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Abstract. Though decidable, the theory of real closed fields (RCF) is
fundamentally infeasible. This is unfortunate, as automatic proof meth-
ods for nonlinear real arithmetic are crucially needed in both formalised
mathematics and the verification of real-world cyber-physical systems.
Consequently, many researchers have proposed fast, sound but incom-
plete RCF proof procedures which are useful in various practical appli-
cations. We show how such practically useful, sound but incomplete RCF
proof methods may be systematically utilised in the context of a com-
plete RCF proof method without sacrificing its completeness. In partic-
ular, we present an extension of the RCF quantifier elimination method
Partial CAD (P-CAD) which uses incomplete ∃ RCF proof procedures
to “short-circuit” expensive computations during the lifting phase of P-
CAD. We present the theoretical framework and preliminary experiments
arising from an implementation in our RCF proof tool RAHD.
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1 Introduction

Tarski’s theorem that the elementary theory of real closed fields (RCF) admits
effective elimination of quantifiers is one of the longstanding hallmarks of math-
ematical logic [13]. From this result, the decidability of elementary algebra and
geometry readily follow, and a most tantalising situation arises: In principle, ev-
ery elementary arithmetical conjecture over finite-dimensional real and complex
spaces may be decided simply by formalising the conjecture and asking a com-
puter of its truth. So why then do we still not know how many unit hyperspheres
may kiss3 in five dimensions? Is it 41? 42?

The issue is one of complexity. Though decidable, RCF is fundamentally
infeasible. Due to Davenport-Heintz [5], it is known that there exist families of
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n-dimensional RCF formulas of length O(n) whose only quantifier-free equiva-

lences must contain polynomials of degree 22
Ω(n)

and of length 22
Ω(n)

. Neverthe-
less, there are countless examples of difficult, high-dimensional RCF problems
solved in mathematical and engineering practice. What is the disconnect? (1)
RCF problems solved in practice are most often solved using an ad hoc combina-
tion of methods, not by a general decision method. (2) RCF problems arising in
practice commonly have structural properties dictated by the application domain
from which they originated. Such structural properties can often be exploited
making such problems more amenable to analysis and pushing them within the
reaches of restricted, more efficient variants of known decision methods.

With this in mind, many researchers have proposed fast, sound but incom-
plete RCF proof procedures, many of them being of substantial practical use
[1,7,14,10,12,6,4]. This is especially true for formal methods, where improved
automated RCF proof methods are needed in the formal verification of cyber-
physical systems. In these cases, as the RCF problems to be analysed are usually
machine-generated (and incomprehensibly large), incomplete proof procedures
can go a long way. For example, there is no denying the fact that applying a
full quantifier elimination algorithm to decide the falsity of a formula such as
∃x1, . . . , x100 ∈ R (x1 ∗x1 + . . .+x100 ∗x100 < 0) is an obvious misappropriation
of resources. While such an example may seem contrived, consider the fact that
when an RCF proof method is used in formal verification efforts, it is often fed
huge collections of machine-generated formulas which may be (un)satisfiable for
extremely simple reasons. Ideally, one would like to be able to use fast, sound but
incomplete proof procedures as much as possible, falling back on the far more
computationally expensive complete methods only when necessary. It would be
desirable to have a principled manner in which incomplete proof methods could
be used to improve the performance of a complete method without sacrificing
its completeness.

We present Abstract Partial Cylindrical Algebraic Decomposition (AP-CAD),
an extension of the RCF quantifier elimination procedure partial CAD. In AP-
CAD, arbitrary sound but possibly incomplete ∃ RCF proof procedures may be
used to “short-circuit” certain expensive computations during CAD construc-
tion. This is done in such a way that the completeness of the combined proof
method is guaranteed. We restrict our AP-CAD presentation to the practically
useful case of ∃ RCF. We have implemented AP-CAD within our RCF proof
tool RAHD [9] for the case of full-dimensional cell decompositions and present
experiments. RAHD contains many RCF proof methods and allows users to
combine them into their own heuristic RCF proof procedures through a proof
strategy language. This is ideal for AP-CAD, as the proof procedure parameters
used by AP-CAD can be formally realised as RAHD proof strategies.

2 CAD Preliminaries

For a detailed account of CAD, we refer the reader to [2]. We present only
the background on (P-)CAD required to understand AP-CAD for ∃ RCF. P-



CAD is currently the most efficient known general quantifier elimination method
for RCF4. An important fact is that the complexity of the (P-)CAD decision
algorithm is doubly exponential in the dimension (number of variables) of its
input formula. Generally, the most expensive phase of the (P-)CAD algorithm
is the so-called “lifting phase.” Let us fix some notation.

A semialgebraic set is a subset of Rn definable by a quantifier-free formula in
the language of ordered rings. A region of Rn is a connected component of Rn.
An algebraic decomposition of Rn is a decomposition of Rn into finitely many
semialgebraic regions. A cylindrical algebraic decomposition is a special type of
algebraic decomposition whose regions are in a sense “well-behaved” with respect
to projections onto lower dimensions. A cell is a region of a CAD.

Before delving into technical details, let us discuss how we can use a CAD to
make ∃RCF decisions. By “the polynomials of (an ∃RCF formula) ϕ,” we shall
mean the collection of polynomials obtained by zeroing the RHS of every atom
in ϕ through subtracting the RHS from both sides. We assume each such ∃ RCF
formula is in prenex normal form, so that it is an ∃-closed boolean combination
of sign conditions, i.e., of atoms of the form (p � 0) with p ∈ Z[x1, . . . , xn],
� ∈ {<,≤,=,≥, >}. We use QF (ϕ) to mean the quantifier-free matrix of ϕ.

The key point is that if we have in hand a suitable CAD C = {c1, . . . , cm} ⊂
2R

n

derived from an ∃ RCF formula ϕ, we can decide the truth of ϕ from
the CAD directly. The reason is simple: C will have the property that every
polynomial of ϕ has constant sign on each ci, i.e., given p a polynomial of ϕ
and a ci a cell, it shall hold that ∀r ∈ ci(p(r) = 0) ∨ ∀r ∈ ci(p(r) > 0) ∨
∀r ∈ ci(p(r) < 0). Consequently, QF (ϕ) has constant truth value at every point
in a given cell. Thus, to decide ϕ, we simply substitute a single sample point
from each ci into QF (ϕ) and see if it ever evaluates to true. It will evaluate to
true on at least one sample point if and only if ϕ is true over Rn.

We shall define CAD by induction on dimension5. A CAD of R is a decom-
position of R into finitely many cells ci ⊆ R s.t. each ci is of the form (i) {α1},
or (ii) ]α1, α2[, or (iii) ]-∞, α1[ or ]α1,+∞[ for algebraic real numbers αi. Let A
be a region of Ri. We call A× R the cylinder over A and denote it by Z(A).

Definition 1 (Stack). Let f1, . . . , fk ∈ C(A,R). That is, fj is a continuous
function from A to R. Furthermore, suppose that the images of the fj are ordered
over A s.t. ∀α ∈ A (fj(α) < fj+1(α)). Then, f1, . . . , fk induce a stack S over
A, where S is a decomposition of Z(A) into 2k+1 regions of the following form:

– r1 = {〈α, x〉 | α ∈ A, x < f1(α)},
r3 = {〈α, x〉 | α ∈ A, f1(α) < x < f2(α)},
...

4 See [8] for an explanation as to why P-CAD is also currently the best known general
decision method for practical ∃ RCF problems, despite the fact that ∃ RCF has a
theoretical exponential speed-up over RCF.

5 We shall speak freely of the symbolic manipulation and arithmetic of (irrational)
real algebraic numbers. See, e.g., [2] for an algorithmic account.



r2k−1 = {〈α, x〉 | α ∈ A, fk−1(α) < x < fk(α)},
r2k+1 = {〈α, x〉 | α ∈ A, fk(α) < x},

– r2 = {〈α, x〉 | α ∈ A, x = f1(α)},
...
r2k = {〈α, x〉 | α ∈ A, x = fk(α)}.

A CAD of Ri+1 will be obtained from a CAD C of Ri by constructing a stack
over every cell in C.

Definition 2 (CAD in Ri+1). An algebraic decomposition Ci+1 of Ri+1 is a

CAD iff Ci+1 is a union of stacks Ci+1 =
⋃k

j=1 wj , s.t. the stack wj is constructed

over cell cj in a CAD Ci = {c1, . . . , ck} of Ri.

The P -invariance property will allow us to use CADs to make ∃ RCF decisions.

Definition 3 (P-invariance). Let P = {p1, . . . , pk} ⊂ Z[x1, . . . , xn] and A
be a region of Rn. Then, we say A is P -invariant iff every member of P has
constant sign on A. That is given any pi ∈ P ,

∀r ∈ A(pi(r) = 0) ∨ ∀r ∈ A(pi(r) > 0) ∨ ∀r ∈ A(pi(r) < 0).

Given a CAD C, we say C is P -invariant iff every cell of C is P -invariant.

2.1 CAD Construction and Evaluation for ∃ RCF

The use of CADs for deciding ∃ RCF sentences will take place in four steps. In
what follows, ϕ is an ∃ RCF sentence and P = {p1, . . . , pk} ⊂ Z[x1, . . . , xn] is
the collection of polynomials of ϕ.

Projection The projection phase will begin with P and iteratively apply a
projection operator Proji of the form Proji : 2Z[x1,...,xi+1] → 2Z[x1,...,xi] until
a set of polynomials is obtained over Z[x1]. This process will consist of levels,
one for each dimension, s.t. at each level i we will have what is called a level-i
projection set, Pi ⊂ Z[x1, . . . , xi]. These level-i projection sets will have a
special property: If we have a Pi-invariant CAD of Ri, then we can use this
CAD to construct a Pi+1-invariant CAD of Ri+1.

Base The base phase consists of computing a P1-invariant CAD of R1, implic-
itly described as a sequence of sample points, one for each cell in the CAD.
This can be done by univariate real root isolation and basic machinery for
arithmetic with real algebraic numbers. Let us suppose we have done this
and our sequence of sample points is s1 < s2 < . . . < s2m+1.

Lifting The lifting phase will take an implicit description of a P1-invariant
CAD of R1 and progressively transform it into an implicit description of
Pn-invariant CAD of Rn. Let C = {c1, . . . , cm} be the Pi-invariant CAD for
Ri which we will lift to a Pi+1-invariant CAD of Ri+1. Let S = {s1, . . . , sm}
be our set of sample points, one from each cell in C. Then, for each cell cj ,
we will use the sample point sj ∈ cj to construct a set of sample points in
Ri+1 corresponding to a stack over cj :



1. As sj ∈ Ri, we have that sj = 〈r1, . . . , ri〉 for some r1, . . . , ri ∈ R.
2. Let Pi+1[sj ] denote Pi+1[x1 7→ r1, x2 7→ r2, . . . , xi 7→ ri]. Then Pi+1[sj ] ⊂

Z[xi+1] is a univariate family of polynomials.
3. Using the same process as we did in the base phase, compute a Pi+1[sj ]-

invariant CAD of R1. Let this CAD be represented by a sequence of
sample points t1 < t2 < . . . < t2v+1 ∈ R.

4. Then, the stack over cj will be represented by the set of 2v + 1 sample
points obtained by appending each tj to the lower-dimensional sample
point sj . That is, our stack over cj will be represented by the following
sequence of sample points z1, . . . ,z2v+1 in Ri+1: z1 = 〈r1, . . . , ri, t1〉,
z2 = 〈r1, . . . , ri, t2〉, . . ., z2v+1 = 〈r1, . . . , ri, t2v+1〉.

In the above construction, we call the cell cj (or the sample point representing
it, sj) the parent of the stack {z1, . . . ,z2v+1}.

Evaluation Let S = {s1, . . . , sm} ⊂ Rn be our final set of sample points.
Return the boolean value

∨
r∈S QF (ϕ)[r].

2.2 Partial CAD

Let us now sketch the idea of partial CAD, due to Collins and Hong [3]. As it
stands, the CAD construction algorithm will build a P -invariant CAD induced
by the polynomials P of an ∃ RCF formula ϕ without paying any attention
to the logical content of the formula itself. But, when performing lifting, i.e.,
constructing a stack of regions of Ri+1 over a lower-dimensional cell cj ⊂ Ri,
we may be easily able to see — simply by substitution and evaluation — that
the formula QF (ϕ) could never be satisfied over cj . For instance, let QF (ϕ) =(
(x44 + x3x

3
2 + 3x1 > 2x41) ∧ (x21 > x2 + x3)

)
. If cj is a cell in a P3-invariant

CAD of R3 represented by the sample point sj = 〈0, 1, 5〉, then we can see
QF (ϕ) will never be satisfied over a cell in a stack which is a child of cj . Thus,
we need not lift over cj and can eliminate it.

This is the idea behind partial CAD when applied to ∃ RCF formulas:
Before lifting over a cell in a CAD of Ri, check if there are any atoms in
your formula only involving the variables x1, . . . , xi. If so, then perform par-
tial evaluation of your formula by evaluating those atoms upon your sample
point in Ri, and then use simple propositional reasoning to try to deduce the
truth of your formula. This can also allow us to find a satisfying assignment
for the variables in QF (ϕ) without constructing a whole CAD. For instance,
let QF (ϕ) =

(
(x44 + x3x

3
2 + 3x1 > 2x41) ∨ (x21 < x2)

)
. If cj is a cell in a P2-

invariant CAD of R2 represented by the sample point sj = 〈−1, 2〉, then we can
see immediately by substitution that QF (ϕ) is satisfiable over R4. As a witness
to this satisfiability, we may return 〈−1, 2, r3, r4〉 where r3, r4 ∈ R are arbitrary.

3 Abstract Partial CAD

From a high level of abstraction, we can see partial CAD to be normal CAD
augmented with three pieces of algorithmic data:



1. A strategy for selecting lower-dimensional cells to use for evaluating lower-
dimensional atoms in our input formula,

2. An algorithm which when given a cell cj will construct a formula F (cj)
which, if it both has a truth value and is decided, can be used to tell (i) if
the cell cj can be thrown away (i.e., F (cj) is decided to be false), or (ii)
if a satisfying assignment for our formula can be extracted already from a
lower-dimensional cell (i.e., F (cj) is decided to be true),

3. A proof procedure which will be used to decide the formulas F (cj) generated
by the algorithm above.

In fact, in their original paper on partial CAD, Collins and Hong make the point
that different cell selection strategies could be used and even implement and
experiment with a number of them6. For partial CAD restricted to ∃ RCF,
these three pieces of algorithmic data described above would be:

1. Select cells ci ∈ C in some specified enumeration order (specified by s):
cs(1), cs(2), cs(3), . . . .

2. Given a cell cj represented by a sample point sj = 〈r1, . . . , ri〉 ∈ Ri, the
formula F (cj) will be constructed from our original ∃ RCF formula ϕ by
the following process:

(a) Let ϕ′ be QF (ϕ) augmented by instantiating x1 with r1, x2 with r2, . . ..
(b) Evaluate all variable-free atoms in ϕ′ to obtain a new formula ϕ′′.
(c) Replace all (unique) variable-containing atoms in ϕ′′ with fresh propo-

sitional variables to obtain a new formula F (cj).

3. Use a propositional logic proof procedure to attempt to decide F (cj).

If F (cj) is false (i.e., unsatisfiable), cell cj can be abandoned and we need not
lift over it. If F (cj) is true (i.e., tautologous), then we can extract a witness to
the truth of ϕ from the sample point sj . Otherwise, we lift over cj . These three
pieces of data give us the widely-used partial CAD of Collins and Hong. But,
from this point of view, we see that there are many other choices we could make.

3.1 Stages, Theatres and Lifting

The fundamental notion of AP-CAD will be that of an stage7. Let L∃OR be the
fragment of the language of ordered rings consisting of purely ∃ prenex sentences.

Definition 4 (Stage). A stage A = 〈〈S, w〉,F,P〉 will be given by three pieces
of algorithmic data. We describe a stage by how it acts in the context of a fixed
(but arbitrary) i-dimensional space Ri. These data are as follows:

6 For Collins and Hong, a cell selection strategy selects single cells in some specified
order. In Abstract Partial CAD, cell selection strategies will select sets of cells in
some specified order and ∃ RCF proof procedures will be applied to see if every cell
in a selected set of cells may be eliminated.

7 The intended connotation is of a stage in a theatre.



1. A cell selection strategy for selecting subsets of Ci for analysis (we call such
a subset a “selection of cells”),

2. A formula construction strategy for constructing an ∃ RCF formula whose
truth value will correspond to the relevance of a selection of cells (we call
such a formula a “cell selection relevance formula”),

3. An ∃ RCF proof procedure used to (attempt to) decide the truth or falsity
of a cell selection relevance formula.

In the context of CAD construction, sample points will be eliminated when
their corresponding cells are deemed to be irrelevant to the ∃ RCF formula induc-
ing the CAD. This removal might then result in a set of sample points for which
the cell selection function behaves differently than it did initially. This motivates
the containment axiom for covering width functions, so that these dynamics do
not result in a non-terminating CAD-based decision algorithm employing the
stage machinery. In what follows, let Ri = {s ⊂ Ri | |s| < ω}.

1. A cell selection strategy consists of two components:
(a) A covering width function w : Ri → N,
(b) A cell selection function S : Ri ×N→ Ri obeying for all Si ∈ Ri and all

j ∈ {1, . . . , w(Si)} the containment axiom: S(Si, j) ⊂ Si.
2. A formula construction strategy is a function F : L∃OR × Ri → L∃OR

obeying certain relevance judgment axioms. To describe these axioms, we
need the context of a fixed (but arbitrary) ∃ RCF formula and an associ-
ated Pi-invariant CAD of Ri. Let ϕ be an ∃ RCF formula with polynomials
P ⊂ Z[x1, . . . , xn] and let Pn, . . . , P1 be a sequence of level-(n, . . . , 1) pro-
jection sets rooted in P (recall Pn = P ). Let Ci = {c1, . . . , cm} be a Pi-
invariant CAD of Ri with Si a set of sample points drawn from a subset of
the cells in Ci. If we are given a set of sample points {sa1 , . . . sav} ⊆ Si,
then 4({sa1 , . . . sav}) will denote the set of cells from which the sample
points saj are drawn. Then, for each set of sample points Si and each
j ∈ {1, . . . , w(Si)} the following relevance judgment axioms must hold:
[(RCF |= ¬F(ϕ,S(Si, j))) =⇒ N (ϕ,S(Si, j))] , and [(RCF |= F(ϕ,S(Si, j)))
=⇒ RCF |= ϕ], where N (ϕ, {sa1 , . . . sav}) means that no child (at any an-
cestral depth, i.e., in a Pi+1-invariant CAD of Ri+1, in a Pi+2-invariant
CAD of Ri+2, . . . , in a Pn-invariant CAD of Rn) of any cell in the set
∆({sa1 , . . . , sav}) will satisfy QF (ϕ).

3. An ∃ RCF proof procedure is a function

P : L∃OR →

{true, false,unknown} ∪
⋃

j∈N+

Rj


obeying the soundness axioms: ((P(ψ) = true) =⇒ RCF |= ψ), ((P(ψ) =
false) =⇒ RCF |= ¬ψ), ((P(ψ) ∈ Rj) =⇒ RCF |= QF (ψ)[P(ψ)])
for arbitrary ψ ∈ L∃OR and with QF (ψ)[P(ψ)] in the final axiom being the
substitution of the j-vector P(ψ) (or an arbitrary extension of it to the dimen-
sion of the polynomials appearing in ψ) into ψ, resulting in a variable-free
formula. In this case, we call P(ψ) a witness to the truth of ψ.



We will want to have the freedom to give our AP-CAD algorithm a sequence
of stages, one for each dimension 1, . . . , n. The intuition is as follows: Stages are
introduced so that one can present a strategy to an underlying CAD decision
algorithm which will prescribe a method for the algorithm to recognise when it
can short-circuit certain expensive computations. If we can abandon a cell at
a low dimension, for instance at the base phase or when beginning to lift over
cells of R2, then this can potentially give us hyper-exponential savings down the
line. Thus, it makes sense to arrange stages A1,A2, . . .An so that stage A1 works
hardest to make relevance judgments about cells. For if A1 causes us to throw
away cell cj ⊂ R1, then this could lead to huge savings later. Then, A2 might
still work hard but a bit less hard, and so on. This collection of stages gives rise
to the notion of an n-theatre. In what follows, let Θ be the set of all stages.

Definition 5 (Theatre). An n-theatre T is a function T : {1, . . . , n} → Θ.

Stage i in a theatre will be used to make judgments about cells in a Pi-invariant
(partial) CAD of Ri (i.e., at level i). Let us describe a decision method we will
use for deciding ∃ RCF sentences in the framework of AP-CAD.

Algorithm 1 (AP-CAD with Theatrical Lifting) Suppose we are given an
∃ RCF sentence ϕ with polynomials P ⊂ Z[x1, . . . , xn], and an n-theatre T.

1. Projection As with standard P-CAD, compute a sequence of projection sets
P1, . . . , Pn.

2. Base As with standard P-CAD, compute a P1-invariant CAD of R1, C1 =
{c1, . . . , c2m+1} represented by sample points S1 = {s1, . . . , s2m+1}. Set the
current dimension i := 1.

3. Lifting Let T(i) = Ai = 〈〈Si, wi〉,Fi,Pi〉 be the stage for dimension i, and
Si the set of sample points for the Pi-invariant (partial) CAD of Ri over
which we need to lift.

(a) Let U := wi(Si) and let j := 1.
(b) While j ≤ U do

i. Let {sa1 , . . . , sav} := Si(Si, j).
ii. Let χ := Pi(Fi({sa1 , . . . , sav})).

iii. If χ = true, then return true.
iv. If χ = 〈x1, . . . , xw〉 ∈ Rw for some w ≤ n, then

A. Fix an n-dim. extension of χ, e.g., r = 〈x1, . . . , xw,0〉 ∈ Rn.
B. Evaluate QF (ψ)[r] and set R ∈ {true, false} to this result.
C. If R = true, then return r as a witness to the truth of ϕ.
D. If R = false, then return true8.

8 This is perhaps the one counter-intuitive part of the algorithm. Note, however, that
this is actually correct: By the combination of the second relevance judgment axiom
for Fi and the soundness axioms for Pi, the fact that RCF |= Fi(Si(Si, j)) means
that ϕ is true. It’s just that the witness Pi computed for the truth of Fi(Si(Si, j))
might fail to be a witness for ϕ. In this case, we simply know ϕ is true without
knowing a witness for it.



v. If χ = false, then set S′i := Si \ {sa1 , . . . , sav}, else set S′i := Si.
vi. If S′i = ∅ then return false.

vii. If S′i = Si then set j := j + 1.
viii. If S′i ⊂ Si then

A. Set Si := S′i.
B. Set U := wi(Si).
C. Set j := 1.

(c) Now, Si = {t1, . . . , tu} contains sample points corresponding to the cells
we have not deemed to be irrelevant. We need to lift over them.

i. Let Si+1 := ∅.
ii. For j from 1 to u do

A. Substitute the components of tj in for the variables x1, . . . , xi in
Pi+1 to obtain a univariate family Pi+1[tj ] ⊂ Z[xi+1].

B. Compute a Pi+1[tj ]-invariant CAD of R1, represented by sample
points Kj.

C. Set Si+1 := Si+1 ∪Kj.
(d) Increase the current dimension by setting i := i+ 1.
(e) If i = n then lifting is done and we may proceed to the evaluation phase.
(f) If i < n then we loop and begin the lifting process again, but now with

the set of sample points Si+1.
4. Evaluation Return the boolean value

∨
r∈Sn QF (ϕ)[r].

Theorem 2 Algorithm 1 is a sound and complete ∃ RCF proof procedure.

Proof. By induction on dimension. (See the extended version of this paper.)

4 Experimental Results

As an experiment (explicated in the extended version of this paper), we built a
concrete AP-CAD theatre combining interval constraint reasoning with standard
partial CAD [9]. As CAD performance is strongly dependent on the number of
cells retained at each dimension, we compared this for three CAD variants: (i)
CAD, (ii) standard P-CAD, and (iii) AP-CAD, w.r.t. an ∃ RCF sentence ϕ s.t.

QF (ϕ) =

[
(x1x4 + x2x4 + x3x2 < 0) ∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x24 + x23 + 1 < 0)

]
.

As QF (ϕ) involves only strict inequalities, we appeal to a theorem of McCal-
lum allowing us to only consider full-dimensional cells (selecting rational sample
points), and compare the methods w.r.t. this CAD variant [9]. We observe that
the AP-CAD method retains less cells than the other methods. This is supported
by experiments we have done with other ∃ RCF formulas. In all cases, the cost
of AP-CAD theatre execution measured < 0.01% of the total CPU time, indi-
cating that there is much positive impact to be made by using incomplete RCF
proof procedures to enhance the performance of CAD-based decision methods.
The cell retainment counts are as follows:



CAD P-CAD AP-CAD
Q1 2 2 1
Q2 14 7 5
Q3 40 10 7
Q4 200 50 35

5 Conclusion

AP-CAD allows strategic algorithmic data to be used to “short-circuit” expen-
sive computations during the lifting phase of a CAD-based decision algorithm.
This provides a principled approach for utilising fast, sound but possibly incom-
plete ∃ RCF proof procedures to enhance a complete decision method without
threatening its completeness. We see many ways this work might be extended.
It would be very interesting to work out similar machinery to be used during the
projection phase of P-CAD. For this work to bear serious practical fruit, many
more AP-CAD stages should be constructed and experimented with heavily.
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