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1 Sums of Squares Methods

From a high level, these methods rely upon the following two observations:

1. The question as to whether or not a real polynomial p(~x) ∈ R[~x] is a sum of squares (SOS) of
real polynomials can be reduced to a semidefinite programming problem, and

2. The search for a Positivstellensatz refutation certifying the emptiness of a semialgebraic set
defined by an RCF constraint system can be reduced to a finite sequence of searches for SOS
decompositions.

Below we present an expository account of the difficult part of the first observation, due to Powers
and Wörmann [PW99] and building upon the key insights of Choi, Lam, and Reznick [MDCR95].
An expository account of the second observation, due to Parrilo [Par03], will be the subject of a
second note.

Given a PSD real polynomial p(~x) ∈ R[~x] that is a sum of squares of real polynomials, we seek an
algorithm that will compute p1(~x), . . . , pn(~x) ∈ R[~x] s.t. p(~x) =

∑n
i=1 p

2
i (~x).

Remark. From now on, unless specified otherwise, when we write “sum of squares” or “SOS” we
mean “sum of squares of real polynomials in R[x1, . . . , xn]”.

1.1 The Powers-Wörmann SOS Decomposition

Let p(~x) ∈ R[~x] be SOS in t real polynomial squares. Then, p(~x) must have even degree. Let
deg(p(~x)) = 2k. Then, ∃q1, . . . , qt ∈ R[~x] s.t. deg(qi(~x)) ≤ k and p(~x) =

∑t
i=1 q

2
i (~x).

A key observation is that we can now exactly characterise the finitely many possible power-products
that could occur in each qi(~x).

Definition 1.1. Let Λn(d) = {α = 〈α1, . . . , αn〉 ∈ Nn | α1 + . . .+ αn ≤ d}.

Then, as deg(qi(~x)) ≤ k (∀ 1 ≤ i ≤ t), we see that the exponent vector α for each monomial
occurring in each qi(~x) must be a member of Λn(k).
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Note that |Λn(k)| =
(
n+k
n

)
. Suppose u =

(
n+k
n

)
and fix some order on the members of Λn(k) s.t.

Λn(k) = {β1, . . . , βu}. Let

~ζ =


~xβ1

~xβ2

...
~xβu


and let A ∈ Rtu be the u× t matrix whose ith column is the vector of coefficients of qi(~x)

A =


cβ1,1 cβ1,2 . . . cβ1,t
cβ2,1 cβ2,2 . . . cβ2,t

...
...

...
...

cβu,1 cβu,2 . . . cβu,t


s.t. qi(~x) =

∑u
j=1 cβj ,i~x

βj .

Then,

p(~x) =
n∑
i=1

q2
i (~x) ⇐⇒ p(~x) = ~ζ T (AAT )~ζ.

Definition 1.2 (Gram matrix). The u × u matrix B = (AAT ) ∈ Ru2 given above is called the
Gram matrix for p(~x) w.r.t. q1(~x), . . . , qt(~x).

Definition 1.1. A Gram matrix of a polynomial is necessarily symmetric.

Definition 1.3 (PSD matrix). Let B be a u × u symmetric matrix. B is said to be positive
semidefinite (PSD) iff

∀~r ∈ Ru (~r B ~r T ≥R 0)

where ~r ∈ Ru is taken to be a row vector. Equivalently, B is PSD iff all of its eigenvalues are
non-negative.

Definition 1.2 (Gram matrices are PSD). A Gram matrix for a polynomial is necessarily PSD.

The following important result, due originally to Choi, Lam, and Reznick [MDCR95], and refor-
mulated in this convenient form by Powers and Wörmann [PW99], directly paves the way for the
construction of an SOS decomposition algorithm.

Theorem 1.1. Let p(~x) ∈ R[~x] be of degree 2k with ~ζ as given above. Then, p(~x) is SOS iff there
exists a symmetric PSD matrix B ∈ Ru2 s.t.

p(~x) = ~ζ TB~ζ.

Let B be such a matrix of rank t. Then, we can construct polynomials q1(~x), . . . , qt(~x) ∈ R[~x] s.t.

p(~x) =

t∑
i=1

q2
i (~x)

and B is a Gram matrix of p(~x) w.r.t. q1(~x), . . . , qt(~x).
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Proof. (⇒) If p(~x) is SOS, then we simply form B as (AAT ) as above.
(⇐) Let B ∈ Ru2 be a symmetric PSD matrix of rank t s.t. p(~x) = ~ζ TB~ζ. Since B is real symmetric
of rank t, there exists a real matrix V and a real diagonal matrix D,

D =


d1

d2 . . .
dt

0
. . .

0


s.t. B = V DV T and di 6= 0 (∀1 ≤ i ≤ t). Since B is PSD by hypothesis, it then follows that
di > 0 (∀1 ≤ i ≤ t). So, we have

p(~x) = ~ζ T (V DV T )~ζ. (∗)

Suppose V = (vi,j). Then, for 1 ≤ i ≤ t set

qi(~x) :=
√
di

u∑
j=1

vj,i~x
βi (∈ R[~x]).

By (∗), it then follows that p(~x) = q2
1(~x) + . . .+ q2

t (~x) as desired.

It then follows that the task of finding an SOS decomposition of p(~x) ∈ R[~x] is equivalent to the
task of finding a real symmetric, PSD matrix B s.t. p(~x) = ~ζ TB~ζ. We also see that given such
a Gram matrix B, we can compute a sequence of qi(~x) SOS cofactors of p(~x). Moreover, if we can
show that no such Gram matrix B can exist, then we have shown that p(~x) is not SOS.

Definition 1.3. Given p(~x) =
∑
cα~x

α as above and a real symmetric, PSD matrix B ∈ Ru2 s.t.

B =

b1,1 . . . b1,u
... . . .

...
bu,1 . . . bu,u

 ,

p(~x) = ~ζ TB~ζ iff for each exponent vector α = 〈α1, . . . , αn〉 ∈ Λn(2k)

∑
βi+βj=α

bi,j = cα,

where Λn(k) = {β1, . . . , βu} as before and βi + βj is point-wise vector addition. This simple obser-
vation, following from term inspection, yields a rather quick check to see if a candidate matrix B is
indeed Gram for p(~x). It also leads to the reduction of a search for such a B to a linear programming
problem derived from these coefficient constraints.

The preceding observation can be somewhat confusing, but its importance cannot be overstated.
We will illustrate it with a simple example.
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Example 1.1. Let p(x1, x2) = 4x2
1 + x2

2. Then,

1. dim(p) = 2, deg(p) = 2 = 2k with k = 1,

2. Λ2(2k) = Λ2(2) = {〈0, 0〉, 〈1, 0〉, 〈0, 1〉, 〈1, 1〉, 〈2, 0〉, 〈0, 2〉}, which are the exponent vectors for
the following power-products (in this order):

{1, x1, x2, x1x2, x
2
1, x

2
2}.

These are all of the power-products that could occur in an arbitrary 2-dimensional polynomial
of degree 2.

3. Λ2(k) = Λ2(1) = {〈0, 0〉, 〈1, 0〉, 〈0, 1〉} which are the exponent vectors for the following power-
products (in this order):

{1, x1, x2}.

These are all of the power-products that could occur in SOS co-factors of an arbitrary 2-
dimensional polynomial of degree 2.

4. We set u = |Λ2(k)| = 3 and fix an order upon Λ2(k) by setting:

β1 = 〈0, 0〉, β2 = 〈1, 0〉, β3 = 〈0, 1〉.

5. We then set

~ζ =

~xβ1~xβ2

~xβ3

 =

 1
x1

x2


6. Now, p(x1, x2) is SOS iff we can exhibit a u×u (= 3× 3) real, symmetric, PSD matrix B s.t.

p(x1, x2) = ~ζ TB~ζ.

That is, we are looking for some real, symmetric, PSD

B =

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 s.t.

 1
x1

x2

T b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 1
x1

x2

 = 4x2
1 + x2

2.

By multiplying through, we then see that:

(
1 x1 x2

)b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 1
x1

x2

 =

(
b1,1 + b2,1x1 + b3,1x2 b1,2 + b2,2x1 + b3,2x2 b1,3 + b2,3x1 + b3,3x2

) 1
x1

x2

 =

(b1,2 + b2,1)x1 + (b1,3 + b3,1)x2 + (b2,3 + b3,2)x1x2 + b2,2x
2
1 + b3,3x

2
2 + b1,1.
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So, by comparing coefficients,

b1,2 + b2,1 = 0,

b1,3 + b3,1 = 0,

b2,3 + b3,2 = 0,

b1,1 = 0,

b2,2 = 4,

b3,3 = 1.

Moreover, we know that B must be symmetric, so we can strengthen our linear constraint
system even further:

2b1,2 = 0,

2b1,3 = 0,

2b2,3 = 0,

b1,1 = 0,

b2,2 = 4,

b3,3 = 1,

and by simple linear manipulations and symmetry we can derive the following additional
constraints:

b1,2 = b2,1 = 0,

b1,3 = b3,1 = 0,

b2,3 = b3,2 = 0.

Thus, we see that for p(x1, x2) = 4x2
1 + x2

2 to be SOS,

B =

0 0 0
0 4 0
0 0 1


must be PSD. Of course, since it is trivial to see that p(x1, x2) is indeed SOS, B in this case
must be PSD. But, for the sake example, let us presume that we do not know B is PSD.
Recall one of the characterisations for a real, square symmetric matrix to be PSD: B is PSD
iff all of its eigenvalues are non-negative. Thus, we can simply compute B’s eigenvalues in
this case and be done with it. In 3-dimensions, the characteristic eigenvalue equation is:

χ(B) = x3 − tr(B)x2 +Ax− det(B) = 0,
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where A is the sum of (irreflexive) pairs of diagonal elements minus the products of each
opposite pair of off diagonal elements:

A = b1,1b2,2 + b1,1b3,3 + b2,2b3,3 − b1,2b2,1 − b1,3b3,1 − b2,3b3,2 = 4.

Recalling that the trace of a square matrix is the sum of the elements on the main diagonal,
we have:

tr(B) = b1,1 + b2,2 + b3,3 = 5.

Using cofactor expansion for the determinant:

det(B) = b1,1 ∗ det
(
b2,2 b2,3
b3,2 b3,3

)
− b2,2 ∗ det

(
b2,1 b2,3
b3,1 b3,3

)
+ b3,3 ∗ det

(
b2,1 b2,2
b3,1 b3,3

)
= (b1,1b2,2b3,3 + b1,2b2,3b3,1 + b1,3b2,1b3,2)− (b3,1b2,2b1,3 + b3,2b2,3b1,1 + b3,3b2,1b1,2) = 0

So,
χ(B) = x3 − 5x2 + 4x

and thus by the univariate cubic formula, we solve for χ’s roots and see the three eigenvalues1

of B are {0, 1, 4}. B is thus verified to be PSD, and p(x1, x2) is SOS.

There are a few points worth reflection concerning the previous example. First, consider the ex-
pansion of ~ζ TB~ζ that allowed us to derive the linear equational constraints in step 6. Computing
this expansion is tedious and expensive, involving three separate matrix multiplications. Instead,
we can use Observation 1.3 to derive this list of coefficient constraints in a more intelligent way.
To make this process precise, let us introduce the following definitions.

Definition 1.4. Given Λ(2k) = {α1, . . . , αw}, Λ(k) = {β1, . . . , βu}, and B = (bi,j) a real symmetric
k × k matrix, we define

C(αm) = {(i, j) | βi + βj = αm}.

Then, we see the equational constraints we need to derive are always of the form ∑
(i,j) ∈ C(αm)

bi,j

 = cαm

where p(~x) =
∑

α∈Λ(2k) cα~x
α. Moreover, by commutativity of vector addition, whenever (i, j) ∈

C(αm) it follows that (j, i) ∈ C(αm), and so by symmetry of B, bi,j + bj,i can be replaced by 2bi,j ,
eliminating bj,i from the constraint system generated.

We can reexamine step 6 from our previous example using the method above.

1Indeed, it is good to know that for a diagonal matrix, the eigenvalues are always precisely the entries along the
diagonal. B in this case is diagonal, so one could save some effort by reading off its eigenvalues directly. But, B in
this example is highly atypical and much simpler than most Gram matrices we will derive in practice.
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Example 1.2 (Step 6 of Example 2.9 revisited). We are looking for some real, symmetric, PSD
matrix B s.t.

B =

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 s.t.

 1
x1

x2

T b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 1
x1

x2

 = 4x2
1 + x2

2.

Recalling that in this case:

Λ2(2k) = Λ2(2) = {〈0, 0〉, 〈1, 0〉, 〈0, 1〉, 〈1, 1〉, 〈2, 0〉, 〈0, 2〉}
which are the exponent vectors for the following power-products:

{1, x1, x2, x1x2, x
2
1, x

2
2},

and
Λ2(k) = Λ2(1) = {〈0, 0〉, 〈1, 0〉, 〈0, 1〉}

which are the exponent vectors for the following power-products:

{1, x1, x2}.

We now proceed to compute C(α) for each α ∈ Λ2(2k) :

C(〈0, 0〉) = {(i, j) | βi + βj = 〈0, 0〉} = {(1, 1)},
C(〈1, 0〉) = {(i, j) | βi + βj = 〈1, 0〉} = {(1, 2), (2, 1)},
C(〈0, 1〉) = {(i, j) | βi + βj = 〈0, 1〉} = {(1, 3), (3, 1)},
C(〈1, 1〉) = {(i, j) | βi + βj = 〈0, 1〉} = {(2, 3), (3, 2)},
C(〈2, 0〉) = {(i, j) | βi + βj = 〈2, 0〉} = {(2, 2)},
C(〈0, 2〉) = {(i, j) | βi + βj = 〈0, 2〉} = {(3, 3)}.

This, in conjunction with the coefficients cα for p(x1, x2) = 4x2
1 + x2

2:

c〈0,0〉 = 0 c〈1,0〉 = 0 c〈0,1〉 = 0

c〈1,1〉 = 0 c〈2,0〉 = 4 c〈0,2〉 = 1

yields, modulo symmetry of B, the following linear constraints:

b1,1 = 0 2b1,2 = 0 2b1,3 = 0

2b3,2 = 0 b2,2 = 4 b3,3 = 1
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which is exactly what was derived by the more costly product expansion in the previous example.

From this example, we can extrapolate a general algorithm, due to Powers and Wörmann, for com-
puting SOS decompositions when they exist. An important caveat, though, is that this technique
presupposes the existence of an algorithm for testing the emptiness of a semialgebraic set defined
in the following form:

S = {(r1, . . . , rn) | p1(r1, . . . , rn) ≥ 0 ∧ . . . ∧ pm(r1, . . . , rn) ≥ 0},

where pi ∈ R[x1, . . . , xn]. That is, the feasibility of the Powers-Wörmann technique reduces to the
feasibility of testing the emptiness of an intersection of closed subsets of Rn for which a collection
of real polynomials are PSD. Nevertheless, this algorithm contains many important ideas. In par-
ticular, it provides a systematic way to construct SOS decompositions when they exist, allows one
to exactly parameterise the set of all Gram matrices for a real polynomial using only intersections
of closed sets explicitly characterised semialgebraically, and makes the crucial observation that the
search for SOS decompositions reduces to a search for a PSD matrix modulo linear constraints. As
we will see in the next note, this crucial observation is what paves the way for the use of powerful,
feasible convex optimisation techniques for the task of Gram matrix derivation.

Definition 1.5 (Powers-Wörmann Real SOS Decomposition Algorithm). Given p(x1, . . . , xn) =∑
cα~x

α ∈ R[x1, . . . , xn] s.t. deg(p) = 2k:

1. Fix an order on the set of all possible generic degree ≤ 2k exponent vectors Λn(2k) s.t.
Λn(2k) = {α1, . . . , α(n+2k

n )}.

2. Fix an order on the set of all possible SOS cofactor exponent vectors Λn(k) s.t. Λn(k) =
{β1, . . . , βu}.

3. Let ~ζ be the column vector of all possible SOS cofactor monomials, and B = (bi,j) be a real,
symmetric u× u matrix with variable entries:

~ζ =


~xβ1

~xβ2

...
~xβu

 B =

b1,1 . . . b1,u
... . . .

...
bu,1 . . . bu,u

 bi,j = bj,i.

4. Derive ~C(Λn(2k)), the Gram coefficient contribution table of B w.r.t. Λn(2k) induced by the
assumption ~ζ TB~ζ = p(~x) :

C(α1) = {(i, j) | βi + βj = α1},
... =

...

C(α(n+2k
n )) = {(i, j) | βi + βj = α(n+2k

n )}.
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5. Derive L(~C(p), c), the linear constraint system induced by ~C(p), c : Λn(2k)→ R (the coeffi-
cients of p), and Observation 1.3: ∑

(i,j) ∈ C(α1)

bi,j = cα1 ,

... =
...∑

(i,j) ∈ C(α
(n+2k

n )
)

bi,j = cα
(n+2k

n )

(modulo the symmetry of B - e.g., replace subterms bi,j + bj,i by 2bi,j).

6. Note that each B variable bi,j only exists in one linear equation in L(~C(p), c). Thus, to solve

L(~C(p), c) we can work pointwise upon each constraint li independently by replacing every
variable except one in li with a fresh parameter λj and solving for the remaining variable.
Then, all candidate solution matrices B can be given as a sum of parameter-scaled matrices:

B = B0 + λ1B1 + . . .+ λlBl

where each Bm is a real, symmetric u× u matrix s.t. the nonzero entries of B0 are precisely
the entries of B which contain no parameters, and the nonzero entries of Bm (m > 0) are

precisely the values
bi,j
λm

when bi,j contains the parameter λm.

7. Given such a parameterised B, the task at hand reduces to that of finding values for λ1, . . . , λj
that make B = B0 + λ1B1 + . . . λlBl PSD. We again utilise the eigenvalue characterisation of
PSD for symmetric matrices. Let χ(B) be the characteristic eigenvalue equation for B:

χ(B) = det(xI −B)

where I is the u×u identity matrix and the determinant is taken over R(x), the field of rational
functions in x. χ(B) is thus some polynomial F (x) = xs+as−1x

s−1+. . .+a0 ∈ R[x, λ1, . . . , λl].
It suffices to derive conditions upon λi s.t. the roots of F (x) are non-negative.

8. By Descartes’ Rule of Signs, F (x) has only non-negative roots iff

(−1)i+uai ≥ 0 (∀0 ≤ i ≤ k − 1).

As each coefficient ai lies in the algebra R[λ1, . . . , λl], each ai can itself be evaluated as a
polynomial, e.g., ai(λ1, . . . , λl) : Rl → R. Thus, B is PSD iff the semialgebraic set

S = {(λ1, . . . , λl) ∈ Rl | (−1)i+uai(λ1, . . . , λl) ≥ 0 | 0 ≤ i ≤ u}

is nonempty. Moreover, each point (λ1, . . . , λl) ∈ S corresponds to a Gram matrix for p(~x)
w.r.t. ~ζ.

9. At this point, one must utilise a specialised algorithm for testing the emptiness of S, e.g.,
cylindrical algebraic decomposition [ACM84] or virtual substitution [Wei97]. Of course, such
algorithms are in general feasible only for semialgebraic constraints in very small dimensions.
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10. If S is found to be nonempty and contains a point (λ1, . . . , λl) ∈ Rl, then

B = B0 + λ1B1 + . . .+ λlBl

can be used to construct an explicit SOS cofactor expansion of p(~x) using a combination of
square-root-free Cholesky decomposition and the method given in the final step of the proof
of Theorem 1.1.

(a) Set t = rank(B).

(b) Since B is real symmetric of rank t, by square-root-free Cholesky decomposition there
exists a real matrix V = (vi,j) and a real diagonal matrix D = diag(d1, . . . , dt, 0 . . . , 0)
s.t. B = V DV T and di 6= 0 (∀1 ≤ i ≤ t). Use square-root-free Cholesky decomposition
to compute V and D.

(c) Since B is PSD, it then follows that di > 0 (∀1 ≤ i ≤ t). So, we have

p(~x) = ~ζ T (V DV T )~ζ. (∗)

(d) For 1 ≤ i ≤ t set

qi(~x) :=
√
di

u∑
j=1

vj,i~x
βi (∈ R[~x]).

(e) By (∗), it then follows that p(~x) = q2
1(~x) + . . .+ q2

t (~x) as desired.
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