
Abstract Partial Cylindrical Algebraic
Decomposition I: The Lifting Phase�

Extended Version

Grant Olney Passmore1,2 and Paul B. Jackson2

grant.passmore@cl.cam.ac.uk, pbj@inf.ed.ac.uk

1 Clare Hall, University of Cambridge
2 LFCS, University of Edinburgh

Abstract. Though decidable, the theory of real closed fields (RCF) is
fundamentally infeasible. This is unfortunate, as automatic proof meth-
ods for nonlinear real arithmetic are crucially needed in both formalised
mathematics and the verification of real-world cyber-physical systems.
Consequently, many researchers have proposed fast, sound but incom-
plete RCF proof procedures which are useful in various practical appli-
cations. We show how such practically useful, sound but incompleteRCF

proof methods may be systematically utilised in the context of a com-
plete RCF proof method without sacrificing its completeness. In partic-
ular, we present an extension of the RCF quantifier elimination method
Partial CAD (P-CAD) which uses incomplete ∃ RCF proof procedures
to “short-circuit” expensive computations during the lifting phase of P-
CAD. We present the theoretical framework and preliminary experiments
arising from an implementation in our RCF proof tool RAHD.

Keywords: decision procedures, nonlinear arithmetic, real closed fields

1 Introduction

Tarski’s theorem that the elementary theory of real closed fields (RCF) admits
effective elimination of quantifiers is one of the longstanding hallmarks of math-
ematical logic [14]. From this result, the decidability of elementary algebra and
geometry readily follow, and a most tantalising situation arises: In principle, ev-
ery elementary arithmetical conjecture over finite-dimensional real and complex
spaces may be decided simply by formalising the conjecture and asking a com-
puter of its truth. So why then do we still not know how many unit hyperspheres
may kiss3 in five dimensions? Is it 41? 42?

The issue is one of complexity. Though decidable, RCF is fundamentally
infeasible. Due to Davenport-Heintz [5], it is known that there exist families of

� This paper reports on work presented in Chapters 7 and 8 of the first author’s
2011 University of Edinburgh Ph.D. thesis [10], supervised by the second author.
This research was supported by the EPSRC [grant numbers EP/I011005/1 and
EP/I010335/1]. We thank the referees for their helpful comments and suggestions.

3 See, e.g., [12] for background on the kissing problem for n-dimensional hyperspheres.

n-dimensional RCF formulas of length O(n) whose only quantifier-free equiva-

lences must contain polynomials of degree 22
Ω(n)

and of length 22
Ω(n)

. Neverthe-
less, there are countless examples of difficult, high-dimensional RCF problems
solved in mathematical and engineering practice. What is the disconnect? (1)
RCF problems solved in practice are most often solved using an ad hoc combina-
tion of methods, not by a general decision method. (2) RCF problems arising in
practice commonly have structural properties dictated by the application domain
from which they originated. Such structural properties can often be exploited
making such problems more amenable to analysis and pushing them within the
reaches of restricted, more efficient variants of known decision methods.

With this in mind, many researchers have proposed fast, sound but incom-
plete RCF proof procedures, many of them being of substantial practical use
[1,7,15,11,13,6,4]. This is especially true for formal methods, where improved
automated RCF proof methods are needed in the formal verification of cyber-
physical systems. In these cases, as theRCF problems to be analysed are usually
machine-generated (and incomprehensibly large), incomplete proof procedures
can go a long way. For example, there is no denying the fact that applying a
full quantifier elimination algorithm to decide the falsity of a formula such as
∃x1, . . . , x100 ∈ R (x1 ∗x1+ . . .+x100 ∗x100 < 0) is an obvious misappropriation
of resources. While such an example may seem contrived, consider the fact that
when an RCF proof method is used in formal verification efforts, it is often fed
huge collections of machine-generated formulas which may be (un)satisfiable for
extremely simple reasons. Ideally, one would like to be able to use fast, sound but
incomplete proof procedures as much as possible, falling back on the far more
computationally expensive complete methods only when necessary. It would be
desirable to have a principled manner in which incomplete proof methods could
be used to improve the performance of a complete method without sacrificing
its completeness.

We present Abstract Partial Cylindrical Algebraic Decomposition (AP-CAD),
an extension of the RCF quantifier elimination procedure partial CAD. In AP-
CAD, arbitrary sound but possibly incomplete ∃ RCF proof procedures may be
used to “short-circuit” certain expensive computations during CAD construc-
tion. This is done in such a way that the completeness of the combined proof
method is guaranteed. We restrict our AP-CAD presentation to the practically
useful case of ∃ RCF. We have implemented AP-CAD within our RCF proof
tool RAHD [10] for the case of full-dimensional cell decompositions and present
experiments. RAHD contains many RCF proof methods and allows users to
combine them into their own heuristic RCF proof procedures through a proof
strategy language. This is ideal for AP-CAD, as the proof procedure parameters
used by AP-CAD can be formally realised as RAHD proof strategies.

2 CAD Preliminaries

For a detailed account of CAD, we refer the reader to [2]. We present only
the background on (P-)CAD required to understand AP-CAD for ∃ RCF. P-

CAD is currently the most efficient known general quantifier elimination method
for RCF

4. An important fact is that the complexity of the (P-)CAD decision
algorithm is doubly exponential in the dimension (number of variables) of its
input formula. Generally, the most expensive phase of the (P-)CAD algorithm
is the so-called “lifting phase.” Let us fix some notation.

A semialgebraic set is a subset of Rn definable by a quantifier-free formula in
the language of ordered rings. A region of Rn is a connected component of Rn.
An algebraic decomposition of Rn is a decomposition of Rn into finitely many
semialgebraic regions. A cylindrical algebraic decomposition is a special type of
algebraic decomposition whose regions are in a sense “well-behaved” with respect
to projections onto lower dimensions. A cell is a region of a CAD.

Before delving into technical details, let us discuss how we can use a CAD to
make ∃ RCF decisions. By “the polynomials of (an ∃ RCF formula) ϕ,” we shall
mean the collection of polynomials obtained by zeroing the RHS of every atom
in ϕ through subtracting the RHS from both sides. We assume each such ∃ RCF

formula is in prenex normal form, so that it is an ∃-closed boolean combination
of sign conditions, i.e., of atoms of the form (p ⊙ 0) with p ∈ Z[x1, . . . , xn],
⊙ ∈ {<,≤,=,≥, >}. We use QF (ϕ) to mean the quantifier-free matrix of ϕ.

The key point is that if we have in hand a suitable CAD C = {c1, . . . , cm} ⊂
2R

n
derived from an ∃ RCF formula ϕ, we can decide the truth of ϕ from

the CAD directly. The reason is simple: C will have the property that every
polynomial of ϕ has constant sign on each ci, i.e., given p a polynomial of ϕ
and a ci a cell, it shall hold that ∀r ∈ ci(p(r) = 0) ∨ ∀r ∈ ci(p(r) > 0) ∨
∀r ∈ ci(p(r) < 0). Consequently, QF (ϕ) has constant truth value at every point
in a given cell. Thus, to decide ϕ, we simply substitute a single sample point
from each ci into QF (ϕ) and see if it ever evaluates to true. It will evaluate to
true on at least one sample point if and only if ϕ is true over Rn.

We shall define CAD by induction on dimension5. A CAD of R is a decom-
position of R into finitely many cells ci ⊆ R s.t. each ci is of the form (i) {α1},
or (ii)]α1,α2[, or (iii)]-∞,α1[or]α1,+∞[for algebraic real numbers αi. Let A
be a region of Ri. We call A× R the cylinder over A and denote it by Z(A).

Definition 1 (Stack). Let f1, . . . , fk ∈ C(A,R). That is, fj is a continuous
function from A to R. Furthermore, suppose that the images of the fj are ordered
over A s.t. ∀α ∈ A (fj(α) < fj+1(α)). Then, f1, . . . , fk induce a stack S over
A, where S is a decomposition of Z(A) into 2k+1 regions of the following form:

– r1 = {�α, x� | α ∈ A, x < f1(α)},
r3 = {�α, x� | α ∈ A, f1(α) < x < f2(α)},
...

4 See [8] for an explanation as to why P-CAD is also currently the best known general
decision method for practical ∃ RCF problems, despite the fact that ∃ RCF has a
theoretical exponential speed-up over RCF.

5 We shall speak freely of the symbolic manipulation and arithmetic of (irrational)
real algebraic numbers. See, e.g., [2] for an algorithmic account.

r2k−1 = {�α, x� | α ∈ A, fk−1(α) < x < fk(α)},
r2k+1 = {�α, x� | α ∈ A, fk(α) < x},

– r2 = {�α, x� | α ∈ A, x = f1(α)},
...
r2k = {�α, x� | α ∈ A, x = fk(α)}.

A CAD of Ri+1 will be obtained from a CAD C of Ri by constructing a stack
over every cell in C.

Definition 2 (CAD in Ri+1
). An algebraic decomposition Ci+1 of Ri+1 is a

CAD iff Ci+1 is a union of stacks Ci+1 =
�k

j=1 wj , s.t. the stack wj is constructed

over cell cj in a CAD Ci = {c1, . . . , ck} of Ri.

The P -invariance property will allow us to use CADs to make ∃ RCF decisions.

Definition 3 (P-invariance). Let P = {p1, . . . , pk} ⊂ Z[x1, . . . , xn] and A
be a region of Rn. Then, we say A is P -invariant iff every member of P has
constant sign on A. That is given any pi ∈ P ,

∀r ∈ A(pi(r) = 0) ∨ ∀r ∈ A(pi(r) > 0) ∨ ∀r ∈ A(pi(r) < 0).

Given a CAD C, we say C is P -invariant iff every cell of C is P -invariant.

2.1 CAD Construction and Evaluation for ∃ RCF

The use of CADs for deciding ∃ RCF sentences will take place in four steps. In
what follows, ϕ is an ∃ RCF sentence and P = {p1, . . . , pk} ⊂ Z[x1, . . . , xn] is
the collection of polynomials of ϕ.

Projection The projection phase will begin with P and iteratively apply a
projection operator Proji of the form Proji : 2Z[x1,...,xi+1] → 2Z[x1,...,xi] until
a set of polynomials is obtained over Z[x1]. This process will consist of levels,
one for each dimension, s.t. at each level i we will have what is called a level-i
projection set, Pi ⊂ Z[x1, . . . , xi]. These level-i projection sets will have a
special property: If we have a Pi-invariant CAD of Ri, then we can use this
CAD to construct a Pi+1-invariant CAD of Ri+1.

Base The base phase consists of computing a P1-invariant CAD of R1, implic-
itly described as a sequence of sample points, one for each cell in the CAD.
This can be done by univariate real root isolation and basic machinery for
arithmetic with real algebraic numbers. Let us suppose we have done this
and our sequence of sample points is s1 < s2 < . . . < s2m+1.

Lifting The lifting phase will take an implicit description of a P1-invariant
CAD of R1 and progressively transform it into an implicit description of
Pn-invariant CAD of Rn. Let C = {c1, . . . , cm} be the Pi-invariant CAD for
Ri which we will lift to a Pi+1-invariant CAD of Ri+1. Let S = {s1, . . . , sm}
be our set of sample points, one from each cell in C. Then, for each cell cj ,
we will use the sample point sj ∈ cj to construct a set of sample points in
Ri+1 corresponding to a stack over cj :

1. As sj ∈ Ri, we have that sj = �r1, . . . , ri� for some r1, . . . , ri ∈ R.
2. Let Pi+1[sj] denote Pi+1[x1 �→ r1, x2 �→ r2, . . . , xi �→ ri]. Then Pi+1[sj] ⊂

Z[xi+1] is a univariate family of polynomials.
3. Using the same process as we did in the base phase, compute a Pi+1[sj]-

invariant CAD of R1. Let this CAD be represented by a sequence of
sample points t1 < t2 < . . . < t2v+1 ∈ R.

4. Then, the stack over cj will be represented by the set of 2v + 1 sample
points obtained by appending each tj to the lower-dimensional sample
point sj . That is, our stack over cj will be represented by the following
sequence of sample points z1, . . . , z2v+1 in Ri+1: z1 = �r1, . . . , ri, t1�,
z2 = �r1, . . . , ri, t2�, . . ., z2v+1 = �r1, . . . , ri, t2v+1�.

In the above construction, we call the cell cj (or the sample point representing
it, sj) the parent of the stack {z1, . . . , z2v+1}.

Evaluation Let S = {s1, . . . , sm} ⊂ Rn be our final set of sample points.
Return the boolean value

�
r∈S

QF (ϕ)[r].

2.2 Partial CAD

Let us now sketch the idea of partial CAD, due to Collins and Hong [3]. As it
stands, the CAD construction algorithm will build a P -invariant CAD induced
by the polynomials P of an ∃ RCF formula ϕ without paying any attention
to the logical content of the formula itself. But, when performing lifting, i.e.,
constructing a stack of regions of Ri+1 over a lower-dimensional cell cj ⊂ Ri,
we may be easily able to see — simply by substitution and evaluation — that
the formula QF (ϕ) could never be satisfied over cj . For instance, let QF (ϕ) =�
(x4

4 + x3x
3
2 + 3x1 > 2x4

1) ∧ (x2
1 > x2 + x3)

�
. If cj is a cell in a P3-invariant

CAD of R3 represented by the sample point sj = �0, 1, 5�, then we can see
QF (ϕ) will never be satisfied over a cell in a stack which is a child of cj . Thus,
we need not lift over cj and can eliminate it.

This is the idea behind partial CAD when applied to ∃ RCF formulas:
Before lifting over a cell in a CAD of Ri, check if there are any atoms in
your formula only involving the variables x1, . . . , xi. If so, then perform par-
tial evaluation of your formula by evaluating those atoms upon your sample
point in Ri, and then use simple propositional reasoning to try to deduce the
truth of your formula. This can also allow us to find a satisfying assignment
for the variables in QF (ϕ) without constructing a whole CAD. For instance,
let QF (ϕ) =

�
(x4

4 + x3x
3
2 + 3x1 > 2x4

1) ∨ (x2
1 < x2)

�
. If cj is a cell in a P2-

invariant CAD of R2 represented by the sample point sj = �−1, 2�, then we can
see immediately by substitution that QF (ϕ) is satisfiable over R4. As a witness
to this satisfiability, we may return �−1, 2, r3, r4� where r3, r4 ∈ R are arbitrary.

3 Abstract Partial CAD

From a high level of abstraction, we can see partial CAD to be normal CAD
augmented with three pieces of algorithmic data:

1. A strategy for selecting lower-dimensional cells to use for evaluating lower-
dimensional atoms in our input formula,

2. An algorithm which when given a cell cj will construct a formula F (cj)
which, if it both has a truth value and is decided, can be used to tell (i) if
the cell cj can be thrown away (i.e., F (cj) is decided to be false), or (ii)
if a satisfying assignment for our formula can be extracted already from a
lower-dimensional cell (i.e., F (cj) is decided to be true),

3. A proof procedure which will be used to decide the formulas F (cj) generated
by the algorithm above.

In fact, in their original paper on partial CAD, Collins and Hong make the point
that different cell selection strategies could be used and even implement and
experiment with a number of them6. For partial CAD restricted to ∃ RCF,
these three pieces of algorithmic data described above would be:

1. Select cells ci ∈ C in some specified enumeration order (specified by s):
cs(1), cs(2), cs(3),

2. Given a cell cj represented by a sample point sj = �r1, . . . , ri� ∈ Ri, the
formula F (cj) will be constructed from our original ∃ RCF formula ϕ by
the following process:

(a) Let ϕ� be QF (ϕ) augmented by instantiating x1 with r1, x2 with r2,
(b) Evaluate all variable-free atoms in ϕ� to obtain a new formula ϕ��.
(c) Replace all (unique) variable-containing atoms in ϕ�� with fresh propo-

sitional variables to obtain a new formula F (cj).

3. Use a propositional logic proof procedure to attempt to decide F (cj).

If F (cj) is false (i.e., unsatisfiable), cell cj can be abandoned and we need not
lift over it. If F (cj) is true (i.e., tautologous), then we can extract a witness to
the truth of ϕ from the sample point sj . Otherwise, we lift over cj . These three
pieces of data give us the widely-used partial CAD of Collins and Hong. But,
from this point of view, we see that there are many other choices we could make.

3.1 Stages, Theatres and Lifting

The fundamental notion of AP-CAD will be that of an stage7. Let L∃OR be the
fragment of the language of ordered rings consisting of purely ∃ prenex sentences.

While working through the definitions below, it may help the reader to see
a concrete instantiation of AP-CAD. This can be found in Appendices B and
C.

6 For Collins and Hong, a cell selection strategy selects single cells in some specified
order. In Abstract Partial CAD, cell selection strategies will select sets of cells in
some specified order and ∃ RCF proof procedures will be applied to see if every cell
in a selected set of cells may be eliminated.

7 The intended connotation is of a stage in a theatre.

Definition 4 (Stage). A stage A = ��S, w�,F,P� will be given by three pieces
of algorithmic data. A stage will not formally depend upon the dimension i of
the space Ri decomposed by the CAD Ci. But, for concreteness, We describe a
stage by how it acts in the context of a fixed (but arbitrary) i-dimensional space
Ri. That is to say, a stage should be dimensionally agnostic: it must satisfy the
requirements below for each i ∈ N+. These data are as follows:

1. A cell selection strategy for selecting subsets of Ci for analysis (we call such
a subset a “selection of cells”),

2. A formula construction strategy for constructing an ∃ RCF formula whose
truth value will correspond to the relevance of a selection of cells (we call
such a formula a “cell selection relevance formula”),

3. An ∃ RCF proof procedure used to (attempt to) decide the truth or falsity
of a cell selection relevance formula.

Let us make these precise. It is important to notice that a cell selection strat-
egy will actually be a strategy for the selection of a set of sample points, with
each unique sample point drawn from a unique cell. As with CAD generally, this
can be seen as a representation of a selection of the corresponding cells. We still
call this a cell selection strategy as “sample point selection strategy” reads in a
misleading manner. A cell selection function — the workhorse of a cell selection
strategy — will take the set of sample points (from which it will select a subset)
as an argument. It will also take a second argument, an integer indicating the
“step” of the selection. Given a set of sample points, the covering width func-
tion will indicate how many steps of sample point selection should be executed.
This need not result in an exhaustive covering of the set of sample points. For
instance, a simple cell selection strategy might, when given the set of sample
points {s1, . . . , sm}, return {s1} for step 1, {s2} for step 2 and so on, with the
covering width being m. An equally allowable cell selection strategy would be the
same cell selection function with a covering width of 1, resulting in a selection
only of {s1}.

In the context of CAD construction, sample points will be eliminated when
their corresponding cells are deemed to be irrelevant to the ∃ RCF formula induc-
ing the CAD. This removal might then result in a set of sample points for which
the cell selection function behaves differently than it did initially. This motivates
the containment axiom for covering width functions, so that these dynamics do
not result in a non-terminating CAD-based decision algorithm employing the
stage machinery. In what follows, let Ri = {s ⊂ Ri | |s| < ω}.

1. A cell selection strategy consists of two components:

(a) A covering width function w : Ri → N,
(b) A cell selection function S : Ri ×N → Ri obeying for all Si ∈ Ri and all

j ∈ {1, . . . , w(Si)} the containment axiom: S(Si, j) ⊂ Si.

2. A formula construction strategy is a function F : L∃OR ×Ri → L∃OR obey-
ing certain relevance judgment axioms. To describe these axioms, we need

the context of a fixed (but arbitrary) ∃ RCF formula and an associated Pi-
invariant CAD of Ri.

Let ϕ be an ∃ RCF formula with polynomials P ⊂ Z[x1, . . . , xn] and let
Pn, . . . , P1 be a sequence of level-(n, . . . , 1) projection sets rooted in P (recall
Pn = P).

Let Ci = {c1, . . . , cm} be a Pi-invariant CAD of Ri with Si a set of sample
points drawn from a subset of the cells in Ci. If we are given a set of sample
points {sa1 , . . . sav} ⊆ Si, then �({sa1 , . . . sav}) will denote the set of cells
from which the sample points saj are drawn.

Then, for each set of sample points Si and each j ∈ {1, . . . , w(Si)} the
following relevance judgment axioms must hold:

[(RCF |= ¬F(ϕ, S(Si, j))) =⇒ N (ϕ, S(Si, j))] ,

and

[(RCF |= F(ϕ, S(Si, j))) =⇒ RCF |= ϕ],

where N (ϕ, {sa1 , . . . sav}) means that no child (at any ancestral depth, i.e.,
in a Pi+1-invariant CAD of Ri+1, in a Pi+2-invariant CAD of Ri+2, . . . ,

in a Pn-invariant CAD of Rn) of any cell in the set ∆({sa1 , . . . , sav}) will
satisfy QF (ϕ).

3. An ∃ RCF proof procedure is a function

P : L∃OR →



{true, false,unknown} ∪
�

j∈N+

Rj





obeying the soundness axioms:

((P(ψ) = true) =⇒ RCF |= ψ),

((P(ψ) = false) =⇒ RCF |= ¬ψ),

((P(ψ) ∈ Rj) =⇒ RCF |= QF (ψ)[P(ψ)])

for arbitrary ψ ∈ L∃OR and with QF (ψ)[P(ψ)] in the final axiom being the
substitution of the j-vector P(ψ) (or an arbitrary extension of it to the dimen-
sion of the polynomials appearing in ψ) into ψ, resulting in a variable-free
formula. In this case, we call P(ψ) a witness to the truth of ψ.

We will want to have the freedom to give our AP-CAD algorithm a sequence
of stages, one for each dimension 1, . . . , n. The intuition is as follows: Stages are
introduced so that one can present a strategy to an underlying CAD decision

algorithm which will prescribe a method for the algorithm to recognise when it
can short-circuit certain expensive computations. In particular, stages will be
used to either abandon cells and no longer have to lift over them, or to abandon
CAD construction altogether if a cell is found whose sample point (or its trivial
n-dimensional extension) satisfies our input formula.

If we can abandon a cell at a low dimension, for instance at the base phase
or when beginning to lift over cells of R2, then this can potentially give us
hyper-exponential savings down the line. Thus, it makes sense to arrange stages
A1,A2, . . .An so that stage A1 works hardest to make relevance judgments about
cells. For if A1 causes us to throw away cell cj ⊂ R1, then this could lead to huge
savings later. Then, A2 might still work hard but a bit less hard, and so on. This
collection of stages gives rise to the notion of an n-theatre. In what follows, let
Θ be the set of all stages.

Definition 5 (Theatre). An n-theatre T is a function T : {1, . . . , n} → Θ.

Stage i in a theatre will be used to make judgments about cells in a Pi-invariant
(partial) CAD of Ri (i.e., at level i). Let us describe a decision method we will
use for deciding ∃ RCF sentences in the framework of AP-CAD.

Algorithm 1 (AP-CAD with Theatrical Lifting) Suppose we are given an
∃ RCF sentence ϕ with polynomials P ⊂ Z[x1, . . . , xn], and an n-theatre T.

1. Projection As with standard P-CAD, compute a sequence of projection sets
P1, . . . , Pn.

2. Base As with standard P-CAD, compute a P1-invariant CAD of R1, C1 =
{c1, . . . , c2m+1} represented by sample points S1 = {s1, . . . , s2m+1}. Set the
current dimension i := 1.

3. Lifting Let T(i) = Ai = ��Si, wi�,Fi,Pi� be the stage for dimension i, and
Si the set of sample points for the Pi-invariant (partial) CAD of Ri over
which we need to lift.
(a) Let U := wi(Si) and let j := 1.
(b) While j ≤ U do

i. Let {sa1 , . . . , sav} := Si(Si, j).
ii. Let χ := Pi(Fi({sa1 , . . . , sav})).
iii. If χ = true, then return true.
iv. If χ = �x1, . . . , xw� ∈ Rw for some w ≤ n, then

A. Fix an n-dim. extension of χ, e.g., r = �x1, . . . , xw,0� ∈ Rn.

B. Evaluate QF (ψ)[r] and set R ∈ {true, false} to this result.
C. If R = true, then return r as a witness to the truth of ϕ.
D. If R = false, then return true

8.

8 This is perhaps the one counter-intuitive part of the algorithm. Note, however, that
this is actually correct: By the combination of the second relevance judgment axiom
for Fi and the soundness axioms for Pi, the fact that RCF |= Fi(Si(Si, j)) means
that ϕ is true. It’s just that the witness Pi computed for the truth of Fi(Si(Si, j))
might fail to be a witness for ϕ. In this case, we simply know ϕ is true without
knowing a witness for it.

v. If χ = false, then set S�
i
:= Si \ {sa1 , . . . , sav}, else set S�

i
:= Si.

vi. If S�
i
= ∅ then return false.

vii. If S�
i
= Si then set j := j + 1.

viii. If S�
i
⊂ Si then

A. Set Si := S�
i
.

B. Set U := wi(Si).
C. Set j := 1.

(c) Now, Si = {t1, . . . , tu} contains sample points corresponding to the cells
we have not deemed to be irrelevant. We need to lift over them.
i. Let Si+1 := ∅.
ii. For j from 1 to u do

A. Substitute the components of tj in for the variables x1, . . . , xi in
Pi+1 to obtain a univariate family Pi+1[tj] ⊂ Z[xi+1].

B. Compute a Pi+1[tj]-invariant CAD of R1, represented by sample
points Kj.

C. Set Si+1 := Si+1 ∪Kj.
(d) Increase the current dimension by setting i := i+ 1.
(e) If i = n then lifting is done and we may proceed to the evaluation phase.
(f) If i < n then we loop and begin the lifting process again, but now with

the set of sample points Si+1.
4. Evaluation Return the boolean value

�
r∈Sn

QF (ϕ)[r].

Theorem 2 Algorithm 1 is a sound and complete ∃ RCF proof procedure.

Proof. By induction on dimension. (See Appendix A.)

4 Experimental Results

As an experiment (explicated in Appendices B and C), we built a concrete
AP-CAD theatre combining interval constraint reasoning with standard partial
CAD [10]. As CAD performance is strongly dependent on the number of cells
retained at each dimension, we compared this for three CAD variants: (i) CAD,
(ii) standard P-CAD, and (iii) AP-CAD, w.r.t. an ∃ RCF sentence ϕ s.t.

QF (ϕ) =

�
(x1x4 + x2x4 + x3x2 < 0) ∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x
2
4 + x

2
3 + 1 < 0)

�
.

As QF (ϕ) involves only strict inequalities, we appeal to a theorem of McCal-
lum allowing us to only consider full-dimensional cells (selecting rational sample
points), and compare the methods w.r.t. this CAD variant [10]. We observe that
the AP-CAD method retains less cells than the other methods. This is supported
by experiments we have done with other ∃ RCF formulas (see Appendix C). In
all cases, the cost of AP-CAD theatre execution measured < 0.01% of the total
CPU time, indicating that there is much positive impact to be made by using
incomplete RCF proof procedures to enhance the performance of CAD-based
decision methods. The cell retainment counts are as follows:

CAD P-CAD AP-CAD
Q1 2 2 1
Q2 14 7 5
Q3 40 10 7
Q4 200 50 35

Finally, we wish to state two closing experimental observations.
First, the AP-CAD instance we constructed and experimented with in this

section is but one of many (indeed, infinitely many) possible such instances. The
fact that even such a simple9 instance of the AP-CAD paradigm shows such
promise is very encouraging.

Second, though we have been working solely with full-dimensional variants
of CAD-based methods, AP-CAD may prove to be even more useful when it
comes to full-on CAD-based methods which require irrational algebraic number
computations. The reason is that through cell selection, formula construction
and proof procedure execution, one has the ability to eliminate a set of many
sample points all at once using AP-CAD, and in this way many irrational alge-
braic sample points may be eliminated with only rational number computations.
To use our concrete AP-CAD instance as an example in the context of standard
CAD not restricted to full-dimensional lifting, one has the potential to eliminate
a set of sample points such as {−3,−

√
2,−1,

√
2,
√
2 + 3

√
3, 15} simply by con-

structing and refuting a formula that only references this set of sample points
using its minimal and maximal rational values, e.g., through a statement of the
form F ∧ (x1 ≥ −3 ∧ x1 ≤ 15) for some F . The ability to eliminate multiple
irrational algebraic sample points simply through reasoning about formulas in-
volving rational numbers seems very promising for the extension of these ideas
to unrestricted cell decompositions.

5 Conclusion

AP-CAD allows strategic algorithmic data to be used to “short-circuit” expen-
sive computations during the lifting phase of a CAD-based decision algorithm.
This provides a principled approach for utilising fast, sound but possibly incom-
plete ∃ RCF proof procedures to enhance a complete decision method without
threatening its completeness. We see many ways this work might be extended.
It would be very interesting to work out similar machinery to be used during
the projection phase of P-CAD (see [10] for some initial ideas along these lines).
For this work to bear serious practical fruit, many more AP-CAD stages should
be constructed and experimented with heavily.

9 It is worth observing that the combination of classical partial CAD and our AP-
CAD instance could actually be realised by a more intricate AP-CAD instance which
performs the classical partial CAD reasoning itself. In this way, AP-CAD can be seen
as a true generalisation of classical partial CAD.

References

1. J. Avigad and H. Friedman. Combining Decision Procedures for the Reals. In
Logical Methods in Computer Science, 2006.

2. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer-Verlag, Secaucus, NJ, USA, 2006.

3. G. E. Collins and H. Hong. Partial Cylindrical Algebraic Decomposition for Quan-
tifier Elimination. J.Sym.Comp., 12(3):299–328, 1991.

4. M. Daumas, D. Lester, and C. Muñoz. Verified Real Number Calculations: A
Library for Interval Arithmetic. IEEE Trans. Comp., 58(2):226–237, 2009.

5. J. H. Davenport and J. Heintz. Real Quantifier Elimination is Doubly Exponential.
J. Symb. Comput., 5:29–35, 1988.

6. S. Gao, M. Ganai, F. Ivancic, A. Gupta, S. Sankaranarayanan, and E. Clarke.
Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems.
In FMCAD, 2010, pages 81–89, 2010.

7. J. Harrison. Verifying Nonlinear Real Formulas via Sums of Squares. In
TPHOLs’07, pages 102–118, Berlin, Heidelberg, 2007. Springer-Verlag.

8. H. Hong. Comparison of Several Decision Algorithms for the Existential Theory
of the Reals. Technical report, RISC, 1991.

9. P. A. Parrilo. Semidefinite Programming Relaxations for Semialgebraic Problems.
Math. Program., 96(2):293–320, 2003.

10. G. O. Passmore. Combined Decision Procedures for Nonlinear Arithmetics, Real
and Complex. PhD thesis, University of Edinburgh, 2011.

11. G. O. Passmore and P. B. Jackson. Combined Decision Techniques for the Exis-
tential Theory of the Reals. In Calculemus’09, 2009.

12. F. Pfender and G. M. Ziegler. Kissing Numbers, Sphere Packings, and Some
Unexpected Proofs. Notices of the A.M.S., 51:873–883, 2004.

13. A. Platzer, J.-D. Quesel, and P. Rümmer. Real World Verification. In CADE-22,
pages 485–501, Berlin, Heidelberg, 2009. Springer-Verlag.

14. A. Tarski. A Decision Method for Elementary Algebra and Geometry. RAND
Corporation, 1948.

15. A. Tiwari. An Algebraic Approach for the Unsatisfiability of Nonlinear Constraints.
In CSL 2005, volume 3634 of LNCS, pages 248–262. Springer, 2005.

A Main Correctness Theorem

Theorem 3 (Correctness of AP-CAD with Theatrical Lifting) Let us prove
the correctness of Algorithm 1. This will be straight-forward given the correct-
ness of the classical CAD-based decision algorithm outlined previously, which we
accept as given.

Proof. There are two essential differences between this AP-CAD algorithm and
the classical one. These both take place during lifting. In Algorithm 1, we may

– discard a collection of cells if they are deemed to be irrelevant, and
– quit CAD construction altogether and return either true or a witness to the

truth of our input formula ϕ, or return false in the case that all cells have
been discarded.

If {sa1 , . . . , sav} ⊂ Ri is a set of sample points for a Pi-invariant partial CAD
of Ri, we will say that {sa1 , . . . , sav} respects the truth of ϕ to mean that there
is some n-dimensional child of a sample point in {sa1 , . . . , sav} satisfying QF (ϕ)
iff ϕ is true.

We will proceed by induction, assuming that the algorithm has constructed a
set of sample points {sa1 , . . . , sav} for a Pi-invariant partial CAD of Ri which
respects the truth of ϕ. The base case is verified by noting that the base phase
of the algorithm constructs a full set of sample points for a P1-invariant CAD
of R1 which trivially respects the truth of ϕ.

Let us first observe that if we discard a collection of cells because they have
been deemed to be irrelevant, then we have not affected the soundness of the
decision algorithm.

Cells of a Pi-invariant partial CAD of Ri will only be deemed to be irrelevant
when an stage Ai indicates this is the case. The key line in the algorithm is
3(b)v, where χ = Pi(Fi(ϕ, {sa1 , . . . , sav})). For this discarding to have occurred,
we must have χ = false. By the second soundness axiom for Pi, this means

RCF |= ¬Fi(ϕ, {sa1 , . . . , sav}).

By the first relevance judgment axiom for Fi, this means that N (ϕ, {sa1 , . . . , sav})
must hold. Recall that N (ϕ, {sa1 , . . . sav}) means that no child (at any ances-
tral depth, i.e., in a Pi+1-invariant CAD of Ri+1, in a Pi+2-invariant CAD of
Ri+2, . . . , in a Pn-invariant CAD of Rn) of any cell in the set ∆({sa1 , . . . , sav})
of cells corresponding to the sample points {sa1 , . . . , sav} will satisfy QF (ϕ).
Thus, by our induction hypothesis, removing the cells from our analysis does not
affect the soundness of the decision algorithm. In particular, if we have removed
all cells, this means that no ancestor of the cells at our current dimension can
satisfy QF (ϕ). By our induction hypothesis this means that there exists no n-
dimensional real vector satisfying QF (ϕ), and thus ϕ is false as the algorithm
will report via line 3(b)vi.

Let us now turn to the second difference: Algorithm 1 may quit CAD con-
struction altogether and return either true or a witness satisfying QF (ϕ).

In the latter case, a witness is only returned if the algorithm verified, by
evaluation, that the witness satisfies QF (ϕ). That this does not affect soundness
is apparent.

Let us examine the remaining case, when the algorithm returns simply true

during lifting. The first place this occurs is on line 3(b)iii. This happens when
Pi(Fi(ϕ, {sa1 , . . . , sav})) is equal to true. By the first soundness axiom for Pi,
this means

RCF |= Fi(ϕ, {sa1 , . . . , sav}).
By the second relevance judgment axiom for Fi, it then follows that ϕ is in fact
true over RCF and so the soundness of the algorithm is not affected.

Finally, let us consider the second scenario in which this could occur, line
3(b)ivD. In this case, Pi(Fi(ϕ, {sa1 , . . . , sav})) ∈ Rj for some j ∈ N. By the
third soundness axiom for Pi, this means that

RCF |= QF (Fi(ϕ, {sa1 , . . . , sav}))[Pi(Fi(ϕ, {sa1 , . . . , sav}))].

But this implies that

RCF |= Fi(ϕ, {sa1 , . . . , sav})).

So, as in the last case, by the second relevance judgment axiom for Fi, this
means that ϕ is in fact true.

Finally, a word on termination of the while loop (cf. line 3b): Consider a pass
of the loop. If any sample points in Si are discarded, then |Si| is reduced. If no
sample points in Si are discarded, then U remains constant and j is incremented
by 1. Thus, the lexicographic product measure µ = �|Si|, U − j + 1� is always
decreased along the ordinal ω2. If ever |Si| is reduced to 0, then line 3(b)vi
guarantees termination. Combining this with the fact that the loop termination
condition is (j > U), it follows by the well-foundedness of ω2 that the loop must
terminate.

Thus, by the correctness of the classical CAD-based decision algorithm, it
follows by induction that Algorithm 1 is sound and terminating.

B Definition of our AP-CAD Theatre

In defining this theatre, it will be useful to allow our functions to work explicitly
over lists of sample points as opposed to sets of sample points. To do so, we use
the maps

StoL : Ri → Lists(Ri)

and
LtoS : Lists(Ri) → Ri.

StoL will map a set of sample points to a sorted representation of the set as
a list, and LtoS will map a list of sample points to its underlying set. We use
the lexicographic product order of the normal ordering < on R to order the
sample points. If l is a list, then |l| will be the length of the list. If l is a list and
0 ≤ m ≤ n ≤ |l|, then subseq(l,m, n) will be the subsequence of l of the form10

�l(m), . . . , l(n− 1)�.
We build now a stage for our theatre.

cell selection function S(s, n) = LtoS(SLists(StoL(s), n)) where

SLists(l, n) =






l if n ≤ 1,

�SLists(l, k)� if n = 2k,

�SLists(l, k)� if n = 2k + 1,

and

�l� =
�
subseq(l, 0, k) if |l| = 2k,

subseq(l, 0, k + 1) if |l| = 2k + 1,

10 This perhaps strange way of indexing list subsequences is used so that our descrip-
tion matches our actual implemention, as this is how Common Lisp does list sub-
sequencing via the subseq function. For example, subseq(�a, b, c�, 0, 2) = �a, b�
and subseq(�a, b, c�, 0, 0) = nil, the empty list.

and

�l� =
�
subseq(l, k, |l|) if |l| = 2k,

subseq(l, k + 1, |l|) if |l| = 2k + 1.

Let us explain these functions in words. The function �l� returns the first
half of the list l if |l| is even, and returns the first k + 1 elements of l if
|l| = 2k+1. The function �l� returns the second half of the list l if |l| is even,
and returns the final k elements of l if |l| = 2k + 1. In this way, we always
have that the concatenation of �l� and �l� is l itself. These two functions are
used to “bisect” the list l by the function SLists, regardless of whether or
not |l| is even or odd.
The function SLists(l, n) computes subsequences of the list l in a “divide
and conquer” fashion, with the parameter n specifying which subsequence
should be computed. It is best understood as representing an enumeration
of subsequences of l which have been situated in a binary tree. To illustrate
a concrete example, let l = �a1, . . . , a7�. Then, we have

SLists(l, 1) = l = �a1, . . . , a7�,
SLists(l, 2) = ��a1, . . . , a7�� = �a1, . . . , a4�,
SLists(l, 3) = ��a1, . . . , a7�� = �a5, . . . , a7�,
SLists(l, 4) = ���a1, . . . , a7��� = ��a1, . . . , a4�� = �a1, a2�,
SLists(l, 5) = ���a1, . . . , a7��� = ��a1, . . . , a4�� = �a3, a4�,
SLists(l, 6) = ���a1, . . . , a7��� = ��a5, . . . , a7�� = �a5, a6�,
SLists(l, 7) = ���a1, . . . , a7��� = ��a5, . . . , a7�� = �a7�.

The cell selection function S(s, n) then maps s to an underlying sorted list
representation StoL(s) and uses SLists to compute the nth subsequence of
StoL(s) with respect to the “divide and conquer” enumeration order given
above.

covering width function We will use a constant covering width function w

of the form
w(s) = 3.

Given a collection of sample points s, this covering width will cause the
AP-CAD lifting algorithm (cf. Algorithm 1) to attempt to eliminate the
cell selections S(s, 1) through S(s, 3). (This is quite a “shallow” depth for a
“divide and conquer” strategy. Nevertheless, it will be useful for keeping our
explicit examples small enough to discuss in detail and can be easily changed
if one wishes to experiment with variations of it.)

formula construction functionOur formula construction function F : L∃OR×
Ri → L∃OR will accept an ∃ RCF formula ϕ and a set of i-dimensional sam-
ple points s and work as follows:
1. Let minj(s) be the minimal value ever appearing as coordinate j in a

sample point in s. To be precise,

minj(s) = min{πj(x) | x ∈ s},

where πj projects a sample point x ∈ Ri onto its jth coordinate.

2. Similarly, let maxj(s) be s.t.

maxj(s) = max{πj(x) | x ∈ s}.

3. Then,

F(ϕ, s) = ∃x








i�

j=1

xj ≥ minj(s) ∧ xj ≤ maxj(s)



 ∧ QF (ϕ)



 .

∃ RCF proof procedure

We use an ∃ RCF procedure — expressed as a RAHD proof strategy —
which performs simple formula simplification, saturation of linear bounds
on variables, followed by interval constraint propagation (cf. [10] for more
information on CMFs):

[simp-zrhs; run stable-simp; satur-lin;
interval-cp(max-contractions := 30)].

RAHD’s execution of this proof strategy then gives rise to our AP-CAD
stage’s ∃ RCF proof procedure P.

Lemma 1. ��S, w�,F,P� as defined above is an AP-CAD stage.

Proof. As RAHD guarantees that the execution of its proof strategies corre-
spond to proper AP-CAD ∃ RCF proof procedures, the only non-trivial property
to verify is that our formula construction function F satisfies the relevance judg-
ment axioms. Let ϕ be an L∃OR formula in x1, . . . , xn and s ⊂ Ri a finite set of
i-dimensional sample points (1 ≤ i ≤ n).

We must verify that

RCF |= ¬F(ϕ, s) =⇒ N (ϕ, s),

and
RCF |= F(ϕ, s) =⇒ RCF |= ϕ,

where (restating the property a bit more concretely than its original axiomatisa-
tion in Section 3.1):

N (ϕ, s) means that no child (at any ancestral depth, i.e., in a Pi+1-invariant
CAD of Ri+1, in a Pi+2-invariant CAD of Ri+2, . . . , in a Pn-invariant CAD of
Rn) of any sample point in s will satisfy QF (ϕ).

In the first case, we have that any child of any sample point in s will satisfy



i�

j=1

xj ≥ minj(s) ∧ xj ≤ maxj(s)



 ,

and so
RCF |= ¬F(ϕ, s) =⇒ N (ϕ, s)

obviously holds. In the second case,

RCF |= F(ϕ, s) =⇒ RCF |= ϕ

is immediate.

Finally, again to keep our detailed examples below from becoming too large,
we will turn this AP-CAD stage ��S, w�,F,P� into an AP-CAD theatre T in a
trivial fashion:

T(n) = ��S, w�,F,P�.
That is, the same stage ��S, w�,F,P� will be used at every dimension during
AP-CAD lifting.

C Experiments in Detail

Let us now apply our concrete AP-CAD theatre to some example L∃OR formulas
and examine its execution. Recall that the decision method proceeds in four
steps: projection, base, lifting and evaluation. We examine each step in detail.

Let ϕ be as follows:

ϕ =





∃x1 ∃x2 ∃x3 ∃x4

(x1x4 + x2x4 + x3x2 < 0)

∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x
2
4 + x

2
3 + 1 < 0)




.

As ϕ is an ∃ RCF sentence s.t. QF (ϕ) consists of a conjunction of strict polyno-
mial inequalities, it follows by McCallum’s Theorem (cf. [10]) that we may decide
ϕ by only examining full-dimensional cells during partial CAD construction. This
allows us avoid irrational algebraic number computations, as full-dimensional
cells (i.e., sectors) always contain rational points. This also permits us to use
the Brown-McCallum projection operator to obtain our CAD projection factor
sets, which can lead to much smaller projection sets than those obtained with
projection operators valid for general ∃ RCF formulas.

We will now walk through using AP-CAD to decide ϕ. It will turn out that
ϕ is in fact true over RCF, and we will illustrate the process of constructing
a witness to its truth. First, we will compute the projection (factor) sets for ϕ.
Then, we will compute the base phase for our level 1 projection set. Finally, we
will show how four different variants of CAD operate during the lifting phase.
These variants are:

1. full-dimensional lifting without eliminating any full-dimensional cells,
2. full-dimensional lifting with standard partial CAD used to eliminate cells,
3. full-dimensional lifting with our AP-CAD theatre used to eliminate cells,
4. full-dimensional lifting with a combination of standard partial CAD and our

AP-CAD stage used to eliminate cells.

With each progressive variant, the number of cells eliminated during lifting will
change. The final variant will be the best in the sense that it will allow us to
eliminate the most cells during partial CAD construction.

Projection Sets We first extract the polynomials of ϕ, which gives us P4 ⊂
Z[x1, x2, x3, x4]:

P4 =

�
x2, x3, x4, x1x4 + x4x2 + x3x2,

x
2
4 − x3x4 − x

2
3 − 1

�
.

Then, we apply the Brown-McCallum projection operatorBMProj : Z[x1, . . . , xi+1] →
Z[x1, . . . , xi] to obtain P3 ⊂ Z[x1, x2, x3]:

BMProj(P4) = P3 =

�
x2, x3,−x

2
1x

2
3 − x1x

2
3x2 + x

2
3x

2
2 − x

2
1 − 2x1x2 − x

2
2,

x
2
3 + 1, x1 + x2, 5x

2
3 + 4

�
.

We apply BMProj again to obtain P2 ⊂ Z[x1, x2]:

BMProj(P3) = P2 =
�
−x

2
1 − x1x2 + x

2
2, x1 + 3x2, x1 + 2x2, x1 + x2, x2

�
.

Finally, we apply BMProj one last time to obtain P1 ⊂ Z[x1]:

BMProj(P2) = P1 =
�
x1

�
.

It is worth stating that obtaining a level-1 projection factor set P1 s.t. |P1| = 1 is
quite unusual. Even for this small problem, the size of the respective projection
sets can change drastically depending upon the projection variable order used.
Nevertheless, the example arising through the use of this projection order is nice
as it results in constructions small enough so that a detailed description of the
decision process can be given quite compactly.

Base Phase We now compute the base collection of sample points of R1 induced
by our level 1 projection set P1 ⊂ Z[x1]. As our P1 is rather uncharacteristically
a singleton, this is trivial in this particular example. But, let us state what one
must do in general for the full-dimensional base phase, so that our walk-through
is applicable when P1 is larger. We will then follow this same sample-point
computation process when constructing stacks over cells in the lifting phase. We
will build our collection of sample points in the following manner:

1. We process P1 into a new set CoPrime(P1) ⊂ Z[x1] so that no two dis-
tinct polynomials p, q ∈ CoPrime(P1) share a root, while maintaining the
invariant that

{r ∈ R | ∃p ∈ P1(p(r) = 0)} = {r ∈ R | ∃p ∈ CoPrime(P1)(p(r) = 0)}.

This can be done using univariate GCD and division. Our P1 in this example
happens to already have this property, so we simply set CoPrime(P1) = P1.

2. We apply univariate real root isolation to the polynomials in CoPrime(P1)
to obtain a collection of pairwise disjoint compact real intervals I1, . . . , Ik ⊂
R s.t. every real root of a polynomial p ∈ CoPrime(P1) is contained in
exactly one interval Ii, and for each interval Ii, there exists only one p ∈

CoPrime(P1) s.t. Ii contains a real root of p (here we exploit the fact that
no distinct p, q ∈ CoPrime(P1) share a root). This gives us a bijection

i : {r ∈ R | ∃p ∈ P1(p(r) = 0)} → {I1, . . . , Ik}

s.t.
∀r ∈ R (∃p ∈ P1(p(r) = 0) =⇒ r ∈ i(r)) .

This {I1, . . . , Ik} is called an isolating set of intervals for the roots of P1.
3. Because of their pairwise disjointness, I1, . . . , Ik have a natural ordering de-

termined, for instance, by comparing their lower-bound components. WLOG,
assume

I1 < I2 < . . . < Ik.

This gives a “sketch” of a CAD of R1, with each interval Ii giving an approx-
imation to a 0-dimensional cell (a section) which consists only of a root of a
polynomial in P1. If we were performing normal CAD without exploiting Mc-
Callum’s Theorem, we would have to exactly represent these 0-dimensional
cells, which may be irrational algebraic numbers, and construct stacks over
them. The 1-dimensional cells of the P1-induced CAD of R1 are those in
between each adjacent pair of 0-dimensional cells, before the 0-dimensional
cell contained in I1 and after the 0-dimensional cell contained in Ik. As our
isolating intervals are pairwise disjoint, they give us enough information,
without any further refinement, to select sample points in the 1-dimensional
cells. Thankfully, this means that we do not have to exactly represent any of
the 0-dimensional cells; our approximations of them given by I1, . . . , Ik are
good enough.

4. As we are only interested in full-dimensional cells, we only need sample points
in between adjacent Ii’s, before I1 and after Ik. Since every such region we
will be sampling is an open subset of R1, we can choose these sample points
all to be rational points.

5. In our example, we choose the following sample points to form S1, our
base collection of sample points of R1 with one point taken from each full-
dimensional cell of a P1-invariant CAD of R1:

S1 =
�
−1, 1

�
.

Four Variants of Lifting With the projection and base phases completed, we
turn to the lifting phase of (partial) CAD construction. To illustrate the use
of our concrete AP-CAD stage, we will show how the following four distinct
approaches to lifting differ when applied to deciding ϕ:

1. full-dimensional lifting without eliminating any full-dimensional cells,
2. full-dimensional lifting with standard partial CAD used to eliminate cells,
3. full-dimensional lifting with our AP-CAD theatre used to eliminate cells,
4. full-dimensional lifting with a combination of standard partial CAD and our

AP-CAD theatre used to eliminate cells.

It will turn out that as we consider them in sequence, each subsequent lifting
method will exhibit quite different behaviour in terms of the number of cells
eliminated. In the end, full-dimensional lifting with a combination of standard
partial CAD and our AP-CAD theatre will allow us to decide ϕ in the most
efficient manner.

Lifting Variant I: All Full-dimensional Cells In this first variant of lifting, we
will construct the entire full-dimensional CAD. In general, it is structured as
a tree of sample points, each drawn from a full-dimensional cell. But, since we
are deciding a purely ∃ RCF formula, we can ignore the tree structure and
arrange our representation as a collection of sets of sample points, with one set
of sample points for each CAD level. (There is still an implicit tree structure,
however, as a sample point �r1, r2, r3� ∈ R3 will be seen as a “child” of the
sample point �r1, r2� ∈ R2, for instance.) Since our ϕ is 4-dimensional, and as we
are only sampling rational points, we will end up with four sets of sample points,
S1 ⊂ Q1 (which we have already computed), S2 ⊂ Q2, S3 ⊂ Q3 and S4 ⊂ Q4.
At times we will only describe salient features of these additional sets of sample
points, instead of presenting them explicitly, as they become large. We construct
them as follows:

(R1 �→ R2): To lift from R1 to R2, we iterate over our base set of sample points
S1 as follows (recall |S1| = 2):
For each q ∈ S1,
1. Form the univariate family P2[x1 �→ q] by substituting11 q for x1 in P2,
2. Compute a “sketch” of a CAD of R1 induced by P2[x1 �→ q] (in the

same manner we construced a “sketch” of a CAD of R1 induced by P1

above through univariate real root isolation and isolating intervals), and
select rational sample points xi from each of its full-dimensional cells.
For each sample point xi ∈ Q selected, we then form a 2-dimensional
sample point through extending q by xi, obtaining �q, xi� ∈ Q2. Let S2,q

be the set consisting of these sample points of the form �q, xi�. (S2,q then
represents a full-dimensional stack over q.)

Finally, our set of 2-dimensional sample points S2 is the union of these S2,q

as follows:
S2 =

�

q∈S1

S2,q.

Given P2 and S1 as computed above during the projection and base phases
of deciding ϕ, S2 ⊂ Q2 computed in this way will be s.t.

|S2| = 14.

11 Note that as q may in general be in (Q \ Z), we may have that P2[x1 �→ q] ⊂
(Q[x2]\Z[x2]). This turns out to not cause any problems, and indeed can be avoided
altogether without changing the real affine variety induced by P2[x1 �→ q] by mul-
tiplying through the resulting univariate polynomials by the denominators of their
rational coefficients.

(R2 �→ R3): We perform the next-dimensional analogue of the above procedure,
this time working over the 14 sample points (each 2-dimensional) in S2 and
substituting them into P3. After performing the relevant root isolation and
sampling computations, this yields S3 ⊂ Q3 s.t.

|S3| = 40.

(R3 �→ R4): Finally, we perform the next-dimensional analogue of the previous
liftings, this time working over the 40 sample points (each 3-dimensional)
in S3 and substituting them into P4. After performing the relevant root
isolation and sampling computations, this yields S4 ⊂ Q4 s.t.

|S4| = 200.

So, lifting over every full-dimensional cell in our ϕ example ultimately results
in having to compute 200 sample points in Q4, which will then be each
substituted into QF (ϕ) during the evaluation phase.
The coordinates of our sample points tend to become12 more computation-
ally unwieldy as we rise in dimension. For instance, here is one of these 200
sample points we computed for S4.

�−1,−43/16,−119327/36200, 23133930249499/9896442880000�.

Here is one witness to ϕ contained in S4, thus proving ϕ to be true over
RCF:

�−1, 7/8, 501/410, 3917/410�.

Let us see how incorporating the methods of partial CAD during lifting can
improve the situation by reducing the number of cells we must lift over.

Lifting Variant II: Classical Partiality In this variant of lifting, we will proceed
in the manner of classical partial CAD (restricted to full-dimensional cells). This
follows the basic algorithm described in Section 3. We recall the idea.

Beginning with our sample points S1 ⊂ Q1 computed in the base phase, the
“partiality” of this variant of lifting comes from the following process, which we
follow for each q ∈ S1: Before lifting over q, we will substitute q as a value for
x1 into QF (ϕ) and examine the truth of the resulting formula QF (ϕ)[x1 �→ q].
If QF (ϕ)[x1 �→ q] can by ground evaluation and propositional reasoning (cf.
Section 3) be seen to be unsatisfiable, then we will eliminate q and avoid lifting
over it. Dually, if QF (ϕ)[x1 �→ q] can be seen to be satisfiable by polynomial
arithmetic and propositional reasoning, then we can stop the CAD process al-
together and judge ϕ to be true. If we happen to eliminate all of our sample
points, then we can judge ϕ to be false. This “partiality” is then performed in
the analogous manner when lifting to each successive dimension.

12 We have some ideas for methods enabling us to select sample points with smaller
bit-width than those we often select from sectors now. Pursuing this remains as
future work.

As discussed in Section 3, classical partial CAD requires a sample point
selection strategy. When partially lifting from Ri to Ri+1, this specifies an enu-
meration of Si, the sample points for the relevant cells of Ri. We use a simple
cell selection mechanism below, given by ordering the members of Si by the lexi-
cographic extension of the normal < relation of R and then selecting the sample
points from left to right.

(R1 �→ R2): Performing the partial CAD method as described above results in
no elimination of members of S1.
We then substitute these two points as values for x1 in P2, and perform the
root isolation and full-dimensional sample point selection computations. As
before, this results in a total of 14 sample points in Q2. We use the following
points:






�1,−2�, �1,−7/8�, �1,−17/32�, �1,−5/12�, �1,−1/6�,
�1, 3/4�, �1, 43/16�, �−1,−43/16�, �−1,−3/4�, �−1, 1/6�,

�−1, 5/12�, �−1, 17/32�, �−1, 7/8�, �−1, 2�





.

(R2 �→ R3): We perform the analogous partial lifting method for R2 �→ R3, this
time working over our 14 sample points in Q2 computed above. In doing
so, 7 out of the 14 sample points are eliminated. We are then left with only
having to lift over the following set of 7 rational points in Q2:

{�1, 3/4�, �1, 43/16�, �−1, 1/6�, �−1, 5/12�, �−1, 17/32�, �−1, 7/8�, �−1, 2�} .

We then substitute these points, with each one giving values for x1 and x2,
into P3, and perform the root isolation and full-dimensional sample point
selection computations. This results in a total of only 20 sample points in
Q3.

(R3 �→ R4): We perform the analogous partial lifting method for R3 �→ R4, this
time working over our 20 sample points in Q3 computed above. In doing so,
10 out of the 20 sample points are eliminated. We are then left with only
having to lift over 10 rational points in Q3.
We then substitute these points, with each one giving values for x1, x2 and
x3, into P4, and perform the root isolation and full-dimensional sample point
selection computations. This results in a total of only 50 sample points in
Q4.

Clearly, tremendous gains were made by employing partiality during lifting.
Let us illustrate the differences between these first two lifting methods by com-
paring the cardinalities of the collections of sample points they retained at each
dimension:

Normal Partial
Q1 2 2
Q2 14 7
Q3 40 10
Q4 200 50

Lifting Variant III: AP-CAD with Interval Theatre We now consider a lift-
ing method which utilises our interval-based AP-CAD theatre defined in Ap-

pendix B. This will follow the “AP-CAD with Theatrical Lifting” algorithm
(Algorithm 1) introduced within the main text of this paper, but instantiated
upon our concrete theatre T.

Recall that we defined T to be s.t.

∀n ∈ N+ (T(n) = ��S, w�,F,P�) .

Thus, when performing AP-CAD lifting with T, the same AP-CAD stage, ��S, w�,F,P�
which we built to use some simple interval-based methods, will be applied at ev-
ery dimension. The algorithm proceeds as follows:

R1 �→ R2: The covering width function w is applied to S1 to yield w(S1) = 3.
This gives an upper-bound on the number of cell selections we will compute.
As with the“AP-CAD with Theatrical Lifting” algorithm, we use j to repre-
sent the “step” in the cell selection processing. Initially, j is set to 1. Next,
the cell selection function S is applied to S1 with a step value of 1, yielding:

S(S1, 1) = S1 = {−1, 1}.

So, the entire set of base sample points has been selected.

Next, the formula construction function F is executed upon ϕ and this se-
lection of sample points. It yields the following formula:

F(ϕ, {−1, 1}) =





∃x1 ∃x2 ∃x3∃x4

(x1x4 + x2x4 + x3x2 < 0)

∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x
2
4 + x

2
3 + 1 < 0)

∧ (x1 ≥ −1) ∧ (x1 ≤ 1)




.

Finally, the ∃ RCF proof procedure P given by RAHD’s execution of the
following proof strategy is executed upon F(ϕ, S1):

[simp-zrhs; run stable-simp; satur-lin;
interval-cp(max-contractions := 30)].

This proof strategy is unable to reach a decision about F(ϕ, S1) and returns
unknown. This causes j to be incremented to 2, and the next step of the
cell selection process is executed:

S(S1, 2) = {−1}.

Next, the formula construction function F is executed upon ϕ and this se-
lection of sample points. It yields the following formula:

F(ϕ, {−1}) =





∃x1 ∃x2 ∃x3∃x4

(x1x4 + x2x4 + x3x2 < 0)

∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x
2
4 + x

2
3 + 1 < 0)

∧ (x1 ≥ −1) ∧ (x1 ≤ −1)




.

The ∃ RCF proof procedure P is executed upon F(ϕ, {−1}), again returning
unknown. This causes j to be incremented to 3, its current upper bound
as determined by the covering width function w, and so a final cell selection
will be executed upon S1:

S(S1, 3) = {1}.

Next, the formula construction function F is executed upon ϕ and this se-
lection of sample points. It yields the following formula:

F(ϕ, {1}) =





∃x1 ∃x2 ∃x3∃x4

(x1x4 + x2x4 + x3x2 < 0)

∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x
2
4 + x

2
3 + 1 < 0)

∧ (x1 ≥ 1) ∧ (x1 ≤ 1)




.

The ∃ RCF proof procedure P is executed upon F(ϕ, {1}), and this time it
is able to prove the constructed formula to be false. Thus, the sample point
1 can be eliminated from S1 and we need not lift over it.
It is worth pausing and understanding why classical partial CAD was unable
to eliminate 1 from S1, yet this AP-CAD method succeeds. By inspecting
the formula, we see that simple interval reasoning is enough to recognise
the falsity of F(ϕ, {1}), but classical partial CAD, performing only substitu-
tion, the evaluation of ground atoms, and propositional reasoning, does not
recognise this.
Now, we isolate the relevant sample points induced by the univariate family
P2[x1 �→ −1] and continue onto the next dimension.

(R2 �→ R3 �→ R4): It turns out that for the rest of the lifting process, our
AP-CAD theatre is unable to eliminate any cells. This results in having to
retain 20 sample points in Q3 and 100 sample points in Q4.

Thus, while this AP-CAD instance showed some promise in improving the
efficiency of this example during (R1 �→ R2) lifting, in the end it resulted in
having to lift over more cells than classical partial CAD did. Let us extend our
previous table so that we may compare the cardinalities of the sets of retained
sample points for the three variants of lifting seen thus far:

Normal Partial Intvl. AP-CAD
Q1 2 2 1
Q2 14 7 7
Q3 40 10 20
Q4 200 50 100

But, notice the following: We did not employ at all the method of classi-
cal partial CAD during this AP-CAD lifting. That is, many of these cells the
AP-CAD did not recognise to be eliminable may have been recognised to be
eliminable by substitution, the evaluation of ground atoms and propositional
reasoning. Let us see what happens when we combine these methods.

Lifting Variant IV: Classical Partial + AP-CAD In this final variant of lifting,
we will first try to eliminate cells by the reasoning of classical partial CAD, and
we will then apply our AP-CAD cell selection and elimination loop to the cells
which survived.

(R1 �→ R2): We begin with two sample points S1 = {−1, 1}. Partial CAD
elimination is unable to eliminate either of them. Our AP-CAD theatre is
able to eliminate one of them, 1, as we saw before. So, we lift over −1 w.r.t.
P2 and compute 7 sample points in Q2

(R2 �→ R3): We begin with the 7 sample points in Q2 and apply partial CAD
elimination. This results in 2 sample points being eliminated. Our AP-CAD
theatre is unable to eliminate any of them. We are then left with only having
to lift over 5 points in Q2 w.r.t. P3. So, we lift over them and compute 14
sample points in Q3.

(R3 �→ R4): Finally, we begin with the 14 sample points in Q3 and apply partial
CAD elimination to them. This eliminates 7. We then lift over the remaining
7 points w.r.t. P4 and compute 35 sample points in Q4.

Thus, the combination of the cell elimination method of classical partial
CAD coupled with our AP-CAD lifting led to the most efficient lifting variant,
measured by the number of cells retained at each dimension, for this example.
We may now complete our table comparing the cardinalities of the sets of sample
points retained at each dimension:

Normal Partial Intvl. AP-CAD Partial + Intvl. AP-CAD
Q1 2 2 1 1
Q2 14 7 7 5
Q3 40 10 20 7
Q4 200 50 100 35

Experimental Conclusion In this experiment, we built a concrete instance of
our Abstract Partial CAD framework making use of light-weight interval arith-
metic reasoning and examined its efficacy. We compared in substantial detail
four variants of lifting on a particular ∃ RCF formula ϕ. These four methods
were:

1. full-dimensional lifting without eliminating any full-dimensional cells,
2. full-dimensional lifting with standard partial CAD used to eliminate cells,
3. full-dimensional lifting with our AP-CAD theatre used to eliminate cells,
4. full-dimensional lifting with a combination of standard partial CAD and our

AP-CAD theatre used to eliminate cells.

As lifting is usually the most expensive aspect of a CAD-based decision
method, we focused on a comparison between the number of cells one is forced
to lift over by each of these variants.

For our example formula ϕ, we found the final method combining classical
partial CAD and our AP-CAD instance to be the best, followed by classical
partial CAD, then our AP-CAD instance working alone, and finally the method
of normal full-dimensional CAD without any partiality. In all cases, the cost of
the AP-CAD theatre/stage execution was miniscule, measuring no more than
0.01% of the total CPU time, as the cell selection, formula construction and
interval reasoning employed were each of such a simple nature.

In general, we conclude that the final variant of lifting combining classical
partial CAD and our AP-CAD instance at worst performs as well as partial
CAD and at best performs substantially better. This conclusion is supported
by experiments we have done with other example ∃ RCF formulas. Below we
summarise in table form our findings on five examples (cf. [10]), the first being
ϕ we worked through above:

Normal Partial Intvl. AP-CAD Partial + Intvl. AP-CAD
P1 Q1 2 2 1 1

Q2 14 7 7 5
Q3 40 10 20 7
Q4 200 50 100 35

P2 Q1 16 8 0 0
Q2 140 0 - -
Q3 664 - - -

P3 Q1 4 2 2 2
Q2 20 5 10 5
Q3 60 3 30 3
Q4 120 6 60 6

P4 Q1 12 10 0 0
Q2 88 19 - -
Q3 264 19 - -
Q4 1320 95 - -

P5 Q1 8 3 4 3
Q2 64 8 32 8
Q3 512 8 56 8
Q4 2560 40 1280 40

Finally, we wish to state two closing experimental observations.
First, the AP-CAD instance we constructed and experimented with in this

section is but one of many (indeed, infinitely many) possible such instances. The

fact that even such a simple13 instance of the AP-CAD paradigm shows such
promise is very encouraging.

Second, though we have been working solely with full-dimensional variants
of CAD-based methods, AP-CAD may prove to be even more useful when it
comes to full-on CAD-based methods which require irrational algebraic number
computations. The reason is that through cell selection, formula construction
and proof procedure execution, one has the ability to eliminate a set of many
sample points all at once using AP-CAD, and in this way many irrational alge-
braic sample points may be eliminated with only rational number computations.
To use our concrete AP-CAD instance as an example in the context of standard
CAD not restricted to full-dimensional lifting, one has the potential to eliminate
a set of sample points such as {−3,−

√
2,−1,

√
2,
√
2 + 3

√
3, 15} simply by con-

structing and refuting a formula that only references this set of sample points
using its minimal and maximal rational values, e.g., through a statement of the
form F ∧ (x1 ≥ −3 ∧ x1 ≤ 15) for some F . The ability to eliminate multiple
irrational algebraic sample points simply through reasoning about formulas in-
volving rational numbers seems very promising for the extension of these ideas
to unrestricted cell decompositions.

13 It is worth observing that the combination of classical partial CAD and our AP-
CAD instance could actually be realised by a more intricate AP-CAD instance which
performs the classical partial CAD reasoning itself. In this way, AP-CAD can be seen
as a true generalisation of classical partial CAD.

	 Abstract Partial Cylindrical Algebraic Decomposition I: The Lifting PhaseExtended Version

