ2(s) in B and τ1(t) in B⊥. The event result-
ing from the synchronization of s and t has indeterminate polarity and will be
hidden in the composition τ⊙σ.

Formally, we use the construction of synchronized composition and projec-
tion of Section 3.3.3. Via projection we hide all those events with undefined
polarity.

We first define the composition of the families of configurations of S and T
as a synchronized composition of stable families. We form the product of stable
families C(S) × C(T ) with projections π1 and π2, and then form a restriction:

C(T ) ⊛ C(S) =def C(S) × C(T ) ↾R



4.3. PRE-STRATEGIES 37

where

R = {(s,∗) ∣ s ∈ S & σ1(s) is defined}∪

{(s, t) ∣ s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined}∪

{(∗, t) ∣ t ∈ T & τ2(t) is defined} .

The stable family C(T ) ⊛ C(S) is the synchronized composition of the stable
families C(S) and C(T ) in which synchronizations are between events of S and
T which project, under σ2 and τ1 respectively, to complementary events in B
and B⊥. The stable family C(T ) ⊛ C(S) represents all the configurations of the
composition of pre-strategies, including internal events arising from synchro-
nizations. We obtain the synchronized composition as an event structure by
forming Pr( C(T )⊛ C(S)), in which events are the primes of C(T )⊛ C(S). This
synchronized composition still has internal events.

To obtain the composition of pre-strategies we hide the internal events due
to synchronizations. The event structure of the composition of pre-strategies is
defined to be

T⊙S =def Pr(C(T ) ⊛ C(S)) ↓ V ,

the projection onto “visible” events,

V = {p ∈ Pr(C(T ) ⊛ C(S)) ∣ ∃s ∈ S. top(p) = (s,∗)} ∪

{p ∈ Pr(C(T ) ⊛ C(S)) ∣ ∃t ∈ T. top(p) = (∗, t)} .

Finally, the composition τ⊙σ is defined by the span

T⊙S
υ1

||

υ2

""
A⊥ C

where υ1 and υ2 are maps of event structures, which on events p of T⊙S act so
υ1(p) = σ1(s) when top(p) = (s,∗) and υ2(p) = τ2(t) when top(p) = (∗, t), and
are undefined elsewhere.

Proposition 4.2. Above, υ1 and υ2 are partial maps of event structures with
polarity, which together define a pre-strategy υ ∶ A + //C. For x ∈ C(T⊙S),

υ1x = σ1π1⋃x and υ2x = τ2π2⋃x .

Proof. Consider the two maps of event structures

u1 ∶Pr(C(T ) ⊛ C(S))
Π1
Ð→S

σ1
Ð→A⊥ ,

u2 ∶Pr(C(T ) ⊛ C(S))
Π2
Ð→T

τ2
Ð→C ,

where Π1,Π2 are (restrictions of) projections of the product of event structures.
E.g. for p ∈ Pr(C(T )⊛ C(S)), Π1(p) = s precisely when top(p) = (s,∗), so σ1(s)



38 CHAPTER 4. GAMES AND STRATEGIES

is defined, or when top(p) = (s, t), so σ1(s) is undefined. The partial functions
υ1 and υ2 are restrictions of the two maps u1 and u2 to the projection set V .
But V consists exactly of those events in Pr(C(T ) ⊛ C(S)) where u1 or u2 is
defined. It follows that υ1 and υ2 are maps of event structures.

Clearly one and only one of υ1, υ2 are defined on any event in T⊙S so they
form a pre-strategy. Their effect on x ∈ C(T⊙S) follows directly from their
definition. ◻

Proposition 4.3. Let σ ∶ A + //B, τ ∶ B + //C and υ ∶ C + //D be pre-strategies.
The two compositions υ⊙(τ⊙σ) and (υ⊙τ)⊙σ are isomorphic.

Proof. The natural isomorphism S × (T × U) ≅ (S × T ) × U , associated with
the product of event structures S,T,U , restricts to the required isomorphism of
spans as the synchronizations involved in successive compositions are disjoint.◻

4.3.3 Composition via pullback

We can alternatively present the composition of pre-strategies via pullbacks.2

For this section assume that the correspondence a ↔ a between the events of
A and its dual A⊥ is the identity, so A and A⊥ share the same events, though
assign opposite polarities to them. Given two pre-strategies σ ∶ S → A⊥∥B and
τ ∶ T → B⊥∥C, ignoring polarities we can consider the maps on the underlying
event structures, viz. σ ∶ S → A∥B and τ ∶ T → B∥C. Viewed this way we can
form the pullback in E (or Et, as the maps along which we are pulling back are
total)

P

yy %%
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C .

There is an obvious partial map of event structures A∥B∥C → A∥C undefined
on B and acting as identity on A and C. The partial map from P to A∥C given

2I’m grateful to Nathan Bowler for the observations of this section.



4.4. STRATEGIES 39

by following the diagram (either way round the pullback square)

P

zz $$
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C

��
A∥C

factors through the projection of P to V , those events at which the partial map
is defined:

P → P ↓ V → A∥C .

The resulting total map υ ∶ P ↓ V → A∥C gives us the composition τ⊙σ ∶ P ↓
V → A⊥∥C once we reinstate polarities.

4.3.4 Duality

A pre-strategy σ ∶ A + //B corresponds to a dual pre-strategy σ⊥ ∶ B⊥ + //A⊥.
This duality arises from the correspondence

S

σ1

~~

σ2

��
A⊥ B

←→ S

σ2

||

σ1

  
(B⊥)⊥ A⊥ .

It is easy to check that the dual of copy-cat, γ⊥A, is isomorphic, as a span, to
the copy-cat of the dual, γA⊥ , for A an event structure with polarity. It is also
straightforward, though more involved, to show that the dual of a composition
of pre-strategies (τ⊙σ)⊥ is isomorphic as a span to the composition σ⊥⊙τ⊥.
Duality, as usual, will save us work.

4.4 Strategies

This section is devoted to the main result of this chapter: that two conditions
on pre-strategies, receptivity and innocence, are necessary and sufficient in order
for copy-cat to behave as identity w.r.t. the composition of pre-strategies. It be-
comes compelling to define a (nondeterministic) concurrent strategy, in general,
as a pre-strategy which is receptive and innocent.



40 CHAPTER 4. GAMES AND STRATEGIES

4.4.1 Necessity of receptivity and innocence

The properties of receptivity and innocence of a pre-strategy, described below,
will play a central role.

Receptivity. Say a pre-strategy σ ∶ S → A is receptive when σx
a

−Ð⊂ & polA(a) =

− ⇒ ∃!s ∈ S. x
s

−Ð⊂ & σ(s) = a , for all x ∈ C(S), a ∈ A. Receptivity ensures that
no Opponent move which is possible is disallowed.

Innocence. Say a pre-strategy σ is innocent when it is both +-innocent and
−-innocent:

+-Innocence: If s _ s′ & pol(s) = + then σ(s) _ σ(s′).

−-Innocence: If s _ s′ & pol(s′) = − then σ(s) _ σ(s′).

The definition of a pre-strategy σ ∶ S → A ensures that the moves of Player
and Opponent respect the causal constraints of the game A. Innocence restricts
Player further. Locally, within a configuration, Player may only introduce new
relations of immediate causality of the form ⊖ _ ⊕ . Thus innocence gives Player
the freedom to await Opponent moves before making their move, but prevents
Player having any influence on the moves of Opponent beyond those stipulated
in the game A; more surprisingly, innocence also disallows any immediate causal-
ity of the form ⊕ _ ⊕, purely between Player moves, not already stipulated in
the game A.

Two important consequences of −-innocence:

Lemma 4.4. Let σ ∶ S → A be a pre-strategy. Suppose, for s, s′ ∈ S, that

[s) ↑ [s′) & polS(s) = polS(s
′) = − & σ(s) = σ(s′) .

(i) If σ is −-innocent, then [s) = [s′).
(ii) If σ is receptive and −-innocent, then s = s′.
[x ↑ y expresses the compatibility of x, y ∈ C(S).]

Proof. (i) Assume the property above holds of s, s′ ∈ S. Assume σ is −-innocent.
Suppose s1 _ s. Then by −-innocence, σ(s1) _ σ(s). As σ(s′) = σ(s) and σ is
a map of event structures there is s2 < s′ such that σ(s2) = σ(s1). But s1, s2

both belong to the configuration [s)∪ [s′) so s1 = s2, as σ is a map, and s1 < s
′.

Symmetrically, if s1 _ s′ then s1 < s. It follows that [s) = [s′). (ii) Now both

[s)
s

−Ð⊂ and [s)
s′

−Ð⊂ with σ(s) = σ(s′) where both s, s′ have −ve polarity. If,
further, σ is receptive, s = s′. ◻

Let x and x′ be configurations of an event structure with polarity. Write
x ⊆− x′ to mean x ⊆ x′ and pol(x′∖x) ⊆ {−}, i.e. the configuration x′ extends the
configuration x solely by events of −ve polarity. In the presence of −-innocence,
receptivity strengthens to the following useful strong-receptivity property:

Lemma 4.5. Let σ ∶ S → A be a −-innocent pre-strategy. The pre-strategy σ
is receptive iff whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that



4.4. STRATEGIES 41

x ⊆ x′ & σx′ = y . Diagrammatically,

x_

σ

��

⊆ x′_

σ

��
σx ⊆− y .

[It will necessarily be the case that x ⊆− x′.]

Proof. “if”: Clear. “Only if”: Assuming σx ⊆− y we can form a covering chain

σx
a1
−Ð⊂ y1⋯

an
−Ð⊂ yn = y .

By repeated use of receptivity we obtain the existence of x′ where x ⊆ x′ and
σx′ = y. To show the uniqueness of x′ suppose x ⊆ z, z′ and σz = σz′ = y.
Suppose that z /= z′. Then, without loss of generality, suppose there is a ≤S-
minimal s′ ∈ z′ with s′ ∉ z. Then [s′) ⊆ z. Now σ(s′) ∈ y so there is s ∈ z for
which σ(s) = σ(s′). We have [s), [s′) ⊆ z so [s) ↑ [s′). By Lemma 4.4(ii) we
deduce s = s′ so s′ ∈ z, a contradiction. Hence, z = z′. ◻

It is useful to define innocence and receptivity on partial maps of event
structures with polarity.

Definition 4.6. Let f ∶ S → A be a partial map of event structures with
polarity. Say f is receptive when

f(x)
a

−Ð⊂ & polA(a) = − Ô⇒ ∃!s ∈ S. x
s

−Ð⊂ & f(s) = a

for all x ∈ C(S), a ∈ A.
Say f is innocent when it is both +-innocent and −-innocent, i.e.

s _ s′ & pol(s) = + & f(s) is defined Ô⇒

f(s′) is defined & f(s) _ f(s′) ,

s _ s′ & pol(s′) = − & f(s′) is defined Ô⇒

f(s) is defined & f(s) _ f(s′) .

Proposition 4.7. A pre-strategy σ ∶ A + //B is receptive, respectively +/−-
innocent, iff both the partial maps σ1 and σ2 of its span are receptive, respectively
+/−-innocent.

Proposition 4.8. For σ ∶ A + //B a pre-strategy, σ1 is receptive, respectively
+/−-innocent, iff (σ⊥)2 is receptive, respectively +/−-innocent; σ is receptive and
innocent iff σ⊥ is receptive and innocent.

The next lemma will play a major role in importing receptivity and innocence
to compositions of pre-strategies.

Lemma 4.9. For pre-strategies σ ∶ A + //B and τ ∶ B + //C, if σ1 is receptive,
respectively +/−-innocent, then (τ⊙σ)1 is receptive, respectively +/−-innocent.



42 CHAPTER 4. GAMES AND STRATEGIES

Proof. Abbreviate τ⊙σ to υ.
Receptivity: We show the receptivity of υ1 assuming that σ1 is receptive. Let

x ∈ C(T⊙S) such that υ1x
a

−Ð⊂ in C(A⊥) with polA⊥(a) = −. By Proposition 4.2,

σ1π1⋃x
a

−Ð⊂ with π1⋃x ∈ C(S). As σ1 is receptive there is a unique s ∈ S such

that π1⋃x
s

−Ð⊂ in S and σ1(s) = a. It follows that ⋃x
(s,∗)
−Ð⊂ z, for some z, in

C(T ) ⊛ C(S). Defining p =def [(s,∗)]z we obtain x
p

−Ð⊂ and υ1(p) = a, with p
the unique such event.
Innocence: Assume that σ1 is innocent. To show the +-innocence of υ1 we first
establish a property of the _-relation in the event structure Pr(C(T ) ⊛ C(S)),
the synchronized composition of event structures S and T , before projection to
V :

If e _ e′ in Pr(C(T ) ⊛ C(S)) with e ∈ V , pol(e) = + and υ1(e)
defined, then e′ ∈ V and υ1(e

′) is defined.

Assume e _ e′ in Pr(C(T ) ⊛ C(S)), e ∈ V , pol(e) = + and υ1(e) is defined.
From the definition of Pr(C(T ) ⊛ C(S)), the event e is a prime configuration
of C(T ) ⊛ C(S) where top(e) must have the form (s,∗), for some event s of S
where σ1(s) is defined. By Lemma 3.21, top(e ′) has the form (s′,∗) or (s′, t)
with s _ s′ in S. Now, as s _ s′ and pol(s) = +, from the +-innocence of
σ1, we obtain σ1(s) _ σ1(s

′) in A⊥∥A. Whence σ1(s
′) is defined ensuring

top(e ′) = (s ′,∗). It follows that e′ ∈ V and υ1(e
′) is defined.

Now suppose e _ e′ in T⊙S. Then either
(i) e _ e′ in Pr(C(T ) ⊛ C(S)), or
(ii) e _ e1 < e

′ in Pr(C(T ) ⊛ C(S)) for some ‘invisible’ event e1 ∉ V .
But the above argument shows that case (ii) cannot occur when pol(e) = +

and υ1(e) is defined. It follows that whenever e _ e′ in T⊙S with pol(e) = +
and υ1(e) defined, then υ1(e

′) is defined and υ1(e) _ υ1(e
′), as required.

The argument showing −-innocence of υ1 assuming that of σ1 is similar. ◻

Corollary 4.10. For pre-strategies σ ∶ A + //B and τ ∶ B + //C, if τ2 is re-
ceptive, respectively +/−-innocent, then (τ⊙σ)2 is receptive, respectively +/−-
innocent.

Proof. By duality using Lemma 4.9: if τ2 is receptive, respectively +/−-innocent,
then (τ⊥)1 is receptive, respectively +/−-innocent, and hence (σ⊥⊙τ⊥)1 = ((τ⊙σ)⊥)1 =
(τ⊙σ)2 is receptive, respectively +/−-innocent. ◻

Lemma 4.11. For an event structure with polarity A, the pre-strategy copy-cat
γA ∶ A + //A is receptive and innocent.

Proof. Receptive: Suppose x ∈ C(CCA) such that γAx
c

−Ð⊂ in C(A⊥∥A) where
polA⊥∥A(c) = −. Now γAx = x and x′ =def x∪ {c} ∈ C(A⊥∥A). Proposition 4.1(ii)
characterizes those configurations of A⊥∥A which are also configurations of CCA:
the characterization applies to x and to its extension x′ = x∪{c} because of the



4.4. STRATEGIES 43

−ve polarity of c. Hence x′ ∈ C(CCA) and x
c

−Ð⊂x′ in C(CCA), and clearly c is
unique so γA(c) = c.

−-Innocent: Suppose c _ c′ in CCA and pol(c′) = −. By Proposition 4.1(i),
c _ c′ in A⊥∥A. The argument for +-innocence is similar. ◻

Theorem 4.12. Let σ ∶ A + //B be a pre-strategy from A to B. If σ⊙γA ≅ σ
and γB⊙σ ≅ σ, then σ is receptive and innocent.

Let σ ∶ A + //B and τ ∶ B + //C be pre-strategies which are both receptive and
innocent. Then their composition τ⊙σ ∶ A + //C is receptive and innocent.

Proof. We know the copy-cat pre-strategies γA and γB are receptive and
innocent—Lemma 4.11. Assume σ⊙γA ≅ σ and γB⊙σ ≅ σ. By Lemma 4.9,
(σ⊙γA)1 is receptive and innocent so σ1 is receptive and innocent. From its
dual, Corollary 4.10, (γB⊙σ)2 so σ2 is receptive and innocent. Hence σ is
receptive and innocent.

Assume that σ ∶ A + //B and τ ∶ B + //C are receptive and innocent. The fact
that σ is receptive and innocent ensures that (τ⊙σ)1 is receptive and innocent,
that τ is receptive and innocent that (τ⊙σ)2 is too. Combining, we obtain that
τ⊙σ is receptive and innocent. ◻

In other words, if a pre-strategy is to compose well with copy-cat, in the
sense that copy-cat behaves as an identity w.r.t. composition, the pre-strategy
must be receptive and innocent. Copy-cat behaving as identity is a hallmark
of game-based semantics, so any sensible definition of concurrent strategy will
have to ensure receptivity and innocence.

4.4.2 Sufficiency of receptivity and innocence

In fact, as we will now see, not only are the conditions of receptivity and inno-
cence on pre-strategies necessary to ensure that copy-cat acts as identity. They
are also sufficient.

Technically, this section establishes that for a pre-strategy σ ∶ A + //B which
is receptive and innocent both the compositions σ⊙γA and γB⊙σ are isomor-
phic to σ. We shall concentrate on the isomorphism from σ⊙γA to σ. The
isomorphism from γB⊙σ to σ follows by duality.

Recall, from Section 4.3.2, the construction of the pre-strategy σ⊙γA as
a total map S⊙CCA → A⊥∥B. The event structure S⊙CCA is built from the
synchronized composition of stable families C(S) ⊛ C(CCA), a restriction of the
product of stable families to events

{(c,∗) ∣ c ∈ CCA & γA1(c) is defined}∪

{(c, s) ∣ c ∈ CCA & s ∈ S & γA2(c) = σ1(s)}∪

{(∗, s) ∣ s ∈ S & σ2(t) is defined} ∶



44 CHAPTER 4. GAMES AND STRATEGIES

C(S) ⊛ C(CCA)

π1

xx
π2

%%
C(CCA)

γA1zz
γA2 &&

C(S)

σ1
yy

σ2

""
C(A⊥) C(A) C(A⊥) C(B)

Finally S⊙CCA is obtained from the prime configurations of C(S) ⊛ C(CCA)
whose maximum events are defined under γA1π1 or σ2π2.

We will first present the putative isomorphism from σ⊙γA to σ as a total
map of event structures θ ∶ S⊙CCA → S. The definition of θ depends crucially
on the lemmas below. They involve special configurations of C(S) ⊛ C(CCA),
viz. those of the form ⋃x , where x is a configuration of S⊙CCA.

Lemma 4.13. For x ∈ C(S⊙CCA),

(c, s) ∈ ⋃x Ô⇒ (c,∗) ∈ ⋃x .

Proof. The case when pol(c) = + follows directly because then c _ c in CCA so
(c,∗) _⋃x (c, s).
Suppose the lemma fails in the case when pol(c) = −, so there is a ≤⋃x-maximal
(c, s) ∈ ⋃x such that

pol(c) = − & (c,∗) ∉ ⋃x . (†)

The event (c, s) cannot be maximal in ⋃x as its maximal events take the form
(c′,∗) or (∗, s′). There must be e ∈ ⋃x for which

(c, s) _⋃x e .

Consider the possible forms of e:
Case e = (c′, s′): Then, by Lemma 3.21, either c _ c′ in CCA or s _ s′ in S.
However if s _ s′ then, as pol(s) = + by innocence, σ1(s) _ σ1(s

′) in A⊥, so
γA2(c) _ γA2(c

′) in A; but then c _ c′ in CCA. Either way, c _ c′ in CCA.
Suppose pol(c′) = +. Then,

(c, s) _⋃x (c,∗) _⋃x (c′,∗) _⋃x (c′, s′) .

But this contradicts (c, s) _⋃x (c′, s′).
Suppose pol(c′) = −. Because (c, s) is maximal such that (†), (c′,∗) ∈ ⋃x.

But (c,∗) _⋃x (c′,∗) whence (c,∗) ∈ ⋃x, contradicting (†).
Case e = (∗, s′): Now (c, s) _⋃x (∗, s′). By Lemma 3.21, s _ s′ in S with
pol(s) = +. By innocence, σ1(s) _ σ1(s

′) and in particular σ1(s
′) is defined,

which forbids (∗, s′) as an event of C(S) ⊛ C(CCA).
Case e = (c′,∗): Now (c, s) _⋃x (c′,∗). By Lemma 3.21, c _ c′ in CCA.
Because (c, s) and (c′,∗) are events of C(S) ⊛ C(CCA) we must have γ2(c) and
γ1(c

′) are defined—they are in different components of CCA. By Proposition 4.1,
c′ = c, contradicting (†).

In all cases we obtain a contradiction—hence the lemma. ◻



4.4. STRATEGIES 45

Lemma 4.14. For x ∈ C(S⊙CCA),

σ1π2⋃x ⊆− γA1π1⋃x .

Proof. As a direct corollary of Lemma 4.13, we obtain:

σ1π2⋃x ⊆ γA1π1⋃x .

The current lemma will follow provided all events of +ve polarity in γA1π1⋃x
are in σ1π2⋃x. However, (c, s) _⋃x (c,∗), for some s ∈ S, when pol(c) = +. ◻

Lemma 4.15. For x ∈ C(S⊙CCA),

σπ2⋃x ⊆− σ⊙γA x .

Proof.

σπ2⋃x = {1} × σ1π2⋃x ∪ {2} × σ2π2⋃x

⊆− {1} × γA1π1⋃x ∪ {2} × σ2π2⋃x , by Lemma 4.14

= σ⊙γA x , by Proposition 4.2.

◻

Lemma 4.15 is the key to defining a map θ ∶ S⊙CCA → S via the following
map-lifting property of receptive maps:

Lemma 4.16. Let σ ∶ S → C be a total map of event structures with polar-
ity which is receptive and −-innocent. Let p ∶ C(V ) → C(S) be a monotonic
function, i.e. such that p(x) ⊆ p(y) whenever x ⊆ y in C(V ). Let υ ∶ V → C be
a total map of event structures with polarity such that

∀x ∈ C(V ). σp(x) ⊆− υ x .

Then, there is a unique total map of event structures with polarity θ ∶ V → S
such that ∀x ∈ C(V ). p(x) ⊆− θ x and υ = σθ ∶

V

θ

��

υ

⊆−

!!

p

⊆−

// S

σ

��
C .

[We use a broken arrow to signify that p is not a map of event structures.]

Proof. Let x ∈ C(V ). Then σp(x) ⊆− υ x. Define Θ(x) to be the unique
configuration of C(S), determined by the receptivity of σ, such that

p(x)
_

σ

��

⊆− Θ(x)
_

σ

��
σp(x) ⊆− υ x .



46 CHAPTER 4. GAMES AND STRATEGIES

Define θx to be the composite bijection

θx ∶ x ≅ υx ≅ Θ(x)

where the bijection x ≅ υx is that determined locally by the total map of event
structures υ, and the bijection υx ≅ Θ(x) is the inverse of the bijection σ↾Θ(x) ∶
Θ(x) ≅ υ x determined locally by the total map σ.

Now, let y ∈ C(V ) with x ⊆ y. We claim that θx is the restriction of θy. This
will follow once we have shown that Θ(x) ⊆ Θ(y). Then, treating the inclusions
as inclusion maps, both squares in the diagram below will commute:

θy ∶ y ≅ υ y ≅ Θ(y)

θx ∶ x

⊆

≅ υ x

⊆

≅ Θ(x)

⊆

This will make the composite rectangle commute, i.e. make θx the restriction
of θy.

To show Θ(x) ⊆ Θ(y) we suppose otherwise. Then there is an event s ∈ Θ(x)
of minimum depth w.r.t. ≤S such that s ∉ Θ(y). Note that pol(s) = −, as
otherwise s ∈ p(x) ⊆ p(y) ⊆ Θ(y). As σ(s) ∈ υ x ⊆ υ y there is s′ ∈ Θ(y) such
that σ(s′) = σ(s). From the minimality of s, both [s), [s′) ⊆ Θ(y) ensuring
the compatibility of [s) and [s′). By Lemma 4.4(ii), s = s′ and s ∈ Θ(y)—a
contradiction.

By Proposition 2.5, the family θx, x ∈ C(V ), determines the unique total map
θ ∶ V → S such that θ x = Θ(x). By construction, p(x) ⊆− θ x, for all x ∈ C(V ),
and υ = σθ. This property in itself ensures that θ x = Θ(x) so determines θ
uniquely. ◻

In Lemma 4.16, instantiate p ∶ C(S⊙CCA) → C(S) to the function p(x) =
π2⋃x for x ∈ C(S⊙CCA), the map σ to the pre-strategy σ ∶ S → A⊥∥B and υ to
the pre-strategy σ⊙γA. By Lemma 4.15, σπ2⋃x ⊆− σ⊙γA x, so the conditions
of Lemma 4.16 are met and we obtain a total map θ ∶ S⊙CCA → S such that
π2⋃x ⊆

− θ x, for all x ∈ C(S⊙CCA), and σθ = σ⊙γA:

S⊙CCA

θ

��

σ⊙γA

⊆−

%%

p

⊆−

// S

σ

��
A⊥∥B .

The next lemma is used in showing θ is an isomorphism.

Lemma 4.17. (i) Let z ∈ C(S) ⊛ C(CCA). If e ≤z e
′ and π2(e) and π2(e

′) are
defined, then π2(e) ≤S π2(e

′). (ii) The map π2 is surjective on configurations.



4.4. STRATEGIES 47

Proof. (i) It suffices to show when

e _z e1 _z ⋯ _z en−1 _z e
′

with π2(e) and π2(e
′) defined and all π2(ei), 1 ≤ i ≤ n − 1, undefined, that

π2(e) ≤S π2(e
′).

Case n = 1, so e _z e
′: Use Lemma 3.21. If either e or e′ has the form (∗, s)

then the other event must have the form (∗, s′) or (c′, s′) with s _ s′ in S.
In the remaining case e = (c, s) and e′ = (c′, s′) with either (1) c _ c′ in CCA,
and γA2(c) _ γA2(c

′) in A, or (2) s _ s′ in S. If (1), σ1(s) _ σ1(s
′) in

A⊥ where s, s′ ∈ π2z. By Proposition 3.10, s ≤S s
′. In either case (1) or (2),

π2(e) ≤S π2(e
′).

Case n > 1: Each ei has the form (ci,∗), for 1 ≤ i ≤ n−1. By Lemma 3.21, events
e and e′ must have the form (c, s) and (c′, s′) with c _ c1 and cn−1 _ c′ in CCA.
As γA1(c) and γA2(c1) are defined, c1 = c and similarly cn−1 = c′. Again by
Lemma 3.21, ci _ ci+1 in CCA for 1 ≤ i ≤ i−2. Consequently γA2(c) ≤A γA2(c

′).
Now, s, s′ ∈ π2z with σ1(s) ≤A⊥ σ1(s

′). By Proposition 3.10, s ≤S s
′, as required.

(ii) Let y ∈ C(S). Then σ1y ∈ C(A⊥) and by the clear surjectivity of γA2 on
configurations there exists w ∈ C(CCA) such that γA2w = σ1y. Now let

z ={(c,∗) ∣ c ∈ w & γA1(c) is defined}

∪{(c, s) ∣ c ∈ w & s ∈ y & γA2(c) = σ1(s)}

∪{(∗, s) ∣ s ∈ y & σ2(s) is defined} .

Then, from the definition of the product of stable families—3.3.1, it can be
checked that z ∈ C(S)⊛C(CCA). By construction, π2z = y. Hence π2 is surjective
on configurations. ◻

Theorem 4.18. θ ∶ σ⊙γA ≅ σ, an isomorphism of pre-strategies.

Proof. We show θ is an isomorphism of event structures by showing θ is rigid
and both surjective and injective on configurations (Lemma 3.3 of [9]). The rest
is routine.
Rigid: It suffices to show p _ p′ in S⊙CCA implies θ(p) ≤S θ(p′). Suppose
p _ p′ in S⊙CCA with top(p) = e and top(p′) = e ′. Take x ∈ C(S⊙CCA)
containing p′ so p too. Then

e _⋃x e1 _⋃x ⋯ _⋃x en−1 _⋃x e
′

where e, e′ ∈ V0 and ei ∉ V0 for 1 ≤ i ≤ n−1. (V0 consists of ‘visible’ events of the
form (c,∗) with γA1(c) defined, or (∗, s), with σ2(s) defined.)
Case n = 1, so e _⋃x e

′: By Lemma 3.21, either (i) e = (∗, s) and e′ = (∗, s′)
with s _ s′ in S, or (ii) e = (c,∗) and e′ = (c′,∗) with c _ c′ in CCA.
If (i), we observe, via σθ = σ⊙γA, that s ∈ π2⋃x ⊆ θx and θ(p) ∈ θx with
σ(θ(p)) = σ(s), so θ(p) = s by the local injectivity of σ. Similarly, θ(p′) = s′, so
θ(p) ≤S θ(p

′).
If (ii), we obtain θ(p), θ(p′) ∈ θx with σ1θ(p) = γA1(c), σ1θ(p

′) = γA1(c
′) and

γA1(c) _ γA1(c
′) in A⊥. By Proposition 3.10, θ(p) ≤S θ(p

′).



48 CHAPTER 4. GAMES AND STRATEGIES

Case n > 1: Note ei = (ci, si) for 1 ≤ i ≤ n − 1, and that s1 ≤S sn−1 by
Lemma 4.17(i). Consider the case in which e = (c,∗) and e′ = (c′,∗)—the
other cases are similar. By Lemma 3.21, c _ c1 and cn−1 _ c′ in CCA. But
γA1(c) and γA2(c1) are defined, so c1 = c, and similarly cn−1 = c′. We remark
that θ(p) = s1, by the local injectivity of σ, as both s1 ∈ π2⋃x ⊆ θx and θ(p) ∈ θx
with σ(θ(p)) = σ(s1). Similarly θ(p′) = sn−1 , whence θ(p) ≤S θ(p

′).
Surjective: Let y ∈ C(S). By Lemma 4.17(ii), there is z ∈ C(S) ⊛ C(CCA) such
that π2z = y. Let

z′ = z ∪ {(c,∗) ∣ pol(c) = + & ∃s ∈ S. (c, s) ∈ z} .

It is straightforward to check z′ ∈ C(S) ⊛ C(CCA). Now let

z′′ = z′ ∖ {(c,∗) ∣ pol(c) = − & ∀s ∈ S. (c, s) ∉ z′} .

Then z′′ ∈ C(S) ⊛ C(CCA) by the following argument. The set z′′ is certainly
consistent, so it suffices to show

pol(c) = − & (c,∗) ≤z′ e ∈ z
′′ Ô⇒ ∃s ∈ S. (c, s) ∈ z′ ,

for all c ∈ CCA and e ∈ z′′. This we do by induction on the number of events
between (c,∗) and e. Suppose

pol(c) = − & (c,∗) _z′ e1 ≤z′ e ∈ z
′ .

In the case where e1 = (c1, s1), we deduce c _ c1 in CCA and as γA1(c) is
defined while γA2(c1) is defined, we must have c1 = c, as required. In the case
where e1 = (c1,∗) and pol(c1) = −, by induction, we obtain (c1, s1) ∈ z

′ for some
s1 ∈ S. Also c _ c1, so c _ c1 in CCA. As z′ is a configuration we must have
(c, s) ≤z′ (c1, s1), for some s ∈ S, so (c, s) ∈ z′. In the case where e1 = (c1,∗)
and pol(c1) = +, we have c _ c1 in CCA. Moreover, (c1, s) ∈ z

′, for some s ∈ S,
as z′ is a configuration and c1 _ c1 in CCA. Again, from the fact that z′ is a
configuration, there must be (c, s) ∈ z′ for some s ∈ S. We have exhausted all
cases and conclude z′′ ∈ C(S) ⊛ C(CCA) with θz′′ = π2z = y, as required to show
θ is surjective on configurations.
Injective: Abbreviate σ⊙γA to υ. Assume θx = θy, where x, y ∈ C(S⊙CCA). Via
the commutativity υ = σθ, we observe

υx = σθ x = σθ y = υy .

Recall by Proposition 4.2, that υ1x = γA1π1⋃x = π1⋃x. It follows that

(c,∗) ∈ ⋃x ⇐⇒ c ∈ υ1x ⇐⇒ c ∈ υ1y ⇐⇒ (c,∗) ∈ ⋃ y .

Observe
(∗, s) ∈ ⋃x ⇐⇒ σ2(s) is defined & s ∈ θx ∶

“⇒” by the local injectivity of σ2, as p =def [(∗, s)]⋃x yields θ(p) ∈ θx and
s ∈ π2⋃x ⊆ θx with σ2(θ(p)) = σ2(s), so θ(p) = s; “⇐” as σ2(s) defined and



4.5. CONCURRENT STRATEGIES 49

s ∈ θx entails s = θ(p) for some p ∈ x, necessarily with top(p) = (∗, s). Hence

(∗, s) ∈ ⋃x ⇐⇒ σ2(s) is defined & s ∈ θx

⇐⇒ σ2(s) is defined & s ∈ θy

⇐⇒ (∗, s) ∈ ⋃ y .

Assuming (c, s) ∈ ⋃x we now show (c, s) ∈ ⋃ y. (The converse holds by
symmetry.) There is p ∈ x, such that (c, s) ∈ p. If top(p) = (∗, s ′) (also in

⋃ y as it is visible) then as π2 is rigid, s ≤ s′ and we must have (c′, s) ∈ ⋃ y.
Otherwise, top(p) = (d ,∗) and we can suppose (by taking p minimal) that
(c, s) ≤⋃x (d′, s′) _⋃x (d,∗). But then θ(p) = s′ ∈ θx = θy. Also s ≤S s

′, by the
rigidity of π2, and, as we have seen before, d′ = d with d′ −ve. Hence s′ is +ve
and as θy is a −ve extension of π2⋃ y we must have s′ ∈ π2⋃ y. Hence there is
(∗, s′) or (c′′, s′) in ⋃ y, and as s ≤S s

′ there is some (c′, s) ∈ ⋃ y. In both cases,

γA2(c
′) = σ1(s) = γA2(c), so c′ = c, and thus (c, s) ∈ ⋃ y.

We conclude ⋃x = ⋃ y, so x = y, as required for injectivity. ◻

4.5 Concurrent strategies

Define a strategy to be a pre-strategy which is receptive and innocent. We obtain
a bicategory, Games, in which the objects are event structures with polarity—
the games, the arrows from A to B are strategies σ ∶ A + //B and the 2-cells
are maps of pre-strategies. The vertical composition of 2-cells is the usual com-
position of maps of spans. Horizontal composition is given by the composition
of strategies ⊙ (which extends to a functor on 2-cells via the functoriality of
synchronized composition). The isomorphisms expressing associativity and the
identity of copy-cat are those of Proposition 4.3 and Theorem 4.18 with its dual.

We remark for future use that composition of strategies respects less gen-
eral notions of 2-cell. The horizontal composition of rigid 2-cells is rigid. The
essential ingredients in showing this are that the product and pullback of event
structures preserve rigid maps when regarded as functor (from Corollary 3.23)
and that under appropriate conditions hiding as formalized through projection
preserves rigid maps (Proposition 3.29).

4.5.1 Alternative characterizations

Via saturation conditions

An alternative description of concurrent strategies exhibits the correspondence
between innocence and earlier “saturation conditions,” reflecting specific inde-
pendence, in [10, 11, 12]:

Proposition 4.19. A strategy S in a game A comprises a total map of event
structures with polarityσ ∶ S → A such that

(i) σx
a

−Ð⊂ & polA(a) = − ⇒ ∃!s ∈ S. x
s

−Ð⊂ & σ(s) = a , for all x ∈ C(S), a ∈ A.



50 CHAPTER 4. GAMES AND STRATEGIES

(ii)(+) If x
e

−Ð⊂x1
e′

−Ð⊂ & polS(e) = + in C(S) and σx
σ(e′)
−Ð⊂ in C(A), then x

e′

−Ð⊂
in C(S).

(ii)(−) If x
e

−Ð⊂x1
e′

−Ð⊂ & polS(e
′) = − in C(S) and σx

σ(e′)
−Ð⊂ in C(A), then x

e′

−Ð⊂
in C(S).

Proof. Note that if x
e

−Ð⊂x1
e′

−Ð⊂ then either e co e′ or e _ e′. Condition (ii) is
a contrapositive reformulation of innocence. ◻

Via lifting conditions

Let x and x′ be configurations of an event structure with polarity. Write x ⊆+ x′

to mean x ⊆ x′ and pol(x′ ∖ x) ⊆ {+}, i.e. the configuration x′ extends the
configuration x solely by events of +ve polarity. With this notation in place we
can give an attractive characterization of concurrent strategies:

Proposition 4.20. A strategy in a game A comprises a total map of event
structures with polarity σ ∶ S → A such that
(i) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that
x′ ⊆ x & σx′ = y , i.e.

x′_

σ

��

⊆ x_

σ

��
y ⊆+ σx ,

and
(ii) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that x ⊆ x′ & σx′ =
y , i.e.

x_

σ

��

⊆ x′_

σ

��
σx ⊆− y .

Proof. Let σ ∶ S → A be a total map of event structures with polarity. It is
claimed that σ is a strategy iff (i) and (ii).

“Only if”: Lemma 4.5 directly implies (ii). To establish (i) it suffices to show
the seemingly weaker property (i)′ that

y
a

−Ð⊂σx & pol(a) = + Ô⇒ ∃x′ ∈ C(S). x′−Ð⊂x & σx′ = y

for a ∈ A,x ∈ C(S), y ∈ C(A). Then (i), with y ⊆+ σx, follows by considering a
covering chain y−Ð⊂⋯−Ð⊂σx. (The uniqueness of x is a direct consequence of

σ being a total map of event structures.) To show (i)′, suppose y
a

−Ð⊂σx with a
+ve. Then σ(s) = a for some unique s ∈ x with s +ve. Supposing s were not ≤-
maximal in x, then s _ s′ for some s′ ∈ x. By +-innocence a = σ(s) _ σ(s′) ∈ σx



4.5. CONCURRENT STRATEGIES 51

implying a is not ≤-maximal in σx. This contradicts y
a

−Ð⊂σx. Hence s is ≤-
maximal and x′ =def x ∖ {s} ∈ C(S) with x′−Ð⊂x and σx′ = y.

“If”: Assume σ satisfies (i) and (ii). Clearly σ is receptive by (ii). We establish
innocence via Proposition 4.19.

Suppose x
s

−Ð⊂x1
s′

−Ð⊂x′ and pol(s) = + with σx
σ(s′)
−Ð⊂ y2. Then y2

σ(s)
−Ð⊂σx′ with

pol(σ(s)) = +. From (i) we obtain a unique x2 ∈ C(S) such that x2 ⊆ x′ and

σx2 = y2. As σ is a total map of event structures, we obtain x2
s

−Ð⊂x′ and

subsequently x
s′

−Ð⊂x2, as required by Proposition 4.19(ii)+.

Suppose x
s

−Ð⊂x1
s′

−Ð⊂x′ and pol(s′) = − with σx
σ(s′)
−Ð⊂ y2. The case where

pol(s) = + is covered by the previous argument: we obtain x
s′

−Ð⊂x2, as required
by Proposition 4.19(ii)−. Suppose pol(s) = −. We have

σx
σ(s′)
−Ð⊂ y2

σ(s)
−Ð⊂σx′ .

As σ is already known to be receptive, we obtain

x
e′

−Ð⊂x2
e

−Ð⊂x′′ & σx2 = y2 & σx′′ = σx′ .

From the uniqueness part of (ii) we deduce x′′ = x′. As σ is a total map of event

structures, e = s and e′ = s′ ensuring x
s′

−Ð⊂ , as required by Proposition 4.19(ii)−.
◻

As its proof makes clear, condition (i) in Proposition 4.20 can be replaced
by: for all a ∈ A,x ∈ C(S), y ∈ C(A),

y
+

−Ð⊂σx Ô⇒ ∃x′ ∈ C(S). x′−Ð⊂x & σx′ = y , i.e.

x′_

σ

��

−Ð⊂ x_

σ

��
y +−Ð⊂ σx ,

where the relation
+

−Ð⊂ signifies the covering relation induced by an event of
+ve polarity.

The proposition above generalises to the situation in which configurations
may be infinite, but first a lemma extending receptivity to possibly infinite
configurations.

Lemma 4.21. Let σ ∶ S → A be receptive and −-innocent. Then,

σx
a

−Ð⊂ & polA(a) = − ⇒ ∃!s ∈ S. x
s

−Ð⊂ & σ(s) = a ,

for all x ∈ C∞(S), a ∈ A.



52 CHAPTER 4. GAMES AND STRATEGIES

Proof. Suppose σx
a

−Ð⊂ and polA(a) = −. Then there is x0 ∈C(S) with x0 ⊆ x and

σx0
a

−Ð⊂ . By receptivity, there is a unique s ∈ S such that x0
s

−Ð⊂ & σ(s) = a.
In fact, x ∪ {s} ∈ C∞(S). Suppose otherwise. Then there is x1 ∈ C(S) with

x0 ⊆ x1 ⊆ x for which x1 ∪ {s} ∉ C(S). But σx1
a

−Ð⊂ so there is a unique s1 ∈ S

such that x1
s1
−Ð⊂ & σ(s1) = a. Both [s) and [s1) are included in x1 so s = s1

by Lemma 4.4—a contradiction. Now that x ∪ {s} ∈ C∞(S) we have x
s

−Ð⊂ and

σ(s) = a. Uniqueness of s follows by Lemma 4.4: if also x
s′

−Ð⊂ and σ(s′) = a
then [s) ↑ [s′).

Corollary 4.22. A strategy in a game A comprises a total map of event struc-
tures with polarity σ ∶ S → A such that
(i) whenever y ⊆+ σx in C∞(A) there is a (necessarily unique) x′ ∈ C∞(S) so
that x′ ⊆ x & σx′ = y , i.e.

x′_

σ

��

⊆ x_

σ

��
y ⊆+ σx ,

and
(ii) whenever σx ⊆− y in C∞(A) there is a unique x′ ∈ C∞(S) so that x ⊆
x′ & σx′ = y , i.e.

x_

σ

��

⊆ x′_

σ

��
σx ⊆− y .

Proof. Let σ ∶ S → A be a total map of event structures with polarity. It
is claimed that σ is a strategy iff (i) and (ii). The “If” case is obvious by
Proposition 4.20. “Only if”:
(i) Take x′ =def {s ∈ x ∣ σ(s) ∉ (σx) ∖ y}. Suppose s′ _ s in x. Then

σ(s′) ∈ (σx) ∖ y Ô⇒ σ(s) ∈ (σx) ∖ y

by +-innocence. Hence its contrapositive, viz.

σ(s) ∉ (σx) ∖ y Ô⇒ σ(s′) ∉ (σx) ∖ y ,

so that s ∈ x′ implies s′ ∈ x′. Thus, being down-closed and consistent, x′ ∈ C∞(S)
with σx′ = y from the definition of x′.
(ii) Let x′ ⊇ x be a ⊆-maximal x′ ∈ C∞(S) for which σx′ ⊆ y—this exists by
Zorn’s lemma. Then, σx ⊆− σx′ ⊆− y. Supposing σx′ ⊊− y there is a ∈ A with

polA(a) = − such that σx′
a

−Ð⊂ y1 ⊊− y. But, by Lemma 4.21, there is s ∈ S for

which x′
s

−Ð⊂ and σ(s) = a, contradicting the ⊆-maximality of x′. Hence σx′ = y.
Uniqueness of x′ follows as in the proof of Lemma 4.5. ◻



4.5. CONCURRENT STRATEGIES 53

Via +-moves

A strategy is determined by its +-moves. More precisely, a strategy σ ∶ S → A
determines a monotone function d ∶ C(S+) → C(A) given by d(x) = σ[x]S for
x ∈C(S+). The event structure S+ is the projection of S to its purely +-ve moves.
Intuitively, d specifies the position in the game at which Player moves occur.
The function d determines the original strategy σ via the universal property
described in the proposition below.

Proposition 4.23. Let σ ∶ S → A be a receptive −-innocent pre-strategy. Define
q ∶ S → S+ be the partial map of event structures with polarity mapping S to
its projection S+ comprising only the +ve events of S, so q y = y+ for y ∈ C(S).
Define the function d ∶ C(S+) → C(A) to act as d(x) = σ[x]S for x ∈ C(S+).
Then, d(qy) ⊆− σy for all y ∈ C(S), i.e.

S

σ ⊆−

��

q // S+

d}}
A.

(1)

[The dotted line indicates that d is not a map of event structures.]
Suppose f ∶ U → A is a total map and g ∶ U → S+ a partial map of event
structures with polarity such that d(gy) ⊆− fy for all y ∈ C(U), i.e.

U

f ⊆−

��

g // S+

d}}
A.

(2)

Then, there is a unique total map of event structures with polarity θ ∶ U → S
such that f = σθ and g = qθ,

U

f ,,

θ //

g

��
S

σ ⊆−

��

q
// S+

d}}
A.

(3)

Proof. We first check (1). Letting y ∈ C(S),

d(q y) = d(y+) = σ[y+]S ⊆− y .

Suppose (2). Define p ∶ C(U) → C(S) by taking

p(z) =def [g z]S .

Clearly p is monotonic and

σp(z) = σ[g z]S = d(gz) ⊆− f z



54 CHAPTER 4. GAMES AND STRATEGIES

for all z ∈ C(U). By Lemma 4.16, there is a unique total map of event structures
with polarity θ ∶ U → S such that

f = σθ and ∀z ∈ C(U). p(z) ⊆− θ z .

From the latter, [g z]S ⊆− θz from which g z = (g z)+ = (θ z)+, so g z = qθ z, for
all z ∈ C(U). Hence we have the commuting diagram (3). Noting

∀z ∈ C(U). g z = (θ z)+ ⇐⇒ [g z]S ⊆− θz ,

we see that θ is the unique map making (3) commute.

It follows that a strategy σ is determined up to isomorphism by its ‘position
function’ d specifying at what state of the game Player moves are made. The
position functions d which arise from strategies have been characterized by Alex
Katovsky and GW [13].

4.6 Rigid-image strategies

It can be useful to replace a strategy by its rigid image in its game. As is to
be expected something can be lost in the process. Precisely what is related
to notions of equivalence between strategies. For now suffice it to say, that
while ‘may’ behaviour is preserved, ‘must’ behaviour need not be. What is
gained is that we can replace the bicategory of games by a category; a rigid-
image strategy can be identified with its rigid image, a substructure of the
game so we have canonical representatives of isomorphism classes of rigid-image
strategies. Rigid images are important for equivalences on strategies. For several
important behavioural equivalences, a representative of an equivallence class
of strategies can be found in their sharing a common rigid image and some
additional structure (probability or stopping configurations, for instance).

A strategy σ ∶ S → A factors through its rigid image

S
f // S0

σ0 // A

where f is rigid surjective and σ0 ∶ S0 → A is itself a strategy. In a rigid-image
strategy such as σ0 ∶ S0 → A the rigid image S0 is bounded to be a substructure
of aug(A). This provides us with a characterisation of rigid-image strategies.
A rigid-image strategy in a game A is an innocent, receptive substructure S0 of
aug(A) in the sense that there is a rigid inclusion i0 ∶ S0 ↪ aug(A) for which
the composition εA ○ i0 is innocent and i0 is receptive. In other words S0 is a
down-closed subset of aug(A) which is closed under possible Opponent moves
and comprises only innocent augmentations of A.

The following example shows that the composition of the rigid images of two
strategies is not necessarily a rigid image, both for composition of strategies with
and without hiding.



4.6. RIGID-IMAGE STRATEGIES 55

Example 4.24. Let B be the game

⊕

⊖ ⊕ ⊖ .
�llr

Let C be the game consisting of a single Player move ⊕. Let σ ∶ S → B be the
strategy sending S equal to

⊕ ⊕

⊖

_LLR > 99D

⊕ ⊖ .

�[[e

�llr

to B in the obvious way indicated by the layout. Let τ ∶ T → B⊥∥C be the
strategy sending T equal to

⊖
� ,,2⊕

⊕ ⊖
�llr ⊕

�llr

to B⊥∥C, which we can draw as

⊖ ⊕

⊕ ⊖ ⊕ ,
�llr

in the obvious way. Their composition, before hiding, is given by T ⊛ S:

⊕

⊚

. 33;

⊚
� ,,2⊕

⊚

_LLR > 99D

⊚
�llr ⊚ .

�llr

Both σ and τ are rigid-image strategies yet there composition both before and
after hiding is not. Before hiding the two Player moves in T⊛S over the common
move in C go to a common image. After hiding T⊙S looks like

⊕

⊕

withn both moves going to the common sole move in C; while distinct they
clearly go to a common event in the rigid image. ◻



56 CHAPTER 4. GAMES AND STRATEGIES

So the compositions, with and without hiding, τ0⊙σ0 and τ0 ⊛ σ0 of the
rigid images of two strategies σ and τ is not necessarily a rigid-image strategies,
we are forced to take the rigid image of the result. However once we do, the
operation of forming the rigid image of a strategy respects composition, both
with and without hiding: letting σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be strategies,
(τ⊙σ)0 = (τ0⊙σ0)0 and (τ ⊛ σ)0 = (τ0 ⊛ σ0)0, as we shall now show in the
following.

Proposition 4.25. Let f ∶ A → B and g ∶ B → C be maps of event structures.
Assume that f is rigid and epi. Then, the rigid image of g equals the rigid image
of g ○ f .

Proof. Write the rigid image of g as Im(g) and the rigid image of gf as Im(gf).
From the universal property associated with the rigid image of gf there is a
unique (necessarily rigid epi) map h ∶ Im(g) → Im(gf) such that

A

(( ((

f // // B
g0 // // Im(g)

h

��

g1 // C

Im(f)g

<<

commutes. Write l =def hg0. Then l is rigid epi being the composition of such.
From the universal property associated with the rigid image of g there is a
unique (necessarily rigid epi) map k ∶ Im(g)f → Im(g) such that

B

l "" ""

g0 // // Im(g)
g1 // C

Im(gf)

<<

k

OO

commutes. By uniqueness of the universal property of the rigid-image of g we
obtain kh = idIm(g). By uniqueness of the universal property of the rigid-image
of gf we obtain hk = idIm(gf). Hence the rigid images are isomorphic. Because
they are chosen to be substructures of aug(C) they are equal.

Corollary 4.26. If two strategies are connected by a 2-cell which is rigid epi,
then they share the same rigid image..

Lemma 4.27. Let σ ∶ S
f // S0

σ0 // A⊥∥B and τ ∶ T
g // T0

τ0 // B⊥∥C

be the rigid image factorisations of strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C.
Then,

(i) (τ0 ⊛ σ0)0 = (τ ⊛ σ)0 and (ii) (τ0⊙σ0)0 = (τ⊙σ)0 .



4.6. RIGID-IMAGE STRATEGIES 57

Proof. (i) Consider the following compound pullback square in which all the
squares are pullbacks—we are ignoring polarites.

T ⊛ S
g⊛S

xx

T⊛f

&&
g⊛f

��

T0 ⊛ S

{{ T0⊛f &&

T ⊛ S0

g⊛S0xx $$
S∥C

f∥C ##

T0 ⊛ S0

yy &&��

A∥T

A∥g{{
S0∥C

σ0∥C %%

(T0 ⊛ S0)0

(τ0⊛σ0)0

��

A∥T0

A∥τ0yy
A∥B∥C

In the diagram we have inserted the rigid-image factorisation of the map T0 ⊛
S0 → A∥B∥C. Notice that in the uppermost square all the maps are rigid epi
being the pullbacks of such maps. Consequently g⊛f is rigid epi. Now applying
Corollary 4.26 we deduce that the rigid image of the map T ⊛ S coincides with
that of T0 ⊛ S0 in A∥B∥C and is therefore (T0 ⊛ S0)0. This ensures that

(τ0 ⊛ σ0)0 = (τ ⊛ σ)0 .

(ii) We can also deduce
(τ0⊙σ0)0 = (τ⊙σ)0 .

Recall we obtain τ⊙σ as the defined part of the partial map

T ⊛ S
τ⊛σ // A∥B∥C // A∥C

and similarly τ0⊙σ0 as the defined part of the partial map

T0 ⊛ S0
τ0⊛σ0 // A∥B∥C // A∥C

—in both cases the map A∥B∥C → A∥C is that eliding B. From the diagram
in (i) we see

τ ⊛ σ = (τ0 ⊛ σ0) ○ (g ⊛ f) .

In the commuting diagram

T ⊛ S

��

g⊛f // T0 ⊛ S0

��
T⊙S

τ⊙σ $$

g⊙f // T0⊙S0

τ0⊙σ0

��
A∥C



58 CHAPTER 4. GAMES AND STRATEGIES

we have filled in the total map g⊙f given by the universal property of partial-
total factorisation. As in (i) above g⊛f is rigid epi. It follows that the map g⊙f
is also rigid epi: the map g⊙f preserves causal dependency because g⊛f does; it

is epi because the composite map T ⊛ S
g⊛f // T0 ⊛ S0

// T0⊙S0 is epi—the
latter projection map is epi. Now by Corollary 4.26 we deduce that τ0⊙σ0 and
τ⊙σ share the same rigid image in A∥C. Consequently (τ0⊙σ0)0 = (τ⊙σ)0.

Let Games0 be the order-enriched category of rigid-image strategies defined
as follows. Its objects are games. Its maps are rigid-image strategies. Its 2-cells
are rigid 2-cells between strategies which are necessarily rigid inclusions as they
are between rigid images. Under composition composable strategies σ and τ
are taken to (τ⊙σ)0. Recall that in a copycat strategy γA ∶ CCA → A⊥∥A the
underlying function of the map γA acts as the identity on events; this ensures
that copycat strategies are rigid-image.

The operation of taking the rigid image of a strategy yields a functor from
Gamesr, the bicategory of strategies with with rigid 2-cells, to Games0. From
the results above composition is preserved. A rigid 2-cell f ∶ σ ⇒ τ is sent to a
rigid inclusion between their rigid images: by taking its image, any rigid 2-cell
between strategies factors into a 2-cell which is a rigid epi, followed by 2-cells
which is a rigid inclusion; strategies connected by a rigid epi share the same
rigid image, while rigid inclusions are preserved in taking the rigid image.



Chapter 5

Deterministic strategies

This chapter concentrates on the important special case of deterministic con-
current strategies and their properties. They are shown to coincide with Melliès
and Mimram’s receptive ingenuous strategies.

5.1 Definition

We say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg[X] ∈ ConS Ô⇒ X ∈ ConS ,

where Neg[X] =def {s′ ∈ S ∣ pol(s′) = − & ∃s ∈X. s′ ≤ s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends
only on a consistent set of opponent moves. Say a strategy σ ∶ S → A is
deterministic if S is deterministic.

Lemma 5.1. An event structure with polarityS is deterministic iff

∀s, s′ ∈ S,x ∈ C(S). x
s

−Ð⊂ & x
s′

−Ð⊂ & pol(s) = + Ô⇒ x ∪ {s, s′} ∈ C(S) .

Proof. “Only if”: Assume S is deterministic, x
s

−Ð⊂ , x
s′

−Ð⊂ and pol(s) = +. Take
X =def x∪{s, s′}. Then Neg[X] ⊆ x∪{s} so Neg[X] ∈ ConS . As S is determin-
istic, X ∈ ConS and being down-closed X = x ∪ {s, s′} ∈ C(S).
“If”: Assume S satisfies the property stated above in the proposition. Let
X ⊆fin S with Neg[X] ∈ ConS . Then the down-closure [Neg[X]] ∈ C(S). Clearly
[Neg[X]] ⊆ [X] where all events in [X] ∖ [Neg[X]] are necessarily +ve. Sup-
pose, to obtain a contradiction, that X ∉ ConS . Then there is a maximal
z ∈ C(S) such that

[Neg[X]] ⊆ z ⊆ [X]

and some e ∈ [X] ∖ z, necessarily +ve, for which [e) ⊆ z. Take a covering chain

[e)
s1
−Ð⊂ z1

s2
−Ð⊂⋯

sk
−Ð⊂ zk = z .

59



60 CHAPTER 5. DETERMINISTIC STRATEGIES

As [e)
e

−Ð⊂[e] with e +ve, by repeated use of the property of the lemma—

illustrated below—we obtain z
e

−Ð⊂ z′ in C(S) with [Neg[X]] ⊆ z′ ⊆ [X] , which
contradicts the maximality of z.

[e] −Ð⊂
s1

z′1 −Ð⊂
s2

⋯ −Ð⊂
sk

z′k = z′

[e)

−Ð
⊂

e

−Ð⊂
s1

z1

−Ð
⊂

e

−Ð⊂
s2

⋯

⋯

−Ð⊂
sk

zk

−Ð
⊂

e

= z

So, above, an event structure with polarity can fail to be deterministic in
two ways, either with pol(s) = pol(s′) = + or with pol(s) = + & pol(s′) = −. In
general for an event structure with polarity A the copy-cat strategy can fail to
be deterministic in either way, illustrated in the examples below.

Example 5.2. (i) Take A to consist of two +ve events and one −ve event, with
any two but not all three events consistent. The construction of CCA is pictured:

⊖ _ ⊕

A⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

Here γA is not deterministic: take x to be the set of all three −ve events in CCA
and s, s′ to be the two +ve events in the A component.
(ii) Take A to consist of two events, one +ve and one −ve event, inconsistent
with each other. The construction CCA:

A⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

To see CCA is not deterministic, take x to be the singleton set consisting e.g. of
the −ve event on the left and s, s′ to be the +ve and −ve events on the right.

5.2 The bicategory of deterministic strategies

We first characterize those games for which copy-cat is deterministic; they only
allow immediate conflict between events of the same polarity; there can be no
races between Player and Opponent moves.

Lemma 5.3. Let A be an event structure with polarity. The copy-cat strategy
γA is deterministic iff A satisfies

∀x ∈ C(A). x
a

−Ð⊂ & x
a′

−Ð⊂ & pol(a) = + & pol(a′) = − Ô⇒ x ∪ {a, a′} ∈ C(A) .
(race-free)

Proof. “Only if”: Suppose x ∈ C(A) with x
a

−Ð⊂ and x
a′

−Ð⊂ where pol(a) = + and
pol(a′) = −. Construct y =def {(1, b) ∣ b ∈ x} ∪ {(1, a)} ∪ {(2, b) ∣ b ∈ x}. Then



5.2. THE BICATEGORY OF DETERMINISTIC STRATEGIES 61

y ∈ C(CCA) with y
(2,a)
−Ð⊂ and y

(2,a′)
−Ð⊂ , by Proposition 4.1(ii). Assuming CCA is

deterministic, we obtain y ∪ {(2, a), (2, a′)} ∈ C(CCA), so y ∪ {(2, a), (2, a′)} ∈
C(A⊥∥A). This entails x ∪ {a, a′} ∈ C(A), as required to show (race-free).
“If”: Assume A satisfies (race-free). It suffices to show for X ⊆fin CCA, with
X down-closed, that Neg[X] ∈ ConCCA implies X ∈ ConCCA . Recall Z ∈ ConCCA

iff Z ∈ ConA⊥∥A.
Let X ⊆fin CCA with X down-closed. Assume Neg[X] ∈ ConCCA . Observe

(i) {c ∣ c ∈X & pol(c) = −} ⊆ Neg[X] and

(ii) {c ∣ c ∈X & pol(c) = +} ⊆ Neg[X] as by Proposition 4.1, X being down-
closed must contain c if it contains c with pol(c) = +.

Consider X2 =def {a ∣ (2, a) ∈X}. Then X2 is a finite down-closed subset of A.
From (i),

X−
2 =def {a ∈X2 ∣ pol(a) = −} ∈ ConA .

From (ii),
X+

2 =def {a ∈X2 ∣ pol(a) = +} ∈ ConA .

We show (race-free) implies X2 ∈ ConA.
Define z− =def [X−

2 ] and z+ =def [X+
2 ]. Being down-closures of consistent

sets, z−, z+ ∈ C(A). We show z− ↑ z+ in C(A). First note z− ∩ z+ ∈ C(A). If
a ∈ z− ∖ z− ∩ z+ then pol(a) = −; otherwise, if pol(a) = + then a ∈ z+ a well as
a ∈ z− making a ∈ z− ∩ z+, a contradiction. Similarly, if a ∈ z+ ∖ z− ∩ z+ then
pol(a) = +. We can form covering chains

z− ∩ z+
p1

−Ð⊂x1

p2

−Ð⊂⋯
pk
−Ð⊂xk = z

− and z− ∩ z+
n1
−Ð⊂ y1

n2
−Ð⊂⋯

nl
−Ð⊂ yl = z

+

where each pi is +ve and each nj is −ve.
Consequently, by repeated use of (race-free), we obtain xk ∪ yl ∈ C(A),

i.e. z+ ∪ z− ∈ C(A), as is illustrated below. But X2 ⊆ z+ ∪ z−, so X2 ∈ ConA.
A similar argument shows X1 =def {a ∈ A⊥ ∣ (1, a) ∈X} ∈ ConA⊥ . It follows that
X ∈ ConA⊥∥A, so X ∈ ConCCA as required.

yl −Ð⊂
p1

x1 ∪ yl −Ð⊂
p2

x2 ∪ yl −Ð⊂
p3

⋯ −Ð⊂
pk

xk ∪ yl

⋮

−Ð
⊂nl

⋮

−Ð
⊂nl

⋮ ⋯

−Ð
⊂nl

⋯ ⋯ ⋮

−Ð
⊂nl

y1

−Ð
⊂n2

−Ð⊂
p1

x1 ∪ y1

−Ð
⊂n2

−Ð⊂
p2

x2 ∪ y1 −Ð⊂
p3

−Ð
⊂n2

⋯ −Ð⊂
pk

xk ∪ y1

−Ð
⊂n2

z− ∩ z+

−Ð
⊂n1

−Ð⊂
p1

x1

−Ð
⊂n1

−Ð⊂
p2

x2 −Ð⊂
p3

−Ð
⊂n1

⋯ −Ð⊂
pk

xk

−Ð
⊂n1



62 CHAPTER 5. DETERMINISTIC STRATEGIES

Proposition 5.4. Let A be an event structure with polarity. Then, A satisfies
(race-free) iff

∀x,x1, x2 ∈ C(A). x ⊆+ x1 & x ⊆− x2 Ô⇒ x1 ∪ x2 ∈ C(A) .

Proof. “If” is obvious. “Only if”: by repeated use of (race-free) as in the
proof of Lemma 5.3.

Via the next lemma, when games satisfy (race-free) we can simplify the
condition for a strategy to be deterministic.

Lemma 5.5. Let σ ∶ S → A be a strategy. Suppose x
s

−Ð⊂ y & x
s′

−Ð⊂ y′ & polS(s) =
− . Then, σy ↑ σy′ in C(A) Ô⇒ y ↑ y′ in C(S) . A fortiori, if A satisfies
(race-free) then so does S.

Proof. Assume σy ↑ σy′ in C(A), so σy′
σ(s)
−Ð⊂σy∪σy′ in C(A). As σ(s) is −ve, by

receptivity, there is a unique s′′ ∈ S, necessarily −ve, such that σ(s′′) = σ(s) and

y′
s′′

−Ð⊂x ∪ {s′, s′′} in C(S). In particular, x ∪ {s′, s′′} ∈ C(S). By −-innocence,

we cannot have s′ _ s′′, so x ∪ {s′′} ∈ C(S). But now x
s

−Ð⊂ and x
s′′

−Ð⊂ with
σ(s) = σ(s′′) and both s, s′′ −ve and hence s′′ = s by the uniqueness part of
receptivity. We conclude that x ∪ {s′, s} ∈ C(S) so y ↑ y′.

Corollary 5.6. Assume A satisfies (race-free) of Lemma 5.3. A strategy
σ ∶ S → A is deterministic iff it is weakly-deterministic, i.e. for all +ve events
s, s′ ∈ S and configurations x ∈ C(S),

x
s

−Ð⊂ & x
s′

−Ð⊂ Ô⇒ x ∪ {s, s′} ∈ C(S) .

Proof. “Only if”: clear. “If”: Let x
s

−Ð⊂ and x
s′

−Ð⊂ where polS(s) = +. For S to
be deterministic we require x ∪ {s, s′} ∈ C(S). The above assumption ensures

this when polS(s
′) = +. Otherwise polS(s

′) = − with σx
σ(s)
−Ð⊂ and σx

σ(s′)
−Ð⊂ . As A

satisfies (race-free), σx ∪ σ(s), σ(s′) ∈ C(A). Now by Lemma 5.5, x ∪ {s, s′} ∈
C(S).

Lemma 5.7. The composition τ⊙σ of deterministic strategies σ and τ is de-
terministic.

Proof. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be deterministic strategies. The
composition T⊙S is constructed as Pr(C(T )⊙ C(S)) ↓ V , a synchronized com-
position of event structures S and T projected to visible events e ∈ V where
top(e) has the form (s,∗) or (∗, t).

We first note a fact about the effect of internal, or “invisible,” events not in
V on configurations of C(T )⊙C(S). If

z
(s,t)
−Ð⊂w & z

(s′,t′)
−Ð⊂ w′ & w � w′ (1)



5.2. THE BICATEGORY OF DETERMINISTIC STRATEGIES 63

within C(T )⊙C(S), then either

π1z
s

−Ð⊂π1w & π1z
s′

−Ð⊂π1w
′ & π1w � π1w

′ , (2)

within C(S), or

π2z
t

−Ð⊂π2w & π2z
t′

−Ð⊂π2w
′ & π2w � π2w

′ , (3)

within C(T ). Assume (1). If t = t′ then σ(s) = τ(t) = τ(t′) = σ(s′) and we obtain
(2) as σ is a map of event structures. Similarly if s = s′ then (3). Supposing
s /= s′ and t /= t′ then if both (2) and (3) failed we could construct a configuration
z′ =def z ∪ {(s, t), (s′, t)} of C(T )⊙C(S), contradicting (1); it is easy to check
that z′ is a configuration of the product C(S) × C(T ) and its events are clearly
within the restriction used in defining the synchronized composition.

We now show the impossibility of (2) and (3), and so (1). Assume (2) (case
(3) is similar). One of s or s′ being +ve would contradict S being deterministic.
Suppose otherwise, that both s and s′ are −ve. Then, because σ is a strategy,
by Lemma 5.5, we have

σ2π1w � σ2π1w
′

in C(B). Also, then both t and t′ are +ve ensuring π2w ↑ π2w
′ in C(T ), as T is

deterministic. This entails
τ1π2w ↑ τ1π2w

′

in C(B⊥). But σ2π1w and τ1π2w, respectively σ2π1w
′ and τ1π2w

′, are the same
configurations on the common event structure underlying B and B⊥, of which
we have obtained contradictory statements of compatibility.

As (1) is impossible, it follows that

z
(s,t)
−Ð⊂w & z

(s′,t′)
−Ð⊂ w′ Ô⇒ w ↑ w′ (4)

within C(T )⊙C(S).

Finally, we can show that τ⊙σ is deterministic. Suppose x
p

−Ð⊂ y and x
p′

−Ð⊂ y′

in C(T⊙S) with pol(p) = +. Then,

⋃x
e1
−Ð⊂ z1

e2
−Ð⊂⋯

ek
−Ð⊂ zk = ⋃ y and ⋃x

e′1
−Ð⊂ z′1

e′2
−Ð⊂⋯

e′l
−Ð⊂ z′l = ⋃ y′

in C(T )⊙ C(S), where ek = top(p) and e′l = top(p′), and the events ei and e′j
otherwise have the form ei = (si, ti), when 1 ≤ i < k, and e′j = (s′j , t

′
j), when

1 ≤ j < l. By repeated use of (4) we obtain zk−1 ↑ z
′
l−1. (The argument is like

that ending the proof of Lemma 5.3, though with the minor difference that now

we may have ei = e
′
j .) We obtain w =def zk−1 ∪ z

′
l−1 ∈ C(T )⊙C(S) with w

ek
−Ð⊂

and w
e′l
−Ð⊂ and pol(ek) = +.

Now, w ∪ {ek, e
′
l} ∈ C(T )⊙C(S) provided w ∪ {ek, e

′
l} ∈ C(S) × C(T ). Inspect

the definition of configurations of the product of stable families in Section 3.3.1.



64 CHAPTER 5. DETERMINISTIC STRATEGIES

If ek and e′l have the form (s,∗) and (s′,∗) respectively, then determinacy of S
ensures that the projection π1w ∪ {s, s′} ∈ C(S) whence w ∪ {ek, e

′
l} meets the

conditions needed to be in C(S) × C(T ). Similarly, w ∪ {ek, e
′
l} ∈ C(S) × C(T )

if ek and e′l have the form (∗, t) and (∗, t′). Otherwise one of ek and e′l has the
form (s,∗) and the other (∗, t). In this case again an inspection of the definition
of configurations of the product yields w ∪ {ek, e

′
l} ∈ C(S) × C(T ). Forming the

set of primes of w ∪ {ek, e
′
l} in V we obtain x ∪ {p, p′} ∈ C(T⊙S).

This establishes that T⊙S is deterministic.

We thus obtain a sub-bicategory DGames of Games; its objects satisfy
(race-free) of Lemma 5.3 and its maps are deterministic strategies.

5.3 A category of deterministic strategies

In fact, DGames is equivalent to an order-enriched category via the following
lemma. It says weakly-deterministic strategies in a game A are essentially cer-
tain subfamilies of configurations C(A), for which we give a characterization
in the case of deterministic strategies. Recall, from Corollary 5.6, a weakly-
deterministic strategy σ ∶ S → A is a a strategy in which for all +ve events
s, s′ ∈ S and configurations x ∈ C(S),

x
s

−Ð⊂ & x
s′

−Ð⊂ Ô⇒ x ∪ {s, s′} ∈ C(S) .

Lemma 5.8. Let σ ∶ S → A be a weakly-deterministic strategy. Then,

σx ⊆ σy Ô⇒ x ⊆ y

for all x, y ∈ C(S). In particular, a weakly-deterministic strategy σ is injective
on configurations, i.e., σx = σy implies x = y, for all x, y ∈ C(S) (so is mono as
a map of event structures).

Proof. Let σ ∶ S → A be a weakly-deterministic strategy. We show
x ⊇ z−⊂y & σy ⊆ σx Ô⇒ y ⊆ x ,

for x, y, z ∈ C(S), by induction on ∣x ∖ z∣.

Suppose x ⊇ z
e

−Ð⊂ y and σy ⊆ σx. There are x1 and event e1 ∈ S such that

z
e1
−Ð⊂x1 ⊆ x. If σ(e1) = σ(e) then e1 and e have the same polarity; if −ve, e1 = e

by receptivity; if +ve, e1 = e because σ is weakly-deterministic, using its local
injectivity. Either way y ⊆ x. Suppose σ(e1) /= σ(e). We show in all cases
y ∪ {e1} ⊆ x, so y ⊆ x.
Case pol(e1) = pol(e) = +: As σ is weakly-deterministic, e1 and e are concurrent

giving x1
e

−Ð⊂ y ∪ {e1}. By induction we obtain y ∪ {e1} ⊆ x.
Case pol(e) = − or pol(e1) = −: From Lemma 5.5, we deduce that e1 and e are

concurrent yielding x1
e

−Ð⊂ y ∪ {e1}, and by induction y ∪ {e1} ⊆ x.
Another, simpler induction on ∣y ∖ z∣ now yields

x ⊇ z ⊆ y & σy ⊆ σx Ô⇒ y ⊆ x ,
for x, y, z ∈ C(S), from which the result follows (taking z to be, for instance, ∅
or x ∩ y). Injectivity of σ as a function on configurations is now obvious.



5.3. A CATEGORY OF DETERMINISTIC STRATEGIES 65

A deterministic strategy σ ∶ S → A determines, as the image of the configu-
rations C(S), a subfamily F =def σC(S) of configurations of C(A), satisfying:

reachability: ∅ ∈ F and if x ∈ F there is a covering chain ∅
a1
−Ð⊂x1

a2
−Ð⊂⋯

ak
−Ð⊂xk = x

within F ;

determinacy: If x
a

−Ð⊂ and x
a′

−Ð⊂ in F with polA(a) = +, then x ∪ {a, a′} ∈ F ;

receptivity: If x ∈ F and x
a

−Ð⊂ in C(A) and polA(a) = −, then x ∪ {a} ∈ F ;

+-innocence: If x
a

−Ð⊂x1
a′

−Ð⊂ & polA(a) = + in F and x
a′

−Ð⊂ in C(A), then x
a′

−Ð⊂
in F (here receptivity implies −-innocence);

cube: In F , x1

b

� p

e � �y1

b

� o
x

a

. �

b

� p

y
e � �z

x2

a

. �

e
� �y2

a

/ �

implies x1

e � �y1

b

� p
x

e � �

a

. �

b

� p

w

a

. �

b

� p

z

x2 e
� �y2

a

. �

Theorem 5.9. A subfamily F ⊆ C(A) satisfies the axioms above iff there is a
deterministic strategy σ ∶ S → A such that F = σC(S), the image of C(S) under
σ.

Proof. (Sketch) It is routine to check that F , the image σC(S) of a deterministic
strategy, satisfies the axioms. Conversely, suppose a subfamily F ⊆C(A) satisfies
the axioms. We show F is a stable family. First note that from the axioms of
determinacy and receptivity we can deduce:

if x
a

−Ð⊂ and x
a′

−Ð⊂ in F with x ∪ {a, a′} ∈ C(A), then x ∪ {a, a′} ∈ F .

By repeated use of this property, using their reachability, if x, y ∈ F and x ↑ y
in C(A) then x ∪ y ∈ F ; the proof also yields a covering chain from x to x ∪ y
and from y to x ∪ y. (In particular, if x ⊆ y in F , then there is a covering chain
from x to y —a fact we shall use shortly.) Thus, if x ↑ y in F then x∪y ∈ F . As
also ∅ ∈ F , we obtain Completeness, required of a stable family. Coincidence-
freeness is a direct consequence of reachability. Repeated use of the cube axiom
yields

Cube: In F , x1

⊆

e � �y1

⊆

x1 ∩ x2

⊆

⊆

x1 ∪ x2
e � �y1 ∪ y2

x2

⊆

e
� �y2

⊆

implies

x1 ∩ x2
e � � .

We use Cube to show stability. Assume v ↑ w in F . Let z ∈ F be maximal such
that z ⊆ v,w. We show z = v ∩w. Suppose not. Then, forming covering chains
in F ,

z
c1
−Ð⊂ v1

c2
−Ð⊂⋯

ck
−Ð⊂ vk = v and z

d1
−Ð⊂w1

d2
−Ð⊂⋯

dl
−Ð⊂wl = w ,



66 CHAPTER 5. DETERMINISTIC STRATEGIES

there are ci and dj such that ci = dj , where we may assume ci is the earliest
event to be repeated as some dj . Write e =def ci = dj . Now, vi−1 ∩ wj−1 = z.
Also, being bounded above vi−1∪wj−1 ∈ F and vi∪wj ∈ F . We have an instance

of Cube: take x1 = vi−1, x2 = wj−1, y1 = vi and y2 = wj . Hence z
e

−Ð⊂ and
z ∪ {e} ⊆ x, y—contradicting the maximality of z. Therefore z = v ∩ w, as
required for stability.

Now we can form an event structure S =def Pr(F ). The inclusion F ⊆ C(A)
induces a total map σ ∶ S → A for which F = σC(S). Note that −-innocence (viz.

if x
a

−Ð⊂x1
a′

−Ð⊂ & polA(a
′) = − in F and x

a′

−Ð⊂ inC(A), then x
a′

−Ð⊂ in F ) is a direct
consequence of receptivity. That S is deterministic follows from determinacy,
that σ is a strategy from the axioms of receptivity and +-innocence.

We can thus identify deterministic strategies from A to B with subfamilies
of C(A⊥∥B) satisfying the axioms above. Through this identification we obtain
an order-enriched category of deterministic strategies (presented as subfamilies)
equivalent to DGames; the order-enrichment is via the inclusion of subfamilies.
As the proof of Theorem 5.9 above makes clear, in the characterization of those
subfamilies F corresponding to deterministic families, the cube axiom can be
replaced by

stability: if v ↑ w in F , then v ∩w ∈ F .



Chapter 6

Games people play

We briefly and incompletely examine special cases of nondeterministic concur-
rent games in the literature.

6.1 Categories for games

We remark that event structures with polarity appear to provide a rich environ-
ment in which to explore structural properties of games and strategies. There
are adjunctions

PAr � � //

��

⊺ PFr � � //⊺
oo

��

PEr � � //⊺
oo

PEt
oo

PA#
r �
� //⊺

?�

OO
⊢

PF#
r

oo ?�

OO
⊢

relating PEt, the category of event structures with polarity with total maps,
to subcategories PEr, with rigid maps, PFr of forest-like (or filiform) event
structures with rigid maps, and PAr, its full subcategory where polarities al-
ternate along a branch; in PF#

r and PA#
r distinct branches are inconsistent.

We shall mainly be considering games in PEt. Lamarche games and those of
sequential algorithms belong to PAr [14]. Conway games inhabit PF#

r , in fact
a coreflective subcategory of PEt as the inclusion is now full; Conway’s ‘sum’ is
obtained by applying the right adjoint to the ∥-composition of Conway games
in PEt. Further refinements are possible. The ‘simple games’ of [15, 16] belong
to PAr

−#, the coreflective subcategory of PA#
r comprising “polarized” games,

starting with moves of Opponent. The ‘tensor’ of simple games is recovered
by applying the right adjoint of PAr

−# ↪ PEt to their ∥-composition in PEt.
Generally, the right adjoints, got by composition, from PEt to the other cate-
gories fail to conserve immediate causal dependency. Such facts led Melliès et
al. to the insight that uses of pointers in game semantics can be an artifact of
working with models of games which do not take account of the independence
of moves [17, 12].

67



68 CHAPTER 6. GAMES PEOPLE PLAY

6.2 Related work—early results

6.2.1 Stable spans, profunctors and stable functions

The sub-bicategory of Games where the events of games are purely +ve is equiv-
alent to the bicategory of stable spans [9]. In this case, strategies correspond to
stable spans:

S

σ1

~~

σ2

��
A⊥ B

←→ S+

σ−1

~~

σ+2

!!
A B ,

where S+ is the projection of S to its +ve events; σ+2 is the restriction of σ2 to
S+, necessarily a rigid map by innocence; σ−2 is a demand map taking x ∈ C(S+)
to σ−1 (x) = σ1[x] ; here [x] is the down-closure of x in S. Composition of stable
spans coincides with composition of their associated profunctors—see [18, 19, 4].
If we further restrict strategies to be deterministic (and, strictly, event structures
to be countable) we obtain a bicategory equivalent to Berry’s dI-domains and
stable functions [4].

6.2.2 Ingenuous strategies

Via Theorem 5.9, deterministic concurrent strategies coincide with the receptive
ingenuous strategies of Melliès and Mimram [12].

6.2.3 Closure operators

In [20], deterministic strategies are presented as closure operators. A determin-
istic strategy σ ∶ S → A determines a closure operator ϕ on possibly infinite
configurations C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[{s}] ⊆ x} .

Clearly ϕ preserves intersections of configurations and is continuous. The closure
operator ϕ on C∞(S) induces a partial closure operator ϕp on C∞(A). This in
turn determines a closure operator ϕ⊺p on C∞(A)⊺, where configurations are
extended with a top ⊺, cf. [20]: take y ∈ C∞(A)⊺ to the least, fixed point of ϕp
above y, if such exists, and ⊺ otherwise.

6.2.4 Simple games

“Simple games” [15, 16] arise when we restrict Games to objects and determin-
istic strategies in PAr

−#, described in Section 6.1.

6.2.5 Extensions

Games, such as those of [21, 22], allowing copying are being systematized through
the use of monads and comonads [16], work now feasible on event structures with



6.2. RELATED WORK—EARLY RESULTS 69

symmetry [9]. Nondeterministic strategies can potentially support probability
as probabilistic or stochastic event structures [23] to become probabilistic or
stochastic strategies.



70 CHAPTER 6. GAMES PEOPLE PLAY



Chapter 7

Strategies as profunctors

This chapter relates strategies to profunctors, a generalization of relations from
sets to categories, and composition on strategies to composition of profunctors.
Profunctors themselves provide a rich framework in which to generalize domain
theory in a way that is arguably closer to that initiated by Dana Scott than
game semantics [24, 25].

7.1 The Scott order in games

Let A be an event structure with polarity. The ⊆-order on its finite configura-
tions is obtained as compositions of two more fundamental orders (⊆+ ∪ ⊆−)+.
For x, y ∈ C∞(A),

x ⊆− y iff x ⊆ y & polA(y ∖ x) ⊆ {−} , and

x ⊆+ y iff x ⊆ y & polA(y ∖ x) ⊆ {+} .

We use ⊇− as the converse order to ⊆−. Define a new order, the Scott order,
between configurations x, y ∈ C∞(A), by

x ⊑A y ⇐⇒ ∃z ∈ C∞(A). x ⊇− z ⊆+ y .

It is an easy exercise to show that when such a z exists it is necessarily x ∩ y.

Proposition 7.1. Let A be an event structure with polarity.
(i) If x ⊆+ w ⊇− y in C∞(A), then x ⊇− x ∩ y ⊆+ y in C∞(A).
(ii) (C∞(A),⊑A) is a partial order.

Proof. (i) Assume x ⊆+ w ⊇− y in C∞(A). Clearly x ⊇ x ∩ y. Suppose a ∈ x and
polA(a) = +. Then a ∈ w, and because only −ve events are lost from w in w ⊇− y
we obtain a ∈ y, so a ∈ x ∩ y. It follows that x ⊇− x ∩ y, as required. Similarly,
x ∩ y ⊆+ y. Summed up diagrammatically:

⋅ ⊇− ⋅ ⋅ ⊇− ⋅

⋅

⊆+

Ô⇒ ⋅ ⊇−

⊆+

⋅

⊆+

71



72 CHAPTER 7. STRATEGIES AS PROFUNCTORS

(ii) Clearly ⊑ is reflexive. Supposing x ⊑ y, i.e. x ⊇− z ⊆+ y in C∞(A) we see that
the +ve events of x are included in y, and the −ve events of y are included in
x. Hence if x ⊑ y and y ⊑ x in C∞(A) then x and y have the same +ve and −ve
events and so are equal. Transitivity follows from (i):

z z

y ⊇− ⋅

⊆+

entails y ⊇− ⋅

⊆+

x ⊇− ⋅

⊆+

x ⊇− ⋅ ⊇−

⊆+

⋅

⊆+

Exercise 7.2. Show (C∞(A),⊑A) is a complete partial order: any ω-chain

x0 ⊑A x1 ⊑A ⋯ ⊑A xn ⊑A ⋯

has a least upper bound

⊔
n∈ω

xn = (⋂
n∈ω

xn)
− ∪ (⋃

n∈ω
xn)

+ .

7.2 Strategies as presheaves

Let A be an event structure with polarity. A strategy in A determines a discrete
fibration so a presheaf over the order of finite configurations (C(A),⊑A). In this
chapter we only need discrete fibrations over partial orders.

Definition 7.3. A discrete fibration over a partial order (Y,⊑Y ) is a partial
order (X,⊑X) and an order-preserving function f ∶X → Y such that

∀x ∈X,y′ ∈ Y. y′ ⊑Y f(x) Ô⇒ ∃!x′ ⊑X x. f(x′) = y′ ,

as illustrated
x′_

f

��

⊑X x_

f

��
y′ ⊑Y f(x) .

Proposition 7.4. Let σ ∶ S → A be a pre-strategy in game A. The map σ“
taking a finite configuration x ∈ C(S) to σx ∈ C(A) is a discrete fibration from
(C(S),⊑S) to (C(A),⊑A) iff σ is a strategy.

Proof. A direct corollary of Proposition 4.20.

As discrete fibrations correspond to presheaves, an alternative reading of
Proposition 7.4 is that a pre-strategy σ ∶ S → A is a strategy iff σ“ determines
a presheaf over (C(A),⊑A)—the presheaf being the functor (C(A),⊑A)

op → Set
which sends y to the fibre {x ∈ C(S) ∣ σx = y} and instances y′ ⊑A y to functions
from the fibre over y to the fibre over y′ determined by the fibration.



7.3. STRATEGIES AS PROFUNCTORS 73

7.3 Strategies as profunctors

A strategy
σ ∶ A + //B

determines a discrete fibration over

(C(A⊥∥B),⊑A⊥∥B) .

But
(C(A⊥∥B),⊑A⊥∥B) ≅ (C(A⊥),⊑A⊥) × (C(B),⊑B) (1)

≅ (C(A),⊑A)
op × (C(B),⊑B) . (2)

The first step (1) relies on the correspondence

x↔ ({a ∣ (1, a) ∈ x}, {b ∣ (2, b) ∈ x})

between a configuration of A⊥∥B and a pair, with left component a configuration
of A⊥ and right component a configuration of B. In the last step (2) we are
using the correspondence between configurations of A⊥ and A induced by the
correspondence a↔ a between their events: a configuration x of A⊥ corresponds
to a configuration x =def {a ∣ a ∈ x} of A. Because A⊥ reverses the roles of +
and − in A, the order x ⊑A⊥ y in C(A⊥),

y

x

⊑

⊇− x ∩ y ,

⊆+

corresponds to the order y ⊑A x, i.e. x ⊑op
A y, in C(A),

y

x

⊑

⊇+ x ∩ y .

⊆−

It follows that a strategy

σ ∶ S → A⊥∥B

determines a discrete fibration

σ“ ∶ (C(S),⊑S) → (C(A),⊑A)
op × (C(B),⊑B)

where
σ“(x) = (σ1x, σ2x) ,

for x ∈ C(S). The fibration can be vewed as a presheaf over (C(A),⊑A)
op ×

(C(B),⊑B)—it assigns the set

{x ∈ C(S) ∣ σ1x = v & σ2x = z}



74 CHAPTER 7. STRATEGIES AS PROFUNCTORS

to the pair (v, z) ∈ C(A)op × C(B). One way to define a profunctor from
(C(A),⊑A) to (C(B),⊑B) is as a discrete fibration over (C(A),⊑A)

op × (C(B),⊑B).
Hence the strategy σ determines a profunctor1

σ“ ∶ (C(A),⊑A) + // (C(B),⊑B) .

7.4 Composition of strategies and profunctors

The operation from strategies σ to profunctors σ“ preserves identities:

Lemma 7.5. Let A be an event structure with polarity. For x ∈ C∞(A⊥∥A),

x ∈ C∞(CCA) iff x2 ⊑A x1 ,

where x1 = {a ∈ A⊥ ∣ (1, a) ∈ x} and x2 = {a ∈ A ∣ (2, a) ∈ x}.

Proof. Let x ∈ C∞(A⊥∥A). From the dependency within copy-cat of the +ve
events a ∈ A on corresponding −ve events a ∈ A⊥, and vice versa, as expressed
in Proposition 4.1, we deduce: x ∈ C∞(CCA) iff

(i) x+1 ⊇ x+2 and (ii) x−1 ⊆ x−2 ,

where z+ = {a ∈ z ∣ polA(a) = +} and z− = {a ∈ z ∣ polA(a) = −} for z ∈ C∞(A).
It remains to argue that (i) and (ii) iff x2 ⊇

− x1∩x2 ⊆
+ x1. “Only if”: Assume

(i) and (ii). Clearly, x1 ∩ x2 ⊆ x1. Suppose a ∈ x1 with polA(a) = −. By (ii),
a ∈ x2. Consequently, x1 ∩ x2 ⊆+ x1. Similarly, (i) entails x2 ⊇− x1 ∩ x2. “If”:
To show (i), let a ∈ x+2 . Then as x2 ⊇

− x1 ∩ x2 ensures only −ve events are lost
in moving from x2 to x1 ∩ x2, we see a ∈ x1 ∩ x2, so a ∈ x+1 . The proof of (ii) is
similar.

Corollary 7.6. Let A be an event structure with polarity. The profunctor γA“
of the copy-cat strategy γA is an identity profunctor on (C(A),⊑A).

Proof. The profunctor γA“ ∶ (C(A),⊑A) + // (C(A),⊑A) sends x ∈ C(CCA) to
(x1, x2) ∈ (C(A),⊑A)

op × (C(A),⊑A) precisely when x2 ⊑A x1. It is thus an
identity on (C(A),⊑A).

We now relate the composition of strategies to the standard composition of
profunctors. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be strategies, so σ ∶ A + //B
and τ ∶ B + //C. Abbreviating, for instance, (C(A),⊑A) to C(A), strategies
σ and τ give rise to profunctors σ“ ∶ C(A) + //C(B) and τ“ ∶ C(B) + //C(C).
Their composition is the profunctor τ“ ○ σ“ ∶ C(A) + //C(C) built as a discrete

1Most often a profunctor from (C(A),⊑A) to (C(B),⊑B) is defined as a functor
(C(A),⊑A) × (C(B),⊑B)

op → Set, i.e., as a presheaf over (C(A),⊑A)
op × (C(B),⊑B), and as

such corresponds to a discrete fibration.



7.4. COMPOSITION OF STRATEGIES AND PROFUNCTORS 75

fibration from the discrete fibrations σ“ ∶ C(S) → C(A)op×C(B) and τ“ ∶ C(T ) →
C(B)op × C(C).

First, we define the set of matching pairs,

M =def {(x, y) ∈ C(S) × C(T ) ∣ σ2x = τ1y} ,

on which we define ∼ as the least equivalence relation for which

(x, y) ∼ (x′, y′) if x ⊑S x
′ & y′ ⊑T y &

σ1x = σ1x
′ & τ2y

′ = τ2y .

Define an order on equivalence classes M/ ∼ by:

m ⊑m′ iff m = {(x, y)}∼ & m′ = {(x′, y′)}∼ &

x ⊑S x
′ & y ⊑T y

′ &

σ2x = σ2x
′ & τ1y = τ1y

′ ,

for some matching pairs (x, y), (x′, y′)—so then σ2x = σ2x
′ = τ1y = τ1y′.

Exercise 7.7. Show that ⊑ above is transitive, so a partial order on M/ ∼.
Verify that τ“ ○ σ“ is a discrete fibration. ◻

Lemma 7.8. On matching pairs, define

(x, y) ∼1 (x′, y′) iff ∃s ∈ S, t ∈ T. x
s

−Ð⊂x′ & y
t

−Ð⊂ y′ & σ2(s) = τ1(t) .

The smallest equivalence relation including ∼1 coincides with the relation ∼.

Proof. From their definitions, ∼1 is included in ∼. To prove the converse, it
suffices to show that matching pairs (x, y), (x′, y′) satisfying

x ⊑S x
′ & y′ ⊑T y &

σ1x = σ1x
′ & τ2y

′ = τ2y ,

—the clause used in the definition ∼ —are in the equivalence relation generated
by ∼1. Take a covering chain

x−⊏Sx1−⊏S⋯xm−⊏Sx
′

in (C(S),⊑S). Here −⊏S is the covering relation w.r.t. the order ⊑s, so x−⊏Sx1

means x,x1 are distinct and x ⊑S x1 with nothing strictly in between. Via the
map σ we obtain

σ2x−⊏Bσ2x1−⊏B⋯σ2xm−⊏Bσ2x
′

in C(B) where σ2x = τ1y and σ2x
′ = τ1y′. Via the discrete fibration τ“ we obtain

a covering chain in the reverse direction,

y⊐−T y1⊐−T⋯ym⊐−T y
′

in (C(T ),⊑T ), where each each (xi, yi), for 1 ≤ i ≤ m, is a matching pair.
Moreover, (xi, yi) ∼1 (xi+1, yi+1) at each i with 1 ≤ i ≤ m. Hence (x, y) and
(x′, y′) are in the equivalence relation generated by ∼1.



76 CHAPTER 7. STRATEGIES AS PROFUNCTORS

The profunctor composition τ“ ○ σ“ is given as the discrete fibration

τ“ ○ σ“ ∶ M/ ∼ → C(A)op × C(C)

acting so

{(x, y)}∼ ↦ (σ1x, τ2y) .

It is not the case that (τ⊙σ)“ and τ“ ○ σ“ coincide up to isomorphism.
The profunctor composition τ“ ○ σ“ will generally contain extra equivalence
classes {(x, y)}∼ for matching pairs (x, y) which are “unreachable.” Although
σ2x = z = τ1y automatically for a matching pair (x, y), the configurations x and
y may impose incompatible causal dependencies on their interface z so never be
realized as a configuration in the synchronized composition C(T )⊙C(S), used
in building the composition of strategies τ⊙σ.

Example 7.9. Let A and C both be the empty event structure ∅. Let B be
the event structure consisting of the two concurrent events b1, assumed −ve,
and b2, assumed +ve in B . Let the strategy σ ∶ ∅ + //B comprise the event
structure s1 _ s2 with s1 −ve and s2 +ve, σ(s1) = b1 and σ(s2) = b2. In B⊥ the
polarities are reversed so there is a strategy τ ∶ B + //∅ comprising the event
structure t2 _ t1 with t2 −ve and t1 +ve yet with τ(t1) = b1 and τ(t2) = b2.
The equivalence class {(x, y)}∼, where x = {s1, s2} and y = {t1, t2}, would be
present in the profunctor composition τ“ ○σ“ whereas τ⊙σ would be the empty
strategy and accordingly the profunctor (τ⊙σ)“ only has a single element, ∅.

Definition 7.10. For (x, y) a matching pair, define

x ⋅ y =def{(s,∗) ∣ s ∈ x & σ1(s) is defined}∪

{(∗, t) ∣ t ∈ y & τ2(t) is defined}∪

{(s, t) ∣ s ∈ x & t ∈ y & σ2(s) = τ1(t)}

Say (x, y) is reachable if x ⋅ y ∈ C(T )⊙C(S), and unreachable otherwise.
For z ∈ C(T )⊙C(S) say a visible prime of z is a prime of the form [(s,∗)]z,

for (s,∗) ∈ z, or [(∗, t)]z, for (∗, t) ∈ z.

Lemma 7.11. (i) If (x, y) is a reachable matching pair and (x, y) ∼ (x′, y′),
then (x′, y′) is a reachable matching pair;
(ii) For reachable matching pairs (x, y), (x′, y′), (x, y) ∼ (x′, y′) iff x ⋅ y and
x′ ⋅ y′ have the same visible primes.

Proof. We use the characterization of ∼ in terms of the single-step relation ∼1

given in Lemma 7.8.
(i) Suppose (x, y) ∼1 (x′, y′) or (x′, y′) ∼1 (x, y). By inspection of the construc-
tion of the product of stable families in Section 3.3.1, if x ⋅ y ∈ C(T )⊙C(S) then
x′ ⋅ y′ ∈ C(T )⊙C(S).



7.4. COMPOSITION OF STRATEGIES AND PROFUNCTORS 77

(ii) “If”: Suppose x ⋅ y and x′ ⋅ y′ have the same visible primes, forming the
set Q. Then z =def ⋃Q ∈ C(T )⊙C(S), being the union of a compatible set of
configurations in C(T )⊙C(S). Moreover, z ⊆ x ⋅ y, x′ ⋅ y′. Take a covering chain

z
e1
−Ð⊂⋯zi

ei
−Ð⊂ zi+1

en
−Ð⊂ x ⋅ y

in C(T )⊙C(S). Each (π1zi, π2zi) is a matching pair, from the definition of

C(T )⊙C(S). Necessarily, ei = (si, ti) for some si ∈ S, ti ∈ T , with σ2(si) = τ1(ti),
again by the definition of C(T )⊙C(S). Thus

(π1zi, π2zi) ∼1 (π1zi+1, π2zi+1) .

Hence (π1z, π2z) ∼ (x, y), and similarly (π1z, π2z) ∼ (x′, y′), so (x, y) ∼ (x′, y′).

“Only if”: It suffices to observe that if (x, y) ∼1 (x′, y′), then x ⋅ y and x′ ⋅ y′

have the same visible primes. But if (x, y) ∼1 (x′, y′) then x ⋅ y
(s,t)
−Ð⊂ x′ ⋅ y′, for

some s ∈ S, t ∈ T , and no visible prime in x′ ⋅ y′ contains (s, t).

Lemma 7.12. Let σ ∶ A + //B and τ ∶ B + //C be strategies. Defining

ϕσ,τ ∶ C(T⊙S) →M/ ∼ by ϕσ,τ(z) = {(Π1z,Π2z)}∼ ,

where Π1z = π1⋃ z and Π2z = π2⋃ z, yields an injective, order-preserving func-
tion from (C(T⊙S),⊑T⊙S) to (M/ ∼,⊑)—its range is precisely the equivalence
classes {(x, y)}∼ for reachable matching pairs (x, y). The diagram

(C(T⊙S),⊑T⊙S)

(τ⊙σ)“
��

ϕσ,τ // (M/ ∼, ⊑)

τ“○σ“uu
(C(A),⊑A)

op × (C(C),⊑C)

commutes.

Proof. For z ∈ C(T⊙S), we obtain that ϕσ,τ(z) = (Π1z,Π2z) = (π1⋃ z, π2⋃ z)
is a matching pair, from the definition of C(T )⊙C(S); it is clearly reachable as
π1⋃ z ⋅ π2⋃ z = ⋃ z ∈ C(T )⊙C(S). For any reachable matching pair (x, y) let z
be the set of visible primes of x ⋅ y. Then, z ∈ C(T⊙S) and, by Lemma 7.11(ii),
(Π1z,Π2z) ∼ (x, y) so ϕσ,τ(z) = {(x, y)}∼. Injectivity of ϕσ,τ follows directly
from Lemma 7.11(ii).

To show that ϕσ,τ is order-preserving it suffices to show if z−⊏z′ in (C(T⊙S),⊑)
then ϕσ,τ(z) ⊑ ϕσ,τ(z

′) in (M/ ∼,⊑). (The covering relation −⊏ is the same as

that used in the proof of Lemma 7.8.) If z−⊏z′ then either z
p

−Ð⊂ z′, with p +ve,

or z′
p

−Ð⊂ z, with p −ve, for p a visible prime of C(T )⊙C(S), i.e. with top(p) of
the form (s,∗) or (∗, t). We concentrate on the case where p is +ve (the proof
when p is −ve is similar). In the case where p is +ve,

Π1z ⋅Π2z = ⋃ z ⊆ ⋃ z′ = Π1z
′ ⋅Π2z

′



78 CHAPTER 7. STRATEGIES AS PROFUNCTORS

in C(T )⊙C(S) and there is a covering chain

⋃ z = w0

(s1,t1
−Ð⊂ w1⋯

(sn,tn)
−Ð⊂ wn

top(p)
−Ð⊂ ⋃ z′

in C(T )⊙C(S). Each wi, for 0 ≤ i ≤m, is associated with a reachable matching
pair (π1wi, π2wi) where π1wi ⋅π2wi = wi. Also (π1wi, π2wi) ∼1 (π1wi+1, π2wi+1),
for 0 ≤ i < m. Hence (Π1z,Π2z) ∼ (π1wn, π2wn), by Lemma 7.8(ii). If top(p) =

(s,∗) then π1wn
s

−Ð⊂Π1z
′, with s +ve, and π2wn = Π2z

′. If top(p) = (∗, t) then

π1wn = Π1z
′ and π2wn

t
−Ð⊂Π2z

′, with t +ve. In either case π1wn ⊑S Π1z
′ and

π2wn ⊑T Π2z
′ with σ2π1wn = σ2Π1z

′ and τ1π2wn = τ1Π2z
′. Hence, from the

definition of ⊑ on M/ ∼,

ϕσ,τ(z) = {(Π1z,Π2z)}∼ = {(π1wn, π2wn)}∼ ⊑ {(Π1z
′,Π2z

′)}∼ = ϕσ,τ(z
′) .

It remains to show commutativity of the diagram. Let z ∈ C(T⊙S). Then,

(τ“ ○ σ“)(ϕσ,τ(z)) = (τ“ ○ σ“)({(Π1z,Π2z)}∼) = (σ1Π1z, τ2Π2z) = (τ⊙σ)“(z) ,

via the definition of τ⊙σ—as required.

Because (−)“ does not preserve composition up to isomorphism but only
up to the transformation ϕ of Lemma 7.12, (−)“ forms a lax functor from the
bicategory of strategies to that of profunctors.

7.5 Games as factorization systems

The results of Section 7.1 show an event structure with polarity determines a
factorization system; the ‘left’ maps are given by ⊇− and the ‘right’ maps by
⊆+. More specifically they form an instance of a rooted factorization system
(X,→L,→R,0) where maps f ∶ x →L x

′ are the ‘left’ maps and g ∶ x →R x′ the
‘right’ maps of a factorization system on a small category X, with distinguished
object 0, such that any object x of X is reachable by a chain of maps:

0←L ⋅ →R ⋯ ←L ⋅ →R x ;

and two ‘confluence’ conditions hold:

x1 →R x & x2 →R x Ô⇒ ∃x0. x0 →R x1 & x0 →R x2 , and its dual

x→L x1 & x→L x2 Ô⇒ ∃x0. x1 →L x0 & x2 →R x0 .

Think of objects of X as configurations, the R-maps as standing for (compound)
Player moves and L-maps for the reverse, or undoing, of (compound) Opponent
moves in a game.

The characterization of strategy, Proposition 4.20, exhibits a strategy as a
discrete fibration w.r.t. ⊑ whose functor preserves ⊇− and ⊆+. This generalizes.
Define a strategy in a rooted factorization system to be a functor from another



7.5. GAMES AS FACTORIZATION SYSTEMS 79

rooted factorization system preserving L-maps, R-maps, 0 and forming a dis-
crete fibration. To obtain strategies between rooted factorization systems we
again follow the methodology of Joyal [8], and take a strategy from X to Y to
be a strategy in the dual of X in parallel composition with Y. Now the dual op-
eration becomes the opposite construction on a factorization system, reversing
the roles and directions of the ‘left’ and ‘right’ maps. The parallel composition
of factorization systems is given by their product. Composition of strategies is
given essentially as that of profunctors, but restricting to reachable elements.



80 CHAPTER 7. STRATEGIES AS PROFUNCTORS



Chapter 8

Winning ways

What does it mean to win a nondeterministic concurrent game and what is a
winning strategy? This chapter extends the work on games and strategies to
games with winning conditions and winning strategies.

8.1 Winning strategies

A game with winning conditions comprises G = (A,W ) where A is an event
structure with polarity and W ⊆ C∞(A) consists of the winning configurations
for Player. We define the losing conditions to be L =def C

∞(A) ∖W . Clearly a
game with winning conditions is determined once we specify either its winning
or losing conditions, and we can define such a game by specifying its losing
conditions.

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy σ ∶ S → A in G
is winning (for Player) if σx ∈W for all +-maximal configurations x ∈ C∞(S)—

a configuration x is +-maximal if whenever x
s

−Ð⊂ then the event s has −ve
polarity. Any achievable position z ∈ C∞(S) of the game can be extended to
a +-maximal, so winning, configuration (via Zorn’s Lemma). So a strategy
prescribes Player moves to reach a winning configuration whatever state of play
is achieved following the strategy. Note that for a game A, if winning conditions
W = C∞(A), i.e. every configuration is winning, then any strategy in A is a
winning strategy.

In the special case of a deterministic strategy σ ∶ S → A in G it is winning iff
σϕ(x) ∈W for all x ∈ C∞(S), where ϕ is the closure operator ϕ ∶ C∞(S) →C∞(S)
determined by σ or, equivalently, the images under σ of fixed points of ϕ lie
outside L. Recall from Section 6.2.3 that a deterministic strategy σ ∶ S → A
determines a closure operator ϕ on C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[{s}] ⊆ x} .

81



82 CHAPTER 8. WINNING WAYS

Clearly, we can equivalently say a strategy σ ∶ S → A in G is winning if it
always prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent; a strategy σ ∶ S → A in G
is winning if σx ∉ L for all +-maximal configurations x ∈ C∞(S)

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
Player. Suppose σ ∶ S → A is a strategy in a game (A,W ). A counter-strategy
is strategy of Opponent, so a strategy τ ∶ T → A⊥ in the dual game. We
can view σ as a strategy σ ∶ ∅ + //A and τ as a strategy τ ∶ A + //∅. Their
composition τ⊙σ ∶ ∅ + //∅ is not in itself so informative. Rather it is the status
of the configurations in C∞(A) their full interaction induces which decides which
of Player or Opponent wins. Ignoring polarities, we have total maps of event
structures σ ∶ S → A and τ ∶ T → A. Form their pullback,

P
Π1

~~

Π2

  
S

σ
  

T

τ
~~

A,

to obtain the event structure P resulting from the interaction of σ and τ . (Note
P ≅ Pr(C(T )⊙C(S)), in the terms of Chapter 4, by the remarks of Section 4.3.3.)
Because σ or τ may be nondeterministic there can be more than one maximal
configuration z in C∞(P ). A maximal configuration z in C∞(P ) images to a
configuration σΠ1z = τΠ2z in C∞(A). Define the set of results of the interaction
of σ and τ to be

⟨σ, τ⟩ =def {σΠ1z ∣ z is maximal in C∞(P )} .

We shall show the strategy σ is a winning for Player iff all the results of the inter-
action ⟨σ, τ⟩ lie within the winning configurations W , for any counter-strategy
τ ∶ T → A⊥ of Opponent.

It will be convenient later to have proved facts about +-maximality in the
broader context of the composition of arbitrary strategies.

Convention 8.1. Refer to the construction of the composition of pre-strategies
σ ∶ S → A⊥∥B and τ ∶ B⊥∥C in Chapter 4 We shall say a configuration x of either

C∞(S), C∞(T ) or (C(T )⊙C(S))∞ is +-maximal if whenever x
e

−Ð⊂ then the event
e has −ve polarity. In the case of (C(T )⊙C(S))∞ an event of −ve polarity is
deemed to be one of the form (s,∗), with s −ve in S, or (∗, t), with t −ve in T .
We shall say a configuration z of C∞(Pr(C(T )⊙C(S))) is +-maximal if whenever

z
p

−Ð⊂ then top(p) has −ve polarity.



8.1. WINNING STRATEGIES 83

Lemma 8.2. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be receptive pre-strategies.
Then,

z ∈ (C(T )⊙C(S))∞ is +-maximal iff

π1z ∈ C
∞(S) is +-maximal & π2z ∈ C

∞(T ) is +-maximal.

Proof. Let z ∈ (C(T )⊙C(S))∞. “Only if”: Assume z is +-maximal. Sup-

pose, for instance, π1z is not +-maximal. Then, π1z
s

−Ð⊂ for some +ve event
s ∈ S. Consider the two cases. Case σ1(s) is defined: Form the configuration
z∪{(s,∗)} ∈ (C(T )⊙C(S))∞, to contradict the +-maximality of z. Case σ2(s) is

defined: As s is +-ve by the receptivity of τ there is t ∈ T such that π2z
t

−Ð⊂ and
τ1(t) = σ2(s). Form the configuration z∪{(s, t)} ∈ (C(T )⊙C(S))∞, to contradict
the +-maximality of z. The argument showing π2z is +-maximal is similar.

“If”: Assume both π1z and π2z are +-maximal. Suppose z were not +-maximal.
Then, either

• z
(s,∗)
−Ð⊂ or z

(s,t)
−Ð⊂ with s a +ve event of S, or

• z
(∗,t)
−Ð⊂ or z

(s,t)
−Ð⊂ with t a +ve event of T .

But then either π1z
s

−Ð⊂ , contradicting the +-maximality of π1z, or π2z
t

−Ð⊂ ,
contradicting the +-maximality of π2z.

Corollary 8.3. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be receptive pre-strategies.
Then,

x ∈ C∞(Pr(C(T )⊙C(S))) is +-maximal iff

Π1x ∈ C
∞(S) is +-maximal & Π2x ∈ C

∞(T ) is +-maximal.

Proof. From Lemma 8.2, noting the order isomorphism C∞(Pr(C(T )⊙C(S))) ≅
(C(T )⊙C(S))∞ given by x↦ ⋃x and that Π1x = π1⋃x, Π2x = π2⋃x.

Lemma 8.4. Let σ ∶ S → A be a strategy in a game (A,W ). The strategy σ is
winning for Player iff ⟨σ, τ⟩ ⊆W for all (deterministic) strategies τ ∶ T → A⊥.

Proof. “Only if”: Suppose σ is winning, i.e. σx ∈ W for all +-maximal x ∈
C∞(S). Let τ ∶ T → A⊥ be a strategy. By Corollary 8.3,

x ∈ C∞(Pr(C(T )⊙C(S))) is +-maximal

iff

Π1x ∈ C
∞(S) is +-maximal & Π2x ∈ C

∞(T ) is +-maximal.

Letting x be maximal in C∞(Pr(C(T )⊙C(S))) it is certainly +-maximal, whence
Π1x is +-maximal in C∞(S). It follows that σΠ1x ∈W as σ is winning. Hence
⟨σ, τ⟩ ⊆W .



84 CHAPTER 8. WINNING WAYS

“If”: Assume ⟨σ, τ⟩ ⊆W for all strategies τ ∶ T → A⊥. Suppose x is +-maximal
in C∞(S). Define T to be the event structure given as the restriction

T =def A
⊥ ↾ σx ∪ {a ∈ A⊥ ∣ polA⊥ = −} .

Let τ ∶ T → A⊥ be the inclusion map T ↪ A⊥. The pre-strategy τ can be checked
to be receptive and innocent, so a strategy. (In fact, τ is a deterministic strategy
as all its +ve events lie within the configuration σx.) One way to describe a
pullback of τ along σ is as the “inverse image” P =def S ↾ {s ∈ S ∣ σ(s) ∈ T}:

POo

��

σ↾P

��
S

σ
��

TO o

τ
��

A

From the definition of T and P we see x ∈ C∞(P ); and moreover that x is
maximal in C∞(P ) as x is +-maximal in C∞(S). Hence σx ∈ ⟨σ, τ⟩ ensuring
σx ∈W , as required.

The proof is unaffected if we restrict to deterministic counter-strategies τ ∶
T → A⊥.

Corollary 8.5. There are the following four equivalent ways to say that a strat-
egy σ ∶ S → A is winning in (A,W )—we write L for the losing configurations
C∞(A) ∖W :

1. σx ∈ W for all +-maximal configurations x ∈ C∞(S), i.e. the strategy
prescribes Player moves to reach a winning configuration, no matter what
the activity or inactivity of Opponent;

2. σx ∉ L for all +-maximal configurations x ∈ C∞(S), i.e. the strategy
prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent;

3. ⟨σ, τ⟩ ⊆ W for all strategies τ ∶ T → A⊥, i.e. all plays against counter-
strategies of the Opponent result in a win for Player;

4. ⟨σ, τ⟩ ⊆W for all deterministic strategies τ ∶ T → A⊥, i.e. all plays against
deterministic counter-strategies of the Opponent result in a win for Player.

Not all games with winning conditions have winning strategies. Consider
the game A consisting of one player move ⊕ and one opponent move ⊖ incon-
sistent with each other, with {{⊕}} as its winning conditions. This game has
no winning strategy; any strategy σ ∶ S → A, being receptive, will have an event
s ∈ S with σ(s) = ⊖, and so the losing {s} as a +-maximal configuration.



8.2. OPERATIONS 85

8.2 Operations

8.2.1 Dual

There is an obvious dual of a game with winning conditions G = (A,WG):

G⊥ = (A⊥,WG⊥)

where, for x ∈ C∞(A),

x ∈WG⊥ iff x ∉WG .

We are using the notation a↔ a, giving the correspondence between events of A
and A⊥, extended to their configurations: x =def {a ∣ a ∈ x}, for x ∈ C∞(A). As
usual the dual reverses the roles of Player and Opponent and correspondingly
the roles of winning and losing conditions.

8.2.2 Parallel composition

The parallel composition of two games with winning conditions G = (A,WG),
H = (B,WH) is

G∥H =def (A∥B, WG∥C
∞(B) ∪ C∞(A)∥WH)

where X∥Y = {{1} × x ∪ {2} × y ∣ x ∈X & y ∈ Y } when X and Y are subsets of
configurations. In other words, for x ∈ C∞(A∥B),

x ∈WG∥H iff x1 ∈WG or x2 ∈WH ,

where x1 = {a ∣ (1, a) ∈ x} and x2 = {b ∣ (2, b) ∈ x}. To win in G∥H is to win in
either game. Its losing conditions are LA∥LB—to lose is to lose in both games
G and H.1 The unit of ∥ is (∅,∅). In order to disambiguate the various forms
of parallel composition, we shall sometimes use the linear-logic notation G`H
for the parallel composition G∥H of games with winning strategies.

8.2.3 Tensor

Defining G⊗H =def (G⊥∥H⊥)⊥ we obtain a game where to win is to win in both
games G and H—so to lose is to lose in either game. More explicitly,

(A,WA) ⊗ (B,WB) =def (A∥B, WA∥WB) .

The unit of ⊗ is (∅,{∅}).

1I’m grateful to Nathan Bowler, Pierre Clairambault and Julian Gutierrez for guidance in
the definition of parallel composition of games with winning conditions.



86 CHAPTER 8. WINNING WAYS

8.2.4 Function space

With G⊸H =def G
⊥∥H a win in G⊸H is a win in H conditional on a win in

G.

Proposition 8.6. Let G = (A,WG) and H = (B,WH) be games with winning
conditions. Write WG⊸H for the winning conditions of G ⊸ H, so G ⊸ H =
(A⊥∥B,WG⊸H). For x ∈ C∞(A⊥∥B),

x ∈WG⊸H iff x1 ∈WG Ô⇒ x2 ∈WH .

Proof. Letting x ∈ C∞(A⊥∥B),

x ∈WG⊸H iff x ∈WG⊥∥H

iff x1 ∈WG⊥ or x2 ∈WH

iff x1 ∉WG or x2 ∈WH

iff x1 ∈WG Ô⇒ x2 ∈WH .

8.3 The bicategory of winning strategies

We can again follow Joyal and define strategies between games now with winning
conditions: a (winning) strategy from G, a game with winning conditions, to
another H is a (winning) strategy in G ⊸ H = G⊥∥H. We compose strategies
as before. We first show that the composition of winning strategies is winning.

Lemma 8.7. Let σ be a winning strategy in G⊥∥H and τ be a winning strategy
in H⊥∥K. Their composition τ⊙σ is a winning strategy in G⊥∥K.

Proof. Let G = (A,WG), H = (B,WH) and K = (C,WK).
Suppose x ∈ C∞(T⊙S) is +-maximal. Then ⋃x ∈ (C(T )⊙C(S))∞. By Zorn’s

Lemma we can extend ⋃x to a maximal configuration z ⊇ ⋃x in (C(T )⊙C(S))∞

with the property that all events of z∖⋃x are synchronizations of the form (s, t)
for s ∈ S and t ∈ T . Then, z will be +-maximal in (C(T )⊙C(S))∞ with

σ1π1z = σ1π1⋃x & τ2π2z = τ2π2⋃x . (1)

By Lemma 8.2,

π1z is +-maximal in S & π2z is +-maximal in T .

As σ and τ are winning,

σπ1z ∈WG⊥∥H & τπ2z ∈WH⊥∥K .

Now σπ1z ∈WG⊥∥H expreses that

σ1π1z ∈WG Ô⇒ σ2π1z ∈WH (2)



8.3. THE BICATEGORY OF WINNING STRATEGIES 87

and τπ2z ∈WH⊥∥K that

τ1π2z ∈WH Ô⇒ τ2π2z ∈WK , (3)

by Proposition 8.6. But σ2π1z = τ1π2z, so (2) and (3) yield

σ1π1z ∈WG Ô⇒ τ2π2z ∈WK .

By (1)

σ1π1⋃x ∈WG Ô⇒ τ2π2⋃x ∈WK ,

i.e.by Proposition 4.2,

υ1x ∈WG Ô⇒ υ2x ∈WK

in the span of the composition τ⊙σ. Hence x ∈WG⊥∥K , as required.

For a general game with winning conditions (A,W ) the copy-cat strategy
need not be winning, as shown in the following example.

Example 8.8. Let A consist of two events, one +ve event ⊕ and one −ve event
⊖, inconsistent with each other. Take as winning conditions the set W = {{⊕}}.
The event structure CCA:

A⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

To see CCA is not winning consider the configuration x consisting of the two
−ve events in CCA. Then x is +-maximal as any +ve event is inconsistent with
x. However, x1 ∈ W while x2 ∉ W , failing the winning condition of (A,W ) ⊸
(A,W ).

Recall from Chapter 7, that each event structure with polarityA possesses a
Scott order on its configurations C∞(A):

x′ ⊑ x iff x′ ⊇− x ∩ x′ ⊆+ x .

A necessary and sufficient for copy-cat to be winning w.r.t. a game (A,W ):

∀x,x′ ∈ C∞(A). if x′ ⊑ x & x′ is +-maximal & x is −-maximal,

then x ∈W Ô⇒ x′ ∈W .
(Cwins)

Lemma 8.9. Let (A,W ) be a game with winning conditions. The copy-cat
strategy γA ∶ CCA → A⊥∥A is winning iff (A,W ) satisfies (Cwins).

Proof. By Lemma 7.5,

z ∈ C∞(CCA) iff z = {1} × x ∪ {2} × x′ with x′ ⊑A x ,

for x,x′ ∈ C∞(A). In this situation z is +-maximal iff both x is −-maximal and x′

is +-maximal. Thus (Cwins) expresses precisely that copy-cat is winning.



88 CHAPTER 8. WINNING WAYS

A robust sufficient condition on an event structure with polarityA which
ensures that copy-cat is a winning strategy for all choices of winning conditions
is the property

∀x ∈ C(A). x
a

−Ð⊂ & x
a′

−Ð⊂ & pol(a) = + & pol(a′) = − Ô⇒ x ∪ {a, a′} ∈ C(A) .
(race-free)

This property, which says immediate conflict respects polarity, is seen earlier in
Lemma 5.3 (characteriziing those A for which copy-cat is deterministic).

Proposition 8.10. Let A be an event structure with polarity. Copy-cat is a
winning strategy for all games (A,W ) with winning conditions W iff A satis-
fies (race-free).

Proof. “If”: Assume (race-free). Let W ⊆ C∞(A). We show (Cwins) holds
for the game with winning conditions (A,W ). For x,x′ ∈ C∞(A), assume

x′ ⊑ x & x′ is +-maximal & x is −-maximal.

Then, as x′ ⊇− x∩x′ ⊆+ x, there are covering chains associated with purely +ve
and −ve events from x ∩ x′ to x and x′, respectively:

x ∩ x′
+

−Ð⊂ ⋯
+

−Ð⊂ x ,

x ∩ x′
−

−Ð⊂ ⋯
−

−Ð⊂ x′ .

If one of the covering chains is of zero length then so must the other be—
otherwise we contradict one or other of the maximality assumptions. On the
other hand, if both are nonempty, by repeated use of (race-free) we again
contradict a maximality assumption, e.g.

y1 −Ð⊂
+

x1 ∪ x
′
1 −Ð⊂

+
⋯ −Ð⊂

+
x ∪ x′1

x ∩ x′

−Ð
⊂−

−Ð⊂
+

x1

−Ð
⊂−

−Ð⊂
+

⋯ −Ð⊂
+

x

−Ð
⊂−

shows how a repeated use of (race-free) contradicts the −-maximality of x. We
conclude x = x ∩ x′ = x′ so certainly x ∈ W Ô⇒ x′ ∈ W , as required to fulfil
(Cwins).

“Only if”: Suppose A failed (race-free), i.e. x
a

−Ð⊂x1 & x
a′

−Ð⊂x2 with x1 � x2

and polA(a) = + and pol(a′) = − within the finite configurations of A. The set
{1}×x1∪{2}×x2 is certainly a finite configuration of A⊥∥A and is easily checked
to also be a configuration of CCA. Define winning conditions by

W = {x ∈ C∞(A) ∣ a ∈ x} .

Let z ∈ C∞(CCA) be a +-maximal extension of {1} × x1 ∪ {2} × x2 (the max-
imal extension exists by Zorn’s Lemma). Take z1 = {a ∣ (1, a) ∈ z} and z2 =
{a ∣ (2, a) ∈ z}. Then z1 ⊇ x1 and z2 ⊇ x2. As a ∈ z1 we obtain z1 ∈W , whereas
z2 ∉W because z2 extends y which is inconsistent with a. Hence copy-cat is not
winning in (A,W )⊥∥(A,W ).



8.4. TOTAL STRATEGIES 89

We can now refine the bicategory of strategies Games to the bicategory
WGames with objects games with winning conditionsG,H,⋯ satisfying (Cwins)
and arrows winning strategiesG + //H; 2-cells, their vertical and horizontal com-
position is as before. Its restriction to deterministic strategies yields a bicategory
WDGames equivalent to a simpler order-enriched category.

8.4 Total strategies

As an application of winning conditions we apply them to pick out a subcategory
of “total strategies,” informally strategies in which Player can always answer a
move of Opponent.2

We restrict attention to ‘simple games’ (games and strategies are alternating
and begin with opponent moves—see Section 6.2.4). Here a strategy is total if
all its finite maximal sequences are even, so ending in a +ve move, i.e. a move
of Player. In general, the composition of total strategies need not be total—see
the Exercise below. However, as we will see, we can pick out a subcategory of
’simple games’ with suitable winning conditions. Within this full subcategory
of games with winning conditions winning strategies will be total and moreover
compose.

Exercise 8.11. Exhibit two total strategies whose composition is not total. ◻

As objects of the subcategory we choose simple games with winning strate-
gies,

(A,WA)

where A is a simple game and WA is a subset of possibly infinite sequences
s1s2⋯ satisfying

WA ∩ Finite(A) = Even(A) (Tot)

i.e. the finite sequences in WA are precisely those of even length. Note that
winning strategies in such a game will be total. (Below we use ‘sequence’ to
mean allowable finite or infinite sequences of the appropriate simple game.)

The function space (A,WA) ⊸ (B,WB), given as (A,WA)
⊥∥(B,WB), has

winning conditions W such that

s ∈W iff s ↾A ∈WA Ô⇒ s ↾B ∈WB .

Lemma 8.12. For s a sequence of A⊥∥B, s is even iff s ↾A is odd or s ↾B is
even.

Proof. By parity, considering the final move of the sequence.
“Only if”: Assume s is even, i.e. its final event is +ve. If s ends in B, s↾B ends
in + so is even. If s ends in A, s ↾A ends in − so is odd.
“If”: Assume s ↾A is odd or s ↾B is even. Suppose, to obtain a contradiction,
that s is not even, i.e. s is odd so ends in −. If s ends in B, s ↾B ends in − so

2This section is inspired by [26], though differs in several respects.



90 CHAPTER 8. WINNING WAYS

is odd and consequently s ↾A even (as the length of s is the sum of the lengths
of s ↾A and s ↾B). Similarly, if s ends in A, s ↾A ends in + so s ↾A is even and
s↾B is odd. Either case contradicts the initial assumption. Hence s is even.

It follows that W , the winning conditions of the function space, satisfies
(Tot): Let s be a finite sequence of a strategy in A⊥∥B. Then,

s ∈W iff s ↾A ∈WA Ô⇒ s ↾B ∈WB

iff s ↾A ∉WA or s ↾B ∈WB

iff s ↾A is odd or s ↾B is even

iff s is even.

All maps in the subcategory (which are winning strategies in its function
spaces (A,WA) ⊸ (B,WB)) compose (because winning strategies do) and are
total (because winning conditions of its function spaces satisfy (Tot)).

8.5 On determined games

A game with winning conditions G is said to be determined when either Player
or Opponent has a winning strategy, i.e. either there is a winning strategy in
G or in G⊥.3 Not all games are determined. Neither the game G consisting of
one player move ⊕ and one opponent move ⊖ inconsistent with each other, with
{{⊕}} as winning conditions, nor the game G⊥ have a winning strategy.

Notation 8.13. Let σ ∶ S → A be a strategy. We say y ∈ C∞(A) is σ-reachable
iff y = σx for some x ∈ C∞(S). Let y′ ⊆ y in C∞(A). Say y′ is −-maximal in y iff

y
−

−Ð⊂ y′′ implies y′′ /⊆ y. Similarly, say y′ is +-maximal in y iff y
+

−Ð⊂ y′′ implies
y′′ /⊆ y.

Lemma 8.14. Let (A,W ) be a game with winning conditions. Let y ∈ C∞(A).
Suppose

∀y′ ∈ C∞(A).

y′ ⊆ y & y′ is −-maximal in y & not +-maximal in y

Ô⇒

{y′′ ∈ C(A) ∣ y′ ⊆+ y′′ & (y′′ ∖ y′) ∩ y = ∅} ∩W = ∅ .

Then y is σ-reachable in all winning strategies σ.

Proof. Assume the property above of y ∈ C∞(A). Suppose, to obtain a contra-
diction, that y is not σ-reachable in a winning strategy σ ∶ S → A.

Let x′ ∈ C∞(A) be ⊆-maximal such that σx′ ⊆ y (this uses Zorn’s lemma).
By the receptivity of σ, the configuration σx′ is −-maximal in y. By suppo-

sition, σx′ ⊊ y, so we must therefore have σx′
+

−Ð⊂ y0 ⊆ y in C∞(A), i.e. σx′ is
not +-maximal in y. From the property assumed of y we deduce both

σx′ ∉W & (∀y′′ ∈W. σx′ ⊆+ y′′ Ô⇒ (y′′ ∖ σx′) ∩ y /= ∅) .

3This section is based on work with Julian Gutierrez.



8.5. ON DETERMINED GAMES 91

As σ is winning, there is +-maximal extension x′ ⊆+ x′′ in C∞(S) such that
σx′′ ∈W . Hence

(σx′′ ∖ σx′) ∩ y /= ∅ .

Taking a ≤A-minimal event a1, necessarily +ve, in the above set we obtain

σx′
a1
−Ð⊂ y1 ⊆

+ σx′′ .

By Corollary 4.22, y1 = σx1 for some x1 ∈ C
∞(S) with x′

+
−Ð⊂x1 ⊆ x

′′. But this
contradicts the choice of x′ as ⊆-maximal such that σx′ ⊆ y. Hence the original
assumption that y is not σ-reachable must be false.

Recall the property (race-free) of an event structure with polarityA, first
seen in Lemma 5.3, though here rephrased a little:

∀y, y1, y2 ∈ C(A). y
−

−Ð⊂ y1 & y
+

−Ð⊂ y2 Ô⇒ y1 ↑ y2 . (race-free)

Corollary 8.15. If A, an event structure with polarity, fails to satisfy (race-free),
then there are winning conditions W , for which the game (A,W ) is not deter-
mined.

Proof. Suppose (race-free) failed, that y
−

−Ð⊂ y1 and y
+

−Ð⊂ y2 and y1 � y2 in
C(A). Assign configurations C∞(A) to winning conditions W or its complement
as follows:

(i) for y′′ with y1 ⊆
+ y′′, assign y′′ ∉W ;

(ii) for y′′ with y2 ⊆
− y′′, assign y′′ ∈W ;

(iii) for y′′ with y′ ⊆+ y′′ and (y′′ ∖ y′) ∩ y = ∅, for some sub-configuration y′ of
y with y′ −-maximal and not +-maximal in y, assign y′′ ∉W ;

(iv) for y′′ with y′ ⊆− y′′ and (y′′ ∖ y′) ∩ y = ∅, for some sub-configuration y′ of
y with y′ +-maximal and not −-maximal in y, assign y′′ ∈W ;

(v) assign arbitrarily in all other cases.

We should check the assignment is well-defined, that we do not assign a config-
uration both to W and its complement.

Clearly the first two cases (i) and (ii) are disjoint as y1 � y2.
The two cases (iii) and (iv) are also disjoint. Suppose otherwise, that both

(iii) and (iv) hold for y′′, viz.

y′1 ⊆
+ y′′ & (y′′ ∖ y′1) ∩ y = ∅ &

y′1 is −-maximal & not +-maximal in y , and

y′2 ⊆
− y′′ & (y′′ ∖ y′2) ∩ y = ∅ &

y′2 is +-maximal & not −-maximal in y .

As
y′1 ⊆

+ y′′ ⊇− y′2



92 CHAPTER 8. WINNING WAYS

we deduce y′2
−
⊆ y′1, i.e. all the −ve events of y′2 are in y′1. Now let a ∈ y′2

+
. Then

a ∈ y as y′2 ⊆ y. Therefore a ∉ y′′ ∖ y′1, by assumption. But a ∈ y′′ as y′2 ⊆− y′′,
so a ∈ y′1. We conclude y′2 ⊆ y′1. A similar dual argument shows y′1 ⊆ y′2. Thus
y′1 = y

′
2. But this implies that y′1 is both −-maximal and not −maximal in y —a

contradiction.
Suppose both the conditions (i) and (iv) are met by y′′. From (vi), as y′ is

+-maximal & not −-maximal in y,

y′
a

−Ð⊂ y0 ⊆ y ,

for some event a with polA(a) = − and y0 ∈ C
∞(A). From (i), y ⊆ y′′, so

y′
a

−Ð⊂ y0 ⊆ y
′′ .

Therefore
a ∈ y′′ ∖ y′ & a ∈ y ,

which contradicts (iv). Similarly the cases (ii) and (iii) are disjoint.
We conclude that the assignment of winning conditions is well-defined.
Then y is reachable for both winning strategies in (A,W ) and winning strate-

gies in (A,W )⊥. Suppose σ is a winning strategy σ in (A,W ). By (iii) and
Lemma 8.14, y is σ-reachable. From receptivity y1 is σ-reachable, say y1 = σx1

for some x1 ∈ C(S). There is a +-maximal extension x′1 of x1 in C∞(S). By (i),
σx′1 cannot be a winning configuration. Hence there can be no winning strategy
in (A,W ). In a dual fashion, there can be no winning strategy in (A,W )⊥.

It is tempting to believe that a nondeterministic winning strategy always
has a winning (weakly-)deterministic sub-strategy. However, this is not so, as
the following examples show.

Example 8.16. A winning strategy need not have a winning deterministic sub-
strategy. Consider the game (A,W ) where A consists of two inconsistent events
⊖ and ⊕, of the indicated polarity, and W = {{⊖},{⊕}}. Consider the strategy
σ in A given by the identity map idA ∶ a → A. Then σ is a nondeterministic
winning strategy—all +-maximal configurations in A are winning. However any
sub-strategy must include ⊖ by receptivity and cannot include ⊕ if it is to be
deterministic, wherepon it has ∅ as a +-maximal configuration which is not
winning.

Example 8.17. Observe that the strategy σ of Example 8.16 is already weakly-
deterministic—cf. Corollary 5.6. A winning strategy need not have a winning
weakly-deterministic sub-strategy. Consider the game (A,W ) where A consists
of two −ve events 1,2 and one +ve event 3 all consistent with each other and

W = {∅,{1,3},{2,3},{1,2,3}}.

Let S be the event structure
⊕ ⊕

⊖

_LLR

⊖

_LLR



8.6. DETERMINACY FOR WELL-FOUNDED GAMES 93

and σ ∶ S → A the only possible total map of event structures with polarity:

⊕ ⊕ ⊕

⊖

_LLR

⊖

_LLR

σ // ⊖ ⊖

Then σ is a winning strategy for which there is no weakly-deterministic sub-
strategy.

8.6 Determinacy for well-founded games

Definition 8.18. A game A is well-founded if every configuration in C∞(A) is
finite.

It is shown that any well-founded concurrent game satisfying (race-free) is
determined.

8.6.1 Preliminaries

Proposition 8.19. Let Q be a non-empty family of finite partial orders closed
under rigid inclusions, i.e. if q ∈ Q and q′ ↪ q is a rigid inclusion (regarded
as a map of event structures) then q′ ∈ Q. The family Q determines an event
structure (P,≤,Con) as follows:

• the events P are the prime partial orders in Q, i.e. those finite partial
orders in Q with a top element;

• the causal dependency relation p′ ≤ p holds precisely when there is a rigid
inclusion from p′ ↪ p;

• a finite subset X ⊆ P is consistent, X ∈ Con, iff there is q ∈ Q and rigid
inclusions p↪ q for all p ∈X.

If x ∈ C(P ) then ⋃x, the union of the partial orders in x, is in Q. The function
x↦ ⋃x is an order-isomorphism from C(P ), ordered by inclusion, to Q, ordered
by rigid inclusions.

Call a non-empty family of finite partial orders closed under rigid inclusions
a rigid family. Observe:

Proposition 8.20. Any stable family F determines a rigid family: its config-
urations x possess a partial order ≤x such that whenever x ⊆ y in F there is a
rigid inclusion (x,≤x) ↪ (y,≤y) between the corresponding partial orders.

Notation 8.21. We shall use Pr(Q) for the construction described in Proposi-
tion 8.19. The construction extends that on stable families with the same name.



94 CHAPTER 8. WINNING WAYS

Lemma 8.22. Let σ ∶ S → A be a strategy. Letting x, y ∈ C(S),

x+ ⊆ y+ & σx ⊆ σy Ô⇒ x ⊆ y .

Proof. The proof relies on Proposition 4.20, characterising strategies. We first
prove two special cases of the lemma.

Special case σx ⊆− σy. By assumption x+ ⊆ y+. Supposing s ∈ y+ ∖ x+, via
the injectivity of σ on y, we obtain σy ∖ σx contains σ(s) a +ve event—a
contradiction. Hence x+ = y+.

From Proposition 4.20(ii), as σx ⊆− σy, we obtain (a unique) x′ ∈ C(S) such
that x ⊆ x′ and σx′ = σy:

x_

σ

��

⊆ x′_

σ

��
σx ⊆− σy .

Now [x+] ⊆− x, from which

[x+]
_

σ

��

⊆ x_

σ

��
σ[x+] ⊆− σx .

Combining the two diagrams:

[x+]
_

σ

��

⊆ x′_

σ

��
σ[x+] ⊆− σy .

As [y+] ⊆− y,

[y+]
_

σ

��

⊆ y_

σ

��
σ[y+] ⊆− σy .

where, by Proposition 4.20(ii), y is the unique such configuration of S. But
y+ = x+ so this same property is shared by x′. Hence x′ = y and x ⊆ y.

Thus

x+ ⊆ y+ & σx ⊆− σy Ô⇒ x ⊆ y . (1)

Note that, in particular,

x+ = y+ & σx = σy Ô⇒ x = y . (2)



8.6. DETERMINACY FOR WELL-FOUNDED GAMES 95

Special case σx ⊆+ σy. By Proposition 4.20(i), there is (a unique) y1 ∈ C(S)
with y1 ⊆ y such that σy1 = σx:

y1_
σ

��

⊆ y_
σ

��
σx ⊆+ σy ,

Now x+, y+1 ⊆ y and σ x+ = (σx)+ = σ y+1 . So by the local injectivity of σ we
obtain x+ = y+1 . By (2) above, x = y1, whence x ⊆ y. Thus

x+ ⊆ y+ & σx ⊆+ σy Ô⇒ x ⊆ y . (3)

Any inclusion σx ⊆ σy can be built as a composition of inclusions ⊆− and ⊆+,
so the lemma follows from the special cases (1) and (3).

Lemma 8.23. Let σ ∶ S → A be a strategy for which no +ve event of S appears
as a −ve event in A. Defining

Fσ =def {x+ ∪ (σx)− ∣ x ∈ C(S)}

yields a stable family for which

ασ(s) =

⎧⎪⎪
⎨
⎪⎪⎩

s if s is +ve,

σ(s) if s is −ve.

is a map of stable families ασ ∶ C(S) → Fσ which induces an order-isomorphism

(C(S),⊆) ≅ (Fσ,⊆)

taking x ∈ C(S) to ασ x = x
+ ∪ (σx)−. Defining

fσ(e) =

⎧⎪⎪
⎨
⎪⎪⎩

σ(e) if e is +ve,

e if e is −ve

on events e of Fσ yields a map of stable families fσ ∶ Fσ → C(A) such that

C(S)
ασ //

σ
##

Fσ

fσ

��
C(A)

commutes.

Proof. A configuration x ∈ C(S) has direct image

ασx = x
+ ∪ (σx)−



96 CHAPTER 8. WINNING WAYS

under the function ασ. Direct image under ασ is clearly surjective and preserves
inclusions, and by Lemma 8.22 yields an order-isomorphism (C(S),⊆) ≅ (Fσ,⊆):
if ασx ⊆ ασy, for x, y ∈ C(S), then x+ ⊆ y+ and (σx)− ⊆ (σy)− by the disjointness
of S+ and A, whence σx ⊆ σy so x ⊆ y.

It is now routine to check that Fσ is a stable family and ασ is a map of
stable families. For instance to show the stability property required of Fσ,
assume ασx,ασy ⊆ ασz. Then x, y ⊆ z so σ x ∩ y = (σx) ∩ (σy) as σ is a map of
event structures, and consequently (σ x ∩ y)− = (σx)− ∩ (σy)−. Now reason

(ασx) ∩ (ασy) =(x
+ ∪ (σx)−) ∩ (y+ ∪ (σy)−)

=(x+ ∩ y+) ∪ ((σx)− ∩ (σy)−)

—by distributivity with the disjointness of S+ and A ,

=(x ∩ y)+ ∪ (σ x ∩ y)−

=(ασ x ∩ y) ∈ Fσ .

From the definitions of ασ and fσ it is clear that fσασ(s) = σ(s) for all events
of S. Any configuration of Fσ is sent under fσ to a configuration in C(A) in a
locally injective fashion, making fσ a map of stable families; this follows from
the matching properties of σ.

When we “glue” strategies together it can be helpful to assume that all the
initial −ve moves of the strategies are exactly the same:

Lemma 8.24. Let σ ∶ S → A be a strategy. Then σ ≅ σ′, a strategy σ′ ∶ S′ → A
for which

∀s′ ∈ S′. polS′[s
′]S′ = {−} Ô⇒ s′ = [σ(s′)]A .

Proof. Without loss of generality we may assume no +ve event of S appears as
a −ve event in A. Take fσ ∶ Fσ → C(A) given by Lemma 8.24 and construct σ′

as the composite map

Pr(Fσ)
Pr(σ)// Pr(C(A)) ≅

top
A

—recall top takes a prime [a]A to a, where a ∈ A.

8.6.2 Determinacy proof

Definition 8.25. Let A be an event structure with polarity. Let W ⊆ C∞(A).
Let y ∈ C∞(A). Define A/y to be the event structure with polarity comprising
events

{a ∈ A ∖ y ∣ y ∪ [a]A ∈ C∞(A)} ,

also called A/y, with consistency relation

X ∈ ConA/y iff X ⊆fin A/y & y ∪ [X]A ∈ C∞(A) ,

and causal dependency the restriction of that on A. Define W /y ⊆ C∞(A/y) by

z ∈W /y iff z ∈ C∞(A/y) & y ∪ z ∈W .

Finally, define (A,W )/y =def (A/y,W /y).



8.6. DETERMINACY FOR WELL-FOUNDED GAMES 97

Proposition 8.26. Let A be an event structure with polarity and y ∈ C∞(A).
Then,

z ∈ C∞(A/y) iff z ⊆ A/y & y ∪ z ∈ C∞(A) .

Assume A is a well-founded event structure with polarity with winning con-
ditions W ⊆ C(A). Assume the property (race-free) of A:

∀y, y1, y2 ∈ C(A). y
−

−Ð⊂ y1 & y
+

−Ð⊂ y2 Ô⇒ y1 ↑ y2 . (race-free)

Observe that by repeated use of (race-free), if x, y ∈ C(A) with x ∩ y ⊆+ x and
x ∩ y ⊆− y, then x ∪ y ∈ C(A).

We show that the game (A,W ) is determined. Assuming Player has no
winning strategy we build a winning (counter) strategy for Opponent based on
the following lemma.

Lemma 8.27. Assume game A is well-founded and satisfies (race-free). Let
W ⊆ C(A). Assume (A,W ) has no winning strategy (for Player). Then,

∀x ∈ C(A). ∅ ⊆+ x & x ∈W

Ô⇒

∃y ∈ C(A). x ⊆− y & y ∉W & (A,W )/y has no winning strategy.

Proof. Suppose otherwise, that under the assumption that (A,W ) has no win-
ning strategy, there is some x ∈ C(A) such that

∅ ⊆+ x & x ∈W

&

∀y ∈ C(A). x ⊆− y & y ∉W Ô⇒ (A,W )/y has a winning strategy.

We shall establish a contradiction by constructing a winning strategy for Player.
For each y ∈ C(A) with x ⊆− y and y ∉W , choose a winning strategy

σy ∶ Sy → A/y .

By Lemma 8.24, we can replace σy by a stable family Fy with all −ve events
in A and a map of stable families fy ∶ Fy → C(A). It is easy to arrange that,
within the collection of all such stable families, Fy1 and Fy2 are disjoint on +ve
events whenever y1 and y2 are distinct. We build a putative stable family as

F =def {y ∈ C(A) ∣ polA(y ∖ x) ⊆ {−}} ∪

{y ∪ v ∣ y ∈ C(A) & polA(y ∖ x) ⊆ {−} & x ∪ y ∉W &

v ∈ Fx∪y & + ∈ pol v & y ∪ fx∪yv ∈ C(A)} .

[Note, in the second set-component, that x∪y is a configuration by (race-free).]
We assign events of F the same polarities they have in A and the families Fy.

We check that F is indeed a stable family.
Clearly ∅ ∈ F . Assuming z1, z2 ⊆ z in F , we require z1 ∪ z2, z1 ∩ z2 ∈ F .



98 CHAPTER 8. WINNING WAYS

It is easily seen that if both z1 and z2 belong to the first set-component, so
do their union and intersection. Suppose otherwise, without loss of generality,
that z2 belongs to the second set-component. Then, necessarily, z is in the
second set-component of F and has the form z = y ∪ v described there.

Consider the case where z1 = y1 ∪ v1 and z2 = y2 ∪ v2, both belonging to the
second set-component of F . Then

x ∪ y1 = x ∪ y2 = x ∪ y ,

from the assumption that families Fy are disjoint on +ve events for distinct y,
and

v1, v2 ⊆ v in Fx∪y .

It follows that x ∪ (y1 ∪ y2) = x ∪ y ∉ W and v1 ∪ v2 ∈ Fx∪y = Fx∪(y1∪y2). As
z1, zz ⊆ z,

(y1 ∪ fx∪yv1), (y2 ∪ fx∪yv2) ⊆ (y ∪ fx∪yv)

so
(y1 ∪ y2) ∪ fx∪y(v1 ∪ v2) = (y1 ∪ fx∪yv1) ∪ (y2 ∪ fx∪yv2) ∈ C(A) .

This ensures z1 ∪ z2 = (y1 ∪ y2) ∪ (v1 ∪ v2) ∈ F . Similarly, x ∪ (y1 ∩ y2) =
(x ∪ y1) ∩ (x ∪ y2) = x ∪ y ∉W and v1 ∩ v2 ∈ Fx∪y = Fx∪(y1∩y2). Checking

(y1 ∩ y2) ∪ fx∪y(v1 ∩ v2) = (y1 ∪ fx∪yv1) ∩ (y2 ∪ fx∪yv2) ∈ C(A)

ensures z1 ∩ z2 = (y1 ∩ y2) ∪ (v1 ∩ v2) ∈ F .
Consider the case where z1 ∈ C(A) belongs to the first and z2 = y2 ∪ v2 to

the second set-component of F . As z1 ⊆ y ∪ v it has the form z1 = y1 ∪ v1 where
y1 ∈ C(A) with y1 ⊆ y and v1 ∈ Fx∪y with v1 ⊆ v; all the events of v1 = z1∖(x∪y)
have −ve polarity which ensures v1 ∈ Fx∪y by the receptivity of σy. Because v2

and v have +ve events in common,

x ∪ y2 = x ∪ y ,

while clearly
v1, v2 ⊆ v in Fx∪y .

We deduce x ∪ (y1 ∪ y2) = x ∪ y ∉W and v1 ∪ v2 ∈ Fx∪y = Fx∪(y1∪y2) whence
z1∪z2 = (y1∪y2)∪(v1∪v2) ∈ F after an easy check that (y1∪y2)∪fx∪y(v1∪v2) ∈
C(A). We have y2 ∪ fx∪yv2 ∈ C(A). But fx∪y is constant on −ve events so

z1 ∩ z2 = z1 ∩ (y2 ∪ v2) = z1 ∩ (y2 ∪ fx∪yv2) ∈ C(A) ,

and z1 ∩ z2 belongs to the first set-component of F .
A routine check establishes that F is coincidence-free, and uses that each

family Fy is coincidence-free when considering configurations of the second set-
component.

Having established that F is a stable family, we define a total map of stable
families

f ∶ F → C(A)



8.6. DETERMINACY FOR WELL-FOUNDED GAMES 99

by taking

f(e) =

⎧⎪⎪
⎨
⎪⎪⎩

e if e ∈ x or e is −ve,

fy(e) if e is a +ve event of Fy.

Defining σ to be the composite map of stable families

C(Pr(F))
top // F

f // C(A)

we also obtain a map of event structures

σ ∶ Pr(F) → A

as the embedding of event structures in stable families is full and faithful. As-
cribe to events p of Pr(F) the same polarities as events top(p) of F . Clearly
σ preserves polarities as f does, so σ is a total map of event structures with
polarity. In fact, σ is a winning strategy for (A,W ).

To show receptivity of σ it suffices to show for all z ∈ F that fz
−

−Ð⊂ y′ in

C(A) implies z
z

−Ð⊂
′

with σz′ = z for some unique z′ ∈ F . If z belongs to the
first set-component of F this is obvious—take z′ = y′. Otherwise z belongs to
the second set-component, and takes the form y ∪ v, when receptivity follows
from the receptivity of σx∪y. No extra causal dependencies, over those of A,
are introduced into y in the first set-component of F . Considering y ∪ v in the
second set-component of F , the only extra causal dependencies introduced in
y ∪ v, above those inherited from its image y ∪ fx∪yv in A, are from v in Fx∪y
and those making a +ve event of v in y ∪ v depend on −ve events y ∖ x. For
these reasons σ is also innocent, and a strategy in A.

To show σ is a winning strategy for (A,W ) it suffices to show that fz ∈W
for every +-maximal configuration z ∈ F . Let z be a +-maximal configuration
of F .

Suppose that z belongs to the first set-component of F and, to obtain a
contradiction, that fz ∉W . Then z = fz ∈ C(A) and pol z ∖ x ⊆ {−}. By axiom
(race-free), x ↑ y, so x ⊆ z from the +-maximality of z. As x ⊆− z and z ∉W
the strategy σz is winning in (A,W )/z. Because z is +-maximal in F we must
have ∅ is +-maximal in Fz. It follows that ∅ ∈W /z, i.e. z ∈W—a contradiction.

Suppose that z belongs to the second set-component of F , so that z has
the form y ∪ v with y ∈ C(A) and v ∈ Fx∪y. By (race-free), x ⊆ y, as z is +-
maximal in F . Hence v ∈ Fy and is necessarily +-maximal in Fy, again from the
+-maximality of z. As σy is winning, fyv ∈W /y. Therefore fz = y ∪ fyv ∈W .

Finally, we have constructed a winning strategy σ in (A,W )—the contra-
diction required to establish the lemma.

Remark. In the proof above we could instead build the strategy for Player, on
which the proof by contradiction depends, out of a rigid family of finite partial
orders. Recall that stable families, including configurations of event structures,
are rigid families w.r.t. the order induced on configurations; finite configurations



100 CHAPTER 8. WINNING WAYS

x determine finite partial orders (x,≤x), which we call q(x) in the construction
below. Define

Q =def {q(y) ∣ y ∈ C(A) & polA(y ∖ x) ⊆ {−}} ∪

{q(y); q(v) ∣ y ∈ C(A) & polA(y ∖ x) ⊆ {−} & x ∪ y ∉W &

v ∈ Fx∪y & + ∈ pol v & y ∪ fx∪yv ∈ C(A)}

where above q(y); q(v) is the least partial order on y ∪ v in which events inherit
causal dependencies from q(v), from their images in q(y∪fx∪yv) and in addition
have the causal dependencies y− × v+. The family Q can be shown to be closed
under rigid inclusions, and so a rigid family. ◻

Theorem 8.28. Assume game A is well-founded, satisfies (race-free) and has
winning conditions W ⊆ C(A). If (A,W ) has no winning strategy for Player,
then there is a winning (counter) strategy for Opponent.

Proof. Assume (A,W ) has no winning strategy for Player.
We build a winning counter-strategy for Opponent out of a rigid family of

partial orders, themselves constructed from ‘alternating sequences’ of configu-
rations of A.

Define an alternating sequence to be a sequence

x1, y1, x2, y2,⋯, xi, yi,⋯, xk, yk, xk+1

of length k + 1 ≥ 1 of configurations of A such that

∅ ⊆+ x1 ⊆
− y1 ⊆

+ x2 ⊆
− y2 ⊆

− ⋯ ⊆+ xi ⊆
− yi ⊆

+ ⋯ ⊆+ xk ⊆
− yk ⊆

+ xk+1

with

xi ∈W & yi ∉W & (A,W )/yi has no winning strategy,

when 1 ≤ i ≤ k. It is important that xk+1, which may be ∅, need not be in W .
In particular, we allow the alternating singleton sequence x1 comprising a single
configuration of A with ∅ ⊆+ x1 without necessarily having x1 ∈W .

For each alternating sequence x1, y1,⋯, xk, yk, xk+1 define the partial order
Q(x1, y1,⋯, xk, yk, xk+1) to comprise the partial order on xk+1 inherited from A
together with additional causal dependencies given by the pairs in

x+i × (yi ∖ xi) , where 1 ≤ i ≤ k.

We define Q to be the rigid family comprising the set of all partial orders got
from alternating sequences, closed under rigid inclusions.

Form the event structure Pr(Q) as described in Proposition 8.19. Assign
the same polarity to an event in Pr(Q) as its top event in A. Recall from
Proposition 8.19 the order-isomorphism C(Pr(Q)) ≅ Q given by x ↦ ⋃x for
x ∈ C(Pr(Q)). The map

τ ∶ Pr(Q) → A



8.6. DETERMINACY FOR WELL-FOUNDED GAMES 101

taking p ∈ Pr(Q) to its top event is a total map of event structures with polarity.
Writing T ∶ Q →C(A) for the function taking q ∈ Q to its set of underlying events,
τx = T (⋃x) for all x ∈ C(Pr(Q)), i.e. the diagram

C(Pr(Q))

τ
%%

≅ Q

T

��
C(A)

commutes. We shall reason about order-properties of τ via the function T .
We claim that τ is a winning counter-strategy, in other words a winning

strategy for Opponent, in which the roles of + and − are reversed.
Because the construction of the partial orders in Q only introduces extra

causal dependencies of −ve events on +ve events, τ is innocent (remember the
reversal of polarities). To check receptivity of τ it suffices to show that for q ∈ Q

assuming T (q)
a

−Ð⊂ z′ in C(A), where polA(a) = +, there is a unique q′ ∈ Q such
that q−Ð⊂ q′ and T (q′) = z′. Any such extension q′ must comprise the partial
order q extended by the event a. As a is +ve the events on which it immediately
depends in q′ will coincide with those on which a immediately depends in z′,
guaranteeing the uniqueness of q′. It remains to show the existence of q′.

By assumption, q rigidly embeds in Q(x1, y1,⋯, xk, yk, xk+1) for some alter-
nating sequence x1, y1,⋯, xk, yk, xk+1. In the case where q consists of purely
+ve events, take q′ =def Q(z′). Otherwise, consider the largest i for which
T (q) ∩ (yi ∖ xi) ≠ ∅. Then,

polA T (q) ∖ yi ⊆ {+} . (1)

From the construction of Q(x1, y1,⋯, xk, yk, xk+1) and the rigidity of the inclu-
sion of q in Q(x1, y1,⋯, xk, yk, xk+1) we obtain

x+i ⊆ T (q) . (2)

From (2), T (q) ⊆− T (q) ∪ yi and, by assumption, T (q)
a

−Ð⊂ z′ with polA(a) = +.
Using (race-free), their union remains in C(A), and we can define

x′ =def T (q) ∪ yi ∪ {a} ∈ C(A) .

Note that
x1, y1,⋯, xi, yi, x

′

is an alternating sequence because yi ⊆
+ x′ by (1) and it is built from an al-

ternating sequence x1, y1,⋯, xk, yk, xk+1. Restricting Q(x1, y1,⋯, xi, yi, x
′) to

events z we obtain a partial order q′ for which q−Ð⊂ q′ in Q and T (q′) = z.
We now show that τ is winning for Opponent. For this it suffices to show

that if q ∈ Q is −-maximal then T (q) ∉ W . Assume q ∈ Q is −-maximal in Q.
Necessarily q embeds rigidly in Q(x1, y1,⋯, xk, yk, xk+1) for some alternating
sequence x1, y1,⋯, xk, yk, xk+1.



102 CHAPTER 8. WINNING WAYS

In the case where q consists of purely +ve events

∅ ⊆+ T (q) in C(A) .

Suppose T (q) ∈W . By Lemma 8.27, for some y ∈ C(A),

T (q) ⊆− y & y ∉W .

But then there is a strict extension q ↪ Q(T (q), y,∅) of q by −ve events in Q,
and q is not −-maximal—a contradiction.

In the case where q has −ve events, we may take the largest i for which
T (q) ∩ (yi ∖ xi) ≠ ∅. As earlier,

(1) polA T (q) ∖ yi ⊆ {+} & (2) x+i ⊆ T (q) .

As q is −-maximal, yi ⊆ T (q), whence by (1),

yi ⊆
+ T (q) .

Suppose, to obtain a contradiction, that T (q) ∈ W . The game (A,W )/yi has
no winning strategy. By Lemma 8.27, given

∅ ⊆+ x =def T (q) ∖ yi

in C((A,W )/yi) there is y ∈ C((A,W )/yi) with

x ⊆− y & y ∉W /yi .

Let x′i+1 =def T (q) and y′i+1 =def yi ∪ y ∉W . Then,

x1, y1,⋯, xi, yi, x
′
i+1, y

′
i+1,∅

is an alternating sequence which strictly extends q by −ve events, contradicting
its −-maximality.

We conclude that τ is a winning strategy for Opponent.

Corollary 8.29. If a well-founded game A satisfies (race-free) then (A,W )
is determined for any winning conditions W .

8.7 Satisfaction in the predicate calculus

The syntax for predicate calculus: formulae are given by

φ,ψ,⋯ ∶∶= R(x1,⋯, xk) ∣ φ ∧ ψ ∣ φ ∨ ψ ∣ ¬φ ∣ ∃x. φ ∣ ∀x. φ

where R ranges over basic relation symbols of a fixed arity and x,x1, x2,⋯, xk
over variables.

A model M for the predicate calculus comprises a non-empty universe of
values VM and an interpretation for each of the relation symbols as a relation



8.7. SATISFACTION IN THE PREDICATE CALCULUS 103

of appropriate arity on VM . Following Tarski we can then define by structural
induction the truth of a formula of predicate logic w.r.t. an assignment of values
in VM to the variables of the formula. We write

ρ ⊧M φ

iff formula φ is true in M w.r.t. environment ρ; we take an environment to be
a function from variables to values.

W.r.t. a model M and an environment ρ, we can denote a formula φ by
JφKMρ, a concurrent game with winning conditions, so that ρ ⊧M φ iff the game
JφKMρ has a winning strategy.

The denotation as a game is defined by structural induction:

JR(x1,⋯, xk)KMρ =
⎧⎪⎪
⎨
⎪⎪⎩

(∅,{∅}) if ρ ⊧M R(x1,⋯, xk) ,

(∅,∅) otherwise.

Jφ ∧ ψKMρ = JφKMρ⊗ JψKMρ
Jφ ∨ ψKMρ = JφKMρ` JψKMρ
J¬φKMρ = (JφKMρ)⊥

J∃x. φKMρ = ⊕
v∈VM

JφKMρ[v/x]

J∀x. φKMρ = ⊖
v∈VM

JφKMρ[v/x] .

We use ρ[v/x] to mean the environment ρ updated to assign value v to variable
x. The game (∅,{∅}) the unit w.r.t. ⊗ is the game used to denote true and the
game (∅,{∅}) the unit w.r.t. ` to denote false. Denotations of conjunctions and
disjunctions are denoted by the operations of ⊗ and ` on games, while negations
denote dual games. Universal and existential quantifiers denote prefixed sums
of games, operations which we now describe.

The prefixed game ⊕.(A,W ) comprises the event structure with polarity ⊕.A
in which all the events of A are made to causally depend on a fresh +ve event ⊕.
Its winning conditions are those configurations x ∈ C∞(⊕.A) of the form {⊕}∪y
for some y ∈W . The game ⊕v∈V (Av,Wv) has underlying event structure with
polarity the sum (=coproduct) ∑v∈V ⊕.Av with a configuration winning iff it
is the image of a winning configuration in a component under the injection to
the sum. Note in particular that the empty configuration of ⊕v∈V Gv is not
winning—Player must make a move in order to win. The game ⊖v∈V Gv is
defined dually, as (⊕v∈V G

⊥
v)
⊥. In this game the empty configuration is winning

but Opponent gets to make the first move. More explicitly, the prefixed game
⊖.(A,W ) comprises the event structure with polarity ⊖.A in which all the events
of A are made to causally depend on the previous occurrence of an opponent
event ⊖, with winning configurations either the empty configuration or of the
form {⊖} ∪ y where y ∈ W . Writing Gv = (Av,Wv), the underlying event
structure of ⊖v∈V Gv is the sum ∑v∈V ⊖.Av with a configuration winning iff it
is empty or the image under injection of a winning configuration in a prefixed
component.



104 CHAPTER 8. WINNING WAYS

It is easy to check by structural induction that:

Proposition 8.30. For any formula φ the game JφKMρ is well-founded and
race-free (i.e. satisfies Axiom (race-free)), so a determined game by the result
of the last section.

The following facts are useful for building strategies.

Proposition 8.31.

(i) If σ ∶ S → A is a strategy in A and τ ∶ T → B is a strategy in B, then
σ∥τ ∶ S∥T → A∥B is a strategy in A∥B.

(ii) If σ ∶ S → T is a strategy in T and τ ∶ T → B is a strategy in B, then
their composition as maps of event structures with polarity τσ ∶ S → B is
a strategy in B.

Proof. It is easy to check that the properties of receptivity and innocence are
preserved by parallel composition and composition of maps.

There are ‘projection’ strategies from a tensor product of games to its com-
ponents:

Proposition 8.32. Let G = (A,WG) and H = (B,WH) be race-free games with
winning conditions. The map of event structures with polarity

idA⊥∥γB ∶ A⊥∥CCB → A⊥∥B⊥∥B

is a winning strategy pH ∶ G⊗H + //H. The map of event structures with polarity

idB⊥∥γA ∶ B⊥∥CCA → B⊥∥A⊥∥A ≅ A⊥∥B⊥∥A

is a winning strategy pG ∶ G⊗H + //G.

Proof. By Proposition 8.31, as idA⊥ is a strategy in A⊥ and γB is a strategy in
B⊥∥B the map pH = idA⊥∥γB is certainly a strategy in A⊥∥B⊥∥B.

We need to check that pH is a winning strategy in G⊗H ⊸H. Consider x,
a +-maximal configuration of A⊥∥CCB . As B is race-free, the copy-cat strategy
γB is winning in H ⊸H. Consequently if x images to a winning configuration in
G⊗H on the left of G⊗H ⊸H it will image to a winning configuration in H on
the right of G⊗H ⊸H. (Recall a winning configuration of G⊗H is essentially
the union of a winning configuration in G together with a winning configuration
in H.) Consequently, x images to a winning configuration in G⊗H ⊸H, as is
required for pH to be a winning strategy.

The strategy pG is defined analogously but for the isomorphism B⊥∥A⊥∥A ≅
A⊥∥B⊥∥A which does not disturb its winning nature.

The following lemma is used to build and deconstruct strategies in prefixed
sums of games. The lemma concerns the more basic prefixed sums of event
structures. These are built as coproducts ∑i∈I ●.Bi of event structures ●.Bi in
which an event ● is prefixed to Bi, making all the events in Bi causally depend
on ●.



8.7. SATISFACTION IN THE PREDICATE CALCULUS 105

Lemma 8.33. Suppose f ∶ A → ∑i∈I ●.Bi is a total map of event structures,
with codomain a prefixed sum. Then, A is isomorphic to an prefixed sum, A ≅

∑j∈J ●.Aj, and there is a function r ∶ J → I and total maps of event structures
fj ∶ Aj → Br(j) for which

∑j∈J ●.Aj ≅

[●.fj]j∈J
��

A

f{{
∑i∈I ●.Bi

commutes.

Proof. Let J be the subset of events of A whose images are prefix events ● in

∑i∈I ●.Bi. As f is a map of event structures any distinct pairs of events in J
are inconsistent. Moreover, every event of A is ≤A-above a necessarily unique
event in J . It follows that the events of J are ≤A-minimal with A ≅ ∑j∈J ●.Aj ;
the event structure Aj is A/{j}, that part of the event structure strictly above
the event j. Each event j ∈ J is sent to a unique prefix event f(j) in ∑i∈I ●.Bi.
Thus f determines a function r ∶ J → I and maps fj ∶ Aj → Br(i) for all j ∈ J .
By construction the map f is reassembled, up to isomorphism, as the unique
mediating map [●.fj]j∈J for which

●.Aj

●.fj
��

inAj // ∑j∈J ●.Aj ≅

[●.fj]j∈J
��

A

f{{
●.Br(j)

inBr(j)

// ∑i∈I ●.Bi

commutes for all j ∈ J .

Lemma 8.34. Let G,H,Gv, where v ∈ V , be race-free games with winning
conditions. Then,

(i) G ⊗H has a winning strategy iff G has a winning strategy and H has a
winning strategy.

(ii) ⊕v∈V Gv has a winning strategy iff Gv has a winning strategy for some
v ∈ V .

(iii) ⊖v∈V Gv has a winning strategy iff Gv has a winning strategy for all v ∈ V .

If in addition G and H are determined,

(iv) G ` H has a winning strategy iff G has a winning strategy or H has a
winning strategy.



106 CHAPTER 8. WINNING WAYS

Proof. Throughout write Gv = (Av,Wv), where v ∈ V .

(i) ‘Only if ’: If G⊗H has a winning strategy σ ∶ (∅,{∅}) + //G⊗H, then the
compositions pG⊙σ and pH⊙σ provide winning strategies in G and H, respec-
tively. ‘If ’: If G = (A,WG) and H = (B,WH) have winning strategies given as
maps of event structures with polarity σ ∶ S → A and τ ∶ T → B then the map
σ∥τ ∶ S∥T → A∥B is a winning strategy in G⊗H.

(ii) ‘Only if ’: Suppose σ ∶ S → ∑v∈V ⊕.Av is a winning strategy in ⊕v∈V Gv.
As ∅ is not winning in the game, S must be nonempty. By Lemma 8.33, S
decomposes into a prefixed sum necessarily nonempty and of the form ∑j∈J ⊕.Sj
with maps, now necessarily total maps of event structures with polarity, σj ∶
Sj → Av(j). Because σ is winning any such map will be a winning strategy in
Gv(j). ‘If ’: Suppose σv ∶ Sv → Av is a winning strategy in Gv. Prefixing we
obtain ⊕.σv ∶ ⊕.Sv → ⊕.Av, a winning strategy in ⊕.Gv. Composing with the
winning ‘injection’ strategy Inv ∶ ⊕.Gv + // ∑v∈V ⊕.Gv defined below we obtain a
winning strategy in ⊕v∈V Gv. The injection strategy is built from the injection
map of event structures with polarity

inv ∶ ⊕.Av → ∑
v∈V

⊕.Av .

as the composite map

Inv ∶ CC⊕.Av
γ⊕.Av // (⊕.Av)⊥∥ ⊕ .Av

id
(⊕.Av)⊥

∥ inv// (⊕.Av)⊥∥∑v∈V ⊕.Av .

Proposition 8.31 is used to show Inv is a strategy. It can be seen that inv is
both receptive and innocent so a strategy in ∑v∈V ⊕.Av. The map id(⊕.Av)⊥ is a
strategy. Hence id(⊕.Av)⊥∥ inv is a strategy. As the composition of two strategy
maps, Inv is a strategy in (⊕.Av)

⊥∥∑v∈V ⊕.Av. It is a winning strategy because,
as is easily seen from the explicit composite form of Inv, the image under Inv
of a +-maximal configuration in CC⊕.Av is winning.

(iii) ‘Only if ’: Defining Pv =def In⊥v, where Inv ∶ ⊕.G
⊥
v + // ⊕v∈V G

⊥
v is an instance

of an injection strategy defined above, we obtain by duality a winning strategy

Pv ∶ ⊖
v∈V

Gv + // ⊖ .Gv ,

for any v ∈ V . Let v ∈ V . By composition with Pv a winning strategy in

⊖v∈V Gv yields a winning strategy in the component ⊖.Gv. By Lemma 8.33 in
a strategy σ ∶ S → ⊖.Av the event structure S decomposes into a prefixed sum,
where the prefixing events are necessarily all −ve. As σ is receptive the sum
must be a unary prefixed sum of the form ⊖.S′. Lemma 8.33 provides a map
σ′ ∶ S′ → Av. From σ being winning the map σ′ will be a winning strategy in
Gv. ‘If ’: Suppose σv ∶ Sv → Av is a winning strategy in Gv, for all v ∈ V . Pre-
fixing we obtain winning strategies ⊖.σv ∶ ⊖.Sv → ⊖.Av in ⊖.Gv. Forming the



8.7. SATISFACTION IN THE PREDICATE CALCULUS 107

sum ∑v∈V ⊖.σv ∶ ∑v∈V ⊖.Sv → ⊖.σv ∶ ∑v∈V ⊖.Av we obtain a strategy winning in

⊖v∈V Gv.

(iv) Now suppose G and H are determined. ‘If ’: The dual winning strategies
p⊥G⊥ ∶ G + //G ` H and p⊥H⊥ ∶ H + //G ` H compose with a winning strategy
(∅,{∅}) + //G, or respectively a winning strategy (∅,{∅}) + //H, to yield a
winning strategy (∅,{∅}) + //G`H. ‘Only if ’: Suppose G`H has a winning
strategy. Then G⊥ ⊗H⊥ = (G`H)⊥ has no winning strategy. Hence by (i), G⊥

has no winning strategy or H⊥ has no winning strategy. From determinacy, G
has a winning strategy or H has a winning strategy.

Theorem 8.35. For all predicate-calculus formulae φ and environments ρ, ρ ⊧M
φ iff the game JφKMρ has a winning strategy.

Proof. By Proposition 8.30 the games JφKMρ obtained from formulae φ are race-
free and determined. The proof is by structural induction on φ.

The base case where φ is R(x1,⋯, xk) is obvious; the game (∅,{∅}) has as
(unique) winning strategy the map ∅ → ∅, while (∅,∅) has no winning strategy.

For the case φ ∧ ψ, reason

ρ ⊧M φ ∧ ψ ⇐⇒ ρ ⊧M φ & ρ ⊧M ψ

⇐⇒ JφKMρ has a winning strategy & JψKMρ has a winning strategy, by induction,

⇐⇒ JφKMρ⊗ JψKMρ has a winning strategy, by Lemma 8.34(i),

⇐⇒ Jφ ∧ ψKMρ has a winning strategy.

In the case φ ∨ ψ,

ρ ⊧M φ ∨ ψ ⇐⇒ ρ ⊧M φ or ρ ⊧M ψ

⇐⇒ JφKMρ has a winning strategy or JψKMρ has a winning strategy, by induction,

⇐⇒ JφKMρ` JψKMρ has a winning strategy, by Lemma 8.34(iv),

⇐⇒ Jφ ∧ ψKMρ has a winning strategy.

In the case ¬φ,

ρ ⊧M ¬φ ⇐⇒ ρ /⊧M φ

⇐⇒ JφKMρ has no winning strategy, by induction,

⇐⇒ (JφKMρ)⊥ has a winning strategy, by determinacy.

In the case ∃x. φ,

ρ ⊧M ∃x.φ ⇐⇒ ρ[v/x] ⊧M φ for some v ∈ V

⇐⇒ JφKMρ[v/x] has a winning strategy, for some v ∈ V , by induction,

⇐⇒ ⊕
v∈V

JφKMρ[v/x] has a winning strategy, by Lemma 8.34(ii),

⇐⇒ J∃x.φKMρ has a winning strategy.



108 CHAPTER 8. WINNING WAYS

In the case ∀x. φ,

ρ ⊧M ∀x.φ ⇐⇒ ρ[v/x] ⊧M φ for all v ∈ V

⇐⇒ JφKMρ[v/x] has a winning strategy, for all v ∈ V , by induction,

⇐⇒ ⊖
v∈V

JφKMρ[v/x] has a winning strategy, by Lemma 8.34(iii),

⇐⇒ J∀x.φKMρ has a winning strategy.



Chapter 9

Borel determinacy

9.1 Introduction

We show the determinacy of concurrent games with Borel sets as winning con-
ditions, provided they are race-free and bounded-concurrent. Both restrictions
are necessary. The proof of determinacy of concurrent games proceeds via a
reduction to the determinacy of tree games, and the determinacy of these in
turn reduces to the determinacy of traditional Gale-Stewart games.

9.2 Tree games and Gale-Stewart games

We introduce tree games as a special case of concurrent games, traditional Gale-
Stewart games as a variant, and show how to reduce the determinacy of tree
games to that of Gale-Stewart games. Via Martin’s theorem for the determinacy
of Gale-Stewart games with Borel winning conditions we show that tree games
with Borel winning conditions are determined.

9.2.1 Tree games

Definition 9.1. Say E, an event structure with polarity, is tree-like iff it is
race-free, has empty concurrency relation (so ≤E forms a forest) and is such
that polarities alternate along branches, i.e. if e _ e′ then polE(e) ≠ polE(e′).

A tree game is (E,W ), a concurrent game with winning conditions, in which
E is tree-like.

Proposition 9.2. Let E be a tree-like event structure with polarity. Then, its
configurations C(E) form a tree w.r.t. ⊆. Its root is the empty configuration ∅.
Its (maximal) branches may be finite or infinite; finite sub-branches correspond
to finite configurations of E; infinite branches correspond to infinite configu-

rations of E. Its arcs, associated with x
e

−Ð⊂x′, are in 1-1 correspondence with

events e ∈ E. The events e associated with initial arcs ∅
e

−Ð⊂x all share the same

109



110 CHAPTER 9. BOREL DETERMINACY

polarity. Along a branch

∅
e1
−Ð⊂x1

e2
−Ð⊂x2

e3
−Ð⊂⋯

ei
−Ð⊂xi

ei+1
−Ð⊂⋯

the polarities of the events e1, e2, . . . , ei, . . . alternate.

Proposition 9.2 gives the precise sense in which ‘arc,’ ‘sub-branch’ and
‘branch’ are synonyms for ‘events,’ ‘configurations’ and ‘maximal configura-
tions’ when an event structure is tree-like. Notice that for a non-empty tree-like
event structure with polarity, all the events that can occur initially share the
same polarity.

Definition 9.3. We say a a non-empty tree game (E,W ) has polarity + or
− according as its initial events are +ve or −ve. It is convenient to adopt the
convention that the empty game (∅,∅) has polarity +, and the empty game
(∅,{∅}) has polarity −.

Observe that:

Proposition 9.4. Let f ∶ S → A be a total map of event structures with polarity,
where A is tree-like. Then, S is also tree-like and the map f is innocent. The
map f is a strategy iff it is receptive.

Proof. As f preserves the concurrency relation, being a map of event structures,
S must be tree-like. Innocence of f now follows so that only its receptivity is
required for it to be a strategy.

9.2.2 Gale-Stewart games

For the sake of uniformity we shall present Gale-Stewart games as a slight variant
of tree games, a variant in which all maximal configurations of the tree game
are infinite, and where Player and Opponent must play to a maximal, infinite
configuration.

Definition 9.5. A Gale-Stewart game (G,V ) comprises

• a tree-like event structure G for which all maximal configurations are
infinite, and

• a subset V of infinite configurations—the winning configurations.

A winning strategy in a Gale-Stewart game (G,V ) is a deterministic strategy
σ ∶ S → G such that σx ∈ V for all maximal configurations x of S.

This is not how a Gale-Stewart game and, particularly, a winning strategy in
a Gale-Stewart game are traditionally defined. However, because the strategy
σ is deterministic it is injective as a map on configurations, so corresponds to
the subfamily of configurations T = {σx ∣ x ∈ C∞(S)} of C∞(G). The family T
forms a subtree of the tree of configurations of G. Its properties, detailed below,
reconcile our definition with the traditional one.



9.2. TREE GAMES AND GALE-STEWART GAMES 111

Proposition 9.6. A winning strategy in a Gale-Stewart game (G,V ) corre-
sponds to a non-empty subset T ⊆ C∞(G) such that

(i) ∀x, y ∈ C∞(G). y ⊆ x ∈ T Ô⇒ y ∈ T ,

(ii) ∀x, y ∈ C(G). x ∈ T & x
−

−Ð⊂ y Ô⇒ y ∈ T ,

(iii) ∀x, y1, y2 ∈ T . x
+

−Ð⊂ y1 & x
+

−Ð⊂ y2 Ô⇒ y1 = y2 , and

(iv) all ⊆-maximal members of T are infinite and in V .

Proof. Given σ, a winning strategy in the Gale-Stewart game we define T as
above. Then, (i) follows because σ is a map of event structures and G is tree-
like; (ii) and (iii) follow from σ being receptive and deterministic; (iv) is a
consequence of all winning configurations being infinite. Conversely, given T
a subfamily of C∞(G) satisfying (i)-(iv) it is a relatively routine matter to
construct a tree-like event structure S and map σ ∶ S → G which is a winning
strategy in (G,V ).

A Gale-Stewart game (G,V ) has a dual game (G,V )∗ =def (G⊥, V ∗), where
V ∗ is the set of all maximal configurations in C∞(G) not in V . A winning
strategy for Opponent in (G,V ) is a winning strategy (for Player) in the dual
game (G,V )∗.

For any event structure A there is a topology on C∞(A) given by the Scott
open subsets. The ⊆-maximal configurations in C∞(A) inherit a sub-topology
from that on C∞(A). The Borel subsets of a topological space are those subsets
of configurations in the sigma-algebra generated by the Scott open subsets.
Donald Martin proved in his celebrated theorem [27] that Gale-Stewart games
(G,V ) are determined, i.e. there is a either a winning strategy for Player or
a winning strategy for Opponent, when V is a Borel subset of the maximal
configurations of C∞(A).

9.2.3 Determinacy of tree games

We show the determinacy of tree games with Borel winning conditions through
a reduction of the determinacy of tree games to the determinacy of Gale-Stewart
games.

Let (E,W ) be a tree game. We construct a Gale-Stewart game GS(E,W ) =
(G,V ) and a partial map proj ∶ G→ E. The events of G are built as sequences of
events in E together with two new symbols δ− and δ+ decreed to have polarity −
and +, respectively; the symbols δ− and δ+ represent delay moves by Opponent
and Player, respectively.

Precisely, an event of G is a non-empty finite sequence

[e1,⋯, ek]

of symbols from E ∪ {δ−, δ+} where: e1 has the same polarity as (E,W ); po-
larities alternate along the sequence; and for all subsequences [e1,⋯, ei], with



112 CHAPTER 9. BOREL DETERMINACY

i ≤ k,
{e1,⋯, ei} ∩E ∈ C(E) .

The immediate causal dependency relation of G is given by

[e1,⋯, ek] ≤G [e1,⋯, ek, ek+1]

and consistency by compatibility w.r.t. ≤G. Events [e1,⋯, ek] of G have the
same polarity as their last entry ek. It is easy to see that G is tree-like, and
that the only maximal configurations are infinite (because of the possibility of
delay moves).

The map proj ∶ G → E takes an event [e1,⋯, ek] of G to ek if ek ∈ E,
and is undefined otherwise. The winning set V consists of all those infinite
configurations x of G for which proj x ∈W .

We have constructed a Gale-Stewart game GS(E,W ) = (G,V ). The con-
struction respects the duality on games.

Lemma 9.7. Letting (E,W ) be a tree game,

GS((E,W )⊥) = (GS(E,W ))∗ .

Proof. Directly from the definition of the operation GS.

Suppose σ ∶ S → G is a winning strategy for (G,V ). The composite

S
σ // G

proj // E (F1)

is a partial map of event structures with polarity. Letting D ⊆ S be the subset
of events on which proj ○ σ is defined, the map proj ○ σ factors as

S // S ↓D
σ0 // E (F2)

where: the first partial map acts like the identity on events in D and is undefined
otherwise—it sends a configuration x ∈ C∞(S) to x ∩D ∈ C∞(S ↓D); and σ0

is the total map that acts like σ on D. We shall show that σ0 is a (possibly
nondeterministic) winning strategy for (E,W ).

Lemma 9.8. The map σ0 is a winning strategy for (E,W ).

Proof. Write S0 =def S ↓D. By Proposition 9.4, for σ0 ∶ S0 → E to be a strategy
we only require its receptivity. From the construction of G and proj ,

proj x−⊂ y in C(E) Ô⇒ ∃!x′ ∈ C(G). x−⊂x′ & proj x′ = y .

This together with the receptivity of σ entails the receptivity of σ0.
To show σ0 is winning, suppose z is a +-maximal configuration of S0; we

require σ0z ∈ W . We will show this by exhibiting an infinite configuration
x ∈ C∞(S) such that x ∩ D = z. Then, according to the factorisation (F2),
x ↦ z ↦ σ0z, so we will have σ0z = proj σx. The configuration x being infinite



9.3. RACE-FREENESS AND BOUNDED-CONCURRENCY 113

will ensure σx ∈ V because σ is winning in the Gale-Stewart game (G,V ). By
definition, σx ∈ V implies proj σx ∈W , so σ0z ∈W .

It remains to exhibit an infinite configuration x ∈ C∞(S) such that x∩D = z.
When z is infinite this is readily achieved by defining x =def [z]S ∈ C∞(S).
Suppose z is finite. Define x0 =def [z]S ∈ C(S), ensuring x0 ∩ D = z. We
inductively build an infinite chain

x0
s1
−Ð⊂x1

s2
−Ð⊂⋯

sn
−Ð⊂xn

sn+1
−Ð⊂⋯

in C(S) where all the events sn are ‘delay’ moves not in D. Then xn ∩D = z for
all n ∈ ω. By the definition of a winning strategies in Gale-Stewart games, no xn
can be ⊆-maximal in C(S). For each Opponent move sn choose to delay—as we
may do by the receptivity of σ. For each Player move sn we have no choice as
only a delay move is possible—otherwise we would contradict the +-maximality
assumed of z. Taking x =def ⋃n xn produces an infinite configuration x ∈ C∞(S)
such that x ∩D = z, as required.

Corollary 9.9. Let H be a tree game. If the Gale-Stewart game GS(H) has a
winning strategy, then H has a winning strategy.

Theorem 9.10. Tree games with Borel winning conditions are determined.

Proof. Assume (E,W ) is a tree game where W is a Borel set. Construct
GS(E,W ) = (G,V ) as above. The function proj , acting as x↦ proj x on config-
urations, is easily seen to be a Scott-continuous function from C∞(G) → C∞(E).
It restricts to a continuous function from the subspace of maximal configurations
in C∞(G). Hence V , as the inverse image of W under this restricted function, is
a Borel subset. By Martin’s Borel-determinacy theorem [27], the game (G,V )
is determined, so has either a winning strategy for Player or a winning strategy
for Opponent.

Suppose first that GS(E,W ) has a winning strategy (for Player). By Corol-
lary 9.9 we obtain a winning strategy for (E,W ). Suppose, on the other
hand, that GS(E,W ) has a winning strategy for Opponent, i.e. there is a win-
ning strategy in the dual game GS(E,W )∗. By Lemma 9.7, GS((E,W )⊥) =
GS(E,W )∗ has a winning strategy. By Corollary 9.9, (E,W )⊥ has a winning
strategy, i.e. there is a winning strategy for Opponent in (E,W ).

9.3 Race-freeness and bounded-concurrency

Not all games are determined; We have seen the necessity of race-freeness for
the determinacy of well-founded games. However, a determinacy theorem holds
for well-founded games (games where all configurations are finite) which are
(race − free)

x
a

−Ð⊂ & x
a′

−Ð⊂ & pol(a) ≠ pol(a′) Ô⇒ x ∪ {a, a′} ∈ C(A) . (Race − free)

However race-freeness is not sufficient to ensure determinacy when the game is
not well-founded, as is illustrated in the following example.



114 CHAPTER 9. BOREL DETERMINACY

Example 9.11. Let A be the event structure with polarity consisting of one
positive event ⊕ which is concurrent with an infinite chain of alternating negative
and positive events, i.e. for each i we have both ⊕ co ⊕i and ⊕ co ⊖i, i ∈ N,

A = ⊕ ⊖1
� ,,2⊕1

� ,,2⊖2
� ,,2⊕2

� ,,2⋯

and Borel winning conditions (for Player) given by

W = {∅,{⊖1,⊕1}, ...,{⊖1,⊕1, ...,⊖i,⊕i}, ...,A}.

So, Player wins if (i) no event is played, or (ii) the event ⊕ is not played and the
play is finite and finishes in some ⊕i, or (iii) all of the events in A are played.
Otherwise, Opponent wins.

Player does not have a winning strategy because Opponent has an infinite
family of spoiler strategies, not all be dominated by a single strategy of Player.
The inclusion maps τ∞ ∶ T∞ → A⊥ and τi ∶ Ti → A⊥, i ∈ N, are strategies for
Opponent where T ⊥∞ =def A and T ⊥i =def A ∖ {e′ ∈ A ∣ ⊖i ≤ e

′}, for i ∈ N.
Any strategy for Player that plays ⊕ is dominated by some strategy τi for

Opponent; likewise, any strategy for Player that does not play ⊕ and plays
only finitely many positive events ⊕i is also dominated by some strategy τi for
Opponent. Moreover, a strategy for Player that does not play ⊕ and plays all
of the events ⊕i in A is dominated by τ∞. So, Player does not have a winning
strategy in this game. Similarly, Opponent does not have a winning strategy
in A because Player has two strategies that cannot be both dominated by any
strategy for Opponent. Let σ⊕ ∶ S⊕ → A and σ⊕ ∶ S⊕ → A be strategies for
Player such that S⊕ =def A ∖ {⊕} and S⊕ =def A.

On the one hand, any strategy for Opponent that plays only finitely many
(possibly zero) negative events ⊖i is dominated by σ⊕; on the other, any strategy
for Opponent that plays all of the negative events ⊖i in A is dominated by σ⊕.
Thus neither player has a winning strategy in this game! ◻

In the above example, to win Player should only make the move ⊕ when Op-
ponent has played an infinite number of moves. We can banish such difficulties
by insisting that in a game no event is concurrent with infinitely many events
of the opposite polarity. This property is called bounded-concurrency:

∀y ∈ C∞(A). ∀e ∈ y. {e′ ∈ y ∣ e co e′ & pol(e) ≠ pol(e′)} is finite.
(Bounded − concurrent)

Bounded concurrency is in fact a necessary structural condition for determinacy
with respect to Borel winning conditions.

Notation 9.12. For a concurrent game A with configurations y, y′, write max+(y
′, y)

iff y′ is ⊕-maximal in y, i.e. y′
e

−Ð⊂ & pol(e) = + Ô⇒ e /∈ y; in a dual way, we
write max+(y

′, y) iff y′ is not ⊕-maximal in y. We use max− analogously when
pol(e) = −.

We show that if a countable, race-free A is not bounded-concurrent, then
there is Borel W so that the game (A,W ) is not determined. Since A is not



9.3. RACE-FREENESS AND BOUNDED-CONCURRENCY 115

bounded-concurrent, there is y ∈ C∞(A) and e ∈ y such that e is concurrent with
infinitely many events of opposite polarity in y. W.l.o.g. assume that pol(e) = +,
that y ∖ {e} is a configuration and that y = [e] ∪ [{a ∈ y ∣ polA(a) = −}]. The
following rules determine whether y′ ∈ C∞(A) is in W or L:

1. y′ ⊇ yÔ⇒ y′ ∈W ;

2. y′ ⊂ y & e ∈ y′ Ô⇒ y′ ∈ L;

3. y′ ⊂ y & e /∈ y′ & max+(y
′, y ∖ {e}) & max−(y

′, y ∖ {e}) Ô⇒ y′ ∈W ;

4. y′ ⊂ y & e /∈ y′ & max+(y
′, y ∖ {e}) or max−(y

′, y ∖ {e}) Ô⇒ y′ ∈ L;

5. y′ ⊉ y & (y′ ∩ y) ⊂− y′ Ô⇒ y′ ∈W ;

6. y′ ⊉ y & (y′ ∩ y) ⊂+ y′ Ô⇒ y′ ∈ L;

7. otherwise assign y′ (arbitrarily) to W .

No y′ is assigned as winning for both Player and Opponent: the implications’
antecedents are all pair-wise mutually exclusive.1 The countability of A is im-
portant in showing that W is Borel.

Lemma 9.13. Let A be a countable race-free game. If A is not bounded-
concurrent, then there is Borel W ⊆ C∞(A) such that the game (A,W ) is not
determined.

Proof. The set W is Borel because it is defined by clauses such as y′ ⊂ y which
have extensions, in this case {y′ ∈ C∞(A) ∣ y′ ⊂ y}, which are Borel sets by virtue
of the countability of A. For instance, a clause such as e ∈ y′ has extension

{y′ ∈ C∞(A) ∣ e ∈ y′} = [̂e] ,

a basic open set. In general, for x ∈ C(A), we use x̂ to denote the basic open
set {x′ ∈ C∞(A) ∣ x ⊆ x′}. The clause y′ ⊇ y, equivalent to ∀a ∈ y. a ∈ y′, has
extension

{y′ ∈ C∞(A) ∣ y′ ⊇ y} = ⋂
a∈y

[̂a] ;

because A is assumed countable so is y and the intersection is an intersection
of countably many open sets. To see that {y′ ∈ C∞(A) ∣ y′ ⊂ y} is Borel is a bit
more complicated. Observe that

{y′ ∈ C∞(A) ∣ y′ ⊂ y} = ⋂
a∉y

(C∞(A) ∖ [̂a]) ∩ ⋃
a∈y

(C∞(A) ∖ [̂a]) ;

the big intersection is the extension of y′ ⊆ y and the big union that of ∃a ∈ y. a ∉
y′—because A is assumed countable the intersection and union are countable.

We first show:

1The winning conditions W in Example 9.11 are instance of this scheme.



116 CHAPTER 9. BOREL DETERMINACY

(i) If σ is a winning strategy for Player then y is σ-reachable, i.e. σ ∶ S → A,
there is x ∈ C∞(S) s.t. σx = y.
(ii) If τ is a winning strategy for Opponent then y is τ -reachable.
Write ye =def y ∖ {e}.

(i) This part uses rules (2), (4) and (6). Suppose σ ∶ S → A is a winning
strategy for Player. There is a ⊆-maximal configuration of S s.t. σx0 ⊆ y (via
Zorn’s lemma). By receptivity, σx0 is −-maximal in y. As σ is winning, there
is a +-maximal x ∈ C∞(S) with x0 ⊆

+ x and σx ∈W (Zorn).
If σx ⊇ y then necessarily σx ⊇+ y and by a general property of strategies

we obtain y is σ-reachable. For completeness we include the argument. Take
x′ =def {s ∈ x ∣ σ(s) ∉ (σx) ∖ y}. Suppose s′ _ s in x. Then

σ(s′) ∈ (σx) ∖ y Ô⇒ σ(s) ∈ (σx) ∖ y

by +-innocence. Hence its contrapositive, viz.

σ(s) ∉ (σx) ∖ y Ô⇒ σ(s′) ∉ (σx) ∖ y ,

so that s ∈ x′ implies s′ ∈ x′. Thus, being down-closed and consistent, x′ ∈C∞(S),
with σx′ = y from the definition of x′.

The remaining case σx /⊇ y is impossible. Suppose x0 ≠ x, so x0 ⊂ x. Then
we also have (σx) ∩ y ⊂+ σx, using the ⊆-maximality of x0. By (6), σx ∈ L—a
contradiction. Suppose, on the other hand, that x0 = x. If e ∈ σx, by (2) we
obtain the contradiction σx ∈ L. If e ∉ σx, by (4) we obtain the contradiction
σx ∈ L; recall σx = σx0 is −-maximal in y so in ye when e ∉ σx.

(ii) This part uses rules (1), (3) and (5). Suppose τ ∶ T → A⊥ is a winning
strategy for Opponent. It is sufficient to show ye is τ -reachable as then y will
also be τ -reachable by receptivity. Assume to obtain a contradiction that ye is
not τ -reachable. Then there is a ⊆-maximal x0 ∈ C

∞(T ) s.t. τx0 ⊆ y (via Zorn’s
lemma). By assumption, τx0 ⊂ y. By receptivity, τx0 is +-maximal in ye and
necessarily τx0 is not −-maximal in ye. By (3), τx0 ∈W . As τ is winning, there
is a −-maximal x ∈ C∞(T ) with x0 ⊆− x and τx ∈ L (Zorn); from the latter
x0 ⊂ x. We claim that by (1)&(5), τx ⊆ ye, contradicting the ⊆-maximality of
x0. To show the claim, suppose to obtain a contradiction that τx /⊆ ye. Then
τx /⊆ y, as e is +ve , so (τx) ∩ y ⊂− τx. By (1), τx /⊇ y. Now by (5), τx ∈W , the
required contradiction.

To conclude the proof we show there is no winning strategy for either player.
If σ is a winning strategy for Player then by (i) there is x ∈ C∞(S) s.t. σx = y;

in particular there is se ∈ x s.t. σ(se) = e. Define the inclusion map τ0 ∶ A
⊥ ↾

(σ[se]S ∪ {a ∈ A⊥ ∣ polA(a) = +} ↪ A⊥. Then τ0 s a strategy for Opponent for
which there is y′ ∈ ⟨σ, τ0⟩ with e ∈ y′ and where y′ only contains finitely many
−-events. Either y′ ⊂ y whence y′ ∈ L by (2), or y′ /⊂ y whereupon (y′ ∩ y) ⊂+ y′

so y′ ∈ L by (6). Hence as τ0 is a strategy for Opponent not dominated by σ
the latter cannot be a winning strategy for Player.



9.4. DETERMINACY OF CONCURRENT GAMES 117

If τ is a winning strategy for Opponent then y is τ -reachable. Define the
inclusion map σ0 ∶ A ↾ (y ∪ {a ∈ A ∣ polA(a) = −} ↪ A. Then σ0 is a strategy for
Player for which there is y′ ∈ ⟨σ0, τ⟩ with y′ ⊇ y. By (1) y′ ∈ W , so σ0 is not
dominated by τ , which cannot be a winning strategy for Opponent.

9.4 Determinacy of concurrent games

We now construct a tree game TG(A,W ) from a concurrent game (A,W ). We
can think of the events of TG(A,W ) as corresponding to (non-empty) rounds
of −ve or +ve events in the original concurrent game (A,W ). When (A,W ) is
race-free and bounded-concurrent, a winning strategy for TG(A,W ) will induce
a winning strategy for (A,W ). In this way we reduce determinacy of concurrent
games to determinacy of tree games.

9.4.1 The tree game of a concurrent game

From a concurrent game (A,W ) we construct a tree game

TG(A,W ) = (TA,TW ) .

The construction of TA depends on whether ∅ ∈W .
In the case where ∅ ∈ W , define an alternating sequence of (A,W ) to be a

sequence

∅ ⊂− x1 ⊂
+ x2 ⊂

− ⋯ ⊂+ x2i ⊂
− x2i+1 ⊂

+ x2i+2 ⊂
− ⋯

of configurations in C∞(A)—the sequence need not be maximal. Define the −ve
events of TG(W,A) to be

[∅, x1, x2, . . . , x2k−2, x2k−1] ,

finite alternating sequences of the form

∅ ⊂− x1 ⊂
+ x2 ⊂

− ⋯ ⊂+ x2k−2 ⊂
− x2k−1 ,

and the +ve events to be

[∅, x1, x2, . . . , x2k−1, x2k] ,

finite alternating sequences

∅ ⊂− x1 ⊂
+ x2 ⊂

− ⋯ ⊂− x2k−1 ⊂
+ x2k ,

where k ≥ 1. The causal dependency relation on TA is given by the relation of
initial sub-sequence, with a finite subset of events being consistent iff the events
are all initial sub-sequences of a common alternating sequence.

It is easy to see that a configuration of TA corresponds to an alternating
sequence, the −ve events of TA matching arcs x2k−2 ⊂

− x2k−1 and the +ve events



118 CHAPTER 9. BOREL DETERMINACY

arcs x2k−1 ⊂
+ x2k. As such, we say a configuration y ∈ C∞(TA) is winning, and

in TW , iff y corresponds to an alternating sequence

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯

for which ⋃i xi ∈W .

In the case where ∅ ∉W , we define an alternating sequence of (A,W ) as a
sequence

∅ ⊂+ x1 ⊂
− x2 ⊂

+ ⋯ ⊂− x2i ⊂
+ x2i+1 ⊂

− x2i+2 ⊂
+ ⋯

of configurations in C∞(A). In this case, the −ve events of TG(W,A) are finite
alternating sequences ending in x2k, while the +ve events end in x2k−1, for k ≥ 1.
The remaining parts of the definition proceed analogously.

We have constructed a tree game TG(A,W ) from a concurrent game (A,W ).
The construction respects the duality on games.

Lemma 9.14. Let (A,W ) be a concurrent game.

TG((A,W )⊥) = (TG(A,W ))⊥ .

Proof. From the construction TG, because alternating sequences

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯

in C∞(A) correspond to alternating sequences

∅ ⋯ ⊂− xi ⊂
+ xi+1 ⊂

− ⋯

in C∞(A⊥).

Proposition 9.15. Suppose (A,W ) is a bounded-concurrent game. Maximal
alternating sequences have one of two forms,

(i) finite:

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯xk ,

where xi is finite for all 0 < i < k (where possibly xk is infinite), or

(iii) infinite:

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯ ,

where each xi is finite.

Proof. Otherwise, taking the first infinite xi, within configuration xi+1 there
would be an event of xi+1 ∖ xi concurrent with infinitely many events of xi of
opposite polarity—contradicting the bounded-concurrency of A.



9.4. DETERMINACY OF CONCURRENT GAMES 119

9.4.2 Borel determinacy of concurrent games

Now assume that the concurrent game (A,W ) is race-free and bounded-concurrent.
Suppose that str ∶ T → TA is a (winning) strategy in the tree game TG(A,W ).
Note that T is necessarily tree-like. We construct σ0 ∶ S → A, a (winning)
strategy in the original concurrent game (A,W ). We construct S indirectly,
from a prime-algebraic domain Q, built as follows. For technical reasons, in the
construction of Q it is convenient to assume—as can easily be arranged—that

A ∩ (A × T ) = ∅ .

Via str a sub-branch
t⃗ = (t1,⋯, ti,⋯)

of T determines a tagged alternating sequence

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯

where str(ti) = [∅, . . . , xi−1, xi]. (Informally, the arc ti is associated with a
round extending xi−1 to xi in the original concurrent game.)

Define q(t⃗) to be the partial order comprising events

⋃{(xi ∖ xi−1) ∣ ti is a −ve arc of t⃗} ∪

⋃{(xi ∖ xi−1) × {ti} ∣ ti is a +ve arc of t⃗}

—so a copy of the events ⋃i xi but with +ve events tagged by the +ve arc of
T at which they occur2—with order a copy of that ⋃i xi inherits from A with
additional causal dependencies pairs from

x−i−1 × ((xi ∖ xi−1) × {ti})

—making the +ve events occur after the −ve events which precede them in the
alternating sequence.

Define the partial order Q as follows. Its elements are partial orders q, not
necessarily finite, for which there is a rigid inclusion

q ↪ q(t1, t2,⋯, ti,⋯) ,

for some sub-branch (t1, t2,⋯, ti,⋯) of T . The order on Q is that of rigid
inclusion. Define the function σ ∶ Q → C∞(A) by taking

σq = {a ∈ A ∣ a is −ve & a ∈ q} ∪ {a ∈ A ∣ ∃t ∈ T. a is +ve & (a, t) ∈ q}

for q ∈ Q. We should check that σq is indeed a configuration of A. Clearly,
σq(t⃗) = ⋃i∈I xi where

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯

is the tagged alternating sequence determined by t⃗ =def (t1,⋯, ti,⋯). Any q for
which there is a rigid inclusion q ↪ q(t⃗) will be sent to a sub-configuration of

⋃i xi.

2It is so that the two components remain disjoint under tagging that we make the technical
assumption above.



120 CHAPTER 9. BOREL DETERMINACY

Proposition 9.16. Let (t1,⋯, ti,⋯) be a sub-branch of T , so corresponding to
a configuration {t1,⋯, ti,⋯} ∈ C∞(T ). Then,

str{t1,⋯, ti,⋯} ∈ TW ⇐⇒ σq(t1,⋯, ti,⋯) ∈W .

Proof. Let t⃗ =def (t1,⋯, ti,⋯). We have str(ti) = [∅, . . . , xi−1, xi] for some

∅ ⋯ ⊂− xi−1 ⊂
+ xi ⊂

− ⋯ ,

an alternating sequence of (A,W ). Directly from the definitions of TW , q(t⃗)
and σ,

str{t⃗} ∈ TW ⇐⇒ ⋃
i

xi ∈W

⇐⇒ σq(t⃗) ∈W .

We shall make use of the following proposition.

Proposition 9.17. For all q, q′ ∈ Q, whenever there is an inclusion of the
events of q in the events of q′ there is a rigid inclusion q ↪ q′.

Proof. To see this, suppose the events of q are included in the events of q′. To
establish the rigid inclusion q ↪ q′ we require that, for all a ∈ q, b ∈ q′,

b _q a ⇐⇒ b _q′ a . (†)

However, in the construction of q(t1, t2,⋯, ti,⋯) the only immediate dependen-
cies introduced beyond those of A are those of the form b _ (a′, t), of tagged
+ve events on −ve rounds specified earlier in the branch on which the +ve arc t
occurs. This property is inherited by q and q′ in Q. Thus in checking (†) we can
restrict attention to the case where b is −ve and a is +ve and of the form (a′, t)
for some a′ ∈ A and arc t of T . The arc t determines a sub-branch t1,⋯, tk = t
of T and a corresponding tagged alternating sequence

∅ ⋯
tk−1

⊂− xk−1

tk

⊂+ xk .

So in this case,

b _q a ⇐⇒ b is ≤A-maximal in x−k−1 & a′ is ≤A-maximal in xk ∖ xk−1

⇐⇒ b _q′ a ,

which ensures (†), and the proposition.

Notation 9.18. Proposition 9.17, justifies us in writing ⊆ for the order of Q.
We shall also write q ⊆− q′ when all the events in q′ above those of q are −ve,
and similarly q ⊆+ q′ when all the events in q′ above those of q are +ve. ◻

The following lemma is crucial and depends critically on (A,W ) being race-
free and bounded-concurrent.



9.4. DETERMINACY OF CONCURRENT GAMES 121

Lemma 9.19. The order (Q,⊆) is a prime algebraic domain in which the primes
are precisely those (necessarily finite) partial orders with a maximum.

Proof. Any compatible finite subset X of Q has a least upper bound: if all
the members of X include rigidly in a common q then taking the union of
their images in q, with order inherited from q, provides their least upper bound.
ProvidedQ has least upper bounds of directed subsets it will then be consistently
complete with the additional property that every q ∈ Q is the least upper bound
of the primes below it—this will make Q a prime algebraic domain.

To establish prime algebraicity it remains to show that Q has least upper
bounds of directed sets.

Let S be a directed subset of Q. The +ve events of orders q ∈ S are tagged
by +ve arcs of T . Because S is directed the +ve tags which appear throughout
all q ∈ S must determine a common sub-branch of T , viz.

t⃗ =def (t1, t2,⋯, ti,⋯) .

Every +ve arc of the sub-branch appears in some q ∈ S and all −ve arcs are
present only by virtue of preceding a +ve arc. The sub-branch t⃗ may be

(1) infinite and necessarily a full branch of T , if the elements of S together
mention infinitely many tags;

(2) finite with q(t⃗) infinite, and necessarily finishing with a +ve arc;

(3) finite and non-empty with q(t⃗) finite, and necessarily finishing with a +ve
arc; or

(4) empty with t⃗ = ().

(1) Consider the case where t⃗ forms an infinite branch of T . We shall argue that
for all q ∈ S, there is a rigid inclusion

q ↪ q(t⃗) .

Then, forming the partial order ⋃S comprising the union of the events of all
q ∈ S with order the restriction of that on q(t⃗) we obtain a rigid inclusion

⋃S ↪ q(t⃗) ,

so a least upper bound of S in Q.
Let q ∈ S. By Proposition 9.17, to establish the rigid inclusion q ↪ q(t⃗) it

suffices to show the events of q are included in those of q(t⃗). From the nature
of the sub-branch determined by S, we must have that all the +ve events of q
are included in those of q(t⃗)—all +ve events of q are tagged by a +ve arc of t⃗.
Suppose, to obtain a contradiction, that there is some −ve event a of q not in
q(t⃗). For every +ve arc ti in t⃗ there is qi ∈ S with a +ve tagged event (ai, ti).
Let

I ⊆fin {i ∣ ti is a +ve arc of t⃗} .



122 CHAPTER 9. BOREL DETERMINACY

As S is directed, there is an upper bound in S of

{q} ∪ {qi ∣ i ∈ I} .

It follows that
{a} ∪ {ai ∣ i ∈ I} ∈ ConA ,

Hence, forming the down-closure in A of {a} ∪ {ai ∣ ti is a +ve arc in t⃗}, we
obtain

[{a} ∪ {ai ∣ ti is a +ve arc in t⃗}] ∈ C∞(A) .

Moreover it is a configuration which violates the assumption of bounded-concurrency—
the −ve event a is concurrent with infinitely many of the +ve events ai. From
this contradiction we deduce that the events of q are included in the events of
q(t⃗).

(2) Consider the case where t⃗ is a finite branch (t1,⋯, tk), where necessarily tk
is a +ve arc, and where q(t⃗) is infinite. By bounded-concurrency, all q(t1,⋯, ti),
for 0 ≤ i < k, are finite with only q(t⃗) = q(t1,⋯, tk) infinite.

Let q ∈ S. By Proposition 9.17, we can show there is a rigid inclusion

q ↪ q(t⃗)

by showing all the events of q are in q(t⃗). Again, all the +ve events of q are in
q(t⃗). Suppose, to obtain a contradiction, that b ∈ q with b ∉ q(t⃗), so b has to
be −ve. There is a member of S with an event tagged by tk. Thus, using the
directedness of S, there has to be q1 ∈ S with q ⊆ q1 and where q1 has an event
tagged by tk. Because of the extra dependencies introduced in the construction
of q(t⃗), all the −ve events of q(t⃗) are included in q1. Note in addition that

[q+1 ] ⊆ q(t⃗)

because all the +ve events of q1 are in q(t⃗). We deduce

[q+1 ] ⊆
+ q(t⃗) . (i)

Also,
[q+1 ] ⊂

− q1 , (ii)

where the inclusion has to be strict because b ∈ q1 ∖ q(t⃗). Consider the images
of (i) and (ii) in C∞(A):

σ[q+1 ] ⊆
+ σq(t⃗) and σ[q+1 ] ⊂

− σq1 .

As A is race-free, we obtain the configuration x =def σq(t⃗) ∪ σq1 ∈ C∞(A) and
the strict inclusion

σq(t⃗) ⊂− x ,

making x a configuration which contains the −ve event b concurrent with in-
finitely many +ve events—the images of those tagged by tk. But this contradicts
the bounded-concurrency of A. Hence all the events of q are in q(t⃗).



9.4. DETERMINACY OF CONCURRENT GAMES 123

As in case (1) we obtain a rigid inclusion

⋃S ↪ q(t⃗) ,

and a least upper bound of S in Q.

(3) The case where t⃗ is a non-empty finite branch (t1,⋯, tk) and q(t⃗) is finite.
Again, tk is necessarily a +ve arc. As S is directed, the set of events ⋃q∈S σq
is a configuration in C∞(A). Again, all the +ve events of any q ∈ S are in q(t⃗),
from which it follows that as sets,

(⋃
q∈S

σq)+ ⊆ σq(t⃗) .

Hence, the down-closure

[(⋃
q∈S

σq)+]A ⊆ σq(t⃗) in C∞(A) . (iii)

There is q1 ∈ S with an event tagged by tk. Because of the extra dependencies
introduced in the construction of q(t⃗), all the −ve events of q(t⃗) are included in
q1. Consequently, all the −ve events of σq(t⃗) are included in ⋃q∈S σq. From this
and (iii) we deduce

[(⋃
q∈S

σq)+] ⊆+ σq(t⃗) in C∞(A) . (iv)

Also, straightforwardly,

[(⋃
q∈S

σq)+] ⊆− ⋃
q∈S

σq in C∞(A) . (v)

From (iv) and (v), because A is race-free, we obtain the configuration

y =def (σq(t⃗) ∪ ⋃
q∈S

σq) ∈ C∞(A)

for which

σq(t⃗) ⊆− y ∈ C∞(A) .

But by receptivity of the original strategy str ∶ T → TA, there is a unique
extension of the branch t⃗ = (t1,⋯, tk) to (t1,⋯, tk, tk+1) in T such that

σq(t1,⋯, tk, tk+1) = y .

W.r.t. this extension, forming the partial order ⋃S comprising the union of the
events of all q ∈ S with order the restriction of that on q(t1,⋯, tk, tk+1), we
obtain a rigid inclusion

⋃S ↪ q(t1,⋯, tk, tk+1) ,



124 CHAPTER 9. BOREL DETERMINACY

so a least upper bound of S in Q.

(4) Finally, consider the case where t⃗ = (). Then all q ∈ S consist purely of −ve
events. As S is directed, ⋃q∈S σq ∈ C

∞(A). If ⋃q∈S σq = ∅ we have ⋃S = q().
Assume ⋃q∈S σq is non-empty.

Suppose first that ∅ ∈W . We can form the alternating sequence

∅ ⊂− ⋃
q∈S

σq .

By the receptivity of str ∶ T → TA there is a unique 1-arc branch (t1) of T with

⋃q∈S σq = σq(t1). Then ⋃S = q(t1).
Now suppose ∅ ∉ W . In this case all alternating sequences must begin

∅ ⊂+ x1⋯ and consequently all initial arcs of T must be +ve. We are assuming

⋃q∈S σq is non-empty so contains some non-empty q. There must therefore be
a rigid inclusion q ↪ q(u⃗) for some non-empty sub-branch u⃗ = (u1,⋯). Via str
the sub-branch u⃗ determines the alternating sequence ∅ ⊂+ x1 ⊂− ⋯. Noting
∅ ⊂− ⋃q∈S σq, because A is race-free there is x1 ∪ ⋃q∈S σq ∈ C

∞(A). Form the
alternating sequence

∅ ⊂+ x1 ⊂
− x1 ∪ ⋃

q∈S
σq .

From the receptivity of str there is a sub-branch (u1, u
′
2) such that x1∪⋃q∈S σq =

σq(u1, u
′
2). We obtain ⋃S ↪ q(u1, u

′
2).

Definition 9.20. Define S to be the event structure with polarity, with events
the primes of Q; causal dependency the restriction of the order on Q; with a
finite subset of events consistent if they include rigidly in a common element
of Q. The polarity of event of S is the polarity in A of its top element (recall
the event is a prime in Q). Define σ0 ∶ S → A to be the function which takes a
prime with top element an untagged event a ∈ A to a and top element a tagged
event (a, t) to a.

Lemma 9.21. The function which takes q ∈ Q to the set of primes below q in Q
gives an order isomorphism Q ≅ C∞(S). The function σ0 ∶ S → A is a strategy
for which

Q

σ

��

≅ C∞(S)

σ0zz
C∞(A)

commutes.

Proof. The isomorphism Q ≅ C∞(S) is established in [2]. The diagram is easily
seen to commute. Via the order isomorphism Q ≅ C∞(S) we can carry out the
argument that σ0 is a strategy in terms of Q and σ. Innocence follows because
the only additional causal dependencies introduced in q(t⃗) are of +ve events on
−ve events. To show receptivity, suppose q ∈ Q is finite and σq ⊂− y in C(A).



9.4. DETERMINACY OF CONCURRENT GAMES 125

There is a rigid inclusion q ↪ q(t⃗) for some t⃗ = (t1,⋯, ti,⋯) , a sub-branch of T .
Let

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯

be the tagged sequence determined by t⃗.
First consider when (σq)+ ≠ ∅. Suppose xk is the earliest configuration at

which (σq)+ ⊆ xk. Then, tk has to be +ve and

q+ ∩ ((xk ∖ xk−1) × {tk}) ≠ ∅ .

The latter entails
x−k ⊆ σq

because of the extra causal dependencies introduced in the definition of q(t⃗). It
follows that

(σq) ∩ xk ⊆
+ xk .

Moreover, as (σq)+ ⊆ xk, we deduce

(σq) ∩ xk ⊆
− σq ⊆− y .

By race-freeness, xk ∪ y ∈ C(A) with

xk ⊆
− xk ∪ y in C(A) .

In fact xk ⊂
− xk ∪ y as x−k ⊆ σq ⊂

− y. Now

∅ ⋯ ⊂+ xk ⊂
− xk ∪ y

is seen to form an alternating sequence, so a sub-branch of TA. From the
receptivity of str there is a unique sub-branch t1, . . . , tk, t

′
k+1 of T which has

this alternating sequence as image. Take q′ to be the down-closure of y in
q(t1, . . . , tk, t

′
k+1). This gives the unique q′ such that q ⊆ q′ and σq′ = y.

Now consider when (σq)+ = ∅. Then ∅ ⊆− σq ⊂− y.
In the case where ∅ ∈W we may form the alternating sequence

∅ ⊂− y .

The receptivity of str ensures there is a unique 1-arc branch (u1) of T such that
σq(u1) = y.

In the case where ∅ ∉W we also have ∅ ∉ TW . In this case all alternating
sequences must begin ∅ ⊂+ x1⋯ and consequently all initial arcs of T must be
+ve. Also, the empty configuration (or branch) of T cannot be +-maximal
because its image under str is the empty configuration (or branch) of TW —
impossible because str is a winning strategy. Thus there must be v1, an initial,
necessarily +ve arc of T . Via str the sub-branch (v1) yields the alternating
sequence ∅ ⊂+ x1, say. As A is race-free we obtain x1 ∪ y ∈ C∞(A) and the
alternating sequence

∅ ⊂+ x1 ⊂
− x1 ∪ y .



126 CHAPTER 9. BOREL DETERMINACY

From the receptivity of str there is a unique sub-branch (v1, v2) of T for which
σq(v1, v2) = x1 ∪ y. Take q′ to be the down-closure of y in q(v1, v2). This
furnishes the unique q′ such that q ⊆ q′ and σq′ = y.

We have shown the receptivity of σ, as required.

Theorem 9.22. Suppose that str ∶ T → TA is a winning strategy in the tree
game TG(A,W ). Then σ0 ∶ S → A is a winning strategy in (A,W ).

Proof. For σ0 to be winning we require that σ0x ∈ W for any +-maximal x ∈
C∞(S). Via the order isomorphism Q ≅ C∞(S) we can carry out the proof in Q
rather than C∞(S). For any q which is +-maximal in Q (i.e. whenever q ⊆+ q′

in Q then q = q′) we require that σq ∈W .
Let q be +-maximal in Q. We will show that q = q(u⃗) for some +-maximal

branch u⃗ of T . Certainly there is a rigid inclusion q ↪ q(t⃗) for some sub-branch
t⃗ = (t1,⋯, ti,⋯) of T . Let

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯

be the tagged sequence determined by t⃗.
Consider the case in which the set q+ is infinite. There are two possibilities.

Suppose first that
q+ ∩ ((xi ∖ xi−1) × {ti}) ≠ ∅ .

for infinitely many +ve ti. Because of the extra causal dependencies introduced
in the definition of q(t⃗), the set of −ve events q(t⃗)− is included in q. Hence
q ⊆+ q(t⃗). But q is +-maximal, so q = q(t⃗). The second possibility is that
(σq)+ ⊆ xk for some necessarily terminal configuration in the tagged alternating
sequence, which now has to be of the form

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯ ⊂+ xk .

Because of the causal dependencies in q(t⃗), the set q(t⃗)− is included in q. Hence
q ⊆+ q(t⃗), so q = q(t⃗) because q is +-maximal.

Now consider the case where the set q+ is finite. Then the set (σq)+, also
finite, must be included in some xk of the tagged alternating sequence, which
we may assume is the earliest. Then tk must be +ve. If σq ⊆ q(t1,⋯, tk), then
the set q(t1,⋯, tk)

− is included in q—again because of the causal dependencies
there; and again q ⊆+ q(t1,⋯, tk) so q = q(t1,⋯, tk) because q is +-maximal.
Otherwise, xk ⊂

− xk ∪ (σq) and we can extend the alternating sequence to

∅ ⋯ ⊂+ xk ⊂
− xk ∪ (σq) .

From the receptivity of str there is a sub-branch t1, . . . , tk, t
′
k+1 of T which

has this alternating sequence as image. Now q ⊆+ q(t1, . . . , tk, t
′
k+1) so q =

q(t1, . . . , tk, t
′
k+1) from the +-maximality of q.

Thus any q ∈ Q which is +-maximal has the form q = q(u⃗) for some sub-
branch u⃗ of T . Any extension of u⃗ by a +-ve arc would yield a +-ve extension



9.4. DETERMINACY OF CONCURRENT GAMES 127

of q(u⃗), contradicting the +-maximality of q. Therefore u⃗ is +-maximal, so its
image str{u⃗} is in TW , as str is a winning strategy in (TG(A,W ), TW ). But,
by Proposition 9.16,

str{u⃗} ∈ TW ⇐⇒ σq(u⃗) ∈W .

Hence, σq ∈W , as required.

Corollary 9.23. Let (A,W ) be a race-free, bounded-concurrent game. If the
tree game TG(A,W ) has a winning strategy, then (A,W ) has a winning strat-
egy.

Theorem 9.24. Any race-free, concurrent-bounded game (A,W ), in which W
is a Borel subset of C∞(A), is determined.

Proof. Assuming (A,W ) is race-free, concurrent-bounded and W is Borel, we
obtain a tree game TG(A,W ) = (TA,TW ) in which TW is also Borel. To
see that TW is Borel, recall that a configuration y of TA corresponds to an
alternating sequence

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯ ,

so determines f(y) =def ⋃i xi ∈ C
∞(A). This yields a Scott-continuous function

f ∶ C∞(TA) → C∞(A). The set TW is the inverse image f−1W , so Borel. As
the tree game TG(A,W ) is determined—Theorem 9.10—we obtain a winning
strategy for Player or a winning strategy for Opponent in the tree game.

Suppose first that TG(A,W ) has a winning strategy (for Player). By Corol-
lary 9.23 we obtain a winning strategy for (A,W ). Suppose, on the other hand,
that TG(A,W ) has a winning strategy for Opponent, i.e. there is a winning
strategy in the dual game (TG(A,W ))⊥. By Lemma 9.14, TG((A,W )⊥) =
TG(A,W )⊥ has a winning strategy. By Corollary 9.23, (A,W )⊥ has a winning
strategy, i.e. there is a winning strategy for Opponent in (A,W ).



128 CHAPTER 9. BOREL DETERMINACY



Chapter 10

Games with imperfect
information

10.1 Motivation

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”) or p (“pa-
per”). The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP , the event structure with
polarity

r1⊕ ⊖ r2

s1⊕ ⊕p1 s2⊖ ⊖p2

comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. In the absence of
neutral configurations, a reasonable choice is to take the losing configurations
(for Player) to be

{s1, r2}, {p1, s2}, {r1, p2}

and all other configurations as winning for Player. In this case there is a winning
strategy for Player, viz. await the move of Opponent and then beat it with a
dominant move. Explicitly, the winning strategy σ ∶ S → RSP is given as the

129



130 CHAPTER 10. GAMES WITH IMPERFECT INFORMATION

obvious map from S, the following event structure with polarity:

r1⊕

s1⊕ ⊕p1 ⊖ s2

�hho

p2⊖

�ggn

⊖ r2

�ggn

But this strategy cheats. In “rock, scissors, paper” participants are intended to
make their moves independently. The problem with the game RSP as it stands
is that it is a game of perfect information in the sense that all moves are visible to
both participants. This permits the winning strategy above with its unwanted
dependencies on moves which should be unseen by Player. To adequately model
“rock, scissors, paper” requires a game of imperfect information where some
moves are masked, or inaccessible, and strategies with dependencies on unseen
moves are ruled out.

10.2 Games with imperfect information

We extend concurrent games to games with imperfect information. To do so in
way that respects the operations of the bicategory of games we suppose a fixed
preorder of levels (Λ,⪯). The levels are to be thought of as levels of access, or
permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

An Λ-game (G, l) comprises a game G = (A,W,L) with winning/losing con-
ditions together with a level function l ∶ A→ Λ such that

a ≤A a
′ Ô⇒ l(a) ⪯ l(a′)

for all a, a′ ∈ A. A Λ-strategy in the Λ-game (G, l) is a strategy σ ∶ S → A for
which

s ≤S s
′ Ô⇒ lσ(s) ⪯ lσ(s′)

for all s, s′ ∈ S.
For example, for “rock, scissors, paper” we can take Λ to be the discrete

preorder consisting of levels 1 and 2 unrelated to each other under ⪯. To make
RSP into a suitable Λ-game the level function l takes +ve events in RSP to
level 1 and −ve events to level 2. The strategy above, where Player awaits
the move of Opponent then beats it with a dominant move, is now disallowed
because it is not a Λ-strategy—it introduces causal dependencies which do not
respect levels. If instead we took Λ to be the unique preorder on a single level
the Λ-strategies would coincide with all the strategies.



10.2. GAMES WITH IMPERFECT INFORMATION 131

10.2.1 The bicategory of Λ-games

The introduction of levels meshes smoothly with the bicategorical structure on
games.

For a Λ-game (G, lG), define its dual (G, lG)⊥ to be (G⊥, lG⊥) where lG⊥(a) =
lG(a), for a an event of G.

For Λ-games (G, lG) and (H, lH), define their parallel composition (G, lG)∥(H, lH)
to be (G∥H, lG∥H) where lG∥H((1, a)) = lG(a), for a an event ofG, and lG∥H((2, b)) =
lH(b), for b an event of H.

A strategy between Λ-games from (G, lG) to (H, lH) is a strategy in (G, lG)⊥∥(H, lH).

Proposition 10.1.
(i) Let (G, lG) be a Λ-game where G satisfies (Cwins). The copy-cat strategy
on G is a Λ-strategy.
(ii) The composition of Λ-strategies is a Λ-strategy.

Proof. (i) The additional causal links introduced in the construction of the copy-
cat strategy are between complementary events in G⊥ and G, at the same level
in Λ, and so respect ⪯.

(ii) Let (G, lG), (H, lH) and (K, lK) be Λ-games. Let σ ∶ G + //H and τ ∶
H + //K be Λ-strategies. We show their composition τ⊙σ is a Λ-strategy.

It suffices to show p _ p′ in T⊙S implies lG⊥∥Kτ⊙σ(p) ⪯ lG⊥∥Kτ⊙σ(p
′).

Suppose p _ p′ in T⊙S with top(p) = e and top(p′) = e ′. Take x ∈ C(T⊙S)
containing p′ so p too. Then,

e _⋃x e1 _⋃x ⋯ _⋃x en−1 _⋃x e
′

where e, e′ ∈ V0 and ei ∉ V0 for 1 ≤ i ≤ n − 1. (V0 consists of ‘visible’ events
of the stable family, those of the form (s,∗) with σ1(s) defined, or (∗, t), with
τ2(t) defined.) The events ei have the form (si, ti) where σ2(si) = τ1(ti), for
1 ≤ i ≤ n − 1.

Any individual link in the chain above has one of the forms:

(s, t) _⋃x (s′, t′) , (s,∗) _⋃x (s′, t′) ,

(∗, t) _⋃x (s′, t′) , (s, t) _⋃x (s′,∗) , or (s, t) _⋃x (∗, t′) .

By Lemma 3.21, for any link either s _S s′ or t _T t′. As σ and τ are Λ-
strategies, this entails

lG⊥∥Hσ(s) ⪯ lG⊥∥Hσ(s
′) or lH⊥∥Kτ(t) ⪯ lH⊥∥Kτ(t

′)

for any link. Consequently ⪯ is respected across the chain and lG⊥∥Kτ⊙σ(p) ⪯
lG⊥∥Kτ⊙σ(p

′), as required.

W.r.t. a particular choice of access levels (Λ,⪯) we obtain a bicategory
WGamesΛ. Its objects are Λ-games (G, l) where G satisfies (Cwins) with ar-
rows the Λ-strategies and 2-cells maps of spans. It restricts to a sub-bicategory
of deterministic Λ-strategies, which as before is equivalent to an order-enriched
category.



132 CHAPTER 10. GAMES WITH IMPERFECT INFORMATION

10.3 Hintikka’s IF logic

We present a variant of Hintikka’s Independence-Friendly (IF) logic and propose
a semantics in terms of concurrent games with imperfect information. Assume
a preorder (Λ,⪯). The syntax for IF logic is essentially that of the predicate
calculus, but with levels in Λ associated with quantifiers: formulae are given by

φ,ψ,⋯ ∶∶= R(x1,⋯, xk) ∣ φ ∧ ψ ∣ φ ∨ ψ ∣ ¬φ ∣ ∃λx. φ ∣ ∀λx. φ

where λ ∈ Λ, R ranges over basic relation symbols of a fixed arity and x,x1, x2,⋯
over variables.

Assume M , a non-empty universe of values VM and an interpretation for
each of the relation symbols as a relation of appropriate arity on VM ; so M is a
model for the predicate calculus in which the quantifier levels are stripped away.
Again, an environment ρ is a function from variables to values; again, ρ[v/x]
means the environment ρ updated to value v at variable x. W.r.t. a model
M and an environment ρ, we denote each closed formula φ of IF logic by a
Λ-game, following very closely the definitions in Section ??. The differences are
the assignment of levels to events and that the order on Λ has to be respected
by the (modified) prefixed sums which quantified formulae denote.

The prefixed game ⊕λ.(A,W, l) comprises the event structure with polar-
ity ⊕.A in which all the events of a ∈ A where λ ⪯ l(a) are made to causally
depend on a fresh +ve event ⊕, itself assigned level λ. Its winning conditions
are those configurations x ∈ C∞(⊕.A) of the form {⊕} ∪ y for some y ∈W . The
game ⊕λ

v∈V (Av,Wv, lv) has underlying event structure with polarity the sum

∑v∈V ⊕
λ.Av , maintains the same levels as its components, with a configuration

winning iff it is the image of a winning configuration in a component under the
injection to the sum. The game ⊖λ

v∈V Gv is defined dually, as (⊕λ
v∈V G

⊥
v)
⊥. In

this game the empty configuration is winning but Opponent gets to make the
first move.

True denotes the Λ-game the unit w.r.t. ⊗ and false denotes he unit w.r.t. `.
Denotations of conjunctions and disjunctions are given by the operations of ⊗
and ` on Λ-games, while negations denote dual games. W.r.t. an environment
ρ, universal and existential quantifiers denote the prefixed sums of games:

J∃λx. φKΛ

Mρ =
λ

⊕
v∈VM

JφKΛ

Mρ[v/x]

J∀λx. φKΛ

Mρ =
λ

⊖
v∈VM

JφKΛ

Mρ[v/x] .

As a definition, an IF formula φ is satisfied w.r.t. an environment ρ, written

ρ ⊧Λ
M φ ,

iff the Λ-game JφKΛ

Mρ has a winning strategy.



Chapter 11

Probabilistic strategies

The chapter provides a new definition of probabilistic event structures, extend-
ing existing definitions, and characterised as event structures together with a
continuous valuation on their domain of configurations. Probabilistic event
structures possess a probabilistic measure on their domain of configurations.
This prepares the ground for a very general definition of a probabilistic strate-
gies, which are shown to compose, with probabilistic copy-cat strategies as iden-
tities. The result of the play-off of a probabilistic strategy and counter-strategy
in a game is a probabilistic event structure so that a measurable pay-off function
from the configurations of a game is a random variable, for which the expecta-
tion (the expected pay-off) is obtained as the standard Legesgue integral.

11.1 Probabilistic event structures

A probabilistic event structure comprises an event structure (E,≤,Con) together
with a continuous valuation on its open sets of configurations, i.e. a function w
from the open subsets of configurations C∞(E) to [0,1] which is:

(normalized) w(C∞(E)) = 1 (strict) w(∅) = 0;

(monotone) U ⊆ V Ô⇒ w(U) ≤ w(V );

(modular) w(U ∪ V ) +w(U ∩ V ) = w(U) +w(V );

(continuous) w(⋃i∈I Ui) = supi∈Iw(Ui) for directed unions ⋃i∈I Ui.

Continuous valuations play a central role in probabilistic powerdomains [28].
Continuous valuations are determined by their restrictions to basic open sets
x̂ =def {y ∈ C∞(E) ∣ x ⊆ y}, for x a finite configuration. The intuition: w(U) is
the probability of the resulting configuration being in the open set U . Indeed,
continuous valuations extend to unique probabilistic measures on the Borel sets.

This description of a probabilistic event structure extends the definitions in
[23]. It turns out to be equivalent to a more workable definition, which relates
more directly to the configurations of E, that we develop now.

133



134 CHAPTER 11. PROBABILISTIC STRATEGIES

11.1.1 Preliminaries

Notation 11.1. Let F be a stable family. Extend F to a lattice F⊺ by adjoining
an extra top element ⊺. Write its order as x ⊑ y and its join and meet operations
as x ∨ y and x ∧ y respectively.

Definition 11.2. Let F be a stable family. Assume a function v ∶ F → R.
Extend v to v⊺ ∶ F⊺ → R by taking v⊺(T ) = 0.

W.r.t. v ∶ F → R, for n ∈ ω, define the drop functions d
(n)
v [y;x1,⋯, xn] ∈ R

for y, x1,⋯, xn ∈ F
⊺ with y ⊑ x1,⋯, xn in F⊺ as follows:

d(0)v [y; ] =def v
⊺(y)

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn] .

Throughout this section assume F is a stable family and v ∶ F → R.

Proposition 11.3. Let n ∈ ω. For y, x1,⋯, xn ∈ F
⊺ with y ⊑ x1,⋯, xn,

d(n)v [y;x1,⋯, xn] = v(y) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I
xi) .

For y, x1,⋯, xn ∈ F with y ⊆ x1,⋯, xn,

d(n)v [y;x1,⋯, xn] = v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I
xi) ,

where the index I ranges over sets satisfying ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑.

Proof. We prove the first statement by induction on n. For the basis, when

n = 0, d
(n)
v [y; ] = v(y), as required. For the induction step, with n > 0, we reason

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

= v(y) − ∑
∅≠I⊆{1,⋯,n−1}

(−1)∣I ∣+1v(⋁
i∈I
xi)

− v(xn) + ∑
∅≠J⊆{1,⋯,n−1}

(−1)∣I ∣+1v(⋁
j∈J

xi ∨ xn) ,

making use of the induction hypothesis. Consider subsets K for which ∅ ≠K ⊆
{1,⋯, n}. Either n ∉ K , in which case ∅ ≠ K ⊆ {1,⋯, n − 1}, or n ∈ K, in
which case K = {n} or J =def K ∖ {n} satisfies ∅ ≠ J ⊆ {1,⋯, n − 1}. From this
observation, the sum above amounts to

v(y) − ∑
∅≠K⊆{1,⋯,n}

(−1)∣K∣+1v( ⋁
k∈K

xk) ,

as required to maintain the induction hypothesis.
The second expression of the proposition is got by discarding all terms

v(⋁i∈I xi) for which ⋁i∈I xi = ⊺ which leaves the sum unaffected as they con-
tribute 0.



11.1. PROBABILISTIC EVENT STRUCTURES 135

Corollary 11.4. Let n ∈ ω and y, x1,⋯, xn ∈ F⊺ with y ⊑ x1,⋯, xn. For ρ an
n-permutation,

d(n)v [y;xρ(1),⋯, xρ(n)] = d
(n)
v [y;x1,⋯, xn] .

Proof. As by Proposition 11.3, the value of d
(n)
v [y;x1,⋯, xn] is insensitive to

permutations of its arguments.

Proposition 11.5. Assume n ≥ 1 and y, x1,⋯, xn ∈ F⊺ with y ⊑ x1,⋯, xn. If

y = xi for some i with 1 ≤ i ≤ n then d
(n)
v [y;x1,⋯, xn] = 0.

Proof. By Corollary 11.4, it suffices to show d
(n)
v [y;x1,⋯, xn] = 0 when y = xn.

In this case,

d(n)v [y;x1,⋯, xn] =d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

=d(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [y;x1,⋯, xn−1]

=0 .

Corollary 11.6. Assume n ≥ 1 and y, x1,⋯, xn ∈ F⊺ with y ⊑ x1,⋯, xn. If
xi ⊑ xj for distinct i, j with 1 ≤ i, j ≤ n then

d(n)v [y;x1,⋯, xn] = d
(n−1)
v [y;x1,⋯, xj−1, xj+1,⋯, xn] .

Proof. By Corollary 11.4, it suffices to show

d(n)v [y;x1,⋯, xn−1, xn] = d
(n−1)
v [y;x1,⋯, xn−1]

when xn−1 ⊑ xn. Then,

d(n)v [y;x1,⋯, xn] =d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

=d(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−2, xn]

=d(n−1)
v [y;x1,⋯, xn−1] − 0 ,

by Proposition 11.5.

Proposition 11.7. Assume n ∈ ω and y, x1,⋯, xn ∈ F⊺ with y ⊑ x1,⋯, xn.

Then, d
(n)
v [y;x1,⋯, xn] = 0 if y = ⊺ and d

(n)
v [y;x1,⋯, xn] = d

(n−1)
v [y;x1,⋯, xi−1, xi+1,⋯, xn]

if xi = ⊺ with 1 ≤ i ≤ n.

Proof. When n = 0, d
(0)
v [⊺; ] = v⊺(⊺) = 0. When n ≥ 1, d

(n)
v [⊺;x1,⋯, xn] = 0 by

Proposition 11.5 as e.g. xn = ⊺. For the remaining statement, w.l.og. we may
assume i = n and that xn = ⊺, yielding

d(n)v [y;x1,⋯,⊺] = d
(n−1)
v [y;x1,⋯, xn−1]−d

(n−1)
v [⊺;x1∨⊺,⋯, xn−1∨⊺] = d

(n−1)
v [y;x1,⋯, xn−1] .



136 CHAPTER 11. PROBABILISTIC STRATEGIES

Lemma 11.8. Let n ≥ 1. Let y, x1,⋯, xn, x
′
n ∈ F⊺ with y ⊑ x1,⋯, xn. Assume

xn ⊑ x
′
n. Then,

d(n)v [y;x1,⋯, x
′
n] = d

(n)
v [y;x1,⋯, xn] + d

(n)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn, x

′
n] .

Proof. By definition,

the r.h.s. = d(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

+ d(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn] − d

(n−1)
v [x′n;x1 ∨ x

′
n,⋯, xn−1 ∨ x

′
n]

= d(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [x′n;x1 ∨ x

′
n,⋯, xn−1 ∨ x

′
n]

= d(n)v [y;x1,⋯, xn−1, x
′
n]

= the l.h.s..

11.1.2 The definition

Definition 11.9. Let F be a stable family. A configuration-valuation is function
v ∶ F → [0,1] such that v(∅) = 1 and which satisfies the “drop condition:”

d(n)v [y;x1,⋯, xn] ≥ 0

for all n ≥ 1 and y, x1,⋯, xn ∈ F with y ⊆ x1,⋯, xn.
A probabilistic stable family comprises a stable family F together with a

configuration-valuation v ∶ F → [0,1].
A probabilistic event structure comprises an event structure E together with

a configuration-valuation v ∶ C(E) → [0,1].

Proposition 11.10. Let v ∶ F → [0,1]. Then, v is a configuration-valuation

iff v⊺(∅) = 1 and d
(n)
v [y;x1,⋯, xn] ≥ 0 for all n ∈ ω and y, x1,⋯, xn ∈ F⊺ with

y ⊑ x1,⋯, xn. If v is a configuration-valuation, then

y ⊑ x Ô⇒ v⊺(y) ≥ v⊺(x) ,

for all x, y ∈ F⊺.

Proof. By Proposition 11.7 and as d
(1)
v [y;x] = v⊺(y) − v⊺(x).

In showing we have a probabilistic event structure or stable family it suffices
to verify the “drop condition” only for covering intervals.

Lemma 11.11. Let F be a stable family and v ∶ F → [0,1].

(i) Let y ⊆ x1,⋯, xn in F . Then, d
(n)
v [y;x1,⋯, xn] is expressible as a sum of

terms

d(k)v [u;w1,⋯,wk]



11.1. PROBABILISTIC EVENT STRUCTURES 137

where y ⊆ u−⊂wi in F and wi ⊆ x1 ∪ ⋯ ∪ xn, for all i with 1 ≤ i ≤ k. [The set
x1 ∪⋯ ∪ xn need not be in F .]

(ii) A fortiori, v is a configuration-valuation iff v(∅) = 1 and

d(n)v [y;x1,⋯, xn] ≥ 0

for all n ≥ 1 and y−⊂x1,⋯, xn in F .

Proof. Define the weight of a term d
(n)
v [y;x1,⋯, xn], where y ⊆ x1,⋯, xn in F ,

to be the product ∣x1 ∖ y∣ × ⋯ × ∣xn ∖ y∣.
Assume y ⊆ x1,⋯, x

′
n in F . By Proposition 11.5, if y equals x′n or some

xi, then d
(n)
v [y;x1,⋯, x

′
n] = 0, so may be deleted as a contribution to a sum.

Otherwise, if y ⊊ xn ⊊ x′n, by Lemma 11.8 we can rewrite d
(n)
v [y;x1,⋯, x

′
n] to

the sum
d(n)v [y;x1,⋯, xn] + d

(n)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn, x

′
n] ,

where we further observe

∣xn ∖ y∣ < ∣x′n ∖ y∣ , ∣x′n ∖ xn∣ < ∣x′n ∖ y∣

and
∣(xi ∪ xn) ∖ xn∣ ≤ ∣xi ∖ y∣ ,

whenever xi∨xn ≠ ⊺. Using Proposition 11.7 we may tidy away any mentions of

⊺. This reduces d
(n)
v [y;x1,⋯, x

′
n] to the sum of at most two terms, each of lesser

weight. For notational simplicity we have concentrated on the nth argument

in d
(n)
v [y;x1,⋯, x

′
n], but by Corollary 11.4 an analogous reduction is possible

w.r.t. any argument.

Repeated use of the reduction, rewrites d
(n)
v [y;x1,⋯, xn] to a sum of terms

of the form
d(k)v [u;w1,⋯,wk]

where k ≤ n and u−⊂w1,⋯,wk ⊆ x1 ∪ ⋯ ∪ xn. This justifies the claims of the
lemma.

11.1.3 The characterisation

Our goal is to prove that probabilistic event structures correspond to event
structures with a continuous valuation. It is clear that a continuous valuation w
on the Scott-open subsets of an event structure E gives rise to a configuration-
valuation v on E: take v(x) =def w(x̂), for x ∈ C(E). We will show that
this construction has an inverse, that a configuration-valuation determines a
continuous valuation.

For this we need a combinatorial lemma:1

1The proof of the combinatorial lemma below is due to the author. It appears with acknowl-
edgement as Lemma 6.App.1 in [29], the PhD thesis of my former student Daniele Varacca,
whom I thank, both for the collaboration and the latex.



138 CHAPTER 11. PROBABILISTIC STRATEGIES

Lemma 11.12. For all finite sets I, J ,

∑
∅≠K⊆I×J

π1(K)=I,π2(K)=J

(−1)∣K∣ = (−1)∣I ∣+∣J ∣−1 .

Proof. Without loss of generality we can take I = {1, . . . , n} and J = {1, . . . ,m}.
Also observe that a subset K ⊆ I × J such that π1(K) = I, π2(K) = J is in fact
a surjective and total relation between the two sets.

n

m

Let
tn,m =def ∑

∅≠K⊆I×J

π1(K)=I,π2(K)=J

(−1)∣K ∣ ;

ton,m =def ∣{∅ ≠K ⊆ I × J ∣ ∣K ∣ odd, π1(K) = I, π2(K) = J}∣ ;

ten,m ∶= ∣{∅ ≠K ⊆ I × J ∣ ∣K ∣ even, π1(K) = I, π2(K) = J}∣ .

Clearly tn,m = ten,m − ton,m. We want to prove that tn,m = (−1)n+m+1. We do
this by induction on n. It is easy to check that this is true for n = 1. In this
case, if m is even then te1,m = 1 and to1,m = 0, so that te1,m − to1,m = (−1)1+m+1.
Similarly if m is odd.

Now assume that for every p, tn,p = (−1)n+p+1 and compute tn+1,m. To
evaluate tn+1,m we count all surjective and total relations K between I and J
together with their“sign.” Consider the pairs in K of the form (n + 1, h) for
h ∈ J . The result of removing them is a a total surjective relation between
{1, . . . , n} and a subset JK of {1, . . . ,m}.

n
●

m s

Consider first the case where JK = {1, . . . ,m}. Consider the contribution of
such K’s to tn+1,m. There are (m

s
) ways of choosing s pairs of the form (n+1, h).

For every such choice there are tn,m (signed) relations. Adding the pairs (n+1, h)
possibly modifies the sign of such relations. All in all the contribution amounts
to

∑
1≤s≤m

(
m

s
)(−1)stn,m .

Suppose now that JK is a proper subset of {1, . . . ,m} leaving out r elements.

n
●

s r



11.1. PROBABILISTIC EVENT STRUCTURES 139

Since K is surjective, all such elements h must be in a pair of the form
(n + 1, h). Moreover there can be s pairs of the form (n + 1, h′) with h′ ∈ JK .
What is the contribution of such K’s to tn,m? There are (m

r
) ways of choosing

the elements that are left out. For every such choice and for every s such that
0 ≤ s ≤ m − r there are (m−r

s
) ways of choosing the h′ ∈ JK . And for every

such choice there are tn,m−r (signed) relations. Adding the pairs (n + 1, h) and
(n+1, h′) possibly modifies the sign of such relations. All in all, for every r such
that 1 ≤ r ≤m − 1, the contribution amounts to

(
m

r
) ∑

1≤s≤m−r
(
m

s
)(−1)s+rtn,m−n .

The (signed) sum of all these contribution will give us tn+1,m. Now we use
the induction hypothesis and we write (−1)n+p+1 for tn,p.

Thus,

tn+1,m = ∑
1≤s≤m

(
m

s
)(−1)stn,m

+ ∑
1≤r≤m−1

(
m

r
) ∑

0≤s≤m−r
(
m − r

s
)(−1)s+rtn,m−r

= ∑
1≤s≤m

(
m

s
)(−1)s+n+m+1

+ ∑
1≤r≤m−1

(
m

r
) ∑

0≤s≤m−r
(
m − r

s
)(−1)s+n+m+1

= (−1)n+m+1 ( ∑
1≤s≤m

(
m

s
)(−1)s

+ ∑
1≤r≤m−1

(
m

r
) ∑

0≤s≤m−r
(
m − r

s
)(−1)s) .

By the binomial formula, for 1 ≤ r ≤m − 1 we have

0 = (1 − 1)m−r = ∑
0≤s≤m−r

(
m − r

s
)(−1)s .

So we are left with

tn+1,m = (−1)n+m+1 ( ∑
1≤s≤m

(
m

s
)(−1)s)

= (−1)n+m+1 ( ∑
0≤s≤m

(
m

s
)(−1)s − (

m

0
)(−1)0)

= (−1)n+m+1 (0 − 1)

= (−1)n+1+m+1 ,

as required.



140 CHAPTER 11. PROBABILISTIC STRATEGIES

Theorem 11.13. A configuration-valuation v on an event structure E extends
to a unique continuous valuation wv on the open sets of C∞(E), so that wv(x̂) =
v(x), for all x ∈ C(E).

Conversely, a continuous valuation w on the open sets of C∞(E) restricts to
a configuration-valuation vw on E, assigning vw(x) = w(x̂), for all x ∈ C(E).

Proof. The proof is inspired by the proofs in the appendix of [23] and the the-
sis [29].

First, a continuous valuation w on the open sets of C∞(E) restricts to a
configuration-valuation v defined as v(x) =def w(x̂) for x ∈ C(E). Note that any
extension of a configuration-valuation to a continuous valuation is bound to be
unique by continuity.

To show the converse we first define a function w from the basic open sets
Bs =def {x̂1 ∪⋯ ∪ x̂n ∣ x1,⋯, xn ∈ C(E)} to [0,1] and show that it is normalised,
strict, monotone and modular. Define

w(x̂1 ∪⋯ ∪ x̂n) =def 1 − d(n)v [∅;x1,⋯, xn]

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I
xi)

—this can be shown to be well-defined using Corollaries 11.4 and 11.6.
Clearly, w is normalised in the sense that w(C∞(E)) = w(∅̂) = 1 and strict

in that w(∅) = 1 − v(∅) = 0.
To see that it is monotone, first observe that

w(x̂1 ∪⋯ ∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n+1)

as

w(x̂1 ∪⋯ ∪ x̂n+1) −w(x̂1 ∪⋯ ∪ x̂n) =d
(n)
v [∅;x1,⋯, xn] − d

(n+1)
v [∅;x1,⋯, xn+1]

=d(n)v [xn+1;x1 ∨ xn+1,⋯, xn ∨ xn+1] ≥ 0 .

By a simple induction (on m),

w(x̂1 ∪⋯ ∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm) .

Suppose that x̂1∪⋯∪x̂n ⊆ ŷ1∪⋯∪ŷm. Then ŷ1∪⋯∪ŷm = x̂1∪⋯∪x̂n∪ŷ1∪⋯∪ŷm.
By the above,

w(x̂1 ∪⋯ ∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm)

= w(ŷ1 ∪⋯ ∪ ŷm) ,

as required to show w is monotone.
To show modularity we require

w(x̂1 ∪⋯ ∪ x̂n) +w(ŷ1 ∪⋯ ∪ ŷm)

=w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm) +w((x̂1 ∪⋯ ∪ x̂n) ∩ (ŷ1 ∪⋯ ∪ ŷm)) .



11.1. PROBABILISTIC EVENT STRUCTURES 141

Note

(x̂1 ∪⋯ ∪ x̂n) ∩ (ŷ1 ∪⋯ ∪ ŷm) = (x̂1 ∩ ŷ1) ∪⋯ ∪ (x̂i ∩ ŷj)⋯ ∪ (x̂n ∩ ŷm)

= x̂1 ∨ y1 ∪⋯ ∪ x̂i ∨ yj⋯∪ ̂xn ∨ ym .

From the definition of w we require

w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm)

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I
xi) + ∑

∅≠J⊆{1,⋯,m}
(−1)∣J ∣+1v(⋁

j∈J
yj)

− ∑
∅≠R⊆{1,⋯,n}×{1,⋯,m}

(−1)∣R∣+1v( ⋁
(i,j)∈R

xi ∨ yj) . (1)

Consider the definition of w(x̂1∪⋯∪ x̂n∪ ŷ1∪⋯∪ ŷm) as a sum. Its components
are associated with indices which either lie entirely within {1,⋯, n}, entirely
within {1,⋯,m}, or overlap both. Hence

w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm)

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I
xi) + ∑

∅≠J⊆{1,⋯,m}
(−1)∣J ∣+1v(⋁

j∈J
yj)

+ ∑
∅≠I⊆{1,⋯,n},∅≠J⊆{1,⋯,m}

(−1)∣I ∣+∣J ∣+1v(⋁
i∈I
xi ∨ ⋁

j∈J
yj) . (2)

Comparing (1) and (2), we require

− ∑
∅≠R⊆{1,⋯,n}×{1,⋯,m}

(−1)∣R∣+1v( ⋁
(i,j)∈R

xi ∨ yj)

= ∑
∅≠I⊆{1,⋯,n},∅≠J⊆{1,⋯,m}

(−1)∣I ∣+∣J ∣+1v(⋁
i∈I
xi ∨ ⋁

j∈J
yj) . (3)

Observe that

⋁
(i,j)∈R

xi ∨ yj = ⋁
i∈I
xi ∨ ⋁

j∈J
yj

when I = R1 =def {i ∈ I ∣ ∃j ∈ J. (i, j) ∈ R} and J = R2 =def {j ∈ J ∣ ∃i ∈ I. (i, j) ∈ R}
for a relation R ⊆ {1,⋯, n}×{1,⋯,m}. With this observation we see that equal-
ity (3) follows from the combinatorial lemma, Lemma 11.12 above. This shows
modularity.

Finally, we can extend w to all open sets by taking an open set U to
supb∈Bs& b⊆Uw(b). The verification that w is indeed a continuous valuation
extending v is now straightforward.

The above theorem also holds (with the same proof) for Scott domains. Now,
by [30], Corollary 4.3:

Theorem 11.14. For a configuration-valuation v on E there is a unique prob-
ability measure µv on the Borel subsets of C∞(E) extending wv.



142 CHAPTER 11. PROBABILISTIC STRATEGIES

Example 11.15. Consider the event structure comprising two concurrent events
e1, e2 with configuration-valuation v for which v(∅) = 1, v({e1}) = 1/3, v({e2}) =
1/2 and v({e1, e2}) = 1/12. This means in particular that there is a probability
of 1/3 of a result within the Scott open set consisting of both the configuration
{e1} and the configuration {e1, e2}. In other words, there is a probability of 1/3
of observing e1 (possibly with or possibly without e2). The induced probability
measure p assigns a probability to any Borel set, in this simple case any sub-
set of configurations, and is determined by its value on single configurations:
p(∅) = 1 − 4/12 − 6/12 + 1/12 = 3/12, p({e1}) = 4/12 − 1/12 = 3/12, p({e2}) =
6/12 − 1/12 = 5/12 and p({e1, e2}) = 1/12. Thus there is a probability of 3/12 of
observing neither e1 nor e2, and a probability of 5/12 of observing just the event

e2 (and not e1). There is a drop d
(0)
v [∅;{e1},{e2}] = 1−4/12−6/12+1/12 = 3/12

corresponding to the probability of remaining at the empty configuration and
not observing any event. Sometimes it’s said that probability “leaks” at the
empty configuration, but it’s more accurate to think of this leak in probability
as associated with a non-zero chance that the initial observation of no events
will not improve.

Example 11.16. Consider the event structure with events N+ with causal de-
pendency n ≤ n + 1, with all finite subsets consistent. It is not hard to check
that all subsets of C∞(N+) are Borel sets. Consider the ensuing probability
distributions w.r.t. the following configuration-valuations:
(i) v0(x) = 1 for all x ∈ C(N+). The resulting probability distribution assigns
probability 1 to the singleton set {N+}, comprising the single infinite configura-
tion N+, and 0 to ∅ and all other singleton sets of configurations.
(ii) v1(∅) = v1({1}) = 1 and v1(x) = 0 for all other x ∈ C(N+). The result-
ing probability distribution assigns probability 0 to ∅ and probability 1 to the
singleton set {1}, and 0 to all other singleton sets of configurations.
(iii) v2(∅) = 1 and v2({1,⋯, n}) = (1/2)n for all n ∈ N+. The resulting proba-
bility distribution assigns probability 1/2 to ∅ and (1/2)n+1 to each singleton
{{1,⋯, n}} and 0 to the singleton set {N+}, comprising the single infinite con-
figuration N+.

When x a finite configuration has v(x) > 0 and µv({x}) = 0 we can under-
stand x as being a transient configuration on the way to a final with probability
v(x). In general, there is a simple expression for the probability of terminating
at a finite configuration.

Proposition 11.17. Let E,v be a probabilistic event structure. For any finite
configuration y ∈ C(E), the singleton set {y} is a Borel subset with probability
measure

µv({y}) = inf{d(n)v [y;x1,⋯, xn] ∣ n ∈ ω & y ⊊ x1,⋯, xn ∈ C(E)} .

Proof. Let y ∈C(E). Then {y} = ŷ ∖Uy is clearly Borel as Uy =def {x ∈ C∞(E) ∣ y ⊊ x}
is open. Let w be the continuous valuation extending v. Then

w(Uy) = sup{w(x̂1 ∪⋯ ∪ x̂n) ∣ y ⊊ x1,⋯, xn ∈ C(E)}



11.2. PROBABILITY WITH AN OPPONENT 143

as Uy is the directed union ⋃{x̂1 ∪⋯ ∪ x̂n ∣ y ⊊ x1,⋯, xn ∈ C(E)}. Hence

µv({y}) = v(y) −w(Uy) =v(y) − sup{w(x̂1 ∪⋯ ∪ x̂n) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

=inf{v(y) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I
xi) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

=inf{d(n)v [y;x1,⋯, xn] ∣ n ∈ ω & y ⊊ x1,⋯, xn ∈ C(E)} .

◻

Example 11.18. It might be thought that probabilistic event structures could
only capture discrete distributions. However consider the event structure rep-
resenting streams of 0’s and 1’s. We saw this earlier in Example 2.1. Its finite
configurations comprise the empty set and downwards-closures [s] of single event
occurrences s given by a finite sequence of 0’s and 1’s. Assign value 1 to the
empty configuration and 1/2n to a sequence s = (s1, s2,⋯, sn). Then all finite
configurations [s] are transient it the sense that the probability of ending up
at precisely the finite stream [s] is zero; all the probabilistic measure is con-
centrated on the maximal configurations, the infinite streams. On the maximal
configurations the probabilistic measure gives a continuous distribution with
zero probability of the result being any particular infinite stream.

Remark. There is perhaps some redundancy in the definition of purely proba-
bilistic event structures, in that there are two different ways to say, for example,
that events e1 and e2 do not occur together at a finite configuration y where

y
e1
−Ð⊂x1 and y

e2
−Ð⊂x2: either through {e1, e2} ∉ Con; or via the configuration-

valuation v through v(x1 ∪ x2) = 0. However, when we mix probability with
nondeterminism, as we do in the next section, we shall make use of both order-
consistency and the valuation.

11.2 Probability with an Opponent

Assume now that the events of the stable family or event structure carry a
polarity, + or −. Imagine the event structure or stable family represents a
strategy for Player. The Player cannot foresee what probabilities Opponent will
ascribe to moves under Opponent’s control. Nor, without information about the
stochastic rates of Player and Opponent can we hope to ascribe probabilities
to play outcomes in the presence of races. For this reason we shall restrict
probabilistic event structures with polarity to those which are race-free.

It will be convenient, more generally, to define a probabilistic stable family in
which some events are distinguished as Opponent events (where the other events
may be Player events or “neutral” events due to synchronizations between Player
and Opponent). Events which are not Opponent events we shall call p-events.
For configurations x, y we shall write x ⊆p y if x ⊆ y and y ∖ x contains no
Opponent events; we write x−⊂py when x−⊂y and x ⊆p y; we continue to write
x ⊆− y if x ⊆ y and y ∖ x comprises solely Opponent events.



144 CHAPTER 11. PROBABILISTIC STRATEGIES

Definition 11.19. We extend the notion of configuration-valuation to the sit-
uation where events carry polarities. Let F be a stable family F together with
a specified subset of its events which are Opponent events. A configuration-
valuation is a function v ∶ F → [0,1] for which v(∅) = 1,

x ⊆− y Ô⇒ v(x) = v(y) (1)

for all x, y ∈ F , and satisfies the “drop condition”

d(n)v [y;x1,⋯, xn] ≥ 0 (2)

for all n ∈ ω and y, x1,⋯, xn ∈ F with y ⊆p x1,⋯, xn.
The notion of probabilistic stable family thus extends to a stable family F to-

gether with a specified subset of Opponent events and a configuration-valuation
v ∶ F → [0,1]. The notion specialises to event structures with a distinguished
subset of Opponent events.

In particular, a probabilistic event structure with polarity comprises E an
event structure with polarity together with a configuration-valuation v ∶ C(E) →
[0,1].

Remark There is an equivalent way of presenting a configuration-valuation
for an event structure with polarity S as a family of conditional probabilities.
Define a familiy of conditional probabilities over S to comprise Prob(x ∣ y),
indexed by y ⊆+ x in C(S), such that

(i) Prob(y ∣ y) = 1 and x ↦ Prob(x ∣ y) satisfies the drop condition for x
s.t. y ⊆+ x in C(S);

(ii) Prob(w ∣ y) = Prob(w ∣ x)Prob(x ∣ y) if y ⊆+ x ⊆+ w in C(S);

(iii) Prob(x ∣ y) = Prob(x′ ∣ y′) if y ⊆+ x, y ⊆− y′ and x ∪ y′ = x′.

Given a configuration-valuation v we define Prob(x ∣ y) = v(x)/v(y). Con-
versely, given a family of conditional probabilities, as described above, first
extend it by taking Prob(x ∣ y) = 1 for y ⊆− x. We then obtain a configuration-
valuation by defining

v(x) =def Prob(x1 ∣ x0)Prob(x2 ∣ x1)⋯Prob(xn ∣ xn−1)

w.r.t. a covering chain

∅ = x0−⊂x1−⊂x2−⊂⋯−⊂xn−1−⊂xn = x ;

by (ii) and (iii) the choice of covering chain does not affect the value assigned to
x. The two operations provide mutual inverses between configuration-valuations
and families of conditional probabilities as described above. There is an anal-
ogous result for configuration-valuations for a stable family F together with a
specified subset of Opponent events.



11.2. PROBABILITY WITH AN OPPONENT 145

As indicated above, the extra generality in the definition of a probabilistic
stable family with polarity is to cater for a situation later in which we shall
ascribe probabilities not only to results of Player moves but also to events aris-
ing as synchronizations between Player and Opponent moves. As earlier, by
Lemma 11.11(i), it suffices to verify the “drop condition” for p-covering inter-
vals.

Definition 11.20. Let A be a race-free event structure with polarity. A proba-
bilistic strategy in A comprises a probabilistic event structure S, v and a strategy
σ ∶ S → A. [By Lemma 5.5, S will also be race-free.]

Let A and B be a race-free event structures with polarity. A probabilistic
strategy from A to B comprises a probabilistic event structure S, v and a strategy
σ ∶ S → A⊥∥B.

We extend the usual composition of strategies to probabilistic strategies.
Assume probabilistic strategies σ ∶ S → A⊥∥B, with configuration-valuation
vS ∶ C(S) → [0,1], and τ ∶ T → B⊥∥C with configuration-valuation vT ∶ C(T ) →
[0,1]. We first tentatively define their composition on stable families, taking
v ∶ C(T ) ⊛ C(S) → [0,1] to be

v(x) = vS(π1x) × vT (π2x)

for x ∈ C(T ) ⊛ C(S).

Proposition 11.21. Let v ∶ C(T ) ⊛ C(S) → [0,1] be defined as above. Then,
v(∅) = 0. If x ⊆− y in C(T ) ⊛ C(S) then v(x) = v(y).

Proof. Clearly,

v(∅) = vS(π1∅) × vT (π2∅) = 1 × 1 = 1 .

Assuming x−⊂−y in C(T )⊛C(S), then either x
(s,∗)
−Ð⊂ y, with s a −ve event of S, or

x
(∗,t)
−Ð⊂ y, with t a −ve event of T . Suppose x

(s,∗)
−Ð⊂ y, with s −ve. Then π1x

s
−Ð⊂π1y,

where as s is −ve, vS(π1x) = vS(π1y). In addition, π2x = π2y so certainly
vT (π2x) = vT (π2y). Combined these two facts yield v(x) = v(y). Similarly,

x
(∗,t)
−Ð⊂ y, with t −ve, implies v(x) = v(y). As x ⊆− y is obtained via the reflexive

transitive closure of −⊂− it entails v(x) = v(y), as required.

But of course we need to check that v is indeed a configuration-valuation.
For this it remains to show that v satisfies the “drop condition.” For this we
need only consider covering intervals, by Lemma 11.11(i).

Lemma 11.22. Let y, x1,⋯, xn ∈ C(T ) ⊛ C(S) with y−⊂px1,⋯, xn. Assume
that π1y−⊂

+π1xi when 1 ≤ i ≤ m and π2y−⊂
+π2xi when m + 1 ≤ i ≤ n. Then in

C(T ) ⊛ C(S), v,

d(n)v [y;x1,⋯, xn] = d
(m)
vS

[π1y;π1x1,⋯, π1xm] × d(n−m)
vT

[π2y;π2xm+1,⋯, π2xn] .



146 CHAPTER 11. PROBABILISTIC STRATEGIES

Proof. Under the assumptions of the lemma, by proposition 11.3,

d(m)
vS

[π1y;π1x1,⋯, π1xm] = vS(π1y) −∑
I1

(−1)∣I1∣+1vS(⋃
i∈I1

π1xi) ,

where I1 ranges over sets satisfying ∅ ≠ I1 ⊆ {1,⋯,m} s.t. {π1xi ∣ i ∈ I1}↑.
Similarly,

d(n−m)
vT

[π2y;π2xm+1,⋯, π2xn] = vT (π2y) −∑
I2

(−1)∣I2∣+1vT (⋃
i∈I2

π2xi) ,

where I2 ranges over sets satisfying ∅ ≠ I2 ⊆ {m + 1,⋯, n} s.t. {π2xi ∣ i ∈ I2}↑.
Note, by strong receptivity of τ , that when ∅ ≠ I1 ⊆ {1,⋯,m},

{π1xi ∣ i ∈ I1}↑ in C(S) iff {xi ∣ i ∈ I1}↑ in C(T ) ⊛ C(S)

and, similarly by strong receptivity of σ, when ∅ ≠ I2 ⊆ {m + 1,⋯, n},

{π2xi ∣ i ∈ I2}↑ in C(T ) iff {xi ∣ i ∈ I2}↑ in C(T ) ⊛ C(S) .

Hence

⋃
i∈I1

π1xi = π1 ⋃
i∈I1

xi and ⋃
i∈I2

π2xi = π2 ⋃
i∈I2

xi .

Making these rewrites and taking the product

d(m)
vS

[π1y;π1x1,⋯, π1xm] × d(n−m)
vT

[π2y;π2xm+1,⋯, π2xn] ,

we obtain

vS(π1y) × vT (π2y) −∑
I2

(−1)∣I2∣+1 vS(π1y) × vT (π2 ⋃
i∈I2

xi)

−∑
I1

(−1)∣I1∣+1 vS(π1 ⋃
i∈I1

xi) × vT (π2y)

+ ∑
I1,I2

(−1)∣I1∣+∣I2∣ vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I2

xi) .

But at each index I2,
vS(π1y) = vS(π1 ⋃

i∈I2
xi)

as π1y ⊆
− π1⋃i∈I2 xi. Similarly, at each index I1,

vT (π2y) = vT (π2 ⋃
i∈I1

xi) .

Hence the product becomes

vS(π1y) × vT (π2y) −∑
I2

(−1)∣I2∣+1 vS(π1 ⋃
i∈I2

xi) × vT (π2 ⋃
i∈I2

xi)

−∑
I1

(−1)∣I1∣+1 vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I1

xi)

+ ∑
I1,I2

(−1)∣I1∣+∣I2∣ vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I2

xi) .



11.2. PROBABILITY WITH AN OPPONENT 147

To simplify this further, we observe that

{xi ∣ i ∈ I1}↑ & {xi ∣ i ∈ I2}↑ ⇐⇒ {xi ∣ i ∈ I1 ∪ I2}↑ .

The “⇐” direction is clear. We show “⇒.” Assume {xi ∣ i ∈ I1}↑ and {xi ∣ i ∈ I2}↑.
We obtain {π1xi ∣ i ∈ I1}↑ and {π1xi ∣ i ∈ I2}↑ as the projection map π1 preserves
consistency. Hence ⋃i∈I1 π1xi and ⋃i∈I2 π1xi are configurations of S. Further-
more, by assumption,

π1y ⊆
+
⋃
i∈I1

π1xi and π1y ⊆
−
⋃
i∈I2

π1xi .

As S, a strategy over the race-free game A⊥∥B, is automatically race-free—
Lemma 5.5—we obtain

⋃
i∈I1∪I2

π1xi ∈ C(S)

by Proposition 5.4. Similarly, because T is race-free, we obtain

⋃
i∈I1∪I2

π2xi ∈ C(T ) .

Together these entail

⋃
i∈I1∪I2

xi ∈ C(T ) ⊛ C(S) ,

i.e. {xi ∣ i ∈ I1 ∪ I2}↑, as required. Notice too that

π1 ⋃
i∈I1

xi ⊆
− π1 ⋃

i∈I1∪I2
xi and π2 ⋃

i∈I2
xi ⊆

− π2 ⋃
i∈I1∪I2

xi ,

which ensure

vS(π1 ⋃
i∈I1

xi) = vS(π1 ⋃
i∈I1∪I2

xi) and vT (π2 ⋃
i∈I2

xi) = vT (π2 ⋃
i∈I1∪I2

xi) ,

so that
v( ⋃
i∈I1∪I2

xi) = vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I2

xi) .

We can now further simplify the product to

v(y) −∑
I2

(−1)∣I2∣+1 v(⋃
i∈I2

xi)

−∑
I1

(−1)∣I1∣+1 v(⋃
i∈I1

xi)

+ ∑
I1,I2

(−1)∣I1∣+∣I2∣ v( ⋃
i∈I1∪I2

xi) .

Noting that any subset I for which ∅ ≠ I ⊆ {1,⋯, n} either lies entirely within
{1,⋯,m}, entirely within {m + 1,⋯, n}, or properly intersects both, we have
finally reduced the product to

v(y) −∑
I

(−1)∣I ∣+1v(⋃
I

xi) ,

with indices those I which satisfy ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑, i.e. the

product reduces to d
(n)
v [y;x1⋯, xn] as required.



148 CHAPTER 11. PROBABILISTIC STRATEGIES

Corollary 11.23. The assignment (vT ⊛ vS)(x) =def vS(π1x) × vT (π2x) to
x ∈ C(T )⊛C(S) yields a configuration-valuation on the stable family C(T )⊛C(S).

Proof. From Proposition11.21 we have requirement (1); by Lemma 11.11(i) we
need only verify requirement (2), the ‘drop condition,’ for p-covering intervals,
which we can always permute into the form covered by Lemma 11.22—any p-
event of C(T ) ⊛ C(S) has a +ve component on one and only one side.

Example 11.24. The assumption that games are race-free is needed for Corol-
lary 11.23. Consider the composition of strategies σ ∶ ∅ + //B and τ ∶ B + //∅
where B is the game comprising the two moves ⊕ and ⊖ in conflict with each
other—a game with a race. Suppose σ assigns probability 1 to playing ⊕ and τ
assigns probability 1 to playing ⊖, in the dual game. Then the “drop condition”
required for the corollary fails.

We can now complete the definition of the composition of probabilistic strate-
gies:

Lemma 11.25. Let A, B and C be race-free event structure with polarity. Let
σ ∶ S → A⊥∥B, with configuration-valuation vS ∶ C(S) → [0,1], and τ ∶ T → B⊥∥C
with configuration-valuation vT ∶C(T ) → [0,1] be probabilistic strategies. Assign-
ing (vT⊙vS)(x) =def vS(Π1x) × vT (Π2x) to x ∈ C(T⊙S) yields a configuration-
valuation on T⊙S which with τ⊙σ ∶ T⊙S → A⊥∥C forms a probabilistic strategy
from A to C.

Proof. We need to show that the assignment w(x) =def vS(Π1x) × vT (Π2x)
to x ∈ C(T⊙S) is a configuration-valuation on T⊙S. We use that v(z) =def

vS(π1z)×vT (π2z), for z ∈C(T )⊛C(S), is a configuration-valuation onC(T )⊛C(S)

Recalling, for x ∈ C(T⊙S), that ⋃x ∈ C(T ) ⊛ C(S) with Π1x = π1⋃x and
Π2x = π2⋃x, we obtain

w(x) =def vS(Π1x) × vT (Π2x) = vS(π1⋃x) × vT (π2⋃x) = v(⋃x) .

Consequently,

w(∅) = v(⋃∅) = v(∅) = 1 .

The function w inherits requirement (1) to be a configuration-valuation from
v because

x
p

−Ð⊂ y with p −ve in T⊙S implies ⋃x
top(p)
−Ð⊂ ⋃ y with top(p) −ve in C(T ) ⊛

C(S).

To see this observe that top(p) either has the form (s,∗) or (∗, t). Suppose
top(p) = (∗, t). Suppose e _⋃y (∗, t). Then, by Lemma 3.21,

either (i) e = (s′, t′) and t′ _T t or (ii) e = (∗, t′) and t′ _T t.

But (i) would violate the −-innocence of τ . Hence (ii) and being ‘visible’ the
prime [e]⋃y ∈ x ensuring e ∈ ⋃x. As all _⋃y-predecessors of (∗, t) are in ⋃x

we obtain ⋃x
(∗,t)
−Ð⊂ ⋃ y. The proof in the case where top(p) = (s,∗) is similar.



11.2. PROBABILITY WITH AN OPPONENT 149

Similarly, w inherits requirement (2) from v, as w.r.t. w,

d(n)w [y;x1,⋯, xn] = w(y) −∑
I

(−1)∣I ∣+1w(⋃
i∈I
xi)

= v(⋃ y) −∑
I

(−1)∣I ∣+1v(⋃⋃
i∈I
xi)

= v(⋃ y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

(⋃xi))

≥ 0 ,

whenever y ⊆+ x1,⋯, xn in C(T⊙S). (Above, the index I ranges over sets
satisfying ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑.)

A copy-cat strategy is easily turned into a probabilistic strategy, as is any
deterministic strategy:

Lemma 11.26. Let S be a deterministic event structure with polarity. Defining
vS ∶ C(S) → [0,1] to satisfy vS(x) = 1 for all x ∈ C(S), we obtain a probabilistic
event structure with polarity.

Proof. Clearly
x ⊆− y Ô⇒ vS(x) = vS(y) = 1

for all x, y ∈ C(S). As S is deterministic,

y ⊆+ x & y ⊆+ x′ Ô⇒ x ∪ x′ ∈ C(S) ,

for all y, x, x′ ∈ C(S). For the remaining requirement, a simple induction shows
that for all n ≥ 1,

d(n)v [y;x1,⋯, xn] = 0

whenever y ⊆+ x1,⋯, xn. The basis, when n = 1, is clear as

d(1)v [y;x] = vS(y) − vS(x) = 1 − 1 = 0

when y ⊆+ x. For the induction step, assuming y ⊆+ x1,⋯, xn with n > 1,

d(n)v [y;x1,⋯, xn] = d
(n−1)
v [y;x1,⋯, xn−1]−d

(n−1)
v [xn;x1∪xn,⋯, xn−1∪xn] = 0−0 = 0 ,

from the induction hypothesis.

Definition 11.27. We say a probabilistic event structure with polarity is de-
terministic when its configuration valuation assigns 1 to every finite configu-
ration (provided it is race-free it will necessarily also be deterministic as an
event structure with polarity—see the proposition immediately below). We say
a probabilistic strategy σ ∶ S → A with configuration-valuation v on C(S) is
deterministic when the probabilistic event structure S, v is deterministic.

Proposition 11.28. If a race-free probabilistic event structure with polarity is
deterministic, as defined above, then the event structure with polarity itself is
deterministic.



150 CHAPTER 11. PROBABILISTIC STRATEGIES

Proof. Assume S, v, a race-free probabilistic event structure with polarity, is

deterministic, as defined above. Suppose y
+

−Ð⊂x1 and y
+

−Ð⊂x2. We must have
x1 ↑ x2 as otherwise the drop condition would be violated. This with race-
freeness implies that the event structure with polarity S itself is deterministic
by Lemma 5.1.

Recall that race-freeness of a game A ensures that CCA is deterministic.
Hence as a direct corollary of Lemma 11.26:

Corollary 11.29. Let A be a race-free game. The copy-cat strategy from A to A
comprising γA ∶ CCA → A⊥∥A with configuration-valuation vCCA ∶ C(CCA) → [0,1]
satisfying vCCA(x) = 1, for all x ∈ C(CCA), forms a probabilistic strategy.

Example 11.30. Let A be the empty game ∅, B be the game consisting of
two concurrent +ve events b1 and b2, and C the game with a single +ve event
c. We illustrate the composition of two probabilistic strategies σ ∶ ∅ + //B and
τ ∶ B + //C.

S

σ

��

⊕_

��

⊕_

��
B b1 b2

T

τ

��

⊖_

��

⊖
� ,,2

_

��

⊕_

��
B⊥∥C b1 b2 c

The strategy σ plays b1 with probability 2/3 and b2 with probability 1/3 (and
plays both with probability 0). The strategy τ does nothing if just b1 is played
and plays the single +ve event c of C with probabilty 1/2 if b2 is played. Their
composition yields the strategy τ⊙σ ∶ ∅ + //C which plays c with probability
1/6, so has a 5/6 chance of doing nothing.

The example illustrates how through probability we can track the presence of
terminal configurations within a set of results despite their not being ⊆-maximal.
The empty configuration is such a terminal configuration; it could be the final
result of the composition as could the configuration {c}. Such terminal but in-
complete results can appear in a composition of strategies through the strategies
being partial, in that one or both strategies do not respond in all cases—the
example above. Such partial strategies can appear as the composition of two
strategies through the occurrence of deadlocks because the two strategies impose
incompatible causal dependencies on moves in game at which they interact. ◻

Remark on schedulers Often in compositional treatments of probabilistic
processes one sees a use of “schedulers” to “resolve the nondeterminism” due
to openness to the environment. Here the use of schedulers is replaced by that
of counterstrategy to resolve the nondeterminism. The counterstrategy may
be deterministic (so straightforwardly a deterministic probabilistic strategy), in
which case it resolves the nondeterminism by selecting at most one play for
Opponent.



11.3. 2-CELLS, A BICATEGORY 151

11.3 2-cells, a bicategory

We have thus extended composition of strategies to composition of probabilistic
strategies. This doesn’t yet yield a bicategory of probabilistic strategies. The
extra structure of configuration-valuations in strategies has to be respected in
our choice of 2-cell. The investigation of a suitable notion of 2-cell is the subject
of the next section.

We first look for an analogue of the well-known result allowing a probability
distribution to be pushed forward across an continuous (or measurable) function.
This is not immediate as the configuration-valuations associated with strategies
take account of Opponent moves so do not correspond to traditional probability
distributions.

Proposition 11.31. Let σ ∶ S → A be a strategy in A and σ′ ∶ S′ → A a total
map of event structures with polarity. Let f ∶ S → S′ be a total map of event
structures with polarity s.t. σ′f = σ. Then, f is receptive and innocent. A
fortiori if f is 2-cell from strategy σ to strategy σ′ in the bicategory of games
and strategies, then f is receptive and innocent.

Proof. The map f inherits receptivity and innocence from σ, in the case of
innocence using the fact the σ′ locally reflects causally dependency.

Example 11.32. It seems impossible to push forward configuration valuations
across arbitrary 2-cells. For example, consider the game A comprising two
conflicting Opponent move and one Player move:

⊕

⊖1 ⊖2 .

Let one probabilistic strategy comprise

⊕1 ⊕2

⊖1

_LLR

⊖2

_LLR

with obvious map σ, where the left Player move occurs with probability p1 and
the Player move on the right with probability p2 according to a configuratiopn-
valuation v, i.e. v({⊖1,⊕1}) = p1 and v({⊖2,⊕2}) = p2. Take another strategy
to be the identity map A to A. It seems compelling to make the push forward
of v across σ assign p1 to the configuration {⊖1,⊕} and p2 to the configuration
{⊖2,⊕}. What value should the push forward of v assign to the configuration
{⊕}? Because configuration-valuations are invariant under Opponent moves, it
has to be simultaneously p1 and p2 —impossible if p1 ≠ p2.

We shall now show the following theorem showing how to push forward
configuration valuations across maps which are both rigid and receptive; in par-
ticular it will allow us to push forward a configuration valuation across a rigid



152 CHAPTER 11. PROBABILISTIC STRATEGIES

map between strategies.

Theorem11.35. Let f ∶ S → S′ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

v′(y) =def ∑
x∶fx=y

v(x)

for y ∈ C(S′), defines a configuration-valuation, written fv, on S′. (An empty
sum gives 0 as usual.)

The proof of the theorem proceeds in the following steps, needed to cope
with the fact sums can be infinite while also involving negative terms.

Lemma 11.33. Let f ∶ S → S′ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

v′(y) =def ∑
x∶fx=y

v(x)

we have v′(y) ∈ [0,1], for y ∈ C(S′). Moreover, v′(∅) = 1 and y ⊆− y′ in C(S′)
implies v′(y) = v′(y′).

Proof. We check that for y ∈ C(S′) the assignment v′(y) is in [0,1]. Choose a
covering chain

∅
t1
−Ð⊂ y1

t2
−Ð⊂⋯

tn
−Ð⊂ yn = y

up to y. As f is rigid for each x ∈ C(S) s.t. fx = y there is a corresponding
covering chain

∅
s1
−Ð⊂x1

s2
−Ð⊂⋯

sn
−Ð⊂xn = x

with f(si) = ti for 0 < i ≤ n. Consider the tree with sub-branches all initial
sub-chains of covering chains up to each x s.t. fx = y; the tree has the empty
covering chain as its root and configurations x, where fx = y, as its maximal
nodes. Because f is receptive the tree only branches at its +ve coverings,
associated with different, possibly infinitely many, si which map to a +ve event
ti. The corresponding configurations xi are pairwise incompatible. Although
such configurations xi may form an infinite set, by the drop condition for v,
the values of any finite subset will have sum less than or equal to v(xi−1), a
property which must therefore also hold for the sum of values of all the xi. The
value remains constant across any −ve event. Hence, working up the tree from
the root we obtain that ∑x∶fx=y v(x) ≤ 1.

Clearly, v′(∅) = v(∅) = 1. Suppose y ⊆− y′ in C(S′). From the properties
of f , x s.t. fx = y determines a unique x′ s.t. x ⊆− x′ and fx′ = y′, and vice
versa; in this correspondence v(x) = v(x′), as v is a configuration-valuation.
Consequently, the sums yielding v′(y) and v′(y′) have the same component
values and are the same.

For v′ to be a configuration valuation it remains to verify that v′ satisfies
the +ve drop condition. We first show this for a special case:



11.3. 2-CELLS, A BICATEGORY 153

Lemma 11.34. Let f ∶ S → S′ be a receptive and rigid map between event
structures with polarity. Assume that S has only finitely many +ve events.
Then, v′ as defined above in Lemma 11.33 is a configuration valuation.

Proof. Suppose y
+

−Ð⊂ y1,⋯, yn. We claim that

d
(n)
v′ [y; y1,⋯, yn] = ∑

x∶fx=y
d(n)v [x;X(x)]

so is non-negative, where

X(x) =def {x′ ∣ x−⊂x′ & fx′ ∈ {y1,⋯, yn}} .

The notation d
(n)
v [x;X(x)] is justifiable as the drop function is invariant under

permutation and repetition of arguments. Recall

d
(n)
v′ [y; y1,⋯, yn] =def v

′(y) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v′(⋁
i∈I
yi) .

The claim follows because by the rigidity of f any non-zero contribution

(−1)∣I ∣+1v′(⋃
i∈I
yi)

is the sum of contributions

(−1)∣I ∣+1v(⋃
i∈I
xi) ,

a summand of d
(n)
v [x;X(x)], over x s.t. there are xi ∈ X(x) with fxi = yi for

all i ∈ I.

We can now complete the proof of the theorem.

Theorem 11.35. Let f ∶ S → S′ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

v′(y) =def ∑
x∶fx=y

v(x)

for y ∈ C(S′), defines a configuration-valuation, written fv, on S′.

Proof. We use a slight variation on the ⊴ approximation order between event
structures from [5, 3]. We write S0 ⊴ S1 to mean there is a receptive rigid in-
clusion map between event structures with polarity from S0 to S1. Together all
S0 ⊴ S where S0 has finitely many +-events form a directed subset of approx-
imations to S; their ⊴-least upper bound is S got as their union. Such S0 are
associated with receptive rigid maps f0 ∶ S0 → S′ got as restrictions of f ,

S
f // S′

S0

f0

>>

?�

OO



154 CHAPTER 11. PROBABILISTIC STRATEGIES

and configuration-valuations vS0 got as restrictions v.

Let y
+

−Ð⊂ y1,⋯, yn in C(S′). We claim that

dv[y; y1,⋯, yn] = lim
S0⊴S

dS0[y; y1,⋯, yn] (†)

i.e., that dv[y; y1,⋯, yn] is the limit of dS0[y; y1,⋯, yn], the drop functions got
by pushing forward vS0 along f0 to a configuration-valuation for S′—justified
by Lemma 11.34.

Let ε > 0. For each I ⊆ {1,⋯, n} there is large enough SI ⊴ S s.t. for all
⊴-larger S0,

0 ≤ v(⋁
i∈I
yi) − vS0(⋁

i∈I
yi) ≤ ε/2

n .

(When I = ∅ take ⋁i∈I yi = y.) Taking S1 to be ⊴-larger than all SI where
I ⊆ {1,⋯, n}, we get for all S2 with S1 ⊴ S2 that

∣dv[y; y1,⋯, yn] − d
S2[y; y1,⋯, yn]∣ < 2nε/2n = ε .

As ε was arbitrary we deduce (†), ensuring dv[y; y1,⋯, yn] ≥ 0, as required.

Consequently, we can push forward a configuration-valuation across a rigid
2-cell between strategies—recall that 2-cells are automatically receptive. Given
this it is sensible to adopt the following definition of 2-cell between probabilistic
strategies. A 2-cell from a probabilistic strategy v, σ ∶ S → A⊥∥B to a proba-
bilistic strategy v′, σ′ ∶ S′ → A⊥∥B is a rigid map f ∶ S → S′ for which both
σ = σ′f and the push-forward fv ≤ v′, i.e. for any finite configuration of S′ the
value (fv)(x) ≤ v′(fx).

Such 2-cells include receptive rigid embeddings f which preserve the value
assigned by configuration-valuations, so (fv)(x) = v′(fx) when x ∈ C(S); notice
that the push-forward fv will assign value 0 to any configuration not in the
image of f , so not impose any additional constraint on the values v′ takes outside
the image of f . Rigid embeddings, first introduced by Kahn and Plotkin [31]
provide a method for defining strategies recursively. One way to characterize
those maps f ∶ S → S′ of event structures which are rigid embeddings is as
injective functions on events for which the inverse relation fop is a (partial)
map of event structures fop ∶ S′ → S.

In turn, 2-cells based on rigid embeddings include as special case that in
which the function f is an inclusion. Receptive rigid embeddings which are in-
clusions give a (slight variant on a) well-known approximation order ⊴ on event
structures. The order ⊴ forms a ‘large cpo’ and is useful when defining event
structures recursively [5, 3]. With some care in choosing the precise construc-
tion of composition it provides an enrichment of probabilistic strategies and an
elementary technique for defining probabilistic strategies recursively. Spelt out,
when v, σ ∶ S → A⊥∥B and v′, σ′ ∶ S′ → A⊥∥B are probabilistic strategies, we
write

(v, σ) ⊴ (v′, σ′)



11.3. 2-CELLS, A BICATEGORY 155

iff S ⊴ S′, the associate inclusion map i ∶ S ↪ S′ makes σ = σ′i and v(x) = v′(x)
for all x ∈ C(S). There can be many different, though isomorphic, ⊴-minimal
probabilistic strategies, differing only in their choices of initial −-events; to be
receptive they must start with copies of initial −-events of the game. Any chain

(v0, σ0) ⊴ (v1, σ1) ⊴ ⋯ ⊴ (vn, σn) ⊴ ⋯

has a least upper bound got by taking the union of the event structures.
To show that 2-cells compose functorially we use the following lemma. For

probabilistic strategies vS , σ ∶ S → A⊥∥B and vT , τ ∶ T → B⊥∥C we write vT⊙vS ,
respectively, vT ⊛ vS for the configuration-valuations on T⊙S and T ⊛ S in
the composition (vT , τ)⊙(vS , σ) and the composition without hiding (vT , τ) ⊛
(vS , σ).

Lemma 11.36. Let f ∶ σ → σ′ be a rigid 2-cell between strategies σ ∶ S → A⊥∥B
and σ′ ∶ S′ → A⊥∥B. Let g ∶ τ → τ ′ be a rigid 2-cell between strategies τ ∶ T →
B⊥∥C and τ ′ ∶ T ′ → B⊥∥C. Let vS be a configuration-valuation for S and vT a
configuration-valuation for T . Then,

(g⊙f)(vT⊙vS) = (gvT )⊙(fvS)

and
(g ⊛ f)(vT ⊛ vS) = (gvT ) ⊛ (fvS) .

Proof. Omitted—see [1]

Corollary 11.37. Composition of probabilistic strategies is functorial w.r.t. 2-
cells, and functorial w.r.t. those 2-cells which are rigid embeddings.

Combining:

Theorem 11.38. Race-free games with probabilistic strategies with composi-
tion and copy-cat defined as in Lemma 11.25 and Corollary 11.29 inherit the
structure of a a bicategory from that of games with strategies. 2-cells between
probabilistic strategies are now restricted to rigid maps satisfying the conditions
explained above. The bicategory restricts to one in which the cells are rigid
embeddings.

The order-enriched category Games0 of rigid-image strategies supports prob-
ability to give us an order-enriched category of probabilistic rigid-image strate-
gies. A probabilistic rigid-image strategy over a game A comprises a rigid-image
strategy σ ∶ S → A together with a configuration-evaluation v for S. Given prob-
abilistic rigid image strategies vS , σ ∶ S → A⊥∥B and vT , τ ∶ T → B⊥∥C their
composition comprises (τ⊙σ)0 ∶ (T⊙S)0 → A⊥∥C, the rigid image of τ⊙σ, with
configuration-valuation the push-forward along the map T⊙S → (T⊙S)0 to the
rigid image of the configuration valuation x↦ vS(ΠSx)×vT (ΠTx). Is anything
lost in moving to probabilistic rigid-image strategies? No, in the sense that a
probabilistic strategy and its probabilistic rigid-image will always induce the
same probability distribution on the game whenever they are composed with a
probabilistic counterstrategy [1]:



156 CHAPTER 11. PROBABILISTIC STRATEGIES

Proposition 11.39. Let f ∶ (σ, v) ⇒ (σ′, v′) be a 2-cell between probabilistic
strategies v, σ ∶ S → A and v′, σ′ ∶ S′ → A for which the push-forward fv = v′.
Let vT , τ ∶ T → A⊥ be a probabilistic counterstrategy. Then

T ⊛ S

τ⊛σ
$$

τ⊛f // T ⊛ S′

τ⊛σ′
��
A

commutes and the push-forward (τ ⊛f)(vT ⊛v) = vT ⊛v
′. Moreover, T ⊛S with

vT ⊛ v and T ⊛ S′ with vT ⊛ v′ are probabilistic event structures determining
continuous valuations w and w′ respectively. The push-forwards of w and w′

across the maps τ ⊛ σ and τ ⊛ σ′ respectively to continuous valuations on the
open sets of C∞(A) are the same.

11.4 Probabilistic processes

As an indication of the expressivity of probabilistic strategies we sketch how they
straightforwardly include a simple language of probabilistic processes, reminis-
cent of a higher-order CCS. For this section only, write σ ∶ A to mean σ is a
probabilistic strategy in game A. Probabilistic strategies are closed under the
following operations.2

Composition σ⊙τ ∶ A∥C, if σ ∶ A∥B and τ ∶ B⊥∥C. Hiding is automatic in a
synchronized composition directly based on the composition of strategies.

Simple parallel composition σ∥τ ∶ A∥B, if σ ∶ A and τ ∶ B. Note that simple
parallel composition can be regarded as a special case of synchronized composi-
tion: via the identification of σ∥τ with τ⊙σ, taking σ ∶ A⊥ + //∅ and τ ∶ ∅ + //B,
the operation σ∥τ yields a probabilistic strategy. Supposing σ ∶ S → A and
τ ∶ T → B and S and T have configuration valuations vS and vT , respectively,
then the configuration valuation v for S∥T satisfies v(x) = vS(x1) × vT (x2), for
x ∈ C(S∥T ).

Conjunction if σ1 ∶ A and σ2 ∶ A we can conjoin the strategies by forming their
pullback:

S1 ∧ S2

Π1

{{

Π2

##
σ1∧σ2

��

S1

σ1 ##

S2

σ2{{
A.

2For a richer language of probabilistic strategies see [32].



11.4. PROBABILISTIC PROCESSES 157

If σ1 and σ2 are associated with configuration-valuations v1 and v2 respectively
then we tentatively take the configuration-valuation of the pullback to be v(x) =
v1(Π1x) × v2(Π2x) for x ∈ C(S1 ∧ S2).

To check that v is indeed a configuration-valuation we embed configurations
of S1 ∧ S2 in those of S1∥S2 as described in the next lemma, so inheriting the
conditions required of v from those of the configuration-valuation of σ1∥σ2.

Lemma 11.40. Define

ψ ∶ C(S1 ∧ S2) → C(S1∥S2)

by ψ(x) = Π1x∥Π2x for x ∈ C(S1 ∧ S2). Then,

(i) ψ is injective,

(ii) ψ preserves unions, and

(iii) ψ reflects compatibility, and in particular +-compatibility: if x ⊆+ y and
x ⊆+ z in C(S1 ∧S2) and ψ(y) ∪ψ(z) ∈ C(S1∥S2), then y ∪ z ∈ C(S1 ∧S2).

Proof. Consider the pullbackC(S1)∧C(S2), π1, π2 in stable families of σ1 and σ2,
regarded as maps between families of configurations. Configurations C(S1 ∧S2)
are order isomorphic, under inclusion, to configurations C(S1) ∧ C(S2). See
the end of Section 3.3.4 for the detailed construction of pullbacks of stable
families. It is thus sufficient to show that φ ∶ C(S1) ∧ C(S2) → C(S1∥S2), where
φ(x) = π1x∥π2x for x ∈ C(S1) ∧ C(S2), satisfies conditions (i), (ii) and (iii) in
place of ψ. (i) Injectivity follows because configurations in the pullback of stable
families are determined by their projections; the nature of events of the pullback
fixes their synchronisations. (ii) is obvious. (iii) To show φ reflects compatibility,
assume x ⊆ y and x ⊆ z in C(S1)∧C(S2) and φ(y)∪φ(z) ∈ C(S1∥S2). Inspecting
the construction of the pullback C(S1)∧C(S2) it is now easy to check that y∪ z
satisfies the conditions needed to be in C(S1) ∧ C(S2), as required.

Corollary 11.41. Taking v(x) = v1(Π1x) × v2(Π2x) for x ∈ C(S1 ∧ S2) defines
a configuration-valuation of S1 ∧ S2.

Proof. The assignment x ↦ v1(x1) × v2(x2), for x ∈ C(S1∥S2) determines a
configuration-valuation of S1∥S2. The one non-obvious condition required of
v to be a configuration-valuation is the +-drop condition. This follows di-
rectly from the +-drop condition holding in C(S1∥S2) because ψ reflects +-
compatibility.

Input prefixing ∑i∈I ⊖.σi ∶ ∑i∈I ⊖.Ai, if σi ∶ Ai, for i ∈ I, where I is countable.

Output prefixing ∑i∈I pi⊕.σi ∶ ∑i∈I ⊕.Ai, if σi ∶ Ai, for i ∈ I, where I is countable,
and pi ∈ [0,1] for i ∈ I with ∑i∈I pi ≤ 1. If ∑i∈I pi < 1, there is non-zero proba-
bility of terminating without any action. By design (∑i∈I ⊕.Ai)

⊥ = ∑i∈I ⊖.A
⊥
i .



158 CHAPTER 11. PROBABILISTIC STRATEGIES

General probabilistic sum More generally we can define ⊕i∈I piσi ∶ A, for σi ∶ A
and I countable with sub-probability distribution pi, i ∈ I. The operation makes
the +-events of different components conflict and re-weights the configuration-
valuation on the components according to the sub-probability distribution. In
order for the sum to remain receptive, the initial −ve events of the components
over a common event in the game A must be identified.

Relabelling, the composition f∗σ ∶ B, if σ ∶ A and f ∶ A→ B, possibly partial on
+ve events but always defined on −ve events, is receptive and innocent in the
sense of Definition 4.6. Then the composition of maps fσ ∶ S → B is receptive
and innocent. Its defined part, taken to be f∗σ ∶ B, is given by the factorization

S

σ
""

// S ↓D

f∗σ

��
A,

where D is the subset of S at which fσ is defined, is a strategy over B. If the
configuration-valuation on S is v then that on S ↓ D is given by x ↦ v([x]),
for x ∈ C(S ↓ D), where [x] is the down-closure of x in S. The map f∗σ ∶ B
is a strategy because, directly from the definition of innocence of partial maps,
the projection S → S ↓ D reflects immediate causal dependencies from +ve
events and to −ve events. The function x ↦ v([x]), for x ∈ C(S ↓ D), is a
configuration valuation: First, clearly v[∅]) = v(∅) = 0. Second, if x ⊆− y in
C(S ↓ D), then [x] ⊆− [y] in C(S) directly from the −-innocence of f , ensuring
v([x]) = v([y]). Third, the drop condition is inherited from v. Assuming

y
+

−Ð⊂x1,⋯, xn in C(S ↓ D) we obtain [y] ⊆+ [x1],⋯, [xn] in C(S) because f is
only undefined on +ve events. Hence, by the drop condition for v,

v([y]) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

[xi]) ≥ 0 ,

where I ranges over subsets ∅ ≠ I ⊆ {1,⋯, n} s.t. {[xi] ∣ i ∈ I}↑S . But,

{[xi] ∣ i ∈ I}↑S ⇐⇒ {xi ∣ i ∈ I}↑S↓V ,

and down-closure commutes with unions. So

v([y]) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

[xi]) = v([y]) −∑
I

(−1)∣I ∣+1v([⋃
i∈I
xi]) ,

where in the latter expression I ranges over subsets ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑S↓V .
In particular, the composition fσ ∶ B, if σ ∶ A and f ∶ A → B is itself a

strategy, i.e. total, receptive and innocent.

Pullback f∗σ ∶ A, if σ ∶ B and f ∶ A → B is a map of event structures, possibly
partial, which reflects +-consistency in the sense that

y
+

−Ð⊂x1,⋯, xn & {fxi ∣ 1 ≤ i ≤ n}↑ Ô⇒ {xi ∣ 1 ≤ i ≤ n}↑ .



11.4. PROBABILISTIC PROCESSES 159

The strategy f∗σ is got by the pullback

S′

f∗σ

��

f ′ // S

σ

��
A

f
// B .

Then, the map f ′ also reflects +-consistency. This fact ensures we define a
configuration-valuation vS′ on S′ by taking vS′(x) = vS(f

′x), for x ∈ C(S′). If
σ ∶ S → B is a strategy then so is f∗σ ∶ S′ → A. Pullback along f ∶ A → B
may introduce events and causal links, present in A but not in B. The pullback
operation subsumes the operations of prefixing ⊖.σ and ⊕.σ and we can recover
the previous prefix sums if we also have have sum types—see below.

Sum types If Ai, i ∈ I, is a countable family of games, we can form their sum, the
game ∑i∈I Ai as the sum of event structures. If σ ∶ Aj , for j ∈ I, we can create
the probabilistic strategy j σ ∶ ∑i∈I Ai in which we extend σ with those initial
−ve events needed to maintain receptivity. A probabilistic strategy of sum type
σ ∶ ∑i∈I Ai projects to a probabilistic strategy (σ)j ∶ Aj where j ∈ I.

Abstraction λx ∶ A.σ ∶ A⊸ B. Because probabilistic strategies form a monoidal-
closed bicategory, with tensor A∥B and function space A⊸ B =def A

⊥∥B, they
support an (linear) λ-calculus, which in this context permits process-passing as
in [33].

Recursive types and probabilistic processes can be dealt with along standard
lines [5].

The types as they stand are somewhat inflexible. For example, that maps of
event structures are locally injective would mean that simple labelling of events
as in say CCS could not be directly captured through typing. However, this
can be remedied by introducing monads, but doing this in sufficient generality
would involve the introduction of symmetry.

In the pullback operations we have relied on certain maps being stable un-
der pullback. The following two propositions make good our debt, and use
techniques from open maps [34].

Proposition 11.42. If σ ∶ S → B is a strategy then so is f∗σ ∶ S′ → A.

Proof. Define an étale map (w.r.t. to a path category P) to be like an open map,
but where the lifting is unique. It is straightforward to show that the pullback
of an étale map is étale. In fact, strategies can be regarded as étale maps, from
which the proposition follows. Within the category of event structures with
polarity and partial maps, take the path subcategory P to comprise all finite
elementary event structures with polarity and take a typical map f ∶ p→ q in P
to be a map such that:



160 CHAPTER 11. PROBABILISTIC STRATEGIES

(i) if e _p e
′ with e −ve and e′ +ve and both f(e) and f(e′) defined, then

f(e) _q f(e
′); and

(ii) all events in q not in the image fp are −ve.

It can be checked that w.r.t. this choice of P the étale maps are precisely those
maps which are strategies. ◻

Proposition 11.43. If f ∶ A→ B reflects +-consistency, then so does f ′ ∶ S′ →
S.

Proof. As +-consistency-reflecting maps are special kinds of open maps, known
to be stable under pullback. An appropriate path category comprises: all fi-
nite event structures with polarity for which there is a subset M of ≤-maximal
+-events s.t. a subset X is consistent iff X ∩M contains at most one event of
M—all finite elementary event structures with polarity are included as M , the
chosen subset of ≤-maximal +-events, may be empty; maps in the path category
are rigid maps of event structures with polarity whose underlying functions are
bijective on events. ◻

11.4.1 Payoff

Given a probabilistic strategy vS , σ ∶ S → A and counter-strategy vT , τ ∶ T → A⊥

we obtain

P
π1

��

π2

��

σ
��

T

τ
��

A

with valuation v(x) = vS(π1x) × vT (π2x), for x ∈ C(P ), on the pullback P—a
probabilistic event structure, with probability measure µσ,τ . Define f =def σπ1 =
τπ2. Adding payoff as a Borel measurable function X ∶ C∞(A) → R the expected
payoff is obtained as the Lebesgue integral

Eσ,τ(X) =def ∫
x∈C∞(P )

X(f(x)) dµσ,τ(x)

=∫
y∈C∞(A)

X(y) dµσ,τf
−1(y) ,

where we can choose either to integrate over C∞(P ) with measure µσ,τ , or over
C∞(A) with measure µσ,τf

−1.



11.4. PROBABILISTIC PROCESSES 161

11.4.2 A simple value-theorem

Let A be a game with payoff X. Its dual is the game A⊥ with payoff −X. If A,X
and B,Y are two games with payoff, their parallel composition (A,X)`(B,Y )
is the game with payoff (A∥B,X + Y ).

Let A be a game with payoff X. Define

val(A,X) =def sup
σ

inf
τ

Eσ,τ(X)

val(A⊥,−X) =def sup
τ

inf
σ

Eτ,σ(−X) = − inf
τ

sup
σ

Eσ,τ(X) .

The game A,X is said to have a value if

val(A,X) = −val(A⊥,−X) = Eσ0,τ0(X) ,

its value then being val(A,X).
The following proposition says that a Nash equiibrium—expressed in prop-

erties (1) and (2)—determines a value for a game with payoff.

Theorem 11.44. Let A be a game with payoff X. Suppose there are strategy
σ0 and counterstrategy τ0 s.t.

(1)∀τ, a counterstrategy. Eσ0,τ(X) ≥ Eσ0,τ0(X) and

(2)∀σ, a strategy. Eσ,τ0(X) ≤ Eσ0,τ0(X) .

Then, the game A,X has a value and Eσ0,τ0(X) is the value of the game.

Proof. Letting σ stand for strategies and τ for counterstrategies, we have

val(A) =def sup
σ

inf
τ

Eσ,τ(X)

val(A⊥) =def sup
τ

inf
σ

Eτ,σ(−X) = − inf
τ

sup
σ

Eσ,τ(X) .

We require
val(A) = −val(A⊥) = Eσ0,τ0(X) .

For all strategies σ,

inf
τ
Eσ,τ(X) ≤ Eσ,τ0(X) ≤ Eσ0,τ0(X)

by (2). Therefore
sup
σ

inf
τ
Eσ,τ(X) ≤ Eσ0,τ0(X) .

Also
sup
σ

inf
τ
Eσ,τ(X) ≥ inf

τ
Eσ0,τ(X) ≥ Eσ0,τ0(X)

by (1). Hence
sup
σ

inf
τ
Eσ,τ(X) = Eσ0,τ0(X) . (3)



162 CHAPTER 11. PROBABILISTIC STRATEGIES

Dually,
sup
σ
Eσ,τ(X) ≥ Eσ0,τ(X) ≥ Eσ0,τ0(X)

by (1). Therefore
inf
τ

sup
σ
Eσ,τ(X) ≥ Eσ0,τ0(X) .

Also,
inf
τ

sup
σ
Eσ,τ(X) ≤ sup

σ
Eσ,τ0(X) ≤ Eσ0,τ0(X)

by (2). Hence
inf
τ

sup
σ
Eσ,τ(X) = Eσ0,τ0(X) . (4)

From (3) and (4) it follows that

val(A) = −val(A⊥) = Eσ0,τ0(X) ,

the value of the game, as required.



Chapter 12

Quantum strategies

We first explore a definition of quantum event structure in which events are
associated with projection or unitary operators. It is shown how this structure
induces configuration-valuations, and hence probability measures, on compatible
parts of the domain of configurations of the event structure. We conclude with
a brief exploration of quantum games and strategies. A quantum game is taken
to be a quantum event structure in which events carry polarities and a strategy
in a quantum game as a probabilistic strategy in its event structure.

12.1 Quantum event structures

Event structures are a model of distributed computation in which the causal
dependence and independence of events is made explicit. By associating events
with the most basic operators on a Hilbert space, viz. projection and unitary
operators, so that independent (i.e. concurrent) events are associated with in-
dependent (i.e. commuting) operators, we obtain quantum event structures.

An event associated with a projection is thought of as an elementary pos-
itive test; its occurrence leaves the system in the eigenspace associated with
eigenvalue 1 (rather than 0) of the projection. An event associated with a uni-
tary operator is an event of preparation; the preparation might be a change of
the direction in which to make a measurement, or the undisturbed evolution of
the system over a time interval. A configuration is thought of as specifying a
distributed quantum experiment. As we shall see, w.r.t. an initial state given
as a density operator, each configuration w of a quantum event structure de-
termines a probabilistic event structure, giving a probability distribution on its
sub-configurations—the possible results of the experiment w.

Throughout let H be a separable Hilbert space over the complex numbers.
For operators A,B on H we write [A,B] =def AB −BA.

163



164 CHAPTER 12. QUANTUM STRATEGIES

12.1.1 Events as operators

Formally, we obtain a quantum event structure from an event structure by
interpreting its events as unitary or projection operators which must commute
when events are concurrent.

Definition 12.1. A quantum event structure (overH) comprises an event struc-
ture (E,≤,Con) together with an assignment Qe of projection or unitary oper-
ators on H to events e ∈ E such that for all e1, e2 ∈ E,

e1 co e2 Ô⇒ [Qe1 ,Qe2] = 0 .

Given a finite configuration, x ∈ C(E), define the operator Ax to be the
composition QenQen−1⋯Qe2Qe1 for some covering chain

∅
e1
−Ð⊂x1

e2
−Ð⊂x2⋯

en
−Ð⊂xn = x

inC(E). This is well-defined as for any two covering chains up to x the sequences
of events are Mazurkiewicz trace equivalent, i.e. obtainable, one from the other,
by successively interchanging concurrent events. In particular A∅ is the identity
operator on H. An initial state is given by a density operator ρ on H.

Interpretation

Consider first the simpler situation where in a quantum event structure E,Q the
event structure E is elementary (i.e. all finite subsets are consistent). We regard
E,Q as specifying a, possibly distributed, quantum experiment. The experiment
says which unitary operators (events of preparation) and projection operators
(elementary positive tests) to apply and in which order. The order being partial
permits commuting operators to be applied concurrently, independently of each
other, perhaps in a distributed fashion.

For a quantum event structure, E,Q, in general, an individual configuration
w ∈ C∞(E) inherits the order of the ambient event structure E to become an
elementary event structure, and can itself be regarded as a quantum experi-
ment. The quantum event structure E,Q represents a collection of quantum
experiments which may extend or overlap each other: when w ⊆ w′ in C∞(E)
the experiment w′ extends the experiment w, or equivalently w is a restriction
of the experiment w′. In this sense a quantum event structure in general rep-
resents a nondeterministic quantum experiment. The extra generality will be
crucial later in interpreting probabilistic quantum experiments.

12.1.2 From quantum to probabilistic

Consider a quantum event structure with initial state. A configuration w stands
for an experiment and specifies which tests and preparations to try and in which
order. In general, not all the tests in w need succeed, yielding as final result
a possibly proper sub-configuration x of w. Theorem 12.2 below explains how



12.1. QUANTUM EVENT STRUCTURES 165

there is an inherent probability distribution qw over such final results. So an
experiment provides a context for measurement w.r.t. which there is an intrinsic
probability distribution over the possible outcomes. In particular, when the
event structure is elementary it itself becomes a probabilistic event structure.
(Below, by an unnormalised density operator we mean a positive, self-adjoint
operator with trace less than or equal to one.)

Theorem 12.2. Let E,Q be a quantum event structure with initial state ρ.
Each configuration x ∈ C(E) is associated with an unnormalised density operator
ρx =def AxρA

†
x and a value in [0,1] given by v(x) =def Tr(ρx) = Tr(A†

xAxρ). For
any w ∈ C∞(E), the function v restricts to a configuration-valuation vw on the
elementary event structure w (viz. the event structure with events w, and causal
dependency and (trivial) consistency inherited from E); hence vw extends to a
probability measure qw on Fw =def {x ∈ C∞(E) ∣ x ⊆ w}.

Proof. We show v restricts to a configuration-valuation on Fw. As A∅ = idH,

v(∅) = Tr(ρ) = 1. By Lemma 11.11, we need only to show d
(n)
v [y;x1,⋯, xn] ≥ 0

when y
e1
−Ð⊂x1,⋯, y

en
−Ð⊂xn in Fw.

First, observe that if for some event ei the operator Qei is unitary, then

d
(n)
v [y;x1,⋯, xn] = 0. W.l.o.g. suppose en is assigned the unitary operator U .

Then, Axn = UAy so

v(xn) = Tr(A†
xnAxnρ) = Tr(A†

yU
†UAyρ) = Tr(A†

yAyρ) = v(y) .

Let ∅ ≠ I ⊆ {1,⋯, n}. Then, either ⋃i∈I xi = ⋃i∈I xi ∪ xn or ⋃i∈I xi
en
−Ð⊂ ⋃i∈I xi ∪

xn. In the either case—in the latter case by an argument similar to that above,

v(⋃
i∈I
xi) = v(⋃

i∈I
xi ∪ xn) .

Consequently,

d(n)v [y;x1,⋯, xn] =d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn]

=v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I
xi) − v(xn) +∑

I

(−1)∣I ∣+1v(⋃
i∈I
xi ∪ xn)

= 0

—above index I is understood to range over sets for which ∅ ≠ I ⊆ {1,⋯, n}.
It remains to consider the case where all events ei are assigned projection

operators Pei . As x1,⋯, xn ⊆ w we must have that all the projection operators
Pe1 ,⋯, Pen commute.

As [Pei , Pej ] = 0, for 1 ≤ i, j ≤ n, we can assume an orthonormal basis which
extends the sub-basis of eigenvectors of all the projection operators Pei , for 1 ≤
i ≤ n. Let y ⊆ x ⊆ ⋃1≤i≤n xi. Define Px to be the projection operator got as the
composition of all the projection operators Pe for e ∈ x∖ y—this is a projection
operator, well-defined irrespective of the order of composition as the relevant
projection operators commute. Define Bx to be the set of those basis vectors



166 CHAPTER 12. QUANTUM STRATEGIES

fixed by the projection operator Px. In particular, Py is the identity operator
and By the set of all basis vectors. When x,x′ ∈ C(E) with y ⊆ x ⊆ ⋃1≤i≤n xi
and y ⊆ x′ ⊆ ⋃1≤i≤n xi,

Bx∪x′ = Bx ∩Bx′ .

Also,
Px∣ψ⟩ = ∑

i∈Bx
⟨i∣ψ⟩ ∣i⟩ ,

so
⟨ψ∣Px∣ψ⟩ = ∑

i∈Bx
⟨i∣ψ⟩⟨ψ∣i⟩ = ∑

i∈Bx
∣⟨i∣ψ⟩∣

2
,

for all ∣ψ⟩ ∈ H.
Assume ρ = ∑k pk ∣ψk⟩⟨ψk ∣, where the ψk are normalised and all the pk are

positive with sum ∑k pk = 1. For x with y ⊆ x ⊆ ⋃1≤i≤n xi,

v(x) =Tr(A†
xAxρ)

=Tr(A†
yP

†
xPxAyρ)

=Tr(A†
yPxAy∑

k

pk ∣ψk⟩⟨ψk ∣)

=∑
k

pk Tr(A†
yPxAy ∣ψk⟩⟨ψk ∣)

=∑
k

pk⟨Ayψk ∣Px∣Ayψk⟩

= ∑
i∈Bx

∑
k

pk ∣⟨i∣Ayψk⟩∣
2
= ∑
i∈Bx

ri ,

where we define ri =def ∑k pk ∣⟨i∣Ayψk⟩∣
2
, necessarily a non-negative real for

i ∈ Bx.
We now establish that

d(n)v [y;x1,⋯, xn] = ∑
i∈By∖Bx1

∪⋯∪Bxn
ri ,

for all n ∈ ω, by mathematical induction—it then follows directly that its value
is non-negative.

The base case of the induction, when n = 0, follows as

d(0)v [y; ] = v(y) = ∑
i∈By

ri ,

a special case of the result we have just established.
For the induction step, assume n > 0. Observe that

By ∖Bx1 ∪⋯ ∪Bxn−1 = (By ∖Bx1 ∪⋯ ∪Bxn)
⋅∪ (Bxn ∖Bx1∪xn ∪⋯ ∪Bxn−1∪xn) ,

where as signified the outer union is disjoint. Hence,

∑
i∈By∖Bx1

∪⋯∪Bxn−1

ri = ∑
i∈By∖Bx1

∪⋯∪Bxn
ri + ∑

i∈Bxn∖Bx1∪xn
∪⋯∪Bxn−1∪xn

ri ,



12.1. QUANTUM EVENT STRUCTURES 167

By definition,

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn]

—making use of the fact that we are only forming unions of compatible config-
urations. From the induction hypothesis,

d(n−1)
v [y;x1,⋯, xn−1] = ∑

i∈By∖Bx1
∪⋯∪Bxn−1

ri

and d(n−1)
v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn] = ∑

i∈Bxn∖Bx1∪xn
∪⋯∪Bxn−1∪xn

ri .

Hence

d(n)v [y;x1,⋯, xn] = ∑
i∈By∖Bx1

∪⋯∪Bxn
ri ,

ensuring d
(n)
v [y;x1,⋯, xn] ≥ 0, as required.

By Theorem 11.14, the configuration-valuation vw extends to a unique prob-
ability measure on Fw.

Corollary 12.3. Let E,Q be a quantum event structure in which E is elemen-
tary. Assume an initial state ρ. Then, x ↦ Tr(A†

xAxρ), for x ∈ C(E), is a
configuration-valuation on E. It extends to a probability measure on the Borel
sets of C∞(E).

Theorem 12.2 is reminiscent of the consistent-histories approach to quan-
tum theory [35] once we understand configurations as partial-order histories.
The traditional decoherence/consistency conditions on histories, saying when a
family of histories supports a probability distribution, have been replaced by
⊆-compatibility.

Example 12.4. Let E comprise the quantum event structure with two concur-
rent events e0 and e1 associated with projectors P0 and P1, where necessarily
[P0, P1] = 0. Assume an initial state ∣ψ⟩⟨ψ∣, corresponding to the pure state ∣ψ⟩.
The configuration {e0, e1} is associated with the following probability distribu-
tion. The probability that e0 succeeds is ∣∣P0∣ψ⟩∣∣

2, that e1 succeeds ∣∣P1∣ψ⟩∣∣
2,

and that both succeed is ∣∣P1P0∣ψ⟩∣∣
2.

In the case where P0 and P1 commute because P0P1 = P1P0 = 0, the events e0

and e1 are mutually exclusive in the sense that there is probability zero of both
events e0 and e1 succeeding, probability ∣∣P0∣ψ⟩∣∣

2 of e0 succeeding, ∣∣P1∣ψ⟩∣∣
2 of

e1 succeeding, and probability 1 − ∣∣P0∣ψ⟩∣∣
2 − ∣∣P1∣ψ⟩∣∣

2 of getting stuck at the
empty configuration where neither event succeeds.

A special case of this is the measurement of a qubit in state ψ, the measure-
ment of 0 where P0 = ∣0⟩⟨0∣, and the measurement of 1 where P1 = ∣1⟩⟨1∣, though
here ∣∣P0∣ψ⟩∣∣

2 + ∣∣P1∣ψ⟩∣∣
2 = 1, as a measurement of the qubit will determine a

result of either 0 or 1. ◻



168 CHAPTER 12. QUANTUM STRATEGIES

Example 12.5. Let E comprise the event structure with three events e1, e2, e3

with trivial causal dependency and consistency relation generated by taking
{e1, e2} ∈ Con and {e2, e3} ∈ Con—so {e1, e3} ∉ Con. To be a quantum event
structure we must have [Qe1 ,Qe2] = 0, [Qe2 ,Qe3] = 0. The maximal configura-
tions are {e1, e2} and {e2, e3}. Assume an initial state ∣ψ⟩⟨ψ∣. The first maximal
configuration is associated with a probability distribution where e1 occurs with
probability ∣∣Qe1 ∣ψ⟩∣∣

2 and e2 occurs with probability ∣∣Qe2 ∣ψ⟩∣∣
2. The second

maximal configuration is associated with a probability distribution where e2

occurs with probability ∣∣Qe2 ∣ψ⟩∣∣
2 and e3 occurs with probability ∣∣Qe3 ∣ψ⟩∣∣

2. ◻

12.1.3 Measurement

To support measurements yielding values we associate values with configurations
of a quantum event structure E,Q, in the form of a measurable function, V ∶
C∞(E) → R. If the experiment results in x ∈ C∞(E) we obtain V (x) as the
measurement value resulting from the experiment. By Theorem 12.2, assuming
an initial state given by a density operator ρ, we obtain a probability measure
qw on the sub-configurations of w ∈ C∞(E). This is interpreted as giving a
probability distribution on the final results of an experiment w. Accordingly,
w.r.t. an experiment w ∈ C∞(E), the expected value is

Ew(V ) =def ∫
x∈Fw

V (x) dqw(x) .

Traditionally quantum measurement is associated with an Hermitian oper-
ator A on H where the possible values of a measurement are eigenvalues of A.
How is this realized by a quantum event structure? Suppose the Hermitian
operator has spectral decomposition

A = ∑
i∈I
λiPi

where orthogonal projection operators Pi are associated with eigenvalue λi. The
projection operators satisfy ∑i∈I Pi = idH and PiPj = 0 if i ≠ j.

Form the quantum event structure with concurrent events ei, for i ∈ I, and
Q(ei) = Pi. Because the projection operators are orthogonal, [Pi, Pj] = 0 when
i ≠ j, so we do indeed obtain a quantum event structure. Let V ({ei}) = λi,
and take arbitrary values on all other configurations. The event structure has
a single, maximum configuration w =def {ei ∣ i ∈ I}. It is the experiment w
which will correspond to traditional measurement via A. Assume an initial
state ∣ψ⟩⟨ψ∣. It can be checked that the probability ascribed to each of the
singleton configurations {ei} is ⟨ψ∣Pi∣ψ⟩, and is zero elsewhere. Consequently,

Ew(V ) = ∑
i∈I
λi⟨ψ∣Pi∣ψ⟩ = ⟨ψ∣A∣ψ⟩

—the well-known expression for the expected value of the measurement A on
pure state ∣ψ⟩.



12.1. QUANTUM EVENT STRUCTURES 169

Example 12.6. The spin state of a spin-1/2 particle is an element of two-
dimensional Hilbert space, H2. Traditionally the Hermitian operator for mea-
suring spin in a particular fixed direction is

∣↑⟩⟨↑∣ − ∣↓⟩⟨↓∣ .

It has eigenvectors ∣↑⟩ (spin up) with eigenvalue +1 and ∣↓⟩ (spin down) with
eigenvalue −1. Accordingly, its quantum event structure comprises the two
concurrent events u associated with projector ∣↑⟩⟨↑∣ and d with projector ∣↓⟩⟨↓∣.
Its configurations are: ∅, {u}, {d} and {u, d}. The value associated with the
configuration {u} is +1, and that with {d} is −1. Given an initial pure state
a∣↑⟩ + b∣↓⟩, the probability of the experiment {u, d} yielding value +1 is ∣a∣2

and that of yielding −1 is ∣b∣2. The probability that the experiment ends in
configurations ∅ or {u, d} is zero. Its expected value is ∣a∣2 − ∣b∣2. This would
be the average value resulting from measuring the spin of a large number of
particles initially in the pure state. ◻

An event logic

One way to assign values to configurations is via logic of which the assertions
will be true (taken as 1) or false (0) at a configuration. Given a countable event
structure E, we can build terms for events and assertions in a straightforward
way. Event terms are given by ε ∶∶= e ∈ E ∣ v ∈ Var, where Var is a set of variables
over events, and assertions by

L ∶∶= ε ∣ T ∣ F ∣ L1 ∧L2 ∣ L1 ∨L2 ∣ ¬L ∣ ∀v.L ∣ ∃v.L .

W.r.t. an environment ζ ∶ Var→ E, an assertion L denotes JLKζ, a Borel subset
of C∞(E), for example:

JeKζ = {x ∈ C∞(E) ∣ e ∈ x} JvKζ = {x ∈ C∞(E) ∣ ζ(v) ∈ x}

J∀v.LKζ = {x ∈ C∞(E) ∣ ∀e ∈ x. x ∈ JLKζ[e/v]}
J∃v.LKζ = {x ∈ C∞(E) ∣ ∃e ∈ x. x ∈ JLKζ[e/v]}

with T, F, ∧, ∨ and ¬ interpreted standardly by the set of all configurations,
the emptyset, intersection, union and complement. In this logic, for example,
¬(a↓ ∧ b↓)∧¬(a↑ ∧ b↑) could express the anti-correlation of the spin of particles
a and b.

W.r.t. a quantum event structure with initial state, for an experiment the
configuration w, the probability of the result of the quantum experiment satis-
fying L, a closed assertion of the logic with denotation U , is

qw(U ∩Fw)

which coincides with the expected value of the characteristic function for U .



170 CHAPTER 12. QUANTUM STRATEGIES

12.1.4 Probabilistic quantum experiments

It can be useful, or even necessary, to allow the choice of which quantum mea-
surements to perform to be made probabilistically. For example, experiments
to invalidate the Bell inequalities, to demonstrate the non-locality of quantum
physics, may make use of probabilistic quantum experiments.

Formally, a probability distribution over quantum experiments can be real-
ized by a total map of event structures f ∶ P → E where P, v is a probabilistic
event structure and E,Q is a quantum event structure; the configurations of E
correspond to quantum experiments assigned probabilities through P . Through
the map f we can integrate the probabilistic and quantum features. Via the
map f , the event structure E inherits a configuration valuation, making it itself
a probabilistic event structure; we can see this indirectly by noting that if wo
is a continuous valuation on the open sets of P then wof

−1 is a continuous val-
uation on the open sets of E. On the other hand, via f the event structure P
becomes a quantum event structure; an event p ∈ P is interpreted as operation
Q(f(p)). Of course, f can be the identity map, as is so in Example 12.7 below.

Suppose E,Q is a quantum event structure with initial state ρ and a mea-
surable value function V ∶ C∞(E) → R. Recall, from Section 12.1.3, that the
expected value of a quantum experiment w ∈ C∞(E) is

Ew(V ) =def ∫
x∈Fw

V (x) dqw(x) ,

where qw is the probability measure induced on Fw by Q and ρ. The expected
value of a probabilistic quantum experiment f ∶ P → E, where P, v is a proba-
bilistic event structure is

∫
w∈C∞(E)

Ew(V ) dµf−1(w) ,

where µ is the probability measure induced on C∞(P ) by the configuration-
valuation v. Specialising the value function to the characteristic function of
a Borel subset U ⊆ C∞(E), perhaps given by an assertion of the event logic
of Section 12.1.3, the probability of the result of the probabilistic experiment
satisfying U is

∫
w∈C∞(E)

qw(U ∩Fw) dµf
−1(w) .

The following example illustrates how a very simple form of probabilistic
quantum experiment (in which the event structure has a discrete partial or-
der of causal dependency) provides a basis for the analysis of Bell and EPR
experiments.

Example 12.7. Imagine an observer who randomly chooses between measuring
spin in a first fixed direction a1 or in a second fixed direction a2. Assume that
the probability of measuring in the a1-direction is p1 and in the a2-direction is
p2, where p1+p2 = 1. The two directions a1 and a2 correspond to choices of bases
∣↑a1⟩, ∣↓a1⟩ and ∣↑a2⟩, ∣↓a2⟩ in H2. We describe this scenario as a probabilistic



12.1. QUANTUM EVENT STRUCTURES 171

quantum experiment. The quantum event structure has four events, ↑a1, ↓a1, ↑
a2, ↓a2, in which ↑a1, ↓a1 are concurrent, as are ↑a2, ↓a2; all other pairs of events
are in conflict. The event ↑a1 is associated with measuring spin up in direction
a1 and the event ↓ a1 with measuring spin down in direction a1. Similarly,
events ↑a2 and ↓a2 correspond to measuring spin up and down, respectively, in
direction a2. Correspondingly, we associate events with the following projection
operators:

Q(↑a1) = ∣↑a1⟩⟨↑a1∣ , Q(↓a1) = ∣↓a1⟩⟨↓a1∣ ,

Q(u2) = ∣↑a2⟩⟨↑a2∣ , Q(d2) = ∣↓a2⟩⟨↓a2∣ .

The configurations of the event structure take the form

⋅
↓a1

o O

⋅
↓a2

� o
⋅ ∅

↑a1

O/

↓a1
oO

↑a2

/�

↓a2
� o

⋅

⋅
↑a1

O/

⋅
↑a2

/�

where we have taken the liberty of inscribing the events just on the covering
intervals. Measurement in the a1-direction corresponds to the configuration
{↑a1, ↓a1}—the configuration to the far left in the diagram—and in the a2-
direction to the configuration {↑a2, ↓a2}—that to the far right. To describe
that the probability of the measurement in the a1-direction is p1 and that in
the a2-direction is p2, we assign a configuration valuation v for which

v({↑a1, ↓a1}) = v({↑a1}) = v({↓a1}) = p1 ,

v({↑a2, ↓a2}) = v({↑a2}) = v({↓a2}) = p2 and v(∅) = 1 .

Such a probabilistic quantum experiment is not very interesting on its own.
But imagine that there are two similar observers A and B measuring the spins
in directions a1, a2 and b1, b2, respectively, of two particles created so that
together they have zero angular momentum, ensuring they have a total spin
of zero in any direction. Then quantum mechanics predicts some remarkable
correlations between the observations of A and B, even at distances where their
individual choices of what directions to perform their measurements could not
possibly be communicated from one observer to another. For example, were both
observers to choose the same direction to measure spin, then if one measured
spin up then other would have to measure spin down even though the observers
were light years apart.

We can describe such scenarios by a probabilistic quantum experiment which
is essentially a simple parallel composition of two versions of the (single-observer)
experiment above. In more detail, make two copies of the single-observer event
structure: that for A, the event structure EA, has events ↑ a1, ↓ a1, ↑ a2, ↓ a2,
while that for B, the event structure EB , has events ↑ b1, ↓ b1, ↑ b2, ↓ b2. As-
sume they possess configuration valuations vA and vB , respectively, determined



172 CHAPTER 12. QUANTUM STRATEGIES

by the probabilistic choices of directions made by A and B. Write QA and
QB for the respective assignments of projection operators to events of EA and
EB . The probabilistic event structure for the two observers together is got as
EA∥EB , their simple parallel composition got by juxtaposition, with configura-
tion valuation v(x) = vA(xA) × vB(xB), for x ∈ C(EA∥EB), where xA and xB
are projections of x to configurations of A and B. In this compound system an
event such as e.g. ↑a1 is interpreted as the projection operator QA(↑a1) ⊗ idH2

on the Hilbert space H2 ⊗ H2, where the combined state of the two particles
belongs. We can capture the correlation or anti-correlation of the observers’
measurements of spin through a value function on configurations, given by

V ({↑ai, ↑bj}) = V ({↓ai, ↓bj}) = 1 , V ({↑ai, ↓bj}) = V ({↓ai, ↑bj}) = −1 , and

V (x) = 0 otherwise,

and study their expectations under various initial states and choices of measure-
ment. In this way probabilistic quantum experiments, as formalised through
probabilistic and quantum event structures, provide a basis for the analysis of
Bell or EPR experiments. ◻

The ideas of probabilistic and quantum event structures carry over to prob-
abilistic and quantum games and their strategies; the result of the play of quan-
tum strategy against a counterstrategy is a probabilistic event structure. This
is yielding operations and languages which should be helpful in a structured
development and analysis of experiments on quantum systems.

12.2 A simple form of quantum strategy

We present a simple form of quantum game and strategy.
Define a quantum game to comprise A,pol ,HA,Q, ρ where A,pol is a race-

free event structure with polarity and A,Q is a quantum event structure, with
Hilbert space HA; its initial state is a quantum game with ρ a density operator.

A strategy in a quantum game A,pol ,Q, ρ comprises a probabilistic strategy
in A, so a strategy σ ∶ S → A together with configuration-valuation v on C(S).

Given a strategy vS , σ ∶ S → A and counter-strategy vT , τ ∶ T → A⊥ in a
quantum game A,Q we obtain a probabilistic event structure P via pull-back,
viz.

P
Π1

��

Π2

��
S

σ
��

T

τ
��

A

with a configuration-valuation v(x) =def vSΠ1(x)×vTΠ2(x) on finite configura-
tions x ∈ C(P ). This induces a probabilistic measure µ on the event structure



12.2. A SIMPLE FORM OF QUANTUM STRATEGY 173

P . Write f =def σΠ1 = τΠ2. We can interpret f ∶ P → A as the probabilistic
quantum experiment which results from the interaction of the strategy σ and
the counter-strategy τ . We can investigate the probability the interaction of σ
with τ produces a result in a Borel subset U of C∞(A) —that the probabilistic
experiment induced by the interaction succeeds in U . Recall from Section 12.1.4
that the probability of the result of the probabilistic experiment satisfying U is

∫
w∈C∞(A)

qw(U ∩Fw) dµf
−1(w) .

We examine some special cases.
Consider the case where σ and τ are deterministic, with configuration val-

uations assigning one to each finite configuration. Then, P will also be deter-
ministic in the sense that all its finite subsets will be consistent. It will thus
have a single maximal configuration x0 ∈ C∞(P ). The configuration-valuation
v will assign one to each finite configuration of P . In this case the probability
measure on Borel subsets V of C∞(P ) is simple to describe:

µ(V ) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if x0 ∈ V ,

0 otherwise.

This leads to

∫
w∈C∞(A)

qw(U ∩Fw) dµf
−1(w) = qfx0(U ∩Ffx0) .

Consider now the case where Opponent initially offers n ∈ {1,⋯,N} mutually-
inconsistent alternatives to Player and resumes with a deterministic strategy.
Suppose too that initially Player chooses amongst the alternatives probabilis-
tically, choosing option n with probability pn, and then resumes deterministi-
cally. This will result in an event structure P taking the form of a prefixed sum

∑1≤n≤N en.Pn in which all the events of Pn causally depend on event en. In this
situation,

∫
w∈C∞(E)

qw(U ∩Fw) dµf
−1(w) = ∑

1≤n≤N
pn . qfxn(U ∩Ffxn) ,

where xn is the maximal configuration in the component en.Pn for 1 ≤ n ≤ N .

Quantum games inherit the structure of a bicategory from probabilistic
games. A strategy from a quantum game A to a quantum game B is a strategy
in the quantum game A⊥∥B. For this to make sense we have to extend the
definitions of simple parallel composition and dual to quantum games. Assume
A and B are quantum games. In defining their simple parallel composition A∥B
and dual A⊥ we take:

HA∥B = HA ⊗HB , QA∥B(1, a) = QA ⊗ idHB , QA∥B(2, b) = idHA ⊗QB ,

and ρA∥B = ρA ⊗ ρB ;

HA⊥ = HA, ρA⊥ = ρA and QA⊥ = QA .



174 CHAPTER 12. QUANTUM STRATEGIES

Although we do obtain a bicategory of quantum games in this way, it is
not the final story. It presently lacks an operation to introduce entanglement
across parallel components. There are limitations in all the quantum structure
of a strategy being inherited from that of the game; in a more liberal notion of
quantum strategy one would expect quantum structure to be possessed directly
by the strategy. There is also the issue of adjoining value functions (cf. Sec-
tion 12.1.3) to quantum games in a way that respects their bicategorical struc-
ture. Providing a structured account and analysis of quantum experiments, as
in the simple experiment discussed in Example 12.7, should provide guidelines.



Acknowledgments

Thanks to Aurore Alcolei, Samy Abbes, Nathan Bowler, Simon Castellan, Pierre
Clairambault, Pierre-Louis Curien, Marcelo Fiore, Mai Gehrke, Julian Gutier-
rez, Jonathan Hayman, Martin Hyland, Alex Katovsky, Tamas Kispeter, Marc
Lasson, Paul-André Melliès, Samuel Mimram, Hugo Paquet, Gordon Plotkin,
Silvain Rideau, Frank Roumen, Sam Staton and Marc de Visme for helpful dis-
cussions. The support of Advanced Grant ECSYM of the European Research
Council is acknowledged with gratitude.

175



176 CHAPTER 12. QUANTUM STRATEGIES



Bibliography

[1] Winskel, G.: Event Structures, Stable Families and Concurrent Games.
http://www.cl.cam.ac.uk/∼gw104/ecsym-notes.pdf (2016)

[2] Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and
domains. TCS 13 (1981) 85–108

[3] Winskel, G., Nielsen, M.: Models for concurrency. In Abramsky, S., Gab-
bay, D., eds.: Semantics and Logics of Computation. OUP (1995)

[4] Saunders-Evans, L., Winskel, G.: Event structure spans for nondetermin-
istic dataflow. Electr. Notes Theor. Comput. Sci. 175(3): 109-129 (2007)

[5] Winskel, G.: Event structure semantics for CCS and related languages. In:
ICALP’82. Volume 140 of LNCS., Springer (1982)

[6] Winskel, G.: Event structures. In: Advances in Petri Nets. Volume 255 of
LNCS., Springer (1986) 325–392

[7] Rideau, S., Winskel, G.: Concurrent strategies. In: LICS 2011

[8] Joyal, A.: Remarques sur la théorie des jeux à deux personnes. Gazette
des sciences mathématiques du Québec, 1(4) (1997)

[9] Winskel, G.: Event structures with symmetry. Electr. Notes Theor. Com-
put. Sci. 172: 611-652 (2007)

[10] Laird, J.: A games semantics of idealized CSP. Vol 45 of Electronic Books
in Theor. Comput. Sci. (2001)

[11] Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concur-
rency. In: FOSSACS’04, LNCS 2987, Springer (2004)

[12] Melliès, P.A., Mimram, S.: Asynchronous games : innocence without
alternation. In: CONCUR ’07. Volume 4703 of LNCS., Springer (2007)

[13] Katovsky, A.: Concurrent games. First-year report for PhD study, Com-
puter Lab, Cambridge (2011)

[14] Curien, P.L.: On the symmetry of sequentiality. In: MFPS. Number 802
in LNCS, Springer (1994) 29–71

177



178 BIBLIOGRAPHY

[15] Hyland, M.: Game semantics. In Pitts, A., Dybjer, P., eds.: Semantics
and Logics of Computation. Publications of the Newton Institute (1997)

[16] Harmer, R., Hyland, M., Melliès, P.A.: Categorical combinatorics for in-
nocent strategies. In: LICS ’07, IEEE Computer Society (2007)

[17] Melliès, P.A.: Asynchronous games 2: The true concurrency of innocence.
Theor. Comput. Sci. 358(2-3): 200-228 (2006)

[18] Nygaard, M.: Domain theory for concurrency. PhD Thesis, Aarhus Uni-
versity (2003)

[19] Winskel, G.: Relations in concurrency. In: LICS ’07, IEEE Computer
Society (2005)

[20] Abramsky, S., Melliès, P.A.: Concurrent games and full completeness. In:
LICS ’99, IEEE Computer Society (1999)

[21] Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III.
Inf. Comput. 163(2): 285-408 (2000)

[22] Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF.
Inf. Comput. 163(2): 409-470 (2000)

[23] Varacca, D., Völzer, H., Winskel, G.: Probabilistic event structures and
domains. Theor. Comput. Sci. 358(2-3): 173-199 (2006)

[24] Hyland, M.: Some reasons for generalising domain theory. Mathematical
Structures in Computer Science 20(2) (2010) 239–265

[25] Cattani, G.L., Winskel, G.: Profunctors, open maps and bisimulation.
Mathematical Structures in Computer Science 15(3) (2005) 553–614

[26] Abramsky, S.: Semantics of interaction. In Pitts, A., Dybjer, P., eds.:
Semantics and Logics of Computation. Publications of the Newton Institute
(1997)

[27] Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2) (1975)
363–371

[28] Jones, C., Plotkin, G.: A probabilistic powerdomain of valuations. In:
LICS ’89, IEEE Computer Society (1989)

[29] Varacca, D.: Probability, nondeterminism and concurrency. PhD Thesis,
Aarhus University (2003)

[30] M Alvarez-Manilla, A Edalat, N.S.D.: An extension result for continuous
valuations. Journal of the London Mathematical Society 61(2) (2000) 629–
640

[31] Kahn, G., Plotkin, G.D.: Concrete domains. Theor. Comput. Sci.
121(1&2) (1993) 187–277



BIBLIOGRAPHY 179

[32] Winskel, G.: On probabilistic distributed strategies. In: ICTAC 2015.
Volume 9399 of Lecture Notes in Computer Science., Springer (2015)

[33] Nygaard, M., Winskel, G.: Linearity in process languages. In: LICS’02,
IEEE Computer Society (2002)

[34] Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf.
Comput. 127(2) (1996) 164–185

[35] Griffiths, R.B.: Consistent quantum theory. CUP (2002)



180 BIBLIOGRAPHY



Appendix A

Exercises

On event structures and stable families

Recommended exercises: 1, 3, 4, 5 (Harder), 6, 7, 10.

Exercise A.1. Let (A,≤A,ConA), (B,≤B ,ConB) be event structures. Let f ∶
A ⇀ B. Show f is a map of event structures, f ∶ (A,≤A,ConA) → (B,≤B
,ConB), iff

(i) ∀a ∈ A, b ∈ B. b ≤B f(a) Ô⇒ ∃a′ ∈ A. a′ ≤A a & f(a′) = b , and

(ii) ∀X ∈ ConA. fX ∈ ConB & ∀a1, a2 ∈X. f(a1) = f(a2) Ô⇒ a1 = a2 .

◻

Exercise A.2. Show a map f ∶ A ⇀ B of E is mono if the function C(A) →
C(B) taking configuration x to its direct image fx is injective. [Recall a map
f ∶ A → B is mono iff for all maps g, h ∶ C → A if fg = fh then g = h.] Show
the converse does not hold, that it is possible for a map to be mono but not
injective on configurations. Taking B to be the event structure comprising two
concurrent events, can you find an event structure A and an example of a total
map f ∶ A → B of event structures which is both mono and where f is not
injective as a function on events? ◻

Exercise A.3. Verify that the finite configurations of an event structure form
a stable family. ◻

Exercise A.4. Say an event structure A is tree-like when its concurrency rela-
tion is empty (so two events are either causally related or inconsistent). Suppose
B is tree-like and f ∶ A → B is a total map of event structures. Show A must
also be tree-like, and moreover that the map f is rigid, i.e. preserves causal
dependency.

1



2 APPENDIX A. EXERCISES

Exercise A.5. Let F be a nonempty family of finite sets satisfying the Com-
pleteness axiom in the definition of stable families. Show F is coincidence-free
iff

∀x, y ∈ F . x ⊊ y Ô⇒ ∃x1, e1. x
e1
−Ð⊂x1 ⊆ y .

[Hint: For ‘only if ’ use induction on the size of y ∖ x.] ◻

Exercise A.6. Prove Proposition 3.10: Let f ∶ F → G be a map of stable
families. Let e, e′ ∈ x, a configuration of F . Show if f(e) ≤fx f(e

′) (with both
f(e) and f(e′) defined) then e ≤x e

′.

Exercise A.7. Prove the two propositions 3.6 and 3.7. ◻

Exercise A.8. (From Section 3.2) For an event structure E, show C∞(E) =
C(E)∞. ◻

Exercise A.9. (From Section 3.2) Let F be a stable family. Show F∞ satisfies:

Completeness: ∀Z ⊆ F∞. Z ↑ Ô⇒ ⋃Z ∈ F∞ ;
Stability: ∀Z ⊆ F∞. Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F∞;
Coincidence-freeness: For all x ∈ F∞, e, e′ ∈ x with e /= e′,

∃y ∈ F∞. y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Finiteness: For all x ∈ F∞,

∀e ∈ x∃y ∈ F . e ∈ y & y ⊆ x & y is finite .

Show that F consists of precisely the finite sets in F∞. ◻

Exercise A.10. Let A be the event structure consisting of two distinct events
a1 ≤ a2 and B the event structure with a single event b. Following the method
of Section 3.3.1 describe the product of event structures A ×B. ◻



3

On strategies

Recommended exercises: 11, 12, 13, 14, 15, 17.

Exercise A.11. Consider the empty map of event structures with polarity∅ →
A. Is it a strategy? Is it a deterministic strategy? Consider now the identity
map idA ∶ A → A on an event structure with polarityA. Is it a strategy? Is it a
deterministic strategy? ◻

Exercise A.12. For each instance of total map σ of event structures with po-
larity below say whether σ is a strategy and whether it is deterministic. In each
case give a short justification for your answer. (Immediate causal dependency
within the event structures is represented by an arrow _ and inconsistency, or
conflict, by a wiggly line .)

(i) S

σ

��

⊖
� ,,2

_

��

⊕_

��
A ⊖ ⊕

(ii) S

σ

��

⊕
� ,,2

_

��

⊖_

��
A ⊕ ⊖

(iii) S

σ

��

⊕
� ,,2

_

��

⊕_

��
A ⊕ ⊕

(iv) S

σ

��

⊖
� ,,2

_

��

⊖_

��
A ⊖ ⊖

(v) S

σ

��

⊖_

��
A ⊖

� ,,2⊕

(vi) S

σ

��

⊕_

��
A ⊕

� ,,2⊕



4 APPENDIX A. EXERCISES

(vii) S

σ

��

⊕_

��
A ⊕

� ,,2⊖

(viii) S

σ

��

⊕_

��

⊕@

��
A ⊕

(ix) S

σ

��

⊖_

��

⊖@

��
A ⊖

(x) ⊖-

((

� ,,2⊕ �

vv

S

σ

��

⊕

_LLR

_

��

⊖_

��

_LLR

�llr

A ⊕

_���

⊖

_���
⊖ ⊕

◻

Exercise A.13. Let idA ∶ A→ A be the identity map of event structures, sending
an event to itself. Show the identity map forms a strategy in the game A. Is it
deterministic in general? ◻

Exercise A.14. Show any strategy σ ∶ A + //B has a dual strategy σ⊥ ∶ B⊥ + //A⊥.
In more detail, supposing σ ∶ S → A⊥∥B is a strategy show σ⊥ ∶ S → (B⊥)⊥∥A⊥

is a strategy where

σ⊥(s) =
⎧⎪⎪
⎨
⎪⎪⎩

(1, b) if σ(s) = (2, b)

(2, a) if σ(s) = (1, a) .

◻

Exercise A.15. Let B be the event structure consisting of the two concurrent
events b1, assumed −ve, and b2, assumed +ve in B . Let C consist of a single
+ve event c. Let the strategy σ ∶ ∅ + //B comprise the event structure s1 _ s2



5

with s1 −ve and s2 +ve, σ(s1) = b1 and σ(s2) = b2. In B⊥ the polarities are
reversed so there is a strategy τ ∶ B + //C comprising the map τ ∶ T → B⊥∥C
from the event structure T , with three events t1 and t3 both +ve and t2 −ve so
t2 _ t1 and t2 _ t3, which acts so τ(t1) = b1, τ(t2) = b2 and τ(t3) = c. Describe
the composition τ⊙σ. ◻

Exercise A.16. Say an event structure is set-like if its causal dependency re-
lation is the identity relation and all pairs of distinct events are inconsistent.
Let A and B be games with underlying event structures which are set-like event
structures. In this case, can you see a simpler way to describe determinis-
tic strategies A + //B? What does composition of deterministic strategies be-
tween set-like games corresponds to? What do strategies in general between set-
like games correspond to? What does composition of strategies between set-like
games corresponds to? [No proofs are required.] ◻

Exercise A.17. By considering the game A comprising two concurrent events,
one +ve and one −ve, show there is a nondeterministic pre-strategy σ ∶ S → A
such that s _ s′ in S without σ(s) _ σ(s′). Could you find such a counterex-
ample were σ deterministic? Explain. ◻

Exercise A.18. Let G =def (A,W ) be a game with winning conditions. Say a
pre-strategy σ ∶ S → A is winning iff σx ∈ W for all +-maximal configurations
x ∈ C∞(S). Show that if G has a winning receptive pre-strategy, then the dual
game G⊥ has no winning strategy (use Corollary 8.3.) Show that G may have a
winning pre-strategy (necessarily not receptive) while G⊥ has a winning strategy.

◻


